
THE REALITY OF SYSTEMS DEVELOPMENT:
A CASE STUDY AT THE SLOAN SCHOOL OF MANAGEMENT

by

Leslie Lafer McCafferty

B.A., Economics
Bryn Mawr College

(1984)

Submitted to the M.I.T. Sloan School of Management
in Partial Fulfillment of

the Requirements for the Degree of
Master of Science in Management

at the

Massachusetts Institute of Technology

January 1990

© Massachusetts Institute of Technology 1990
All rights reserved

y .10 - - 1l

Signature of Author

Certified by

....................................>............ $
... Sloan Schoolof Management

December, 1989

.... e 77 7 7 ::..........-............

Stuart E. Madnick

Professor of Managemert Science

Thesis Supervisor

Accepted by
Jeffrey A. Barks

Associate Dean, Masters and Bachelors Programs

THE REALITY OF SYSTEMS DEVELOPMENT:
A CASE STUDY AT THE SLOAN SCHOOL OF MANAGEMENT

by

Leslie Lafer McCafferty

Submitted to the M.I.T. Sloan School of Management

in Partial Fulfillment of

the Requirements for the Degree of

Master of Science in Management

ABSTRACT

The development of computer systems to replace manual processes has become inevitable in today's
society given the increasing capabilities and decreasing expense of hardware and software.

The developers of systems designed to manipulate data must be highly cognizant of the ramifications
their conceptual systems designs have on the actual implementation of a workable computer system.

This study describes the development of computer systems for use by the Sloan School of
Management, with particular focus on the most recent systems development attempts. It discusses
the history behind systems development at Sloan and why the current attempts were more limited in
scope than prior efforts. It reveals that conceptual systems design is not totally independent of
hardware and software considerations.

Thesis Supervisor: Dr. Stuart E. Madnick

Title: Professor of Management Science

CONTENTS

ABSTRACT.. 2

1 INTRODUCTION.. 5

2 HISTORY OF SYSTEMS DEVELOPMENT AT SLOAN.................................. 6

3 DATABASE DESIGN APPROACH... 14

4 RECRUITING DATABASE... 16

4.1 Database Management System Selection... 16
4.2 General Approach.. 17
4.3 The Recruiting Function Itself... 19
4.4 CDO Key Recruiting Entities.. 21
4.5 CDO Recruiting Input Documents... 21
4.6 CDO Recruiting Output Documents.. 22
4.7 Benefits of Database Development.. 23
4.8 Recruiting Database Entity-Relationship Diagram............................... 25
4.9 Discussion of Conceptual Design.. 27
4.10 Physical Design... 36
4.11 Application Development.. 39
4.12 Recruiting Database Current Status.. 44

5 SLOAN ALUM NI DATABASE... 45

5.1 Alumni History.. 45

5.2 General Approach.. 46
5.3 Background Review... 47
5.4 Sloan Alumni Database Entity-Relationship Diagram.........................48
5.5 Conceptual Design... 50
5.6 Sloan Alum ni Database Current Status... 56

6 TECHNICAL ISSUES... 57

7 CONCLUSIONS.. 61

APPENDIX A: CDO RECRUITING INPUT DOCUMENTS....................................67

APPENDIX B: POSITION NUMBER GENERATING PROGRAMS...................... 72

APPENDIX C : DATA DICTIO NARIES.. 74

PROG RESS ... 75

INFO RM IX...86
RBASE..92

APPENDIX D: RECRUITING RESERVATION PROGRAMS/INPUT FORMS........ 96

PROG RESS ... 97

INFO RM IX...100
RBASE..106

APPENDIX E: PRESENTATION RESERVATION PROGRAMS/INPUT FORMS.. 107

PROG RESS ... 108

INFORM IX ... 109

RBASE..113

APPENDIX F: ADDS DATABASE FILES AND TABLES.. 114

APPENDIX G : ADDS M ASTER FILE REVIEW ... 128

BIBLIOG RAPHY.. 135

THE REALITY OF SYSTEMS DEVELOPMENT:
A CASE STUDY AT THE SLOAN SCHOOL OF MANAGEMENT

CHAPTER ONE

INTRODUCTION

This thesis is a description of a systems development project that was begun during the summer of

1989. The goal of the systems development project was to design, and if feasible given time,

program two functioning databases, one for Sloan recruiting information and the other for Sloan

alumni information. These databases will provide a threefold benefit to Sloan:

1) They will assist students with the job search process.

2) They will increase the efficiency of Sloan's Career Development Office (CDO) operations.

3) They will provide the Composite Information Systems Tool Kit research project (CIS/TK),

being sponsored by the Information Technologies department, with current data to be used

for demonstration purposes.

This thesis presents an in depth discussion of the database development projects and a disclosure of

the reality of systems development process. First, the history of systems development at Sloan will be

outlined via a survey of documentation on this subject (Chapter 2). Next, the fundamental database

design approach for the two project databases will be discussed, followed by an in depth discussion

of each individual design and implementation effort (Chapters 3 - 5). A discussion of some of the

technical issues raised during implementation will follow (Chapter 6). Lastly, based on an analysis of

both the history of systems development and the particular experience from the project database

development, conclusions regarding the systems development process at Sloan will be drawn

(Chapter 7).

CHAPTER TWO

HISTORY OF SYSTEMS DEVELOPMENT AT SLOAN

Computerization of operations at the Sloan School of Management has been discussed by several

theses and working papers dating back more than 15 years. These prior works were conducted from

both theoretical and practical perspectives and some have resulted in successfully implemented

systems of one degree or another. But for the most part, these efforts have not been unified or

coordinated and have not resulted in a completed, maintainable, operating Sloan Information System,

covering the major administrative functions at Sloan.

In order to understand Sloan systems development history, some background on the Sloan

organization is required. While there have been task forces established in the past for directing

systems development efforts, there is no centralized Information Systems organization within Sloan.

Rather, there are a few key people managing systems usage at Sloan, but no established systems

development staff. Nor are there substantial resources earmarked for systems development. Many of

the systems development efforts at Sloan have therefore involved students, for both design and

programming of the systems. Given an organization without a mandate to develop administrative

systems, efforts to create such systems have faced substantial stumbling blocks from the start.

In addition to the organizational constraints, my analysis revealed several other reasons for incomplete

systems development at Sloan, the first being a lack of continuity between projects. The earliest

project that I could locate was "A Management Information and Control System For a School: Its

Application to the Sloan School of Management" by Jean Camille Lavigne and Denis Henri Porges,

Thesis June 1971. But there is no way to be certain that this is in fact the first project on the subject.

While these older projects are not really relevant to today's needs (due to significant organizational

changes and technical advances), the fact that they are difficult to identify and locate is an indication

that throughout the years there has probably been a lot of duplication of prior efforts in automating

Sloan. These prior works can and should be used as reference points and as a basis for future

actions.

The particular paper written by Lavigne and Porges was a study in design approaches. Throughout

the process of designing a system for controlling Sloan's use of resources, these students used the

then most current frameworks for performing information systems analyses and discussed which

approaches worked better than others. From a practical standpoint this project highlighted both the

ideal information system for Sloan and the most practical version, given existing constraints. The

systems analysis itself concentrated more on the control of information (budgeting and accounting)

than on the managerial use of information.

The next paper I identified was actually a follow-up on Lavigne's and Porges' work. "The

Implementation of a Management Information and Control System for the Sloan School of

Management" is a thesis written by Samuel T. Redwine, Jr. in 1972. The purpose of this thesis was to

design, program and implement an information and control system at Sloan - SLINFO. Redwine also

outlined some factors about the environment at Sloan which have an influence on systems

development (for example, issues concerning use of students to program the system).

The system designed by Redwine was actually implemented in 1972. The thesis does not contain

information on the implemented version, nor is there much systems development documentation.

Emily Magazzu, the Sloan database administrator for SLINFO, provided the following information:

Originally SLINFO was a batch processing system in a "VS1" environment which required card input,

with storage on tape. SLINFO produced enrollment reports, faculty load reports, faculty utilization

reports, cost reports and mean salary reports. It changed from card input to interactive input in 1980.

This system was operative until Spring of 1987. According to Ms. Maguzzu, by 1987 this system was

no longer usable because : 1) the VS1 environment was being eliminated and 2) the programs written

for SLINFO could not handle the growing volume of data, and because there were no programmers

"available" to Sloan (meaning students with the necessary background), no new programs were

written. Hence SLINFO was no longer used after 1987.

In December 1974, William L. Baggeroer and John M. Fox wrote "Student Information System, Sloan

School of Management, Preliminary Analysis and Design" as a term project for the management

information systems course15.565, Principles of Information Technology 11. As with the prior two

works, this project tried to address most, if not all, of the administrative functions at Sloan. The focus

however, was more on software and hardware selection issues than on the analysis and design of the

system itself. According to the authors, this was a preliminary analysis upon which further work should

be done.

This paper does mention the SLINFO system produced by Redwine and being used by the Dean's

Office. According to Fox and Baggeroer, since that system was working adequately, their project

would concentrate on the Masters Program Office (MPO) and the Career Development Office (CDO).

They concluded that the MPO did not require automation, but the career placement and alumni

tracking functions did.

No information for the period 1974 through 1986 is available. SLINFO was being used, but no

comprehensive documentation regarding the system was prepared. Student programmers

performed a good amount of the programming for SLINFO, but came and went throughout the lifetime

of SLINFO.

The next few papers represent the more current projects aimed at making Sloan administration more

efficient. "Systems Requirements Study of the Masters Program Office of the Sloan School of

Management", a class project for Course 15.569, Advanced Decision Support Systems, December

1986, was coordinated by Professor Michael E. Treacy. This report is the most current version of a

total design for Sloan, contained within one document. The class was split into different student

groups, each which was responsible for analyzing a distinct Sloan administrative function:

- Admissions

- Student Services (e.g., grades, courses)

- Placement Office (i.e. CDO)

- Alumni Services

- Integrated System Design (tying all of the functional systems together)

While reading these prior papers it became apparent that there is some confusion about the hierarchy

of Sloan administrative functions. In Baggeroer's and Fox's work (1974), the Masters Program Office

was responsible for admissions and current student information, and the Career Development Office

(then known as the Office of Graduate Student Placement), was responsible for career placement and

alumni information. The MPO and the CDO were considered separate organizational entities. The

Treacy Paper implies that the Masters Program Office is the umbrella under which the Admissions,

Placement, Student and Alumni services are housed. While this view may or may not have been true

in 1986, today the CDO is not a part of the Masters Program Office.

Based on discussions with various individuals involved in the Treacy project, it seems the

recommendations of that project were not implemented because of resource problems rather than

because of any weakness in the analyses. The project team recommended a hardware, software and

manpower package that would, as a rough estimate, cost $185,000. From what I have learned, while

there was support in theory for what the Treacy project was trying to accomplish, there was no support

in terms of a commitment of resources (computer equipment or programmer/consultant time).

The situation gets even more confusing because in January of 1986 it appears that development of

SIS, the Sloan Information System, was begun. The documentation I located on this particular project

is fragmented, consisting of whatever was retained by the SIS committee members. The committee

was made up of a variety of individuals from Sloan, including faculty and members of Sloan

administration. Based on discussions with Ms. Magazzu, it appears that the Treacy project was to be a

new starting point for Sloan automation, and the demise of SLINFO. Hence, the Sloan Information

System (SIS) project was born. Because there is no good documentation on SIS, it is not clear how

much of Treacy's work was used to implement SIS, or if in fact there was a duplication of effort.

In any case, SIS was another attempt to connect all of the Sloan administrative functions via one all

encompassing system. The goal of this development was an actual implemented system, and not just

a design (as was the Treacy project). Actual programming and implementation did not occur until the

summer of 1987. Because of the broad scope of the project several aspects of the system eventually

had to be dropped in order for anything to be completed. The resulting system produced enrollment

and faculty load reports.

SIS was in operation until quite recently. According to Ms. Maguzzu, two major stumbling blocks for

continued use of SIS were the lack of a "front end" for the system (a user interface issue) and the

"Ethernet" networking issue. The user interface problem concerned the particular language that was

used to create SIS - SQL/DS. It is not easy for a user to learn and there was no support for developing

a customized menu-driven user interface. And because the Ethernet network was being used, no

prepackaged "front-ends" like DBEDIT were supported. Because Ms. Magazzu is leaving Sloan after

completion of the 1989-1990 school year, and because no one has "volunteered" to take over the

administration if SIS, it appears that this system will be scrapped.

At the next point in history a more academic and research oriented focus begins to enter into the

discussion of a Sloan Information System. "A Composite Information System for the Sloan Placement

Office" was written by Laurence Stanley Kooper for his thesis in May 1988. This thesis is the

forerunner to my thesis and was done in concert with the Placement Assistant System (PAS) project

discussed below. Kooper's thesis is basically a discussion of the PAS project and the rationale

behind the decisions being made for that project. It concluded that a "small, committed team who are

[sic] familiar with the application can quickly implement an acceptable prototype system". (Kooper, pg.

35) Unfortunately, as will be discussed in further detail below, this conclusion is misleading.

The "Placement Assistant System (PAS)" was a class project submitted by Alan Banks, Laurence

Kooper, Andrea Flamburis for course 15.579 (1988) and involved the development of a prototype

Placement Assistant System to assist with the CDO's job placement functions. It was hoped that this

project would instigate further automation of Sloan career placement and administrative functions.

And, as noted above, Laurence Kooper documented key issues in the development process for his

thesis. Since PAS was the basis from which I was to develop the recruiting and alumni databases, it

will be discussed in more detail than the other prior projects.

From all the evidence it seems that the PAS project was problematic from its inception. It began as an

assignment for a course, 15.579. The fact that the project was not initiated from the user area (i.e. the

area that would be ultimately responsible for using/maintaining the resulting system - the CDO) was

the first and perhaps the most fundamental problem with the project. The motivation for adequately

performing a class project is quite different than that of a user area trying to automate its functions. In

order to successfully complete the course in one semester, a working prototype had to be developed

and completed. Contrast this with the goals of the CDO in terms of automation - to have a functioning

system that would meet its information needs and make operations more efficient. This is far from a

minor task and would involve significant involvement by CDO staff to ensure that their goals were met.

But since this project was not initiated by the CDO, it was not on its agenda at that time to devote the

manpower required. As a result, CDO involvement was minimized.

From the PAS project documents and discussions with CDO personnel it appears that the PAS

project team did the majority of development by themselves, and did not verity that their assumptions

about the tasks they were automating were in line with CDO assumptions. As a result, the final system

did not perform in the way the CDO wanted it to, and the system is not being used. While my

discussion of this project is not intended to denigrate the work that went into the PAS project, it is

intended to highlight a lack of understanding of the CDO perspective on the part of the PAS team. It

is evident from the three documents that resulted from PAS (the PAS report, Koopers thesis and Lisa

Tener's paper discussed below) that the intent of the PAS team was to develop what they believed to

be a good system, and to hand it over to the CDO for use. However, as my project work testifies (and

as is discussed later in this paper) it is impossible to develop an acceptable system in a vacuum, nor

should anyone try to do so, because the final product will not be what the end user wants.

In addition to the organizational issues, I believe that the failure of the PAS team system was also due

to the team's choice of task. They had chosen amongst the wide range of CDO tasks, the most

difficult piece to develop first - the priority card system at Sloan. This task involves second year

students bidding for the companies they want to interview with. While it made some sense to select a

manually intensive task as the starting point for systems development, the task of computerizing this

function was not simple at all. It did not just require a transfer of manually produced reports to

computer produced reports. It involved evaluating the bids to determine those students that would

interview with each company. It appears that implementing the most complicated function first made it

more difficult to test the usefulness/userfriendliness aspects of the system. In other words, had a

more simple function been selected first, it would have been easier to attack issues like user screen

formats and help functions that would be the users' interface with the system. But by concentrating

on the more difficult tasks first, more time had to be spent on programming the application itself and

not on how the resulting application would be perceived and evaluated by the users.

Further, a paper written by Lisa Tener as a class project for course15.579 (1988), called

"Organizational Issues Involved in the Development of the Placement Assistant System at the Sloan

School of Management", also made up part of the PAS project. This paper, by far the most insightful,

outlines the organizational dynamics that were going on and also openly identifies areas where

improvements could have been made in both the process and the final product. Unfortunately, this

paper was difficult to locate, highlighting the difficulty in even attempting to establish some sort of

continuity between systems development projects at Sloan. This paper would have been helpful to

me when I began designing the alumni database (described later) early in June.

The systems development project to be described in this paper is being supported by a research

project described in "Logical Connectivity: Applications, Requirements, and an Architecture"

(Working Paper #2061-88, August 1988) by Stuart E. Madnick and Y. Richard Wang. This research

project involves the development of a Composite Information Systems Tool Kit (CIS/TK) which will

physically and logically link together heterogeneous databases. The paper refers to several Sloan

databases that CIS/TK is designed to link, which in fact only exist in a very limited format (e.g.,

Recruiting, Alumni, and Student databases). The goal of my project was to design fuller versions of

the Recruiting and Alumni databases referenced by this paper, that could actually be put in place and

used by Sloan, as well as be linked by the Tool Kit. The CIS/TK research project relies on the fact that

databases are disparate (not within one computer) and heterogeneous (not using the same

programming language or conventions), which is usually the case, and thus while it may not represent

the ideal systems development situation for Sloan, this project may eventually result in at least some

operable systems for use by Sloan.

The paper "A Microcomputer Network Design for the Sloan School Admissions Office" by Richard R.

Barth, is the result of a project for 15.562, in May 1989. The paper outlines the various functions

performed by the Masters Program Office and and how they can be better supported by computer

applications. While some of the information contained in this report duplicates prior works (because

there was no way to identify easily what prior work had been performed), this paper contains a great

deal of useful information on MPO activities and will hopefully be used as the basis for future work on

automating the MPO.

The "DBMS Software Review", a class project for 15.565 (Spring 1989), Introduction to Information

Technology 11, represents a review of several database management software packages and how they

would serve to meet the needs of Sloan. It was performed on the request of the Sloan Information

Systems and Computer Education Committee, in order to identify a relational database management

system (RDBMS) that could meet Sloan's needs, given that there is no support for a centralized

system as discussed earlier. These general "needs" concem whether a software package supports:

* Complex Procedures/Programming

* Database Maintenance and Growth

* Multiple Computer Platforms

* Educational Uses

The package selected would have to allow for decentralized, user-centered application development

and be utilized in an environment without experienced programmers or a database administrator. As a

result of this review, the software package PROGRESS was determined to be the package that came

closest to meeting the needs and requirements of Sloan.

The conclusion we can reach based on the history of systems development at Sloan is that many of

the past projects were trying to address too many functions and too diverse a set of goals. The

organizational arrangement at Sloan is not conducive to coordinated efforts because each functional

area has its own agenda: the faculty has different goals (primarily research oriented) from the

administrative areas (which are more practical). In addition, the responsibility for maintenance has

been a stumbling block because in having customized programs developed for use by Sloan,

maintenance becomes much more difficult, particularly when programmers come and go. Since there

have not been and probably will not be, resources dedicated strictly to the purpose of automating all

of Sloan's functional areas, the more reasonable approach from now on appears to be incremental

systems development. The systems development project described in this thesis is based on an

incremental approach, that is, to develop separate working systems for the various administrative

functions, leaving integration and refinement of these systems until a future time. While this may not

be the theoretically best approach, it is the most effective practical approach, particularly given Sloan's

history. However, despite the limited scope of this project, I faced several obstacles in development,

indicating that an incremental approach does not in itself guarantee success.

CHAPTER THREE

DATABASE DESIGN APPROACH

In today's technological environment, there are many choices open to systems developers in terms of

the type of system they want to develop - using files versus a database - and within the realm of

databases, which type they want to use - network, hierarchical or relational. While this paper is not

intended to be a discussion of the merits of each of these types nor a rationale for which is the best, it

is worthwhile to briefly discuss each to highlight why the relational approach was used to develop the

databases for this project.

A database management system differs from a file based system in that the applications used to

process data are separated from the data itself. With a file based system,

"..each new computer application is typically designed with its own set of data files.

Much of the data used in these new files may already be present in existing files for

other applications. However, to meet the needs of the new application, the existing

files would have to be restructured. This would require that existing programs that

use these same files be revised or completely rewritten. For this reason, it is often far

simpler (and also less risky) to design new files for each application."(Hoffer &

McFadden 1988, pg.9)

As a result of no data sharing, there is much data redundancy as well as a loss of data integrity

(because each application makes changes to its own version of the data).

A database system on the other hand,

"..represents a different concept in information resource management..A database is

a shared collection of interrelated data, designed to meet the information needs of

multiple users ...The data are stored so they are independent of the programs that

use them."(Hoffer & McFadden 1988, pg.15)

Centralizing the storage of data in one location allows for a sharing of data that eliminates redundancy

and provides for a better degree of data integrity.

Within the database realm there are three types of databases - hierarchical, network and relational. In

order to clarify the difference between the three, it is beneficial to define some terminology to

describe different elements of data that are stored in a database:

ENTITY An entity is any person, event or object that is of interest to the organization

that is automating its operations. For example, one important entity for job placement

activities is companies that come recruiting on campus.

ATTRIBUTES Each entity is made up of characteristics called attributes which

describe in detail that entity. The attributes of a company would be address, industry,

etc.

RELATIONSHIPS Relationships are associations between/among entities which

highlight a fundamental interaction between those entities. For example, given that

"employee" is an entity, there is a very specific relationship between a company and

an employee - an employee works for a company. Relationships may also have

attributes.

The difference between the three database types noted above is based on the degree to which

relationships can be defined between the key entities within the database. With the hierarchical and

network models, relationships must be explicitly defined in the database, usually by specifying an

entity's role in a "parent-child" relationship. With the relational model, relationships are implicit, being

based on a common attribute between entities and not on any specified role played between entities.

With the relational model, redundancy and integrity problems can be eliminated, at least theoretically.

In reality, the extent of reduction of these problems is determined by the features of the database

management system.

The relational model was selected as the design platform for the Recruiting and Alumni databases. In

order to effectively design these databases, a threefold approach was taken with each database:

1) The first step involved designing a "Conceptual Schema" for each database. This schema was

based on a thorough analysis of the alumni and recruiting functions, including a review of the input

and output documents associated with these functions. Each schema was outlined in an "Entity-

Relationship" diagram, to provide a clearer picture of the relationship between entities.

2) After completion of the conceptual design, the next phase in the process was translating the

design into a phsycal design, i.e. the physical database. This entails working with a Relational

Database Management System (RDBMS) package to program the database schema as close to the

conceptual model as is possible, given the capabilities of the RDBMS.

3) The last phase of each project involved programming the applications to manipulate the data in

the database and creating an interface for users to access those applications.

This was the general approach taken with each database; a more thorough discussion of each

database follows.

CHAPTER FOUR

RECRUITING DATABASE

DATABASE MANAGEMENT SYSTEM SELECTION

For the recruiting piece of the project, a "semi" dual database development scheme was in place,

meaning joint conceptual design but independent implementation (described below). The CDO had

independently researched their needs and capabilities and selected a relational database

management package that suited those needs (RBASE). Amongst all of their career development

functions they determined that the Recruiting function needed to be automated first. The CIS/TK

team also needed a recruiting database, but a RDBMS was desired that could work in both the mini-

computer and personal computer (PC) environments, which RBASE (being PC-based) cannot

currently do. It was decided by the CIS/TK research faculty that a separate version of the database

would be programmed for CIS/TK's use, and with the CDO's permission, data would periodically be

downloaded from the CDO's operating system to the CIS/TK version so the Tool Kit would have

access to current data.

16

The DBMS review work done in 15.565 was used as the primary basis for determining which RDBMS

to select for the CIS/TK version of the recruiting database. This project narrowed down the choice of

software package to PROGRESS and INFORMIX, the two that came the closest to meeting Sloan's

needs highlighted earlier. PROGRESS was ultimately identified by the majority of student groups as

the best match because of its more "user-friendly" interface, although the RDBMS was not designed

for end-user development. Informed by the analysis of 15.565 as well as by prior indications that

INFORMIX was difficult to use (PAS and Larry Koopers thesis), I selected PROGRESS. PROGRESS

appeared to be more user friendly than INFORMIX and therefore I believed it would be more widely

accepted by the Sloan community for future database work, if the databases I designed were

successfully implemented.

However, during the course of database development, other agendas entered into the decision of a

RDBMS, namely the desire to use the same RDBMS in MIS courses at Sloan. This meant that the

RDBMS selected had to support SQL (structured query language) which is a standardized approach

for querying information in a database. PROGRESS only had SQL available in the PC version at that

time, and not in the minicomputer version which would be used by classes and CIS/TK. Therefore the

decision was made by the CIS/TK faculty to switch to INFORMIX even though a significant amount of

programming had been done in PROGRESS. While this resulted in a delay in completion of the

programming of the databases, it did give me a chance to experience a different RDBMS

environment. Consequently, it strengthened my conclusion that databases cannot be designed

totally independently from the RDBMS that will be used, because the particular RDBMS has a major

impact on the final implementation of the conceptual design. While the programming of the recruiting

and alumni databases has continued with INFORMIX, it is still unclear what the ultimate software

package to be used for future Sloan Information System development will be, particularly since the

selection of the software was made independently of the ultimate end users.

GENERAL APPROACH

The approach to the Recruiting Database development consisted of joint conceptual design of the

database with a CIS/TK team member (me) and CDO team members (Linda Stantial, Emily Barrett and

Darcy Hunter). Each team, using the conceptual design would then program the database in their

own RDBMS. In short, as noted earlier, this approach involved concurrent conceptual design but

independent implementation. While the development of two independent versions of the Recruiting

database was not the most efficient use of available resources, it did serve to meet the goals of the

independent groups, namely the CDO and the CIS/TK research project. As highlighted earlier, the

differing goals of the administration and faculty can limit the efficiency and effectiveness of systems

development at Sloan.

Once the conceptual design was completed, it had to be implemented in the RDBMS. Because of

the independent implementation, the CIS/TK version had to be programmed almost in a vacuum, with

the specifics of the user-interface, applications, input forms, etc., based on my knowledge of CDO

functions and my own judgement. A lot of information was gathered during the design phase but it is

not until a design is actually implemented that specific issues such as the format of input forms or the

exact functions an application should perform are raised. The CDO is very busy during the summer

preparing for the fall/spring recruiting and therefore couldn't be expected to address issues raised by

implementation of a database version they weren't planning on using. To basically double their

amount of involvement (to cover not only their own version but also the CIS/TK version) was not

feasible. Therefore, I had to make several assumptions that otherwise would not have been required

if only one software package had been used.

While the CDO did the majority of the programming of their own database in RBASE, I was able to

provide some support due to my experience. By assisting the CDO in the development of their

version, I was able to obtain a good idea of what they wanted their applications to do/look like

generally, and I used this information in the programming of CIS/TK's version. While I was

programming my version however, the CDO was making some minor changes in the database design

to suit their needs. These changes, for example adding an additional attribute field to a database

entity, had ramifications for my version of the database. Because I was not aware of the changes until

after I had programmed some applications, I had to reprogram every file that was affected by the

change. The moral here is there are so many unanticipated issues that are raised when a database is

actually implemented, that one must be flexible enough to make the necessary changes to the

database. However, in the case of this project, independent implementation meant that there was a

delay in communicating changes which could have been avoided had the development of CIS/TK's

version occurred sequentially rather than concurrently.

The original database design was limited to the recruiting piece to ensure that some working system

would be finished, rather than trying to design an entire system for all CDO functions, and becoming

overwhelmed. Up to this point the CDO staff had had only limited experience with database design

and thus wanted to keep things manageable. The PAS project team documentation was used as a

starting point for reviewing CDO functions, to take advantage of the research on CDO functions that

had already been done and to limit the amount of time that the CDO had to spend on designing the

new system, given their past time constraints.

The database design that resulted from this project was very similar to the design that came out of the

original PAS project. But because the rationale behind the PAS design entities, relationships and

attributes had not been completely documented, the new design required more thought and

decision making (probably duplicating what had gone on before) than should have been necessary.

For example, in the original PAS design, it was not documented why a unique position number was

necessary to keep track of positions companies were recruiting for. And therefore, during preliminary

design of the new database, there did not seem to be a need for a unique position number. However,

during successive design phases, the usefulness of a unique position number became apparent (and

is discussed in more detail later). Had the original rationale for a unique position number been

documented, perhaps much time could have been saved in the conceptual design phase of this

project. Thus one conclusion this project has highlighted forcefully is the need to document systems

development. While it is common wisdom that systems should be documented, it rarely happens

because it is given low priority and few incentives. Usually the proponents of documentation are more

concerned with large systems development where there is a lot of programmer turnover; and hence

documentation is necessary to transfer information. But the same is also true for smaller systems,

particularly since smaller systems do not have some of the automatic documentation features that

larger systems development environments now have (e.g., automatic documentation of programming

changes).

THE RECRUITING FUNCTION ITSELF

The recruiting function at Sloan occupies a significant amount of the CDO staff time. By June and July

of each summer, companies recruiting for a variety of positions are already calling the CDO to make

reservations for presentations and interviews. The CDO takes reservations beginning in the middle of

the summer for presentations to occur in the fall and actual recruitment to occur during January of the

following year. The CDO must schedule the interviews and presentations with the companies,

reserve rooms, coordinate any catering that is requested, etc. Unfortunately because most of Sloan's

administration is currently not computerized, much of what the CDO does is still manual. For example,

reserving rooms for interviews or presentations must be done "manually" in the sense that the CDO

cannot go on-line to check what rooms are available when, and place a reservation for those rooms.

When the reservations for recruiting and presentations have been finalized, the CDO prepares

instruction sheets regarding recruiting procedures and reports outlining the presentations and

recruiting that will occur. These reports are circulated to students. Once the students have been

given a chance to determine those companies they are interested in interviewing with, the CDO

coordinates sign up efforts for interviews by:

- Gathering cover letters and resumes for submission to company recruiting contacts

- Documenting which students have been selected for interviews

- Managing the sign up process for individual interview schedules

First and second year recruiting efforts are handled a little differently, but to the extent that these

processes would be computerized during this phase of the project, the functions are essentially the

same. The priority card system was not within the scope of this project because of the project's

incremental approach. While the recruiting process also includes recordkeeping of actual offers made

and acceptances by students, these functions were not covered by this first phase of development

because of the time frame. It was more important for the CDO to have a working database as of the

start of the school year with the functions relating to presentations and interviews. The functions

relating to the tabulation of recruiting results (which does not begin until March/April of the Spring

semester) could be postponed until later in the school year.

There are four main components of recruiting , outlined below, which encompass the majority of

information that will have to be maintained in the Recruiting Database.

20

CDO KEY RECRUITING ENTITIES:

Company Companies that come to recruit on campus for various positions.

Contacts Individuals at companies that may be important for both the CDO and students to

keep in contact with. Currently the contact information is kept in a word processing

document (with limited sorting capabilities) and in roladexes by year of acquaintance.

Position Each company has various positions that they recruit for. Each position is considered

a unique entity (e.g., even though many companies recruit for consultants, a

McKinsey consultant position is considered as a separate entity from a Bain

consultant).

Schedule Students are interviewed for positions by signing up for interview "schedules". Each

position may have more than one schedule. Each schedule is made up of the names

of students selected/signed up to be interviewed and their respective interview time

slot.

CDO RECRUITING INPUT DOCUMENTS:

The three primary documents used by the CDO to coordinate company recruiting activities are as

follows (copies of which can be found in Appendix A):

The Recruiting Reservation Form

This form is completed each time a company calls to make a reservation for the

positions they plan to interview for. It is used as the basis for documenting the

positions being interviewed for, the dates the company intends to interview, who the

recruiting coordinator at the company is (the individual responsible for coordinating

the company's recruiting efforts) and the number of interview schedules to be held

for each position.

The Presentation Reservation Form

Many companies that interview at Sloan arrange a presentation during the Fall term to

familiarize the students with the company and its goals. So, for those companies

planning to give a presentation, a presentation reservation is usually made at the

same time the recruiting reservation is made. This reservation form contains

information on the date of the presentation, the food and/or audio/visual

requirements of the presentation, who the presentation coordinator is, and the

names of any speakers.

The Job Description Form

This form, completed by the recruiting coordinator of each company, contains

information about each position a company is recruiting for. It is sent to each company

recruiting on campus and returned to the CDO by a prespecified date, so that

students have more information about the jobs they will be interviewing for. This form

also documents what industry the company is in and categorizes the job function of

the position into predesignated functional areas (e.g., accounting, consulting,

finance).

CDO RECRUITING OUTPUT DOCUMENTS:

The following recruiting reports are produced periodically by the CDO, to be used by

students and the CDO as needed. The databases that are designed as a result of this

project must be able to produce these reports.

Listing of company presentations, both by company name and by date: These

listings are used by students to plan what company presentations they want to

attend.

Listing of companies recruiting, by date, both for permanent and summer positions:

These documents are used by students to determine who is coming on campus to

22

interview and whether or not they need to write a cover letter to the company contact.

Listing of companies recruiting, by company name, both for permanent and summer

positions: These listings indicate to students the total number of interview

schedules a company has reserved time for.

Listing of Positions Offered by recruiting companies: The title of this report is a bit

misleading. It is an alphabetical list of companies and the titles of the positions they

are recruiting for at Sloan, not a list of actual positions offered to Sloan students

based on interviews held.

Listing of companies, by industry: This is a summary document which lists

companies according to the primary industry they are in.

Listing of companies, by job function: Similar to the report noted above, this report

summarizes companies recruiting on campus by the functions of the jobs they are

recruiting for (consulting, economics, etc.).

Listing of company contacts and listing of recruiting contacts: Both of these lists

contain address and phone information of company contacts, the second listing

being limited to the contacts responsible for coordinating recruiting efforts.

Interview Schedule: This document is prepared for each interviewer and contains

the names of students he/she will be interviewing and the times for each interview.

BENEFITS OF DATABASE DEVELOPMENT

How will a Recruiting database help the CDO? At this point the database is going to help the CDO in

terms of the ease of producing the myriad of reports they are now handling via word processing tools.

For example, consider the list of companies recruiting at Sloan, sorted by company name. Currently,

this information is typed into a word processing document. If a company is added to the recruiting

23

schedule, the company information can be inserted into the list fairly easily, because of the word

processing software capabilities. But once the information is entered into the wordprocessing

application by name, the entire list has to be retyped if a sort by date is desired (with the CDO staff

keeping track of the chronological order for data entry purposes). Computerization of the company

information via a relational database should at least make data entry less redundant and production of

output much easier. As the CDO becomes more familiar with their software package, they can attempt

to computerize their more difficult functions (like the priority card system).

RECRUITING DATABASE ENTITY-RELATIONSHIP DIAGRAM

24

Recruiting Database
Conceptual Schema
Entity Relationship Diagram
Page 1 of 2

Recruiting Database
Conceptual Schema
Entity Relationship Diagram
Page 2 of 2

Day &
Year

Day-Date
CoCNJ

DISCUSSION OF CONCEPTUAL DESIGN

The above diagram follows standard entity-relationship diagramming conventions:

- a square/rectangle indicating an entity

- a diamond indicating a relationship

- a circle/oval indicating an attribute

The diagram depicts the conceptual design for the Recruiting Database. When the conceptual

schema noted above is actually programmed in a database, the terminology changes. An entity is the

equivalent of a database table or file and an attribute is the equivalent of a field or column within a

table/file. The attributes that have been shaded in the diagram have been chosen as primary

"indexes", an attribute or a combination of attributes that, within each table, is unique. The index

serves two purposes: 1) By being specified as unique within a table in the database it will ensure that

no duplicate entries can be entered into that table; and 2) For each index, the RDBMS will use that

index to sort the records upon retrieval of data from a query. "Concatenated" indexes, i.e. indexes

made up of a combination of attributes, are used when there is no single attribute that can be

considered unique within a table. For example, it is only the combination of position number and

schedule number that is unique in the schedule table.

For each index that is defined, the RDBMS must store an abbreviated version of the indexed records

in a new file. Each RDBMS also allows the user to define non-unique indexes, for sorting purposes.

There is a tradeoff between defining an attribute/attributes as an index to make sorting more efficient,

and having to store the resulting index file. Therefore, indexes should be reserved for the most

frequent ways the user needs data sorted (e.g. alphabetically by company date, by date, etc.). The

last items of interest in the diagram are the relationship specifications - e.g., 1:M. These specifications

indicate the nature of the relationship between two entities. For example, there is a 1:M (one to many)

relationship between company and position. One company may be recruiting for many positions.

Relationships between entities within the database are established via the use of common attributes.

For example, the relationship between a company and a presentation is established by the common

use of the company ID.

27

The following is a discussion of each of the major entities pictured in the Entity-Relationship diagram

and how the attributes were selected for inclusion in the database.

Company

For the purposes of the Recruiting database that unit of the company which is coming to interview on

campus and in some cases put on a presentation is of interest (i.e. the interviewing entity). This may

be a whole company or may be simply a division within a company. It is at this level that we believed

recruiting information should be accessed. Thus we needed to cope with the issue of multiple levels

of companies. The case of Prudential-Bache and Prudential Investment Corporation is an example

where the parent entity is Prudential, and these two companies are subsidiaries. Originally we felt that

these two companies should be related back to Prudential within the database. In contrast we have a

company like Goldman Sachs (which itself is the "parent"), for which both the Investment Banking

division and the Sales and Trading division interview on campus. If two different divisions at

Prudential-Bache were interviewing on campus, what should be done? Should each division be

linked back to both Prudential-Bache and Prudential?

Through a series of discussions it was finally decided that the information relating directly to recruiting

positions and presentations would have to be identified at the divisional level. All divisions would be

linked back to the more general company level. So, for example, the company table would contain

Goldman Sachs. The presentation table would contain Goldman Sachs, Sales & Trading. As far as

subsidiaries like Prudential-Bache were concerned, originally we had included a"parent" field in the

company table. This was eventually removed however, because

1) many companies do not have a parent and this would be a waste of space, and

2) the CDO does not have a critical need for this information to be in the database.

We decided to leave it up to the students to determine whether or not the company of interest is a

subsidiary of another (e.g. Prudential-Bache is a subsidiary of Prudential), most usually during the

phase when they gather information about a company for interviewing purposes.

28

Up until this point in time, the CDO had been using predefined "industry codes" to categorize the

industries in which companies functionally operate. These codes are not comparable to Standard

Industrial Classification (SIC) codes, yet are the general standard being used by the career planning

services of other MBA programs. After some discussion on this matter, the CDO decided that they

were not constrained by what other MBA programs were doing and therefore chose to use SIC codes

instead. To make it easier for companies to use the job description forms however, the CDO decided

to leave the actual code numbers off the forms (see Appendix A), and let companies check off their

industry by industry name.

It was determined that new companies would generally be added to the database from the recruiting

reservation form, because these companies first make themselves known to the CDO when they

make a reservation. However, industry information, as noted above, is received from the job

description form and not the recruiting reservation form. In order to improve the efficiency of entering

company information, the CDO agreed to add SIC code to the recruiting reservation form and would

ask the recruiting coordinator, at the time he/she is making the reservation, to provide SIC code

information. The SIC code information on the job description form would still be used by students

when performing their company research but would no longer be the primary source of industry

information for the CDO's Recruiting database. Thus, we were able to eliminate the job description

form for entry of any primary company information. Once the job description form finally comes in

(which is usually much later than the original reservation for the recruiting schedule) only the job

function information is entered into the position table of the database.

The company table is where the company ID is established. Company ID's in this table must be

unique. The reason for a company ID is mainly for ease of input and efficiency in sorting. The CDO

indicated that for companies recruiting on campus, the company names are themselves unique.

However, company information has to also be in the position, presentation and contact tables,

because it provides the link between each of these entities. We believed an ID code would make data

entry easier and would reduce the chance for inconsistency in the spelling of a company name. It was

decided that an ID would be used that was an abbreviated version of the company name. The use of

numeric codes was discussed (within which each number could represent the various company levels

- parent/company/division) but this would have been more confusing than helpful for the CDO.

Rather than getting into numeric codes, the alpha code serves the purpose of reducing manual input

while uniquely identifying companies.

The original design for the Company table included address information so that the main address

information for a company would be available. However, during actual programming of the database it

became apparent that the CDO and students would never have a need for a company address

independent of a company contact. Therefore, the address attributes were eliminated from the

company table.

The SIC code is in the company table, rather than with any other entity, in order to keep SIC code

maintenance to a minimum. Parent information, as mentioned earlier, was eliminated from the

Company table.

While many discussions were held on the company issue, I did not learn all the details until after the

design was completed (e.g., that only companies that plan to recruit on campus give presentations).

Although these details did not have an impact on the final design of the recruiting database, they

potentially could have. The key point is that an independent systems developer, even if she

understands the functions she is automating, is still bound to have made some incorrect assumptions

about the functions being automated.

Contact

Information on contacts had some problems similar to company information. Should contact

information be stored with each presentation record and/or each position record that a contact is

responsible for coordinating or more generally by company/organization? There are a large number of

contacts that are not responsible for coordinating a presentation or an interview and these contacts

would properly belong in a separate table.

Ideally, and as was finally implemented, it made sense to have one table containing all the information

on contacts. This would eliminate redundancy of information, if for example, one contact was to be

coordinator for two presentations and two recruiting efforts. The contact information (e.g., address)

would only have to be entered once into the database and would be linked to the presentation and

30

position information. However, herein lies the problem: the best method to link the contact with the

presentation and position information would be to use unique numbers (e.g. ID numbers) in the

position and presentation tables, to distinctly identify each position and presentation. These unique

numbers would be recorded in the contact's record to indicate for each contact the events she/he is

responsible for. As conceptually designed, the position table already had a unique position number,

but if a particular contact was responsible for multiple positions, including each position number in that

contact's record in the contact table would be cumbersome. Presentation did not have a unique

number nor was it deemed worthwhile to give it one. (There is more discussion on unique identifiers

shortly.) Using contact name by itself in the position and presentation tables would not be a good idea

because names are not unique.

The resulting design was the most functional: having the contact name and company ID in the

presentation and position tables and using the combination of these fields to link the information in

these tables to the contact's full record in the contact table. The CDO accepted the fact that there may

be a limited amount of redundancy in this method (having contact name in each table), recognizing

the tradeoff between good design and matters of practicality. In actual fact having the contact's name

within the position and presentation tables makes identifying the coordinator of a position or

presentation much easier, because doing a structured query language (SQL) query on one table is

easier than doing one when trying to join two tables. Thus, the actual disparity of the tradeoff

between design and practice was minimized. If the software package is capable, the redundancy of

information in terms of storage would not necessarily mean a duplication of input. If the input

applications could be programmed adequately, the contact information would only have to be typed in

once but would in fact be entered into every table where it would be appropriate. So, for example,

when the CDO would input a recruiting reservation, the contact information would be entered in both

the contact table and the position table. There is a more detailed description of the input applications

later in this paper.

One option open to the Recruiting Database was to use unique identifiers (either numbers or letters)

for each table in the database, and not just for the Company, Position, Function, Country and SIC

tables. That would mean also having a unique identifier for the Presentation, Contact, Schedule and

Interview Slot tables. Unique ID's to identify records in each table may be, from a theoretical design

standpoint, the best way to ensure there is no mistaking one piece of data from another and the

easiest way to link records in the tables. However, in reality the CDO function does not involve

information that would effectively use unique identifying numbers (like a purchase order or inventory

system would), nor would the database grow to such an extent to require unique identifiers for these

tables. Position Number and Company ID were reasonable comprises for the CDO.

While most of the information in the contact table pertains to the address and position of the contact,

there are some additional descriptive fields that were added to make the contact record more

meaningful. A simple "y" for yes or "n" for no in the fields Speaker?, Interviewer?, Presentation

Contact?, Recruiting Coordinator? and Alumni? indicate what relationship this contact has with Sloan.

In addition, the field for Resume Book? indicates whether or not this contact has purchased a resume

book that the CDO compiles of student resumes. The Date information is used to determine how old

the contact record is.

Presentation

As mentioned earlier, contact information was put into this table in order to link the presentation record

with the full contact record in the contact table. Telephone number was also added because of the

convenience of having this information with the respective presentation, again in terms of querying

the database. However, during the actual programming of the database it was determined that

RBASE was not very flexible in terms of its data entry abilities. Therefore, telephone information was

removed from the presentation table in the CDO's version of the recruiting database to avoid the

inefficiency of having to manually enter the telephone number in both this and the contact table. In

the CIS/TK version of the database the telephone information was retained in this table because I was

able to program the data entry facilities to enter the telephone information into both the contact and

presentation tables from one data entry input.

The audio/visual and food fields will allow the CDO to enter information on what types of equipment

the presenting company requires and what catering service will be providing food.

32

Posin

It was at the level of position that information such as position type (permanent/summer) and job

function would be kept. So even while there may be more than one interview schedule for a given

position, for all schedules for that position, the identifying information such as title and job function

would apply in most cases. For those instances when there would be a mix of positions within one

interview schedule, it was decided by the CDO that a unique position number would be created and

given a title such as "Multiple" to indicate that the position/schedules were mixed.

As discussed earlier, it was determined that the best way to keep track of the positions that companies

were recruiting for was to use a unique position number (as the earlier PAS team had done). The CDO

treats each position as a separate entity, yet there was no easy way to make each position unique

(titles are often the same; we would have to use a concatenated key made up of company ID, division,

and title to uniquely identify each record). So a unique position number was selected instead.

The interesting thing about this field is that we wanted the number to be generated by the RDBMS.

What one would think would be an easy task, was in fact fairly complicated depending on which

RDBMS was selected. For PROGRESS, a new table had to be created that kept track of elements that

are system controlled. Then within the application programmed to add new positions to the database,

special code was needed to keep track of the position number count. I had to define a nextposition#

variable and a lastposition# variable, in addition to the already existing position#. The lastposition#

would keep track of the last generated position number. When a new position was added to the

database, the lastposition# would be incremented by one and this value became the position# in the

position table.

In contrast, INFORMIX had a data type called serial which automatically generated unique index

numbers based on the starting number the user designates. RBASE required a calculation similar to

that of PROGRESS. For copies of the PROGRESS and RBASE programs, see Appendix B.

33

Some discussion took place on capturing information on starting location, starting salary, etc., as

originally designed by the PAS team. For two reasons this information was omitted:

1) This information is not used by the CDO (only information on actual offers made is used)

2) This information is subject to negotiation.

For example, a company from New York may be interviewing for positions all over the world. Where an

individual may end up depends on her skills, interests and availability. The same is true of salary.

Many factors enter into the determination of salary, particularly experience. Therefore, any starting

location or starting salary information entered in the position record at this point would be spurious.

Schedule

As mentioned earlier, each position may have several interview schedules. For each schedule, the

company determines whether the interview will be closed or open (C/O). An open schedule implies

that if the student is interested in interviewing, all she has to do is sign up for the interview. If the

interview schedule is closed, it means that the company selects whom they want to interview. They

notify the CDO which keeps a log of those who have been selected by the company. Students look

at this log and if they have been selected, proceed to sign up for an interview. (For second year

students the process is complicated by the priority card system.) Companies also indicate whether or

not they require a cover letter along with the student's resume. As it turned out, during the course of

using the database, the CDO encountered some companies that wanted schedules made up of half

closed/half open interviews. To address these instances the CDO decided they would just put a "b"

for both in the C/O field, rather than the usual "c" or "o".

There is usually more than one schedule of interviews for a given position, because each schedule

has a maximum of 15 interview slots. Each schedule is handled by an interviewer from the company.

The schedule number in this table must be input by the CDO (rather than be self generated) because

for each position number the schedule numbers range from one to usually no more than five (and as

mentioned earlier, having totally unique schedule numbers was not deemed worthwhile). Therefore,

while schedule numbers by themselves are not unique, the combination of position number and

schedule number together is unique.

34

Interview Slot is the actual list of student names and the times they will be interviewed for a given

position and schedule number. Once a company has identified those students it wants to interview

for closed schedules, or students decide on their own for open ones, these students sign up for a

particular schedule and a time slot to be interviewed. Time slots are usually in 30, 45 and 60 minute

increments, depending on the company. The CDO then types this sign-up sheet in a "neat" form for

the interviewer. The Interview Slot table is intended to replace the manual typing up of the sign up

sheet. Via the combination of the position, schedule and interview slot table information, the "neat"

version of the day's interview schedule can theoretically be produced by the database. All the CDO

should have to do is print out from the database a blank sign up sheet and after it is filled out, enter the

student names and times into the interview slot table and print out the completed form. While this is

what was intended, it is not apparent whether this application will work as planned because generation

of the form has not yet been attempted. If it involves using standardized report writers, as RBASE

does, it may be difficult to get the forms to print out exactly as desired. There is a more detailed

discussion on the topic of application development later.

Support Tables

The Industry, Function and Country tables are supporting tables which not only reduce the amount of

space the database takes up in the computer but makes maintenance of the database easier. For

example, the Industry table keeps track of Standard Industrial Classification (SIC) Codes and the

industry names to which they apply. If this table were not in the database, then the company table

would have to have a field for industry name rather than SIC code. Not only would this require a large

amount of space (about 45 characters would have to be reserved for the industry name field), but it

would make maintenance difficult because if the name of the industry changed (for example from

Securities to Investment Banking), the name would have to be changed for each company record in

the company table whose industry was Securities. With the Industry table, the name only has to be

changed once.

35

Originally it was thought that to get the date printed out in the way the CDO desires (e.g. Thursday,

January 12th), it would require a table (hence the Day-Date table in the diagram) that would relate a

date to the day of the week that date falls on. However, after becoming familiar with the software

packages, it appeared that these RDBMS's often have preprogrammed functions that do date

conversion. Therefore, this table became unnecessary and was eliminated from the database.

PHYSICAL DESIGN

The final physical design as implemented in each RDBMS (PROGRESS, INFORMIX and RBASE)

differed from the conceptual schema in a variety of ways, some of which have already been described

above. Some additional changes worth noting are as follows:

1) Rather than having contact name as one field, it made sense to split it out into a

separate field for both first and last name, so that sorting and querying could be done

on the last name. However, this means that in order to print mailing labels, a

program will have to be written to remove extraneous blanks between the first and last

name (because the field sizes are 12 and 15 characters long, respectively, but not all

names use up all that space). The issue of extraneous space is also true for the

address information, when one would try to combine city, state and zip code. Some

RDBMS packages, like RBASE, have mailing label applications already written which

minimize the problem.

2) One line for street information in the contact table would not be enough in all

cases to capture a contact's address. This issue came to light only after the CDO

attempted to input contact address information into the database. Both the CDO and

I had reviewed the address information at the conceptual level and determined that

one line would be enough. However, as evident in my thesis, every possible

situation can never be identified in advance of using a system. Other examples of this

include the change in the size of the zipcode field that had to be made. Five more

spaces were added to the original field size of five, because it tums out that many

contacts have an extra four digits in their zipcode, separated from the main zipcode by

a dash. In addition, many contacts can only be reached at a certain phone extension.

36

Thus an additional field for phone extension had to be added in each table where

there was a contact phone number.

3) The issue of data type for each field in the database was very dependent on the

RDBMS selected. For example, in both the interview slot and presentation tables

there is a field indicating the time of the interview or presentation. Neither

PROGRESS nor INFORMIX have a "time" data type. Originally in PROGRESS I had

programmed the time field type to be an integer (because time is in numbers not

letters). But in order to get the numbers to print out with a colon between the hour

and the minutes, I had to go through a very complicated process of cutting and

pasting together the data in the time field. I tried to change the type to character, and

then specify the format to include the colon, but I could not get that to work either.

When I switched to INFORMIX I specified time as a character, and in INFORMIX it is

easier to specify a format with the colon. RBASE on the other hand, the least

powerful of the databases, has a data type called "time" which allows the time to be

displayed in a variety of ways (with colon, with seconds, with am/pm, etc.) The same

problem is true for phone number information - it has to be declared as a character

instead of as integers in order to be displayed in an appropriate way. In addition,

RBASE allows one to enter the date in one format (e.g. 09/10/89) and display it in

another format (Friday, September 10th). To do this in PROGRESS and INFORMIX

required programming, cutting and pasting to convert dates rather than a simple

format statement.

4) The RDBMS's each provided a different method for creating a database. Located

in Appendix C are copies of the data dictionaries for each of the RDBMS's, which are

created when the database schema is programmed. These dictionaries contained

within each database, keep track of the table and field characteristics (i.e. the

database structure). Each RDBMS has a different way for programming the database

structure.

PROGRESS has the most extensive method of creating the database structure. By

this I mean that in addition to specifying the data type and length for each field within a

37

table, PROGRESS also allows one to:

- specify whether or not there is to be a default value for the field

- define a help message to appear at the bottom of the screen each time a

particular field is accessed in a data entry form

- define indexes that are made up of more than one field

- define criteria that must be met before a record can be deleted from a table

- define criteria for a field that must be validated before any data can be

inserted into that field

While the other two RDBMS's also support these features, they must be programmed

separately from when the table and fields are created. While this is not a problem, it

does result in certain inefficiencies. For example, in INFORMIX, for each data

entry/query form that is programmed, the help messages for each field must be

defined within each form (rather than having them predefined once in the data

dictionary for use by all forms). It is somewhat inconvenient to have to program

validation criteria or concatenated indexes at a different point in time than when the

database table and field structure are being programmed, because it makes it more

difficult to keep track of what has and has not been programmed.

One concern with the PROGRESS table creation procedure is that trying to define

delete and validation criteria at the time the database is created (and not after the

programmer and user are comfortable with the structure based on their practice with it)

has its own drawbacks. I had a lot of problems programming data entry forms for the

PROGRESS database tables because I had written the validation criteria incorrectly. It

took a lot of trial and error debugging to figure out that there was nothing wrong with

the data entry forms I had programmed, but rather the field validation criteria in the

actual structure of the database were incorrect. These errors were not detected until I

actually tried to enter data into the database via the data entry forms, because the data

dictionary is not designed to check validation criteria for proper syntax or coding.

38

APPLICATION DEVELOPMENT

In order for users to enter information into the database, or to query the database to locate

information, I designed "forms" that would appear on the terminal screen to be used for these

purposes. The forms that could be designed were dependent on the capabilities of the underlying

RDBMS. As will be discussed in more detail later, the tools provided by the RDBMS's both helped

and hindered form design and usage. Once database forms were designed for each table and for

each key input document prepared by the CDO (namely the recruiting and presentation reservation

input forms), programs were written to allow the user to use the forms for data entry and querying.

Then these forms and programs, as well as any programs written to generate reports, would be joined

together in a menu system that would be the general interface a user would have with the database.

Form and Report Design

Because creating forms and programs to access information contained within one database table was

fairly straightforward, the forms and programs designed for the individual recruiting database tables will

not be discussed in detail here. Instead, the design and programming of the Recruiting Reservation

form and Presentation Reservation form will be discussed, because each involved a much more

complicated programming process.

Recruiting Reservation:

As described earlier, and as is evident from the form itself in Appendix A, this input form contains

information that will eventually need to be entered into several tables in the database, namely the

company, contact, position and schedule tables. The basic idea behind creating a database form that

replicates the information on this reservation form, is to allow the CDO to enter data into the database

in the format in which they initially record the reservation from a phone conversation. Eventually, the

CDO should be able to bypass having to document the information manually, by entering it directly

into the database; but until they become confident with the integrity of their database, they are going

to continue to manually document the reservations before performing data entry.

39

Because the recruiting reservation form is the primary CDO form, it should be the starting point for

recording recruiting information in the database. Appendix D has copies of both the PROGRESS and

INFORMIX version of the programs designed to perform the recruiting reservation data entry. Each is

commented to describe the process that must be gone through in order to enter a reservation into the

database. While the programming of these applications was fairly extensive, they will result in a

significant reduction of manual input on the part of the CDO because they handle some complicated

tasks. For example, the PROGRESS and INFORMIX programs insert contact name and phone

information into both the contact and position tables, from one input of the data into the database form

by the user. Before inserting any data into the database, the programs check the company and

contact tables to determine whether or not the particular company or contact have already been

recorded in the database. For the INFORMIX version I made the program automatically insert the

current date into the contact date field, indicating the date the contact became known to Sloan. The

program also automatically places a "y" in the recruiting coordinator? field of the contact table, thus

eliminating the need for it to be manually entered by the CDO.

In order to create the recruiting reservation form in RBASE in contrast, we had to use RBASE's form

developer, which produces forms to be used by RBASE's preprogrammed data entry and data

modification applications. (As mentioned earlier, I provided some support to the CDO during their

programming of the database.) While RBASE allows the creation of forms that will affect multiple

tables, it has a very specific procedure for doing so, to allow for the forms to be used by RBASE's

preprogrammed applications. This procedure, however, would not allow us to design the form exactly

as I was able to in PROGRESS and INFORMIX. It would not allow us to check against Da the

company and contact tables to see if these entities already existed for the reservation in question.

This "limitation" in RBASE form creation comes from the fact that only one "master lookup" can be

defined. A "master lookup" is RBASE terminology for an expression which checks for preexisting

records. For example, for each company ID that is entered into the form, the master lookup checks

whether or not there is already a company with this ID, and if there is, it displays the values of the other

fields for this company record into the database form fields on the screen. The user is then able to

make any changes to the record. If a record does not already exist, the user will be allowed to enter in

the additional information for this company ID. As the master lookup can only be done once within

each form, we could only check the company or contact tables for preexisting records, but not both.

40

While this limitation is probably intended to keep the forms simple enough to be used by the RBASE

applications, it highlights the tradeoff between userfriendliness and power. It was simpler for the CDO

to avoid programming applications to manipulate their forms by using RBASE's preprogrammed

applications instead. But it took a significant amount of trial and error on our part before we would

accept the fact that we could not develop the recruiting reservation form the way we wanted to. The

result was that the section of the form for inputting contact information for the contact table (e.g.

address and phone information) was removed from the recruiting reservation form (and only the fields

from the position table for contact name were retained). For a printout of the "compromised" RBASE

Recruiting Reservation input form, see Appendix D.

In order to enter the address information for the contact captured manually when the reservation is

made, another form was created to be used solely for contact information. The result is a more

cumbersome data entry process because the CDO user has to use two separate forms in order to

enter the information from one recruiting reservation. The CDO can go back and forth easily between

the two forms by creating a special application, but they are still required to enter some duplicate

information (namely, company ID and contact name). While RBASE is the more userfriendly RDBMS,

its lack of power in terms of capabilities made certain tasks in the database development project more

difficult to accomplish. Thus, it appears that some of the more powerful packages, like PROGRESS

and INFORMIX, for all their complexity may in fact be worth learning because of the ease of developing

specific applications with a minimum of difficulty once the learning curve has been ridden. While

increased familiarity with RBASE would make development easier, it would not mitigate the fact that

application design has to be compromised to fit its capabilities.

When programming a form, more questions emerge than were originally anticipated during initial

design. For example, having to check for preexisting records before inserting data to avoid

duplication. Some degree of this is avoided by specifying that certain attributes within a table have to

be unique (e.g. company ID in the company table), so if a user tries to add a company that was already

in the database, he would get an error message. But as was experienced with RBASE, defining

attributes as unique or mandatory caused problems when the CDO tried to use their data entry forms.

The problems relate to the master lookup described earlier: when the form was accessed by the user,

and, if a field was declared mandatory or unique, the master lookup would be performed before the

user entered any data and an error message would be received that no record was found. Rather than

change the data entry forms (and thus the way the CDO handles information) while still using the

RDBMS rules regarding uniqueness and mandatory input, we decided to keep the forms in the format

that was most in line with CDO processing and removed the rules from the CDO database for the time

being. With greater familiarity with RBASE, the CDO will most likely learn about the "correct" way for

using the rules, but the manuals do not really address this issue and thus experience will again have to

be gained through trial and error.

This issue reveals a fundamental question that must be addressed by systems developers and end

users: Should automation direct how the task should be handled or should the task direct how the

automation should be handled? In the case of the Recruiting database, the answer to this question is

a combination of both - as applications are developed we are trying to minimize the changes in

procedures that have to occur because of the limitations of the software packages.

An additional problem that came up during the development of the recruiting reservation programs

supports the notion that systems cannot be designed without user involvement. After I had

completed the design of the recruiting reservation input form I discovered that the form was not

exactly what I had assumed. There is a line for division on the form, below which the recruiting

coordinators address information is listed. I assumed that the division was the recruiting coordinators

division (usually human resources) when in fact it was the division recruiting for a position.

This discrepancy makes a difference because when programming an input screen, one must

designate the table into which each piece of input information will be inserted. Had this matter not

been identified during development, "incorrect" information would have been put into the database,

because I originally programmed the recruiting reservation input form to insert the division information

into the contact table. Thus, the division of the recruiting area would actually be going into the

contact's record rather than in the appropriate record, position. As noted earlier, the assumptions a

systems developer makes about the task being automated can be critical to the functionality of the

resulting system.

42

Presentation Reservation:

Similar problems were encountered with RBASE when designing the Presentation Reservation input

forms and applications. With the PROGRESS and INFORMIX database versions the user could enter

the names of multiple presentation speakers into the contact table. In RBASE this was not possible

because a "master lookup" for a preexisting contact record could not be programmed when the

primary table used in the Presentation Reservation form was the presentation table. Appendix E has

the PROGRESS and INFORMIX presentation reservation application programs and a copy of the

compromised RBASE presentation reservation input form.

Reports

The CDO is currently in the process of designing their recruiting reports. Because the fall semester

will begin shortly, the CDO has been trying to use RBASE to design their reports and has hit some

snags that they are slowly but surely overcoming. For example, creating reports that list company

information alphabetically was initially difficult. Before the CDO had become familiar with the RBASE

way of doing things, the reports were coming out alphabetically by company ID, not by company name

(the ID's of which are not always alphabetically equivalent).

Upon further trial and error the CDO determined that, when creating reports from information in more

than one table, the first table that is defined in the report will be the table that is used to sort the

information. It was not until we investigated the problem in more detail that we learned about RBASE

"views", that solved the sorting problem. These views allow selection of only those fields from the

existing database tables that are needed. By using a view, we were able to choose company name

from the company table, as well as presentation information from the presentation table, to produce an

alphabetical listing of companies (by company name) giving presentations.

Because the CDO has just begun creating their reports, they will face similar trial and error processes

in design until they become more familiar with RBASE's capabilities.

43

RECRUITING DATABASE CURRENT STATUS

The CDO has completed the majority of input screens they need to accomplish their most pressing

tasks. They are now in the process of completing their report design. They still have a long way to go

before they can develop a menu system for their database, but their system is essentially up and

running. They have already produced the schedules of company presentations for students and are

working on the recruiting schedules.

They have added a "library" function to the database, indicating whether or not the CDO has a file of

information on the company. Originally they were planning on creating a separate database for the

library function. But after we discussed issues of duplication (namely company and industry

information) and storage space (they were already reaching the limits on their computer), it was

determined that this function would be added to the Recruiting database for the time being, by adding

additional attributes to the company table. In addition, they have added a new entity called

"JOBPOSTS", containing information on "correspondence" opportunities, i.e. job postings that are

sent by mail to the CDO.

As just mentioned, because of the hardware the CDO is using, they are already experiencing space

problems. In fact, the space problems have been causing some "bugs" in their applications. For

example, after having successfully run their presentation schedule reports several times, they noticed

that the dates being printed on the reports were incorrect. When they finally deleted unnecessary

files from their computer, the problem went away. They are in the process of requisitioning new

hardware which will hopefully relieve their space problem.

The CIS/TK version written in INFORMIX is in an intermediate stage. The majority of input forms and

data entry programs to manipulate those forms have been written. However, with changes being

made to the CDO's version, changes in INFORMIX version data dictionary, input forms and data entry

programs are necessary. The final step in the process will be to write the report programs and then link

the applications with a menu system. Even without the menu system completed, we have begun the

process of dumping a copy of the CDO's data to a floppy and then loading the data into the INFORMIX

version. Once the loading is complete, this database will be accessed by the Composite Information

44

Systems Tool Kit. I plan to write a program in RBASE that when run, will automatically perform the

dumping function. This dumping will be performed periodically to ensure that CIS/TK has current

data.

CHAPTER FIVE

SLOAN ALUMNI DATABASE

ALUMNI HISTORY

Because the documentation available on this subject is sparse, much of the history of Alumni

recordkeeping functions outlined below is based on my discussions with Ms. Magazzu, database

administrator for many of Sloan's database projects. According to Ms. Magazzu, the following phases

describe the Alumni "system" at M.I.T.:

1950's File of Index Cards

1960's - 1970's Punched Cards

1976 - 1977 Inforex System (which created card images)

1978 - present ADABAS DBMS

The ADABAS system is called the Alumni/Development/Donor Systems (ADDS) and is maintained by

the centralized M.I.T. Alumni Office.

Sloan had its own alumni records on punched cards in 1972 which were computerized in 1973 to

produce the first Sloan Alumni directory. Prior to this, directories had to be manually typed. As with

SLINFO described earlier, programs were written for the VS1 environment to take card input until

1982 when data entry was made interactive and the information was stored on tape. This system was

expanded to produce lists, labels and various reports. In 1979, Ms. Maguzzu initiated some major

additions to allow sorting of information by SIC code and company name.

In 1982 the Alumni Association information was computerized (it had begun in 1978), and Sloan

alumni functions were merged with all of M.I.T.. From that point in time it took almost two years to get

reports produced by SIC code and company name, for use by Sloan. Most recently Ms. Maguzzu has

45

had direct access to ADDS and therefore produces many of the reports on Sloan alumni that the

Sloan administration needs.

GENERAL APPROACH

Ms. Maguzzu is leaving Sloan in Spring of 1990. This project is intended to design a relational

database that will allow the Sloan administration, students and CIS/TK direct access to Sloan alumni

information. If the design and programming of an alumni database for exclusive use by Sloan can be

completed before Ms. Maguzzu leaves, then she can set up a routine whereby Sloan periodically

receives a dump of information on Sloan alumni from ADDS that can be fed into this Sloan alumni

database and used as needed by Sloan. If the programming cannot be completed, then in the future

all requests for Sloan alumni information will have to be circulated to the M.I.T. Alumni Office.

The major impetus today for developing a Sloan Alumni database is coming from CIS/TK's need for a

full blown alumni system in place of its very limited existing one. This is not to say that the MPO and

CDO do not want a system, but they are not the one's supporting the development at this time.

Therefore, the RDBMS selected for this database will be the same as for the CIS/TK Recruiting

database - INFORMIX.

In an effort to identify the potential uses for Alumni information by Sloan, I held discussions with Ms.

Maguzzu, who was a significant help in the design of the database outlined below, as well as reviewed

the major documents she produces for Sloan, namely the various Alumni directories, sorted on

different dimensions. Based on these discussions and documents I was able to design an alumni

database, although until there is end-user review of the design, its validity remains limited. It is

obvious that students and the administrative staffs can benefit from having access to alumni

information, but it must be in a format which they can use to meet their needs.

Because ADDS contains a significant amount of sensitive alumni donation information, Ms. Maguzzu

explained up front that the Sloan database could not contain all information that is currently in ADDS.

In addition, because this project is not being initiated by the administrative office at Sloan (which may

or may not at some point want add/update/delete capabilities and thus a direct link to ADDS), the

applications that will be developed for the Sloan database will be "view" only. In other words, the

46

users will be able to search for alumni information in varying ways, and print out that information, but

they will not be allowed to make any additions or changes to the data.

BACKGROUND REVIEW

The conceptual design process began with my review of the ADDS files and tables to determine what

alumni information already exists and to decide what we would want and would be allowed to have

access to. Then I designed relational tables to handle the information. There were a total of 57 ADDS

files and approximately 138 "tables" with supporting information pertaining to alumni information.

Appendix F is a copy of a document I created describing these files and tables and whether or not I

thought they were suitable for the Sloan Alumni database. On the first review I was able to narrow

down the relevant information to 5 files and 11 tables that could be utilized by the Sloan Alumni

database. Then based on further discussion with Ms. Maguzzu, this was narrowed down even further

to select information within each of those files and tables.

The majority of the information that is relevant to the Sloan Alumni database comes from the ADDS

master file, which contains most of the background information on each alumni. This file alone

consists of approximately 230 fields of information on each alumni. Thus the majority of my review

involved selecting information from this file that I thought would be of interest to Sloan students and

administration. To provide a flavor of the decision making process that I went through, appendix G

outlines my thought process in selecting fields from this file. The resulting conceptual design is

outlined below in an entity-relationship diagram.

SLOAN ALUMNI DATABASE ENTITY-RELATIONSHIP DIAGRAM

47

SLOAN ALUMNI DATABASE
Conceptual Schema
Entity-Relationship Diagram
Page 1 of 2

C o u r s D e g r e I e D e g r e

Datet

MITr
Education

1 cpae Student

1: ctivities
c

M:I

SLOAN ALUMNI DATABASE
Conceptual Schema
Entity-Relationship Diagram
Page 2 of 2

PrefIx
Name

Pres
Code

Origin Origin
Name

Origin
Codes

-WNW-.C d esuffix
Name

Suff ix

Codes

Focus
dd.; Nam e

Career
Focus

T Group
..... ...Nam e

Officer
Groups

Leva Level

Officer
Levels

Officer officer
Position Position
...... Nam e

Officer
Positions

ZiW Code City

A /ea Code

State

Area Name Zip Codes Country

Activity
Offices

Activity.. Name:a:

Activity
Codes

Position

Codes

MIT
Degrees

MIT
Courses

The above entity-relationship diagram uses the same diagramming conventions noted earlier, only in

this case the shaded attributes are not all unique indexes. The sequence number, as described

below in more detail, identifies each individual alumnus and is used to link the information between

many of the tables. So while sequence number will be unique in the alumni table, it may not be

unique in the M.I.T. Education table, because one alumnus may have graduated with several M.I.T.

degrees. Therefore, in the M.I.T. Education table, this alumnus' sequence number will appear several

times. So while the sequence number in this table is an index for sorting, it is not unique.

CONCEPTUAL DESIGN

Alumni

The alumni table consists of primary alumni information, including background information and home

address. Using the knowledge I had gained from completing the Recruiting Database design, I

selected from the ADDS Master File the separate fields for first and last name, rather than the field

called "legal name" in the master file, which has both first and last name together in one field. In the

alumni table, a code for both prefix and suffix will be used; these codes are in an expanded version in

the Prefix Code and Suffix Code tables. For example, if the prefix were "Atty", the expanded version

would be Attorney. These codes are more extensive than just Mr. and Mrs. and therefore provide

additional descriptive information about the alumni.

The history and current usage of ADDS is very interesting in itself, and there are many fields in the

ADDS database that appear redundant and unnecessary to an outside observer. But given the

piecemeal way the database was developed over the years, due to changes in the M.I.T. environment

and the environment at large, these inefficiencies are somewhat understandable. Some of what may

appear as a duplication may not be because of the special purpose a "duplicate" field serves for one or

another M.I.T. entity. For example, in the alumni entity pictured above, there is a field for mailing

name. This field contains the name of the alumni in a format suitable for appearing on mailing labels or

envelopes. While it is basically a concatenation of the Prefix, First Name, Last Name and Suffix fields,

it removes any extraneous blank spaces that would occur if these fields were printed individually in a

row.

By copying this field from ADDS and inserting the information into the CIS/TK version, the need to

write a program to concatenate the four fields into one and delete the blanks each time mailing labels

are needed is eliminated (as may have to be done in the Recruiting Database). Because the volume

of mailings at M.I.T. is enormous, it is evident that having this field already in the database makes

processing the labels that much easier for the users. Access to this field in the Sloan Alumni database

will probably be restricted to key individuals in the administration because the easier it is to print out

mailing lists and labels, the greater the chance that this ability will be misused. A mailing list is a valued

commodity in these days of mass, direct marketing.

The attributes gender and country of origin were selected because they provide insight into the

alumnus' background and may help students and the administration in identifying subgroups within

the entire Sloan alumni in which special interests are held. The Country of Origin table contains the

country name spelt out. Maiden name will help in those instances when trying to locate an alumnae

who has married since attending Sloan.

The sequence number is a unique ten digit number assigned to each alumnus as he/she graduates

from M.I.T.. It consists of the year of the alumnus' first degree (the first four digits), with the last six

digits being assigned somewhat sequentially. Ms. Maguzzu and I discussed adding a hyphen to the

number after the first four digits, so that the number will be more meaningful to the user and more easy

to remember and detect errors. She can add the hyphen in the edit mask she creates, which is the

program she has to write in order to download the alumni information for the Sloan Alumni database

from ADDS. This added hyphen should not be a problem at this point because for the time being, the

Sloan Alumni database will not have any add or update capabilities. If eventually adds/updates are

done at Sloan, this may be an issue because we would want things consistent with the information in

ADDS.

The reason for four separate lines of address information is a direct result of the format of this

information in ADDS. In the ADDS master file, the home address information for the alumni is actually

in one field, which is four lines long. Each line contains different information, usually: 1) street; 2) city,

state, zip code; and 3) and 4) country information. To handle this information in the Sloan Alumni

database, I split it into a field for each address line. And even though line 2 of the address contains

the zip code, because it is not segregated from other information, this zip code cannot be used for

sorting purposes. So an additional zip code field had to be included in the Alumni table. The address

change date identifies the last time the home address was changed and thus gives an indication of

whether or not the address information is still accurate.

Phone number is the alumnus' home telephone number, as based on my design only home address

information is contained in the Alumni table. By separating home address and business address into

two different tables, querying for one or the other type of address will be made easier.

The remaining fields relate to the alumni's address preference, in terms of being contacted by

individuals affiliated with M.I.T. The preference mainly has to do with solicitations by M.I.T. fundraisers,

but can be extended to the realm of student contact. The information to be stored in the Preference

field will be either an "h" for home or a "b" for business. And the preferred zip code will be the zip

code for the preferred address, either home or business. By having the preferred zip code in a

distinct field, what might at first appear as a duplication, will in fact more easily allow users to query

information based on the preferred address of the alumni (by sorting on the preferred zip code). Even

though the preferred zip code field has enough information to identify the preferred address, it is still

worthwhile to have the address preference attribute because it is more descriptive of which address is

preferred (the zip code is just a number). So if a user wanted to merely scan the database, based on

the "h" or "b" in this field the user will know which address is preferred without having to compare zip

codes. And also, there are some alumni records that only have one address, and the address

preference attribute will identify which address definitely exists in the database for an alumni.

Because the volume of Sloan alumni records is fairly large, the following records may have to be

restricted from the download we receive:

- Records of deceased Sloan alumni

- Records of retired Sloan alumni

- Records of undergraduate Sloan alumni

The final decision on restricting these subgroups from the download should best be made after

discussions are held with the ultimate end users, who will primarily be students and Sloan

52

administration.

This table contains information relating to the alumnus' career and company. It contains the business

address in three lines, because the master file field for business address is three lines long. Again,

business zip code while in the address line information, is also separated out as its own field so that it

can be used for sorting. The remaining address fields are similar to those for the home address,

described above.

Both the name of the company the alumnus works for, as well as the company number, are in this

table. The company number is a link to the Company table. The reason for having the company name

in the Career table, and not just in the Company table, is because of the varying levels of company

information. When a new company is added to ADDS, it is recorded in the ADDS "companies" file and

it is assigned a company number. But sometimes an alumnus may spell the name of the company

differently than it is recorded in the "companies" file. For example, if the alumnus gives I.B.M. as the

name of the company he/she works for, chances are very good that this company is the same as

International Business Machines, to which a company number has already been assigned. So, the

company name is recorded in the alumnus' master file record exactly as he provided it, but the

company number that is used in that record will be that for International Business Machines. So, in the

CIS/TK database, the career table will have both the company name as the alumnus provided it and

the standardized company number.

The same holds for the alumnus' position information. Both a position title, as well as a position code

referring to information in another table, are needed in the Career table. The title appears in this table

exactly as it is provided by the alumnus. The position code, which is expanded in the Position Code

table, relates to a position name which standardizes the alumnus' title for querying purposes. For

example, if the alumnus' title was President and CEO, letters should be sent to her with that title.

However, if one wanted to get the records of all alumni who are both CEO's and Presidents (in that

order), the query that only used position title would not locate any alumni with titles where the words

were reversed. Therefore, it is important to have both the verbatim title and a standardized version of

the title.

53

The last attribute in this table is the career focus attribute. The information that will be stored in this

field in the database is supported by the Career Focus table. The career focus codes basically

categorize the focus of the alumnus' career. For example, while the title of the alumna might be

"President", this title is not very informative. If however, it is combined with a career focus code that

relates to "Entrepreneur", it is more clear that this alumna is probably the president of his/her own

company.

Company

As mentioned above in the discussion of the Career table, the Company table specifies the

standardized version of the company name that the alumnus works for. In this table however, the

company name is recorded in an order suitable for sorting purposes. So that a company name like Eli

Lilly would in fact be stored as Lilly, Eli, because this is the correct way to alphabetically sort this

information.

The company number is a ten digit number, with the first seven digits representing the parent

company, and the remaining digits indicating that the company is a subsidiary of the parent. There is

no additional numbering scheme for special cases like jointly owned companies or subsidiaries of

subsidiaries. These cases are fit into the parent/subsidiary numbering scheme. For ease of viewing,

as with the alumni sequence number, a hyphen will be added by Ms. Maguzzu after the first seven

digits. While the company number itself indicates whether or not the company is a subsidiary, there is

also a one character subsidiary indicator which provides an additional means to access subsidiary

information. Since it is only one character in length and it already exists in the ADDS master file, I

included it in the Sloan Alumni database design in anticipation of future uses.

It is in this table that the standard industrial classification (SIC) code for the company will be recorded,

with values supported by the SIC Code table.

54

M.I.T. Education

As noted earlier, this table will contain information on each M.I.T. degree earned by Sloan alumni. The

sequence number will identify the particular alumnus. The M.I.T. Course indicates the code for the

course, whether it be a "15" for management or "6" for Electrical Engineering and Computer Science,

etc. The M.I.T. degree code highlights the degree received as a result of that course, e.g., M.S. for

Master of Science. This table will include information on alumni who had attended courses but did not

graduate, because there are unique codes for non-degree candidates. Lastly, the date the degree

was received, or the date of last attendance, will be included. The information in this table will be

supported by the M.I.T. Course Codes and M.I.T. Degree Abbreviations tables.

While ADDS contains information on degrees held by alumni from other institutions, this information is

not reliable (because it is not verified or updated), and therefore it will not be included in the Sloan

Alumni database. In addition, even though many alumni have several degrees from M.I.T., we will be

limiting our download to the most recent five M.I.T. degrees held by each alumni.

Up until now, information pertaining to the area of concentration while at Sloan has not been recorded

anywhere. Ms. Maguzzu is checking out the possibility of having this information retained, and if so,

then it would probably be recorded in this table of the Sloan Alumni database.

Student Activities

This table will contain information on the student activities the alumni was involved with while at M.I.T.

While currently this information mainly covers sports and religious affiliations, Ms. Maguzzu is trying to

have it contain information about Sloan clubs. So, for instance, a user could determine whether or not

an alumnus was a member of the Venture Capital Club at Sloan, and if so, whether or not he/she held

an office. If Sloan club information is not eventually provided, then deletion of this table from the

Sloan Alumni database may be warranted, because the other information is not crucial and pertains

mainly to undergraduate affiliations.

The codes in this table are supported by the Activity Code and Activity Office tables.

Alumni Groups

This is the last major table in the Sloan Alumni database and outlines which alumni groups the alumni is

active in. The level and group information indicate the alumni interest groups which the alumnus is a

member of. For example, it may indicate that the alumnus is a member of M.I.T.'s Enterprise Forum, a

group that gives advice to small businesses. This table will also indicate whether or not the alumnus

holds an official position in that group. The Officer Group, Officer Level and Officer Position tables

support the codes recorded in this table.

Zip Codes

While this table is really a supporting table, it is of interest because it will provide the link between an

alumnus' address and the city, state and country in which that address is located. Because the city ,

state and country of an address is together in one line for both home and business address, it can not

be used to sort alumni information. If a user wants to sort by state, and not by zip code, then he/she

must use this Zip Code table to get at state information. The area information is particularly interesting.

From what I am told, these area codes were nationally established and used by M.I.T. before zip codes

were established. Even when zip codes came to be, the area codes were still utilized because many

of the administrative areas at Sloan had already set up regional groups based on those area codes and

did not want to rearrange those organizations simply to suit the new zip code usage. While the zip

codes do provide a lot of information, the area codes can provide information relating to larger

regions. Region information would be useful to students looking for alumni information. For example,

if they wanted alumni information for the New England region or the European region, rather than

having the user determine which zip codes comprise those regions, the pre-established area codes

can be used and linked intemally to the zip code information.

SLOAN ALUMNI DATABASE CURRENT STATUS

At this point in time, Ms. Maguzzu is programming the edit mask that will provide us with the Sloan

alumni information. The remainder of the database development, physical design and application

programming, will occur subsequent to the completion of this thesis and thus will not be described

56

herein. Suffice it to say that based on my experience with the Recruiting Database, when actual

programming of the database begins, new issues will be raised regarding the functionality of the

database design and applications which will have to be addressed on an ongoing basis.

CHAPTER SIX

TECHNICAL ISSUES

This project involved the use of three very different software packages, each with a different level of

user friendliness. RBASE is the most user friendly, from the standpoint that it seeks to minimize the

amount of development that a user has to do independently from its preprogrammed application

programs and its CASE (Computer Aided Software Engineering) tools. (I use CASE in its broadest

sense, to include not only tools that help with programming but also tools that eliminate the need for

programming, as RBASE predeveloped application programs do.) PROGRESS was developed for a

more sophisticated database developer, most likely a programmer, but it has CASE tools and a non-

procedural fourth generation language (4GL) which allows the user to describe what she wants to

accomplish without having to specify each step to achieve that end. INFORMIX's 4GL on the other

hand, has both non-procedural and procedural elements, and thus is the most complicated of the

three from a programming standpoint. While INFORMIX has some CASE tools, they are not very

extensive.

As was discussed earlier, the recruiting Reservation form involved inserting data into multiple tables.

The programming of these forms in PROGRESS and INFORMIX was not that difficult once the

methodology for form/application design was understood (although for a person without any

programming background it would have been difficult). In RBASE however, there is not a fully fledged

programming environment in which to program forms. While one can write some programs to do small

tasks, such as generate unique position numbers or convert date types, RBASE is not intended to

require a lot of programming and thus much is left to the CASE tools to handle.

One of the valuable CASE features of PROGRESS was its ability to generate program code after I

designed a form or report using its form and report generating tools. So I could design a basic image

of what I wanted the form or report to look like, and from that image, PROGRESS's FAST TRACK

application would produce the actual program code. I could then change the code as I desired to

57

change the appearance or functionality of the form or report. While INFORMIX has a similar feature, it

was much more limited in its scope. For a non-programmer as I was at the beginning of this project,

this PROGRESS feature was a mixed blessing. I was at first relieved to know that the amount of

programming I would have to do myself would be limited. So I spent most of my time using

PROGRESS's tools, learning their idiosyncrasies and how to get around their limitations. But this was

by no means a small effort, and I had to invest a lot of time in leaming how to successfully use the

CASE tools. The following is a further discussion of some of the problems that can develop when a

database developer relies too heavily on CASE tools, based on my history with PROGRESS's FAST

TRACK, RBASE and INFORMIX. Since many of RBASE's "limitations" have been discussed

previously, and because INFORMIX's CASE tools are so limited, the following discussion will

concentrate heavily on my experience with PROGRESS.

PROGRESS's FAST TRACK allows one to 1) create forms for which it will generate program code that

can be used within other programs and 2) using those forms, it will generate a "Query By Form" (QBF)

program that allows end users to query for information within a table using the fields in the form. The

PROGRESS manual cautions users that making any changes to the underlying database structure

(like changing the size of a field or the format of a field), will require recompilation of any program code

affected by that change. However, the manuals do not explicitly note that for each form that is

affected, recompilation is not enough. One actually has to go back into the FAST TRACK form

generator, cut the field in question from the form, reinsert it (from the updated data dictionary) and

then have FAST TRACK generate the code. Then FAST TRACK has to be invoked to generate a

new QBF for that form. One cannot just recompile the existing code for the form and QBF and

assume that during compilation, it will access the updated data dictionary for the new field

characteristics.

Another "hidden" fact in PROGRESS was that the usefulness of the help messages I programmed in

the data dictionary for each field was negated by the FAST TRACK tools. It was not until I had created

several forms using FAST TRACK, and then generated the OBF program code to use the forms, that I

found out that the length of the help messages I had programmed in the data dictionary were too long

for the message size that can be handled by the FAST TRACK form generator. So, when I ran the

QBF and proceeded to enter data into the various fields, the messages that were appearing at the

58

bottom of the screen were getting truncated. The length of the message, or more particularly the fact

that the length differed from that in the data dictionary, was not mentioned anywhere in the

documentation nor does it logically make any sense. This is actually what I would call "anti-CASE tool"

logic because it requires extra wasteful steps to shorten the help messages within the form. If the

table creation in PROGRESS goes so far as to let you enter help messages for each field, it would

seem reasonable to assume that those help messages could be used with the FAST TRACK form

generator without any necessary modification.

To add to this list of foibles for PROGRESS's FAST TRACK is the fact that when creating forms that

show the fields listed across the screen, rather than one on top of the other, not all of FAST TRACK's

features work. In particular, the feature that allows specification of a title. Even if a title is specified for

the form and FAST TRACK generates the code, the title does not print out on the screen when it is

used for data entry. In order to have the title print out, one has to physically type the title on the

screen within FAST TRACK's form generator, and then have the code generated.

As mentioned earlier in the discussion of the Recruiting database, the accuracy of the data dictionary

specifications I input for each field were tested by PROGRESS when I used the CASE tools to design

forms. This was one good thing about having a CASE tool, because without it it would have taken me

much longer to debug my data entry forms. But even given this benefit, I still had to spend a lot of time

on the forms that I may not have had to spend had I programmed them from scratch. For example,

consider a field like country code in the contact table. While I did not specify this field as a mandatory

field (i.e. it can be left blank by the user when entering a contact record), because I had specified a

validation criteria (namely that any country code input into the contact table must be a code that exists

in the country table), it automatically became a mandatory field. In other words, if I tried to enter a

contact record without inputting a country code in this field, I would get an error message from

PROGRESS. To get around this problem I had to specify a default value, in this case U.S., to be filled

into this field automatically but which could be changed by the user. While this may not seem to be

serious, it was not mentioned anywhere in the manuals, and as discussed earlier, because I had to

specify the default value in the data dictionary, I then had to redo each form and QBF affected by this

change. Thus for every field for which I had specified validation criteria yet did not want to be

mandatory, I had to correct the form and OBF.

59

The manuals have no references covering how the code generated by FAST TRACK can be

modified. As a matter of fact, the code generated for each QBF is made up of subprocedures, some

of which are proprietary to PROGRESS and hence cannot be modified. This makes it impossible to

modify the existing OBF to do special processing, such as looping in an update program to allow

iteration within a specific group of fields. For example, I had to program a separate application for

adding Recruiting interview slots to the database in order to allow the user to enter multiple students

names and times for a given interview schedule without having to reenter the position and schedule

number. Even RBASE's form generator has the capability to use "tiers", which allow for iteration within

a specific portion of a form.

Another thing that seemed inefficient to me was that even though the manuals continually stress the

benefit of being able to use the code generated by FAST TRACK in other applications you may

develop, the code is not in a configuration usable by other programs. In order to make the code

usable, the word "FORM" has to be added to the top of the code and a period added to the end of the

code. I did not know this until I tried to use the form code in another program and it did not work. Then

I had to debug the error. It is not clear why these words are not automatically entered into the code

when it is generated.

Another simple issue concerns "auto-return". Both PROGRESS and INFORMIX allow a field to be

specified with the auto-return capability, which means after information has been entered, the cursor

will automatically go to the next field without having the user have to hit the return key. But the

manuals do not indicate that this facility should be used for fields with standard input, for example,

where a four digit code is always entered. Fields that involve variable length input, will not work with

auto-return unless the data entered fills up the entire field length. For data that does not fill up the

entire field length, the user does have to hit the return key. If this feature can only be used for fields

with standardized length input, it probably should not be used at all because it will be confusing for the

user. If the user has to remember each field that he has to hit the retum key for, the data entry process

becomes that much more difficult. And as happened to me during testing, if I did not remember that a

field had auto-return and I hit the return key anyway, the cursor would actually advance two fields and

would confuse data entry.

60

The above noted technical issues were not anticipated or evaluated during the software selection

process. Attempting to identify these types of issues at that stage of the systems development

process would probably have been impossible. In outlining these issues here, the desire is to stress

just how difficult it is to truly know the strengths and weaknesses of a software package before the

implementation stage of a systems development project.

CHAPTER SEVEN
CONCLUSIONS

As a result of the development of the Recruiting and Alumni databases, a general "methodology" for

approaching systems development at Sloan "evolved". This methodology is really a series of steps,

not necessarily ones that can be performed in a given sequence, but nevertheless actions that can be

taken to increase the likelihood of successful system implementation.

Allocate a significant portion of resources to the implementation of a conceptual design. rather than

towards the conceptual design phase. At most the conceptual schema for a database can occur

independently of the software selection and even the validity of that schema is questionable in light of

the software capabilities. Issues as simple as how "time" is recorded in a database or generating

unique identification numbers, which are central to the entire concept of a working database one may

have designed, can become stumbling blocks if designed independently of the software capabilities.

Therefore, time spent perfecting a conceptual design is wasted when in many cases, as my projects

reveal, changes must be made to that design no matter how perfect it is due to software

ideosyncracies.

Given resource restrictions. selection of software should (within limits) conform to hardware

specifications, When it comes down to it I believe in many cases the hardware decision is not a

decision at all because so many organizations already have personal computers which they are not

going to scrap simply because they want to establish a database. Given the hardware that exists,

software selection becomes that much "easier" in the sense that the software available to one

particular platform are more limited then if the decision is being made independently of hardware. Of

course, if the hardware is inadequate (particularly in terms of memory), then this issue should be

addressed in tandem with software selection.

A decision must be made up front over who the implementers will be and who the users will be. and

whether or not they are one and the same. This is a crucial decision because it will determine which

software feature (userfriendliness or power) will be the overriding factor for selection of an RDBMS.

Userfriendliness takes the form of a menu driven system and the existence of CASE tools. Power

means the ability to use the package to perform complex tasks. The dichotomy between

userfriendliness and power is not clear cut because of the way CASE tools work; trying to work within

the confines of a CASE tool (for example RBASE's form developer) can often be more difficult than

programming an application would.

Using CASE tools is not as easy as software marketers would have users believe. Because there is a

significant amount of underlying processes which the user never sees (which are within the CASE

tools themselves), it can at times be very difficult to debug a problem, as was highlighted by my

experiences with both PROGRESS and RBASE:

1) If the user is not going to look at the code generated by the CASE tools, because

they are using the RDBMS as an end user programming facility, chances are they will

take an unnecessary amount of time to figure out the idiosyncratic way to use the

CASE tool so that they can get around rather than solve their problem (e.g. recruiting

reservation form in RBASE).

2) If they do intend to use the generated code, they will have to deal with some very

sophisticated programs (in terms of the coding) and will have to go back and learn

how to use the SQL or 4GL so as to be able to debug the generated code (which will

cause delays in the completion of the database and its applications). This latter is an

example of PROGRESS because while it would generate the code for a form that

would access more than one table, it would not generate a QBF if the form involved

more than one table. So I had to do the programming for the recruiting reservation

form myself, having up until this point relied on the FAST TRACK tools to generate

62

the code for the data entry/querying applications I wanted.

Perhaps in the best of circumstances the user will have initially started by learning how to program

using the SQL or 4GL before using the CASE tools, but this is not very likely because it would defeat

the purpose of having a CASE tool to begin with. This issue may in fact be a function of the specific

CASE tool in question, and not for CASE tools in general, however, given that during one summer I

had the chance to use three different packages to develop the same database, I can honestly say that

there are some general concerns that must be recognized when using CASE tools.

Become familiar with the operating system that the database will be supported by early in the

development process. The RDBMS's themselves should warn users that they need to become much

more familiar with the operating system of their computer in order to most effectively use that RDBMS.

Unfortunately, it is an incorrect assumption on the part of RDBMS developers that their clients will be

familiar with their hardware and operating system. While many offices start out using their computers

for fairly basic operations like word processing or spread sheets, this limited knowledge will not suffice

when it comes to using the RDBMS. For example, because the CDO is using a personal computer

that does not have a lot of memory, it is crucial that they become familiar with using the DOS operating

system to perform file maintenance, deleting old files that are not used any more and are just taking up

space. For INFORMIX, it is crucial that users become familiar with the editor available to them in their

computer environment, because much of the programming will be done with that editor. For example,

it was extremely useful to me to be able to use the editor to copy the application programs I had

written, because I could modify each copied code to do different things, without having to reprogram

all the code from scratch.

As noted earlier, it is not easy to translate an original design concept into an implementable version

that can be handled by the software package. The same holds true for the translation of a design into

a version that the operating system can handle. Consider the need to name the database, tables and

fields. This is not a simple task. There are at least two major questions that have to be asked: what

can the operating system handle and what can the RDBMS handle? Even if the RDBMS allows long

names, the operating system may not. For example, DOS requires that the name be a maximum of 8

digits long. If the RDBMS allows longer names, these will in fact be truncated by DOS to 8 digits and

63

this may cause problems for file maintenance (because DOS only recognizes the first 8 unique digits).

For a product like RBASE, which is only available on a PC platform, this is not so much of a problem

because the RDBMS itself requires name lengths that the operating system can handle. But for

packages that are transportable across platforms, like PROGRESS and INFORMIX, it can be a problem

if one does not conform to the least capable system's naming conventions. Yet doing this means not

taking full advantage of the RDBMS's capabilities.

Even taking advantage of our RDBMS (for example with INFORMIX which allows table and field names

up to 18 characters long) does not mean it is producing files with names 18 characters long. When

INFORMIX actually stores these tables in an operating system directory, the name of the file containing

the table information is truncated to 7 characters long and a unique number (starting from 100) is

added to the 7 characters. So if the first 7 characters of table names are not distinct, the only way a

user can tell which file contains the table information he/she is concerned with is by knowing what the

unique number for that table is. For ease of maintaining the system being developed, the users must

be able to, from the name of the file, identify what type of information is contained within. If a user has

to refer to a "chart of accounts" for each file to identify what information is in it (because the name is not

indicative of the information) then maintenance becomes that much more difficult.

While this is may not seem like a reason for concern, it did cause another interesting problem when

making changes to the table and field information. INFORMIX, during updates, rather than saving the

changed information into the same file/table, would save the information into a new table with a new

unique number, and the old table would be deleted. While this does not cause any problems with the

database, it does cause problems when creating a backup using the operating system utilities. Each

time I backed up after I had made changes, the backup would have both the old and the new tables in

it, because the old tables are not deleted from the backup. I had to manually delete all the old files

from the backup. This problem may not exist if INFORMIX's backup utilities are used.

Determine. in advance of design. the characteristics of the user population, Is there significant

turnover in the area where the system will be used? Are the users sophisticated? (i.e., do they

regularly use computers?). Will they be frequent users of the system or will usage be on an ad hoc

basis? The answers to these and similar questions will enable one to build the correct amount of

userfriendliness into the database applications. In designing the INFORMIX and PROGRESS

64

versions of the Recruiting database, the userfriendliness of the applications did become an issue. I

designed both versions (PROGRESS and INFORMIX) to be somewhat userfriendly, programming

help messages for the data entry screens to assist the user with data entry. But there was still a lot of

implied knowledge necessary to use the application. For example, the messages did not tell the user

whether they had to use the Return key or the Escape key to get things processed. While some of

this "implied" knowledge could be programmed into a help menu/function, it did not seem worthwhile

to spend the time to do the programming when with one session at a computer, this type of

information would become common knowledge to the user. In the case of the CDO, the same users

would be using the database frequently, therefore this type of information would be unnecessary. In

the case of the Alumni database, with a diverse set of ad hoc users, extensive help messages is

probably warranted.

In addition, if time were spent to program an application to "spoon feed" the user in a data entry

process, the spoon feeding would eventually become cumbersome, because a regular user would

not want to waste time being spoon fed each time he/she used the application. It was difficult to

identify the line between being userfriendly and being overfriendly during this project because the

functions being automated were relatively simple to begin with. But it is evident that there is a tradeoff

to be made and the decision on where the line should be drawn must rest with the end user.

Systems developers, if separate from the users. should continually communicate with the end users.

Discussion can not only take place during the design phase. As my project indicates, a system

developed by a consultant will not be valid unless there has been continual discussion and verification

with the end user. And the usefulness of the final system will depend on the quality of that

communication. Even if the quality of the communication is good, there will still be questions that arise

during the programming of a system that could not have been anticipated during initial design stages,

questions which will require user input. The consultant must be flexible enough to design a system

that meets the users' needs, even if the design is not optimal from a theoretical standpoint.

65

The overall conclusion that this thesis can draw from the experience of the systems development

project is that systems development is not static. A conceptual design that one has of a system may

be far removed from the actual system that is developed for a number of reasons:

- Hardware

- Software

- Systems Developer

- Interested Parties

Given the enormity of the task and the myriad of issues that are raised, an incremental approach to

systems development is probably the only way working systems will ever be completed and used at

Sloan.

66

APPENDIX A
CDO RECRUITING INPUT DOCUMENTS

67

MIT SLOAN SCHOOL OF MANAGEMENT
RECRUITING RESERVATION FORM

Company:

Division:

Contact:

Title:

Address:

Telephone:

Alternate Contact:

Telephone:

Presentation Date:

Interview Day/Date:

P/S O/C CL? Min. Position(s)

1.

2.

3.

4.

Job description received:

Interview Day/Date:

P/S O/C CL? Min. Position(s)

1.

2.

3.

4.

Job description received:

68

NIT SLOAN SCHOOL OF MANAGEMENT
PRESENTATION RESERVATION FORM

Company:

Division:

Contact Name:

Address:

Telephone:

Day/Date:

Time: 12-1 / 5:30-7

Place: On-campus / Off-campus

Speakers Names & Titles:

Audio-visual equipment needed:

Food/Catering arrangements:

Recruiting for: Summer / Permanent / Both

Reservations taken by:

Date:

69

MIT Sloan School of Management
Job Information Form

(Please type. Complete a separate forn for each position you wish to fill.)

Career Development Office
Room E52-11I
50 Memorial Drive
Cambridge, MA 02139
(617) 253-6149

Job Title:

Recruiting Date(s) for this position:

Check one: - Permanent position
- Summer position

Organization:

Division:

Parent Company. if relevant:

Recruiting Contact:

Street:

State:

of Open Schedules for this Position:

of Closed Schedules for this Position:

Interview Length (30. 45. 60 min.)

Interview Length (30, 45, 60 min.)

Primary Industry Code (check one)

Manufacturing
Agricultural Production

-- Oil &Gas Extraction
- Food & Kindred Products

Tobacco Products
-- Apparel & Other Textile Products

- Lumber &Wood Products
-- Paper & Allied Products

Printing & Publishing
- Chemicals & Allied Products/Pharmaceuticals
- Petroleum & Coal Products
- Rubber & Plastics Products
- Primary Metal Industries
- Industrial Machinery & Equipment/Computers
- Electronic & Other Electric Equipment
- Transportation Equipment
-- Instruments & Related Products
- Other Manufacturing (please specify):

Nonmanufacturing
- Construction
- Rail Transportation
- Air Transportation

Accounting & Control
Applied Economics
Consulting
Corporate Strategy/Planning
Finance
General Management
Health Care Management
Human Resources
Information Systems

- Communications
_ Utilities/Energy Services
- Wholesale

- Retail
Finance, Insurance & Real Estate

- Commercial Banking
- Investment Banking/Brokerage

Insurance
__ Real Estate
- Investment Management/Venture Capital
- Hotels & Other Lodging
- Advertising Services

Computer & Data Processing Services/Softw are
Health Services
Legal Services
Educational Services
Social Services

- Accounting & Auditing
- Management Consulting

Government
- Other Services (please specify):

Function Codes (check all that apply to position)

- 10 International Management
I I Law
12 Management Development Program

- 13 Marketing/Sales
- 14 Operations/Production

15 Operations Research/Statistics
16 Real Estate

- 17 System Dynamics
18 Technology Management

(See over for Job Information)

70

Zip Code:

Title:

City:

Telephone:

Job Information Form
If you wish, rather than using the space provided below, you may attach a one-page job description to this form.

Brief Profile of Organization:

Position Responsibilities:

Qualifications/Background (e.g., education. experience, citizenship, personal qualities):___ _

Hiring Locations:

Number of MBA graduates you plan to hire for this job:

Base Salary Range: S (annual) or $ -

Year-end bonus? Yes No Stock Options? Yes No -

Policy on drug screening/psychological testing:

(monthly)

Profit Sharing? Yes - No

Your signature attests that your organization considers candidates for all job opportunities without regard to race, creed, color, national origin, sex,
age, handicap, or sexual orientation.

Signature: Date:Signature: Date:

APPENDIX B
POSITION NUMBER GENERATING PROGRAMS

72

PROGRESS POSITION NUMBER GENERATING PROGRAMS
Define variable nextpos# like lastpos#.

Repeat:
Iposform.f} /* include file layout for the frame */

Create position.
Update companvid division postitle p-s functioncode function2 function3

offcampus coordfirst coordlast coordphone.
Find first syscontrol exclusive-lock.
nextpos# - syscontrol.lastpos# * 1.
svscontrol.lastposa = nextpos#.
position.position;; nextpos#.
Display positiont.

End.

F ind first syscontrol.
Display lastpos: Label "Old position number value" with frame a.
syscontrol.lastpos# = 0.
Display lastpos# label "New position number value" with frame b.

RBASE POSITION NUMBER GENERATING PROGRAM

*(batch.mu -- multi-table batch autonumbering)
set zero on
set var vnuml integer
compute vmaxl as max pos# from position
enter recres
clear vmaxl vnuml

APPENDIX C
DATA DICTIONARIES

PROGRESS
Data Dic::onarv Report Legend

* - Indicates that a field participates in an index
- Indicates the primary index for a database file
- Indicates that a field is nandatory

75

08 :02 -89
Database: recruit

PROGRESS Data Dieti onary Report

,chedule File

(Schedule information for each unique position.)

Frozen: no

Delete Validation
Criterion: :schedule.v;

Message: Cannot delete schedule if interview slot exists.

Field

* M position*
M schedule*

intvlength
* sdate

room
c-a
coverletter

Field-Name

position#
schedule#
intvlength
sdate
room
c-o
coverletter

Type Ext Dec Format Init

int >;9 0
int 9 0
int
date
char
logic
logic

99/99/99
x(7)
c/o
yes/no

Label Col-label

Position Number Position!Number
Schedule Number Schedule!Number
Interview Length Interview!Length
Date Date
Room Room
Closed/Open Closed/!Open
Cover Letter? CoveriLetter?

Index Name Unique Field Name Seq Ascending abbreviate

pos-schedule yes position#
schedul e*

sdate no sdate

Field Validation Criteria, Validation Messages

position#

schedule#

intvlength

can-find (position of schedule)
Invalid position number. Please reenter.
schedule# > 0 and schedule* < 10
Valid schedule numbers range from 1 to 9 inclusive.
lookup(intvlength, "00,30,45,60") <> 0
Interview length must be either 30, 45 or 60 minutes.

Help Messages

positions
schedule#
intvlength
sdate
room
c-o
coverletter

Enter position number for this position.
Enter unique 1 digit schedule number.
Enter interview length in minutes, 30, 45 or 60.
Enter date of schedule as mm/dd/yy.
Enter room name or number.
Enter ""c"" for closed interview, leave ""o"" for open.
Enter yes if cover letter required.

1 yes
2 yes
1 yes

08'02 89 PROGRESS Dara Dictianary Reaprt
Database: recruit

sic File

(Standard Industrial Code classifications.)

Frozen: no

Delete validation
Criterion:
Message:

Field Type Ext Dec Format Init
--- --------

* M siccode int >9 0
M industryname char x(40)

Field-Name Label Col-Jabel
------------------------------------ ----------------------

siccode SIC Code SIC-Code
industryname Industry Name Industry Name

Index Name Unique Field Name Seq Ascending abbreviate
------- ----- ------------ --- --------- ----------

siccode yes siccode 1 yes no

Help Messages
--
siccode : Enter unique 1 to 4 digit Standard Industrial Code.

industryname : Enter name of industry pertaining to the SIC code.

syscontrol File

(System control information.)

Frozen: no

Delete Validation
Criterion:

Message:

Field Type Ext Dec Format Init

lastpost int - i9 0

Index Name Lnique Field Name Seq Ascending abbreviate

z default no

77

08 42 89
Database: recruit

PROGRESS Data Dictionarv report

present File

(Company presentation information.)

Frozen: no

Delete Validation
Criterion:
Message:

Field Type Ext Dec Format Init

* M companyid
M division

w pdate
ptime
location
p-s-b
contactfirst
contactlast
contactphone
av
food

char
char
date
int
char
char
char
char
char
char
char

x(8)
x (20)
99/99/99
9999
x(10)
x(1)
x(12)
x(15)
(999) 999-qqqq
x(15)
x(15)

Field-Name Label Col-label

companyid
division
pdate
ptime
location
p-s-b
contactfirst
contactlast
contactpnone
av
food

Company ID
Division
Date
Time
Location
Permanent/Summer
Contact First Name
Contact Last Name
Contact Phone ;
Audio/Visual
Food

Company!ID
Division
Date
Time
Location
P/S/B
Contact!First Name
Contact!Last Name
Contact'Phone Number
Audio/!Visual
Food

Index Name Unique Field Name Seq Ascending abbreviate

companyid
pdate

no companyid
no pdate

Field Validation Criteria, Validation Messages

companyid : can-find (company of present)
Invalid companyid. Please reenter an existing ID.

Help Messages

companyid
division
pdate
l time
ocation

p-s-b

contactfirst
contactlast
contactpnone
av
food

Enter the alpha code for company name.
Enter name of division. If none, enter ""Corporate"".
Enter presentation date as mm/dd/yy.
Enter time as 4 digit string: 1000 for 10:00am.
Enter the room/location of the presentation.
Enter ""p"" for permanent, ""s"" for summer, ""b"" for both.

Enter the first name of the presentation contact.
Enter last name of presentation contact.
Enter phone number of presentation contact.
Enter audio/visual requirements of presentation.
Enter catering information for presentation.

1 yes
1 yes

Jg -02 B9 PIGRESS Dat. D i rt i ona rN Rertr

Datai~ase: recruit
position File 1continued!

(Unique positions being recruited for by interviewing conpanies.)

Help Messages

division Enter nae of division. If none, enter "Corporate

postitle Enter position title.

p-s Enter ""s"" for summer, leave ""p" for permanent.

functioncode Enter job function code.

function2 Enter code for secondary job function.

function3 Enter code for third job function of position.

offcanpus Enter yes if interview will be help off campus.

coordfirst Enter the first nane of the interview coordinator.

coordlast Enter last nae of interview coordinator.

coordphone Enter phone number of interview coordinator.

79

(18 02 9 C
Database: recruit

PROGRESS Data Dirt ionary Retport

position File

(Unique positions being recruited for by interviewing companies.)

Frozen: no

Delete Validation
Criterion: not (can-find(schedule of position))
Message: Canniot delete position if schedule for interviews exists.

Field Type Ext Dec Format Init

* M position*
M companyid
M division

postitle
p-s
functioncode
function2
function3
offcampus
coordfirst
coordlast
coordphone

Field-Name

position#
companyid
division
postitle
p-s
functioncode
function2
function3
offcampus
coordfirst
coordlast
coordphone

int
Chtar

char
char
Jogic
int
int
int
logic
char
char
char

) N9
x(8)
x (20)
x(35)
-p Ns

yes./no
x(12)
x(15)
(999) 999-9999

Label Col-label

Position Number Position!Number
Company ID Company!ID
Division Division
Position Title Position!Title
Permanent/Summer P/S
Primary Function Primary!Function
Function Code 2 Function!Code 2
Function Code 3 Function!Code 3
Off Campus? Off!Campus?
Coordinator First Name Coordinator!First Name
Coordinator Last Name Coordinator!Last Name
Coordinator Phone Number CoordinatorlPhone Number

Index Name Unique Field Name Seq Ascending abbreviate

companyid no companyid 1 yes no
position# yes position# 1 yes no

'ield Validation Criteria, Validation Messages

Companyid : can-find (company of position)
Invalid companyid. Please reenter an existing id.

functioncode iposfunc.vl
Invalid function code. Please reenter.

Help Messages

osition# Position = for this table is automatically generated.
ompanyid : Enter the alpha code for company name.

80

08 02 69
Database: recruiT

PR(jGRELSS Dat6 &Dct rinarv Fm-pcart

intvslot File

(Slots for each ind:vidual interview schedule.)

Frozen: no

Delete Validation
Criterion:

Message:

Field Type Ext Dec Format Init

* M position# int "'9 0
* M schedule# int 9 0
* M itime int 9999

studentfirst char x(12)
studentlast char x(15)

Field-Name Label Col-label

DositionO
schedule*
itime
studentfirst
studentlast

Position Number Position!Number
Schedule Number Schedule!Number
Time Time
Student First Name Student!First Name
Student Last Name Student!Last Name

Index Name Unique Field Name Sea Ascending abbreviate

pos-schedule

slot

no position-P
scheduler"

yes position#
schedule*
itime

Field Validation Criteria, Validation Messages

position# : can-find (position of intvslot)
Must enter existing position number.

schedulek : fintvslot.v
Must use number for an existing schedule.

Help Messages

position#
schedule#
itime
studentfirst
studentlast

Enter position * for this interview schedule.
Enter the 1 digit number for this interview schedule.
Enter time as 4 digit string: 1000 for 10:00am.
Enter the first name of the student.
Enter last name of student.

1 yes
2 ves
1 yes
2 yes
3 yes

Database: recruit
courtry File

(Country code and country name table.)

Frozen: no

Delete Validation
Criterion:
Message:

Field Type Ext Dec Format Init--- -----------
* M countrycode char x(2) Us
M countryname char x(13)

Field-Name Label Col-label
---- ---- ------------------------------ -------------------------
countrycode Country Code Country!Code
countryname Country Name Country!Name

Index Name Unique Field Name Seq Ascending abbreviate
----------- -------------------------------------

countrycode yes countrycode 1 yes no

Help Messages

countrycode : Enter unique 2 character alpha country code.
countryname : Enter name of country for this country code.

function File

(Function codes and function names for job functions.)

Frozen: no

Delete Validation
Criterion:
Message:

Field Type Ext Dec Format Init
---- ----- ----- --- --- ------------------------------ ------------

* M functioncode int 9 0
M functionname char x(30)

Field-Name Label Col-label
-------- ------------------------------ --------------------------
functioncode Function Code Function!Code
functionname Function Name Function!Name

Index Name Unique Field Name Seq Ascending abbreviate
----- --- ------ ------------ --- --------- ----------

functioncode yes functioncode 1 yes no

Help Messages
-------- ---
functioncode : Enter unique function code.
functionname : Enter name describing function.

82

(18 1) 2 8 9
Database: recruit

P hJGRIU.SS t Dt ronarr RerorT

[continued]

(Contact information.)

Field-Name Label Col-label

present
recruit
alumni
resumebook
contactdate

Presentation contact?
Recruiting Coordinator?
Alumni?
Resume Book?
Date

Presentation!Contact?
Recruiting.Coordinator?
Alumni?
Resume!Book?
Date

Index Name Unique Field Name Seq Ascending abbreviate

companyid
lastname

no companyid
no lastname

Field Validation Criteria, Validation Messages

companyid

functioncode

zipcode

countrycode

can-find (company of contact)
Invalid companyid. Enter existing companyid.
[confunc.vl
Invalid function code. Please reenter.
zipcode > 0
Zipcode must be a 5 digit number.
can-find (country of contact)
Invalid country code. Please reenter.

Help Messages

companyid
division
firstname
lastname
gender
contacttitle
functioncode
function2
street
city
state
zipcode*
countrycode
phone
fax# -
fedexpress#
speaker
interviewer
?resent
recruit
alumni
resumebook
-ontactdate

Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter

the a'lpha code for company name.
division name. If none, enter ""Corporate"".
the first name of the contact.
last name of contact.
f for female, leave as m for male.
contact's title.
job function code.
code for secondary job function.
street address.
name of city.
state of contact's address.
5 digit zipcode.
2 character alpha country code.
phone number of contact.
fax number of contact.
contact's federal express number.
yes if contact was speaker at company presentation.
yes if contact conducted interviews.
yes if coordinator of company presentation.
yes if coordinator for company recruiting.
yes if contact is a Sloan alumni.
yes if purchased Sloan resume book.
date (n nddivv) contact become known.

1 yes
1 yes

no
yes

conta,;ct file

J8, 02- 89
Database: recruit

PROGRESS Data Dictionarv ReoEort

contact File

(Contact information.)

Frozen: no

Delete Validation
Criterion:
Message:

Field Type Ext Dec Format Init

companyid
division
firstname
lastname
gender
contacttitle
functioncode
function2
street
city
state
zipcode
countrycode
phone
fax:
fedexpress*
speaker
interviewer
present
recruit
alumni
resumebook
contactdate

char
char
char
char
logic
char
int
int
char
char
char
int
char
char
char
char
logic
logic
logic
logic
logic
logic
date-

x(8)
x(20)
x (12)
x(15)

x(35)

>9\ 9
x(35)
x(15)
x(2)
99999
x(2)
(999) 999-9999
(999) 999-9999
9999-9999-9
yes/no
yes/no
yes/no
yes/no
yes/no
yes/no
99/99/99

Field-Name Label

companyid
division
firstname
lastname
gender
contacttitle
functioncode
function2
street
city
state
zipcode
countrycode
phone
fax*
fedexpress;
speaker
interviewer

Company ID
Division
First Name
Last Name
Gender
Title
Primary Function Code
Function Code 2
Street
City
State
Zip Code
Country Code
Phone Number
Fax Number
Federal Express
Speaker?
Interviewer?

Col-label -

Company!ID
Division
First Name
Last Name
Gender
Title
Primary!Function Code
Function!Code 2
Street
City

Zip Code
Country!Code
Phone Number
Fax Number
Federal!Express #
Speaker?
Interviewer?

84

M
M

*M

DataLbdse: recruit
PR2OGRESS Data Dictioar:v Report

company File

(Primary company information.)

Frozen: no

Delete Validation
Criterion: {company.v

Message: Cannot delete company that is currently recruiting.

Field Type Ext Dec Format Init
----- --- ----- --- --- ------------------------------ ---------

*M companyname
* M companyid

street
city
state
zipcode
countrycode
siccode
sponsor

char
char
char
char
char
int
char
int
logic

x(45)
x(8)
x (35)
x(15)
x(2)
99999
x(2)

yes/no

Field-Name Label

companyname
companvid
street
city
state
zipcode
countrycode
siccode
sponsor

Company Name
Company ID
Street
City
State
Zip Code
Country Code
SIC Code
Sloan Sponsor?

Col-label

CompanviName
Company!ID
Street
City

Zip Code
Country!Code
SIC!Code
Sloan!Sponsor?

Index Name Unique Field Name Seq Ascending abbreviate
--

companyid yes
companyname no

companyid
companyname

1 yes
1 yes

Field Validation Criteria, Validation Messages
--------- --

countrycode

siccode

zipcode > 0
Zipcode must be a 5 digit number.
can-find(country of company)
Country code not valid. Please reenter.
can-find (sic of company)
Invalid sic code. Please reenter.

Help Messages
--------- --
companyname
companyid
street
city
state
zipcode

countrycode
siccode
sponsor

Enter full name of company.
Enter a unique alpha code up to 8 characters.
Enter street address.
Enter name of city.
Enter state of company address.
Enter 5 digit zipcode.

Enter 2 character alpha country code.
Enter 1 to 4 digit Standard lndustrial Code.
Enter yes if company is a Sloan Sponsor.

85

zipcode

INFORMIX DATA DICTIONARY
INFO - company: Columns Indexes Privileges Status Table Exit
Display column names and data types for a table.

----------------------- recruit ---------------- Press CTRL-W for Help --------

Column name

companyname
companyid
siccode
sponsor

Type

char (45)
char (8)
smallint
char (1)

Nulls

no
no
yes
yes

INFO - company: Columns Indexes Privileges Status Table Exit
Display information about indexes for the columns in a table.

----------------------- recruit ---------------- Press CTRL-W for Help --------

Index name Owner Type Cluster Columns

Imccaff dupla No

lmccaff unique No

companyname

companyid

INFO - company: Columns Indexes Privileges Status Table Exit
Display status information for a table.

----------------------- recruit ---------------- Press CTRL-W for Help --------

Table Name company
Owner Imccaff
Row Size 56
Number of Rows 13
Number of Columns 4
Date Created 08/10/1989
Audit Trail File

INFO - company: Columns Indexes Privileges Status Table Exit
Display user access privileges for a table.

----------------------- recruit ---------------- Press CTRL-W for Help --------

User

public

Select

All

Update

All

Insert Delete Index Alter

Yes Yes Yes No

86

ix100_1

ix100_2

RUN - contact: Next Restart Exit
Display the next page of query results.

----------------------- recruit ---------------- Press CTRL-W for Help

Column name Type Nulls

companyid char(8) no
division char(20) yes
firstname char(12) no
lastname char(15) no
gender char(1) yes
contacttitle char(35) yes
primaryfunction smallint yes
function2 smallint yes
street1 char(35) yes
street2 char(35) yes
city char(15) yes
state char(2) yes
zipcode char(10) yes
countrycode char(2) yes

INFO - contact: Columns Indexes Privileges Status Table Exit
Display column names and data types for a table.

----------------------- recruit ---------------- Press CTRL-W for Help

Column name Type Nulls

phone char(12) yes
ext char(5) yes
faxnumber char(12) yes
fedexpress char(11) yes
speaker char(l) yes
interviewer char(1) yes
presentcoord char(1) yes
recruitcoord char(1) yes
alumni char(1) yes
resumebook char(1) yes
contactdate date yes

INFO - contact: Columns Indexes Privileges Status Table Exit
Display information about indexes for the columns in a table.

----------------------- recruit ---------------- Press CTRL-W for Help

Index name Owner Type Cluster Columns

ix101_1 lmccaff dupls No companyid

ixl0l_4 Imccaff duple No lastname

uniqcontact lmccaff dupls No companyid
firstname
lastname

87

INFO - position: Columns Indexes Privileges Status Table Exit
Display column names and data types for a table.

----------------------- recruit ---------------- Press CTRL-W for Help

Column name Type Nulls

posnumber serial no
companyid char(8) no
posdivision char(20) no
postitle char(35) yes
p-s char(l) yes
primjobfunc smallint yes
jobfunc2 smallint yes
jobfunc3 smallint yes
offcampus char(1) yes
jobdes char(l) yes
coordfirst char(12) yes
coordlast char(15) yes
coordphone char(12) yes
coordext char(5) yes

INFO - position: Columns Indexes Privileges Status Table Exit
Display information about indexes for the columns in a table.

----------------------- recruit ---------------- Press CTRL-W for Help

Index name Owner Type Cluster Columns

ix110_1 lmccaff unique No posnumber

ix110_2 lmccaff dupla No companyid

88

INFO - schedule: Columns Indexes Privileges Status Table Exit
Display column names and data types for a table.

----------------------- recruit ---------------- Press CTRL-W for Help

Column name Type Nulls

posnumber smallint no
schednumber smallint no
intvlength smallint yes
adate date yes
room char(7) yes
c_o char(l) yes
coverletter char(l) yes

INFO - schedule: Columns Indexes Privileges Status Table Exit
Display information about indexes for the columns in a table.

----------------------- recruit ---------------- Press CTRL-W for Help

Index name Owner Type Cluster Columns

ix112_4 lmccaff dupls No sdate

posschedule lmccaff unique No posnumber
schednumber

INFO - present: Columns Indexes Privileges Status Table Exit
Display column names and data types for a table.

----------------------- recruit ------------------ Press CTRL-W for Help --------

Column name Type Nulls

companyid char(8) no
presdivision char(20) no
pdate date yes
ptime char(5) yes
location char(10) yes
p_s_b char(l) yes
contactfirst char(12) yes
contactlast char(15) yes
contactphone char(12) yes
contactext r, . -

INFO - present: Columns Indexes Privileges Status Table Exit

Display information about indexes for the columns in a table.

------...-------------- recruit ------------------ Press CTRL-W for Help --------

Index name Owner Type Cluster Columns

ixill_1 1mccaff dupls No companyid

ixlll 3 lmccaff dupls No pdate

89

INFO - sic: Columns Indexes Privileges Status Table Exit
Display information about indexes for the columns in a table.

----------------------- recruit ----------------- Press CTRL-W for Help

Index name Owner Type Cluster Columns

ix113_1 lmccaff unique No siccode

INFO - sic: Columns Indexes Privileges Status Table Exit
Display column names and data types for a table.

----------------------- recruit ----------------- Press CTRL-W for Help

Column name Type Nulls

siccode smallint no
industryname char(45) no

INFO - jobfunc: Columns Indexes Privileges Status Table Exit
Display information about indexes for the columns in a table.

----------------------- recruit ---------------- Press CTRL-W for Help --------

Index name Owner Type Cluster Columns

ix136_1 lmccaff unique No functioncode

INFO - jobfunc: Columns Indexes Privileges Status Table Exit
Display column names and data types for a table.

----------------------- recruit ---------------- Press CTRL-W for Help

Column name Type Nulls

functioncode smallint no
functionname char(30) no

90

INFO - intvlot: Columns Indexes Privileges Status Table Exit
Display column names and data types for a table.

----------------------- recruit ----------------- Press CTRL-W for Help --------

Column name

posnumber
schednumber
itime
studentfirst
studentlast

Type

smallint
smallint
char(5)
char(12)
char(15)

Nulls

no
no
no
yes
yes

INFO - intvalot: Columns Indexes Privileges Status Table Exit
Display information about indexes for the columns in a table.

----------------------- recruit ---------------- Press CTRL-W for Help --------

Index name Owner Type Cluster Columns

slot

posschedule2

lmccaff unique No

lmccaff dupls No

posnumber
schednumber
itime

posnumber
schednumber

INFO - country: Columns Indexes Privileges Status Table Exit
Display column names and data types for a table.

----------------------- recruit ---------------- Press CTRL-W for Help

Column name

countrycode
countryname

Type

char(2)
char(13)

Nulls

no
no

INFO - country: Columns Indexes Privileges Status Table Exit
Display information about indexes for the columns in a table.

-------------------- recruit ---------------- Press CTRL-W for Help

Index name Owner Type Cluster Columns

1mccaff unique Noix102_1 countrycode

RBASE DATA DICTIONARY

LIST TABLES function

Table: function
Read Password: No
Modify Password: No

Column definitions
Name Type
1 funccode INTEGER
2 funcname TEXT

No lock(s)

Length

30 characters

Key
yes

Expression

Current number of rnw

LIST TABLES company

Table: company
Read Password: No
Modify Password: No

Column definitions
Name Type
I compname TEXT
2 compid TEXT
3 siccode INTEGER
4 sponsor? TEXT

LIST TABLES intvslot

Table: intvslot
Read Password: No
Modify Password: No

Column definitions
Name Type Len
1 pos# INTEGER
2 sched# INTEGER
3 itime TEXT 5
4 studentf TEXT 12
5 studentl TEXT 15

Current number of rows:

Press any key to continue

No lock(s)

Length Key
45 characters yes
8 characters yes

Expression

1 characters

No lock(s)

gth Key Expression

characters yes
characters
characters

0

92

LIST TABLES industry

Table: industry
Read Password: No
Modify Password: No

Column definitions
Name Type
1 siccode INTEGER
2 indname TEXT

No lock(s)

Length

40 characters

Key Expression
yes

Table: contact
Read Password: No
Modify Password: No

Column definitions
Name Type
1 compid TEXT
2 division TEXT
3 namef TEXT
4 namel TEXT
5 gender TEXT
6 title TEXT
7 primfunc INTEGER
8 func2 INTEGER
9 street TEXT

10 street2 TEXT
11 city TEXT
12 state TEXT
13 zipcode TEXT
14 cntrycd TEXT
15 phone TEXT
16 ext. TEXT
17 fax# TEXT
18 fedexp# TEXT
19 speaker? TEXT
20 intvwr? TEXT
21 present? TEXT
22 recruit? TEXT
23 alumni? TEXT
24 rsumebk? TEXT
25 date DATE
26 computed TEXT

No lock(s)

Length
8 characters

20 characters
12 characters
15 characters
1 characters

35 characters

Key Expression
yes

yes

characters
characters
characters
characters
characters
characters
characters
characters
characters
characters
characters
characters
characters
characters
characters
characters

35 characters 'compid'+'namef'+'na
mel'

Current number of rows:

Press any key to continue

LIST TABLES country

Table: country
Read Password: No
Modify Password: No

Column definitions
Name Type
1 cntrycd TEXT
2 name TEXT

LIST TABLES position

Table: position
Read Password: No
Modify Password: No

Column definitions
Name Type
1 pos# INTEGER
2 controll INTEGER
3 compid TEXT
4 posdiv TEXT
5 postitle TEXT
6 p/s TEXT
7 jobfuncl INTEGER
8 jobfunc2 INTEGER
9 jobfunc3 INTEGER

10 offcamp? TEXT
11 coordf TEXT
12 coordl TEXT
13 jobdes? TEXT

No lock(s)

Length Key Expression
2 characters yes
14 characters

No lock(s)

Length Key
yes

Expression

(1*1)
8 characters yes

20 characters
35 characters
1 characters

1 characters
12 characters
15 characters
1 characters

Current number of rows:

Press any key to continue

94

LIST TABLES present

Table: present
Read Password: No
Modify Password: No

Column definitions
Name Type
1 compid TEXT
2 presdiv TEXT
3 pdate DATE
4 ptime TIME
5 location TEXT
6 p/s/b TEXT
7 contactf TEXT
8 contactl TEXT
9 av TEXT

10 food TEXT

No lock(s)

Length Key
8 characters yes

20 characters
yes

Expression

10 characters
1 characters

12 characters
15 characters
15 characters
15 characters

LIST TABLES schedule

Table: schedule
Read Password: No
Modify Password: No

Column definitions
Name Type
1 pos# INTEGER
2 sched# INTEGER
3 intlgnth INTEGER
4 sdate DATE
5 room TEXT
6 c/o TEXT
7 cvrltr? TEXT

No lock(s)

Length Key Expression

yes

yes
7 characters
1 characters
1 characters

Current number of rows:

Press any key to continue

95

APPENDIX D
RECRUITING RESERVATION PROGRAMS/INPUT FORMS

96

PROGRESS RECRUITING RESERVATION PROGRAM

ille Name: recres.p
Form Nahe: recres.f
Title: Recruiting Reservation Input Procedure
Description: Procedure for inputting reservations for company recruiting
efforts.
File Names: company, contact, position, schedule. This procedure updates
information in the aforementioned files.
Database Name: recruit.

/* The topmost repeat loop allows the user to enter subsequent recruiting
reservations without having to exit the procedure. */

Define variable answer as logical.
Answer = YES.

Repeat:
{recres.fI /* Include file containing recruiting reservation form */
Prompt-for company.companyname company.companyid company.siccode.
Find company using companyid no-error..

/* This portion of code checks to see if a company already exists with this
companyid. If it does, the program verifies with the user that the companyname
found is the companyname desired. If not (i.e. if the user did not enter a
unique ID for this company) the program tells the user to reenter a unique ID.
If it is the company the user wants, the program procedes. If no company is
found with the input companyid, then a new company record is created in the
company table. */

If available company then do:
Message "The company" companyname "has been assigned this ID.".
Update answer label "Is this the company you want?" with frame a.
If answer then do:
Message "Proceed to enter contact information".
Pause 2 no-message.
hide no-pause.
end.
Else do:
create company.
assign input companyname input siccode.
Message "Enter a unique companyid.".
prompt-for companyid.
assign companyid.
end.
end.

-If not available company then do:
Message "A company does not exist with this company ID.".
Message "A new company record will be created.".
Create company.
Assign companyname companyid siccode.
Pause 2 no-message.
Hide no-pause.
end.
Display companyname company.companyid siccode.

97

* nis section of code cnecfCs whether or not the presentation ConLdct is

already in the contact table. If he/she is, the program skips to the portion
where presentation specifics are added. If he,she is not, the program procedes
to the contact to the contact table and allows the user to enter additional
contact information into the contact table. */

Prompt-for contact.division firstname lastname.
find contact where contact.companyid = company.companyid and
contact.division = input contact.division and firstname
= input firstname and lastname = input lastname no-error.
if available contact then do:
Message "This coordinator is already in the contact file.".
Message "Proceed to enter position/schedule specifics.".
end.
If not available contact then do:

create contact.
contact.companyid = company.companyid.
assign contact.division firstname lastname.
update contacttitle contact.street contact.city contact.state
contact.zipcode
contact.phone contact.fedexpresst contact.fax#.

End.

Display firstname lastname contacttitle.

/* This portion of code checks to see if there is company address information
in the company table for this companyid. If no address has been put in the
company table, the program assigns the company with the same address
information as the recruiting coordinator. If the company record already has
an address, then no changes are made. */

if company.street = " " then do:
company.street = contact.street.
end.
if company.city = " " then do:
company.city = contact.city.
end.
if company.state = " " then do:
company.state = contact.state.
end.
if company.zipcode = 00000 then do:
company.zipcode = contact.zipcode.
end.

Define variable nextpos# like lastpos#.

/* This repeat loop allows the user to create more than one position for each
company recruiting on campus, without having to exit the procedure. Each new
position is assigned a unique position number. */

Repeat:
frecres.f}

Display companyname company.companyid contact.division
firstname lastname contacttitle.

98

r r'e at e r os -, 3 1e()r. .
fand first vsntroj lusve-Jock.
nextpost = syscontrol.lastpos# - 1.
svscontrol.lastpos* nextpos#.
position.position# = nextpos#.
display position#.
position.companyid contact.companyid.
position.division = contact.division.
position.coordfirst = contact.firstname.
position.coordlast = contact.lastname.
position.coordphone = contact.phone.
update postitle p-s.

/* This repeat loop allows the user to create more than one schedule for a
particular position (i.e. unique position number) without having to reenter the
position information. */

Repeat:
frecres.f

Display companyname company.companyid contact.division
firstname lastname contacttitle position# postitle p-s.

create schedule.
schedule.position* = position.position#.
update schedule.schedule# sdate c-o coverletter intvlength.

End.
End.

End.

99

INFORMIX ECRUITING RESERVATION PROGRAM

{Program: recresp.4gl
Database: recruit
Description: This program is designed to be the primary data entry screen for
inputting recruiting reservation information. It reduces the amount of manual
input required by the CDO staff by inserting information that has been entered
only once, into more than one table, where necessary.
Form: recresf.per
Tables: company, contact, position, schedule }

database recruit

{This portion of the program, global variable definition, is where "program
variables" are defined. These program variables take input from "screen
record variables" that are the actual interface with the user. The p before
each table name, selected for convenience, distinguishes the program variable
from the screen record and database values. After the user enters input to
the screen (and into the screen record variable), it must be moved into a
program variable and then from the program variable it can then be inserted
into the actual database.}

globals
define
pcompany record

companyid like company.companyid,
companyname like company.companyname,
siccode like company.siccode
end record,

pcontact record
firstname like contact.firstname,
lastname like contact.lastname,
contacttitle like contact.contacttitle,
streeti like contact.streetl,
street2 like contact.street2,
city like contact.city,
state like contact.state,
zipcode like contact.zipcode,
countrycode like contact.countrycode,
phone like contact.phone,
ext like contact.ext,
faxnumber like contact.faxnumber,
fedexpress like contact.fedexpress
end record,

pposition record
posnumber like position.posnumber,
postitle like position.postitle,
posdivision like position.posdivision,
p_s like position.ps,
offcampus like position.offcampus

100

Aug 21 09:24 1989 recresp.4gl Page 2

end record,

{The following array allows the user to enter up to 6 schedules into the
schedule table, for one position number. Although the recresf.per form only
has one screen line for data entry of schedule information (because the screen
can only hold 20 lines of a form and informix doesn't allow multiple screen
data entry forms), by setting up a program array of schedules, the user can
enter subsequent schedules on the same line and have all successfully make it
to the database.}

pscheds array [6] of record
schednumber like schedule.schednumber,
sdate like schedule.sdate,
c o like schedule.c_o,
coverletter like schedule.coverletter,
intvlength like schedule.intvlength
end record,

answer char(l)

end globals

{The main program establishes the looping that allows the user to enter
reservations for many companies, without having to leave the program.)

Main

open form recresf from "recresf"
display form recresf
let answer = "y"
while answer = "y"

call enterrecres()

prompt "Do you want to enter another reservation (y/n)
" for answer

end while

Message "Program Ended."
Sleep 2
Clear screen

End Main

{The enterrecres function (short for enter recruiting reservation) is actually
the piece of the recresp.4gl program that does most of the work. It is in thi.
function that the four tables are updated for new reservation information.}

Function enterrecres()
define counter, schedcount smallint

101

Aug 21 09:24 1989 recresp.4gl Page 3

clear form

(This portion of the enterrecres function tests whether or not the recruiting
company already exists in the company table. It first prompts the user for the
companyid. If the company is already in the company table, the program asks the
user if the company that was found is the one she wants. If it is, it displays
the company name and sic code and proceeds to the portion where the user enters
contact information. If it is not the company she wants, she is then prompted
to enter a unique cpompany id, as well as the company name and sic code. Or if
the company is not in the company table yet, the program proceeds to prompt
the user for the company name and sic code.)

message "Enter the company's ID"
input by name pcompany.companyid
select companyname, siccode into pcompany.companyname, pcompany.siccode

from company where companyid = pcompany.companyid
if status = 0 then
message pcompany.companyname clipped," has already been assigned this c

mpany id. "
sleep 3
message
Prompt "Is the company you want (y/n)?" for answer

if answer = "n" then

display "To create a record for this company, enter company
at 2, 1
display "namea unique company id, and company sic code."
at 3, 1

{Because companyid in the company table must be unique, the select statement
above serves to prevent any duplicate companyid's, by returning the value of
a company that has the same id as that entered by the user originally. But
once the program has passed that portion of code, and the user is trying to
enter a new company into the company table, she will get a fatal error if she
tries to enter a non-unique companyid. In an effort to prevent the fatal
error from kicking the user out of the program, the function comperr (short
for company error) was created and is called if at this point in the program
the user again enters a non-unique companyid.}

whenever error call comperr

input pcompany.companyname, pcompany.companyid,
pcompany.siccode from companyname, companyid, siccode

insert into company (companyname, companyid, siccode)
values (pcompany.companyname, pcompany.companyid,
pcompany.siccode)

display "" at 2,1
display "" at 3,1
message "Company Added."

102

Aug 21 09:24 1989 recresp.4gl Page 4

sleep 2
message

else display pcompany.companyname, pcompany.companyid,
pcompany.siccode to companyname, companyid, siccode

end if
end if

if status = notfound then
input by name pcompany.companyname, pcompany.siccode
insert into company (companyname, companyid, siccode) values
(pcompany.companyname, pcompany.companyid, pcompany.siccode)

message "Company Added."
sleep 2
message

end if

{This portion of the enterrecres function accepts contact information input
from the user and checks to see if the contact is already in the file. If
she is, then the program skips to the position and schedule data entry portion
of the recruiting reservation form. If no contact exists with this companyid
and first and last name, the program prompts for additional contact information
entry. This portion also records contact information (name, phone) in the
position table automatically. And lastly it automatically updates the
recruitcoord field in contact to be "y", indicating that this contact is a
recruiting coordinator. If this contact is new to the contact table, the
current date is inserted as the value for contactdate.}

input by name pcontact.firstname thru pcontact.lastname
select contacttitle, streetl, street2, city, state, zipcode,

countrycode, phone, ext, faxnumber, fedexpress into pcontact.contacttitle,
pcontact.streetl, pcontact.street2, pcontact.city, pcontact.state,
pcontact.zipcode, pcontact.countrycode, pcontact.phone, pcontact.ext,
pcontact.faxnumber, pcontact.fedexpress from contact where companyid =
pcompany.companyid and firstname = pcontact.firstname and lastname =
pcontact.lastname

if status = 0 then
update contact set recruitcoord ="y" where companyid =

pcompany.companyid and firstname = pcontact.firstname and
lastname = pcontact.lastname

message "This contact is already in contact file."
sleep 3
message "Proceed to enter position/schedule specifics."
sleep 3
message
end if

if status = notfound then
input by name pcontact.contacttitle thru pcontact.fedexpress
insert into contact (companyid, firstname, lastname,contacttitle,

103

Aug 21 09:24 1989 recresp.4gl Page 5

streetl, street2, city, state, zipcode, countrycode, phone, ext,
faxnumber, fedexpress, recruitcoord, contactdate) values
(pcompany.companyid,
pcontact.firstname, pcontact.lastname, pcontact.contacttitle,
pcontact.streetl, pcontact.street2, pcontact.city, pcontact.state,
pcontact.zipcode, pcontact.countrycode, pcontact.phone, pcontact.ext,
pcontact.faxnumber, pcontact.fedexpress, "y", TODAY)
message "Contact Added."
message "Proceed to enter position/schedule specifics."
sleep 3
message
end if

{This portion of the enterrecres function adds new positions to the position
table, with the system generating the unique position number. The SQLCA
function ensures that the unique number generating function has worked
properly.}

input by name pposition.postitle thru pposition.offcampus
let pposition.posnumber = 0
insert into position (companyid, posnumber, postitle, posdivision, p s,

offcampus, coordfirst, coordlast, coordphone, coordext) values
(pcompany.companyid, pposition.posnumber, pposition.postitle,
pposition.posdivision, pposition.ps, pposition.offcampus,

pcontact.firstname, pcontact.lastname, pcontact.phone,
pcontact.ext)

let pposition.posnumber = SQLCA.SQLERRD[2]

display pposition.posnumber to posnumber
message "Position Added."
Sleep 2
message"
message "Proceed to enter successive schedules; press return after each

sleep 3
message " Press escape when complete."
sleep 3
message

{This portion of enterrecres allows for multiple schedules to be input for
one position.}

input array pscheds from scheds.*
let schedcount = arr-count()
for counter = 1 to schedcount

insert into schedule (posnumber, schednumber, sdate,
c_o, coverletter, intvlength)

values (pposition.posnumber, pscheds[counter].schednumber,
pscheds[counter].sdate, pscheds[counter].co,
pscheds[counter].coverletter,

104

Aug 21 09:24 1989 recresp.4gl Page 6

pscheds[counter].intvlength)
end for
message "Schedules Added."
sleep 2
message

end function

{This error function prevents users from entering a non-unique companyid a
second time and thereby being forced out of the program because of a fatal
error. The error -239 is the informix error for an attempt to insert a
record into a field which requires a unique value.}

Function comperr()
whenever error continue
if status = -239 then

Display "" at 2,1
Display "" at 3,1
Display "A company already exists with this ID." at 3,1
Prompt "Enter a unique ID:" for pcompany.companyid
insert into company (companyname, companyid, siccode)
values (pcompany.companyname, pcompany.companyid,
pcompany.siccode)
Display pcompany.companyid to companyid

end if
end Function

105

PBAS - CJRUITING RESERVATION INPUT FORM

Press [ESC) for the menu

DX Recruiting Reservation Input Form

DCompany ID:
=Company Name:
=SIC Code: D
=Recruiting Division:
DCoordinator First Name: D
DxCoordinator Last Name: Position #: D
DPermanent/Summer: D
DPosition title: Offcampus?: D

Schedules#, sDate, sInterviewsLength, 9C/0,os
D Schedule#: Date: Interview Length: C/O: CL?:
D Schedule#: Date: Interview Length: C/0: CL?: D
D Schedule#: Date: Interview Length: C/0: CL?: D
= Schedule#: Date: Interview Length: C/0: CL?: D
= Schedule#: Date: Interview Length: C/O: CL?: D

[ESC) Done
Form: recres

[F2) Clear field
Table: company

[Shift-F2) Clear to end
Field: compid Page: 1

[Shift-F10) More

106

APPENDIX E
PRESENTATION RESERVATION PROGRAMS/INPUT FORMS

107

PROGRESS PRESENTATION RESERVATION PROGRAM

Form Name: presres.f
Title: Presentation Reservation input Form Procedure
Description: Procedure for inputting reservations for company presentations.
File Name: company contact present. This procedure updates information in
each of the aforementioned files.
Database Name: recruit

* The topmost repeat loop allows the user to enter subsequent presentation
reservations without having to exit the procedure. */

Repeat:
ipresres.f}
prompt-for company.companyid.
find company using companyid.

create present.
present.companyid = company.companyid.
update division contactfirst contactlast.

/* This section of code checks whether or not the presentation contact is
already in the contact table. If he/she is, the program skips to the portion
where presentation specifics are added. If he/she in not, the program procedes
to the contact to the contact table and allows the user to enter additional
contact information into the contact table. */

find contact where
contact.division = present.division and contact.firstname =
present.contactfirst and contact.lastname = present.contactlast.
If not available contact then do:

create contact.
contact.companyid = present.companyid.
contact.division = present.division.
contact.firstname = present.contactfirst.
contact.lastname = present.contactlast.
update contact.street contact.city contact.state contact.zipcode
contact.phone.

End.
present.contactphone = contact.phone.

update present.pdate present.ptime present.location
present.av present.food present.p-s-b.

/* This bottommost repeat loop allows the user to enter information for more
than one speaker for a particular company presentation. */

repeat:
lpresres.f}.

create contact.
contact.companyid = company.companyid.
update firstname lastname contacttitle
contact.division.

End.

End.

108

INFORMIX PRESENTATION RESERVATION PROGRAM
{Program: presresp.4gl
Database: recruit
Description: This program is designed to be the primary data entry screen for
inputting presentation reservation information. It reduces the amount of manual
input required by.the CDO staff by inserting information that has been entered
only once, into more than one table, where necessary.
Form: presresf.per
Tables: contact, present }

database recruit

-{This portion of the program, global variable definition, is where "program
variables" are defined. These program variables take input from "screen
record variables" that are the actual interface with the user. The p before
each table name, selected for convenience, distinguishes the program variable
from the screen record and database values. After the user enters input to
the screen (and into the screen record variable), it must be moved into a
program variable and then from the program variable it can then be inserted
into the actual database.}

globals
define

pcontact record
companyid like contact.companyid,
firstname like contact.firstname,
lastname like contact.lastname,
contacttitle like contact.contacttitle,
streetl like contact.streetl,
street2 like contact.street2,
city like contact.city,
state like contact.state,
zipcode like contact.zipcode,
countrycode like contact.countrycode,
phone like contact.phone,
ext like contact.ext
end record,

ppresent record
presdivision like present.presdivision,
pdate like present.pdate,
ptime like present.ptime,
location like present.location,
p s b like present.p_sb,
av Tike present.av,
food like present.food
end record,

{The presresf.per form does not have data entry fields for speaker information
because the screen can only hold 20 lines of a form and informix doesn't allow

109

Sep 1 07:31 1989 presresp.4gl Page 2

multiple screen data entry forms. By defining a program record for speakers,
and using it to allow users to enter speaker information, we can get around the
multiple screen form limitation.}

pspeakers record
speakerfirst like contact.firstname,
speakerlast like contact.lastname,
speakertitle like contact.contacttitle,
speakerdiv like contact.division
end record,

answer char(l)

end globals

{The main program establishes the looping that allows the user to enter
reservations for many companies, without having to leave the program.)

Main

open form presresf from "presresf"
display form presresf
let answer = "y"
while answer - "y"

call enterpresres()

prompt "Do you want to enter another reservation (y/n)?
" for answer

end while

Message "Program Ended."
Sleep 2
Clear screen

End Main

{The enterpresres function (short for enter presentation reservation) is
the piece of the presresp.4gl program that does most of the work. It is in this
function that the two tables are updated for new reservation information.}

Function enterpresres()
define addspeaker char(1)
clear form

{This portion of the enterpresres function accepts contact information input
from the user and checks to see if the contact is already in the file. If
she is, then the program skips to the presentation data entry portion
of the presentation reservation form. If no contact exists with this companyid

110

Sep 1 07:31 1989 presresp.4gl Page 3

and first and last name, the program prompts for additional contact information
entry. This portion also records contact information (name, phone) in the
presentation table automatically. And lastly it automatically updates the
presentcoord field in contact to be "y", indicating that this contact is a
presentation coordinator. If this contact is new to the contact table, the
current date is inserted as the value for contactdate.}

input by name pcontact.companyid thru pcontact.lastname
select contacttitle, streetl, street2, city, state, zipcode,

countrycode, phone, ext into pcontact.contacttitle,
pcontact.streetl, pcontact.street2, pcontact.city, pcontact.state,
pcontact.zipcode, pcontact.countrycode, pcontact.phone, pcontact.ext
from contact where companyid = pcontact.companyid and firstname =
pcontact.firstname and lastname = pcontact.lastname

if status = 0 then
update contact set presentcoord ="y" where companyid =

pcontact.companyid and firstname = pcontact.firstname and
lastname = pcontact.lastname

message "This contact is already in contact file."
sleep 3
message "Proceed to enter presentation specifics."
sleep 3
message
end if

if status = notfound then
input by name pcontact.contacttitle thru pcontact.ext
insert into contact (companyid, firstname, lastname,contacttitle,
street1, street2, city, state, zipcode, countrycode, phone, ext,
presentcoord, contactdate) values
(pcontact.companyid,
pcontact.firstname, pcontact.lastname, pcontact.contacttitle,
pcontact.street1, pcontact.street2, pcontact.city, pcontact.state,
pcontact.zipcode, pcontact.countrycode, pcontact.phone, pcontact.ext,
"y", TODAY)
message "Contact Added."
message "Proceed to enter presentation specifics."
sleep 3
message ""
end if

{This section of enterpresres inserts the presentation specifics entered by
the user into the present table.}

input by name ppresent.presdivision thru ppresent.food
insert into present (companyid, presdivision, pdate, ptime, location,

p_s_b, av, food) values (pcontact.companyid,
ppresent.presdivision thru ppresent.food)

message "Presentation Added."

111

Sep 1 07:31 1989 presresp.4gl Page 4

Sleep 3
message

{This portion of enterpresres allows for multiple speakers to be input for
one presentation.}

prompt "Do you want to enter speaker information at this time (y/n)?"
for addspeaker

while addspeaker = "y"

prompt "Enter speaker's first name: ' for pspeakers.speakerfirst
prompt "Enter speaker's last name: " for pspeakers.speakerlast
prompt "Enter speaker's title: " for pspeakers.speakertitle
prompt "Enter speaker's division: " for pspeakers.speakerdiv

select * from contact where companyid - pcontact.companyid and
firstname = pcontact.firstname and lastname = pcontact.lastname
if status = 0 then
update contact set presentcoord -"y" where companyid =

pcontact.companyid and firstname - pspeakers.speakerfirst and
lastname - pspeakers.speakerlast

end if

if status = notfound then
insert into contact (companyid, firstname, lastname,contacttitle,
division, presentcoord, contactdate) values
(pcontact.companyid,
pspeakers.speakerfirst, pspeakers.speakerlast, pspeakers.speakertitle,
pspeakers.speakerdiv, "y", TODAY)

end if

prompt "Do you want to enter another speaker (y/n)?" for addspeaker

end while

message "Speakers Added."
sleep 2
message

end function

112

RBASE PRESENTATION RESERVATION INPUT FORM

Press [ESCI for the menu
4aaaiaieeIaaflssease Presentation Reservation Input F

U n

i Company ID:
a Company Name:
U Presenting Division: n
I Contact First Name:]
= Contact Last Name: U
U U

U Presentation Specifics:

U Date:
= Time:
U Location:
U Audiovisual: a
U Catering Information:
U Permanent/Summer/Both:
U U

U U

(ESC] Done [F21 Clear field [Shift-F2] Clear to end (Shift-F10] More
Form: presres Table: company Field: compid Page: 1

113

APPENDIX F
ADDS DATABASE FILES AND TABLES

114

ADDS DATABASE FILES AND TABLES
Aug 23 09:41 1989 entire.txt Page 1

CENTRAL ALUMNI DATABASE FILES AND TABLES

**************** ***

The following is a list of files and tables that currently exist in the
central alumni database, ADDS - Alumni/Development/Donor/Schools. Each file
or table is followed by a brief description and is annotated with an * if it
contains information relevant for the Alumni and Recruiting Databases
(alias the "Database Project" or DB for short) of the Placement Assistant
System project. An "N" indicates the file/table is not relevant; and a "P"
means that the file/table contains potentially relevant information.

Files

Code Title

* Master

N Activity

N Club

* Companies

N History

P Officer

N Past-Address

Description

A comprehensive master record containing the majority
of information about an alumnus. Information such as
address, company, position, etc., is available as well
as more sensitive information such as donations.

This is a small file which highlights the
current interests/activities of alumni. The range
of activities is not relevant for the DB project.

This is a small file with information on current dues
paying members of MIT clubs. Clubs are mainly alumni
clubs, the majority of which are by geographic region.
May be useful for Sloan Alumni coordinator but not for
career development (DB project) purposes, because
regardless of whether or not an alumni is active in
alumni clubs, students may want to contact him/her

A file with limited but useful information,
such as sic code and company number.

Historical information on alumni, such as prior
business, prior address, parent information.

Records of volunteer activity of alumni and other
friends of MIT. Has some club names that might be
of interest to students performing job search. We are
in the process of determining the currency of the file.

Past addresses of alumni.

115

Aug 23 09:41 1989 entire.txt Page 2

N Relation

N Schooling

N Special-Const

P Student-
Activity

N Tables

P Zipfile

N Accounting

N Acct-Security

N Actions

N Alumni-History

N Biography

N Budget-Perc

N Chart

N Clearance

N Committment

N Companies-T

Records which establish a relationship between entities
on the ADDS database. Concerns designation of donation
credit.

In depth information on the schooling of alumni,
including course, degree, dates. We don't need because
the Master File has all the information we need
concerning schooling.

Special constituency information for alumni
association purposes.

Information on the activities students participated
in while they were at school. Mainly pertains to
sports. We are in the process of determining whether
the activities in this file could be extended to cover
Sloan club activity, in which case this information
would be relevant.

A file containing information on all of the tables
available in the existing alumni database.

A file of zip-codes and their relation to various
types of information such as state, region, alumni
club section, etc. Due to the large size of this file,
we may only want hardcopy of this file or perhaps a
smaller version of this file. We are working on
determining what best meets our needs.

Accounting information.

Information on account security, such as last update,
last user.

Actions taken concerning solicitations for funding.

Concerns alumni donations.

Shows what other systems at MIT have information on
individual alumni.

Budget Percentage. Accounting information.

Accounting information concerning donations/funding.

Information on clearance for funding of projects.

Travel voucher information.

Duplicate information of Companies file, used for

116

Aug 23 09:41 1989 entire.txt Page 3

Current-Gifts

Dictionary

Donor-Master

Enterprise-
Forum

Expectancies

Fund-table

Gift

Gift-History

History-Gifts

Major-Screeners

Major-Suspects

Masteral

Old-Master

Pledge-Payment

Pledges

Prod-
Schedule

Prospects

RD-Accounting

RD-Acct-Sec

RD-Budget-Perc

RD-Commintment

test purposes.

Information on individual gifts from donors.

Information regarding fields, files, maintenance,
etc. for programmer use.

File of Master Records of donors.

Enterprise Forum membership information. Groups of
corporations under MIT sponsorship. Alumni Association
related. We are determining whether or not this
information would be relevant. Currently we are not
authorized for this information.

Information on donation expectancies.

Information on funds.

Information on gifts from companies/alumni.

Historical information on gift giving.

Historical information on gift giving.

Information on funding prospects.

Information on funding prospects.

For programming purposes. Used for screen access.

Duplicate version of master file information. Used

for year end test purposes.

Information on payment of pledges.

Information on pledges.

Schedule for the production of reports from
Alumni database.

Extensive information on funding prospects.

Accounting information.

Accounting information.

Accounting/budget information.

Voucher information.

117

Aug 23 09:41 1989 entire.txt Page 4

N Registrant

N Registrar

Reunion-Gifts

SCF-Stuff

Schedule

Screening

N Security-Table

N SMS

N Sustain-
Fellows

N TDAY

N Tech-Review

TESTPLD

Vol-Con

Registration and payment information for alumni
functions.

Information from Registrar's office on new graduates.
Since we anticipate getting scheduled updates of alumni
information, we will not need this file.

Reunion gift giving information.

Miscellaneous, unidentified information. Only has 4
fields that are not descriptive but do not appear to be
important for our purposes.

Schedules for alumni association activities.

Prospect Control System. Screening of prospects as
evaluated by potential giving level.

Information on users of alumni database and their
security designations.

Solicitation Management System. Records track
prospects for reunion giving.

Prospect Control System, a subsystem of ADDS.
Donor information.

Alumni reception information.

Gift giving information and subscriptions to MIT's
Tech-Review.

Donor information.

Volunteer Control. Records of volunteer activity of
alumni and other friends of MIT.

Title/Description

List of tables.

Current Fiscal Year.
A one line table consisting of the current fiscal year.

MIT Courses.
Codes for each of the various courses available at MIT.

118

Tables

Code

N

N

Table #

000

010

100

Aug 23 09:41 1989 entire.txt Page 5

N 101

N 104

P 105

N 106

110

* 111

N 112

114

115

N 116

N 117

N 118

N 119

For example, Management = 15.

New Sequence Numbers.
New sequence numbers, used to uniquely identify alumni.

MIT Employee Code.
Codes describing type of employment for MIT employees.

Career Focus Codes.
Codes describing the career focus of alumni. Similar
to industry and job function. Redundancy of informa-
tion in this table as compared to others would need to
be determined.

Activities-Interests.
Codes covering activities of alumni. Not extensive
enough to be relevant for DB purposes.

Prefixes.
Prefixes for addressing individuals. May be useful
for students trying to contact alumni.

Suffixes.
Suffixes such as jr., phd, that also might be useful
when contacting alumni.

Nickname Users.
Nickname table containing two entries.

Donor types.
Donor information is not relevant to DB project.

MIT Affiliation Codes.
Covers affiliations other than alumni.

Majors/Minors.
Information is basically covered by table 100. In
addition, the only information on graduate students
available from this table is year of graduation.

Fund Program Codes.
Codes describing fund programs under which donations
are categorized.

Fund Job Codes.
Job codes for alumni solicitation efforts.

Biographic codes.
Describes source of funding prospect information.

119

Aug 23 09:41 1989 entire.txt Page 6

N 120

N 121

N 122

* 123

N 125

* 126

N 127

* 128

* 130

N 131

N 132

N 133

N 134

Achievement Codes.
Noteworthy public achievements of alumni, e.g. nobel
laureate.

Identification codes.
For various MIT departments.

Living Group codes.
Codes for student housing arrangements.

Country of origin.
This information will be useful during the job search
process, particularly for those alumni interested in
identifying alumni with similar backgrounds and job
search strategies.

Address Use.
Restrictions on the use of alumni addresses. Pertains
mainly to solicitation effort.

Address preference.
Home or business. Indicates preferred address to be
contacted at.

Address Source codes.
Codes for sources of alumni addresses.

Business Position number.
Codes are categorized by industry and then title.

Degree abbreviations.
Indicate the type of degree obtained. Includes codes
for non-degree studies.

Degree codes.
These codes are actually for groupings of degrees. We
will not need because this information will be covered
more effectively by our selection of other degree
fields.

School Codes.
Codes indicating college/university attended.

City & Town Area Regions.
Geographic locations of address. These codes were used
prior to the existence of zip codes. We can cover
geographic region by zip code and therefore we don't
need this information.

999 Sequence Series.

120

Aug 23 09:41 1989 entire.txt Page 7

N 135

N 136

N 137

N 139

N 140

N 141

N 142

N 145

146

147

151

152

Sequence numbers used by the Fund staff for
solicitation purposes.

City & Town Areas.
First two positions of geographic location.
Same as for table 133.

Tech Review Codes.
Codes for complementary subscriptions to Tech Review.

Relationship codes.
For designating donation credit.

Status Within Relationship.
Relation codes within relationships establishing
donor identity.

Club File names.
Codes for alumni club names.

Club File members codes.
Describes type of member the alumnus is in a club.

Club File Officer codes.
Codes for officers of alumni association clubs.

Tech Review Initials.
To distinguish those who assigned a complementary
subscription to an alumnus.

Tech Review Category Codes.
Categories for Tech Review gift giving.

Tech Review Payment Category codes.
Payment categories for Tech Review gift giving.

Officer File level.
Codes for various alumni association special
interest groups. Code indicates what level in the
Officer file the record is in. We are in the process of
determining the currency of this information and
whether or not it is relevant.

Officer file group.
Contains extensive list of codes indicating membership
group, e.g. year, city, fraternity, etc.. Code explains
what group within the level the record is in. At this
level the information would not be too useful for
job search purposes.

121

Aug 23 09:41 1989 entire.txt Page 8

N 153

P 155

N 156

N 157

N 158

N 160

P 161

N 162

N 163

N 199

N 200

N 201

Officer file position.
Indicates the various officer positions held in alumni
association/clubs. Again, this level is not useful for
job search purposes.

Zip by state.
Shows range of first three digits of zip code for
all states. We may not need a table with this infor-
mation on-line if we can sort with a

Regional Director codes.
Codes for regional directors of alumni association.

State Codes.
Due to the format in which we will be receiving
addresses from ADDS, we will not be able to isolate
state code. Therefore, this table will not provide us
with any additional capabilities that zip codes don't
have.

Country Codes.
Same as for table 157.

Activity File codes.
Codes for alumni association activities, such as
reunions.

Student Activity Codes.
Pertains to extra-curricular activities of alumni
when they were students. Current list does not have
any information relevant for job search. We are
investigating the possibility of expanding the list to
include Sloan clubs such as Finance, New Ventures, etc.

Special Constituency Codes.
Covers special alumni association/club events.

MIT Schools & Departments.
Alpha codes for MIT Schools and Departments. Table 100
will be used to identify specific MIT schools, by
course number.

Long Off Level and Group.
A long list of alumni club levels and groups.

Gift/Pledge source.
Codes for the sources of Gifts/Pledges.

Payment Vehicle.
Codes for mode of payment of gifts.

122

Aug 23 09:41 1989 entire.txt Page 9

N 202

N 203

N 204

N 205

N 206

N 207

N 208

N 211

N 220

N 230

N 231

N 234

N 240

N 245

N 250

Acknowledgers.
Indicates office that will acknowledge receipt of
gift.

Reminder Codes.
Indicates what MIT office should remind individuals
about pledges.

Pledge Payment Frequency.
Codes for frequency of pledge payments.

Carry-Forward codes.
A one item table indicating "carry-forward".

Fund/Donor Purposes.
Codes indicating area to which donor has designated
a pledge.

Match Form Status.
How the matching gift comes in and how it will be
acknowledged.

Payment types.

Alumni Fund Projects.
Codes for alumni fund projects. For system use only.

Matching Fund Table.
One item table indicating matching fund code. Used
for programming purposes.

V.P. Start dates.
Start dates for each Visit Program (V.P.) District.

V.P.End dates.
Ending date codes for each Visit Program District.

V.P. District Chairperson.
Sequence numbers for Visit Program District
Chairpersons.

V.P. Results.
Results of Visit Program District solicitation efforts.

V.P. district codes.
Names of Visit Program districts.

V.P. upgrade codes.
Indicates changes in giving patterns.

123

Aug 23 09:41 1989 entire.txt Page 10

N 255

N 260

N 261

N 262

300

N 301

N 302

N 305

N 310

N 500

N 501

N 502

N 503

N 504

N 505

V.P. Area Directors.
Codes for V.P. area directors.

8283 Status codes.

Restrictions.
Codes for restrictions. Concerns gifts of securities.

Brokers.
Codes for securities brokers who sell gifts of
securities.

Alumni Designation Codes.
Five-digit account number towhich a pledge or gift
is designated.

Fund Designation Category.
Categories for fund designations.

Output Designations.
List is more extensive than table 300. Used for
programming purposes.

Telethon codes.
Codes for telethon solicitations.
FF's not in CF.

A one item table indicating New York Center. Used
for programming purposes.

Events Program codes.
Alumni events program codes. Used by the Registrant
program.

Schedule Fee Unit.
How the alumni events are charged, e.g. per person,
per couple, etc.

Status codes.
Status codes for mailings.

Dorm codes.
Where people are staying during events.

Special Housing codes.
Special housing requirements for alumni during
alumni events.

Event run time.

124

Aug 23 09:41 1989 entire.txt Page 11

N 515

N 520

N 601

N 602

603

604

605

606

607

608

609

61A

61B

61C

61D

61E

61F

N 61G

61H

61J

610

Alumni event run time codes.

Registration Codes.
For alumni events.

E.F. City Codes.
A two item table of Enterprise Forum City codes.

Prospect Control System (PCS) Prospect Managers.
Initials of staff members who have primary
responsibility for prospects.

Susfells Threshholds.
Threshold levels for sustaining fellows.

PCS Record status.

PCS Staff codes.

PCS Research ID's.

PCS DIMS user ID's.

PCS Research ID's.

PCS Sustaining Fellows ID's.

PCS Expectancy ID's.

PCS Online/Batch Reports codes.

PCS Event Responses.

PCS Expectancy Affiliations.

PCS Expectancy Source codes.

PCS Solicitation Result Codes.

PCS Ask Purpose codes.
Indicates designations for gifts.

PCS Income Codes.
Gives income ranges.

PCS Marital Status codes.

PCS ASK School/Dept codes.

PCS prospect status codes.

125

Aug 23 09:41 1989 entire.txt Page 12

N 611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

630

630

- 650

N 631

N 632

633

634

Cultivation/Solicitation status of prospect on PCS.

PCS inclination codes.
Indicates probability that donation will be made.

PCS Sustaining Fellows membership types.

PCS Geo Staff codes.

PCS PM-Support ID's.

PCS Research types.

PCS Clearance status.

PCS Clearance results.

PCS Clearance ID's.

PCS Funding Organization codes.

PCS Clearance Staff codes.

PCS Clearance months off.
A one item table showing PCS Clearance Months Off.

PCS data screen codes.

PCS Corporation/Foundation ID's.

PCS Report request codes.

PCS Camp Committee codes.

Campaign For MIT.

Volunteer Control (Vol-Con) program codes.
Campaign programs people may be volunteers in.

Vol-Con position codes.
Volunteer position people may hold in the program
for the campaign.

Vol-Con Status Code.
Status of the volunteer in the program of the campaign.

Campaign Total Date.

Event Type.

126

Aug 23 09:41 1989 entire.txt Page 13

635

636

637

638

639

640

700

N 900

N 901

905

906

N 950

N 951

N 952

Event Name.

Event Date.

Event Reply Status.

Event Registration Number.

Area Market Corr. Table.

Date Parm.

SIC codes.
We should determine whether these codes are specific
enough for our needs.

Frequency codes.
Codes indicating how often a job is run in the
production schedule.

Schedule user codes.
Codes for alumni association user groups requesting
production schedule output.

Table of months.

Uppercase Months.
Months in all uppercase letters.

Current Accounting Yr/Mo.
Year/Month of accounting data for programming.

Committment Records types.
Payments & vouchers.

Accounting Document Sequence Numbers.
Sequence numbers for committment accounting documents.

127

APPENDIX G
ADDS MASTER FILE REVIEW

128

ADDS MASTER FILE REVIEW

Aug 23 09:41 1989 mstrfile.txt Page 1

MASTER FILE REVIEW

The Master File of the central alumni database consists of approximately 230
fields, only a selection of which are relevant for the CIS/TK Alumni
Database project. This list has been compiled based on the judgement
of the DB team and consists only of those fields that may be potentially
useful for the Alumni DB project.

Each of these fields was then further reviewed to determine relevancy. Any
fields that were determined to be important for the alumni database project
can be found in the document "Final Selection". This document contains
miscellaneous notes or discussions with Emily Magazzu, Sloan's ADDS
coordinator, which led to the inclusion or deletion of the field in the final
selection.

Field Field
Code Name

Achievement-Codes
Achievement-Dates
Achievement-
Descriptions

Field
Description

Noteworthy public achievements of alumnus.
Calendar dates of achievement.
Descriptions of achievements.

The use of the above fields was eliminated because the list of achievements
they reference is not very extensive nor directly relevant to careers in
business.

HM Alt-Addr-Prf-Test-Hm

HQ Alternate-Home-Address

HK Alternate-Home-
HL Alt-Home-Tel-Use

Address at which individual prefers to
receive mail. May or may not be useful.
May relate only to solicitation efforts.

Alternate address (summer/winter). At
prespecified date the info in this field
is exchanged with home address field.?
Fields HF and HG give the from and to dates
for this HQ field. May be useful for students
because ensures letters get sent to the
current address.
Telephone number at alternate home address.
Restrictions on use of alt. phone number.

These alternate fields were eliminated because the information automatically
switches with the normal address/telephone (HA) when the person changes
residence (as indicated by from/to date fields), in which case our refreshing
of the database would indicate current address.

QQ Business-Address

QF Bus-Address-From-Date

Business address of individual, consisting
of 4 lines: Company name, division/street,
city/st/zip, country.
Date of last change. This information

129

Aug 23 09:41 1989 mstrfile.txt Page 2

QH Bus-Add-Verified-Date

QF was selected over QH because

B2 Business-Area

B3 Business-Region

may be helpful to students in determining
how long an alumnus has been at a particular
location.
Date business address last verified by alumni
association. May help students to identify
the currency of the information and therefore
whether or not it should be verified before
sending out a cover letter.
the verification process is not standardized.

Location of business address. These are
geographic areas defined by the alumni
association.
Location of business address. These are
larger geographic regions defined by the
alumni association.

These regions were established prior to the advent of zipcodes. We will be
using zipcodes to do sorting. The only complication with zipcodes may be with
foreign zips, in which case Emily suggests we may want to use region codes. She
is going to do some thinking on this matter.

BP Business-Position
PC Business-PSN-Code

Position held by individual.
Position codes from table 128.

QK Business-Telephone Business Telephone number of individual.
This is a duplicate field which we will not need.

ZB Business-Zipcode

FO Career-Focus

Same as in city/st/zip line of QQ, but here
as its own field. We probably won't need
this if we have information on regions,
however its potential use should be considered.

General area of career focus, as distinguished
from business position, BP.

This code could be useful because the current position code/description fields
are a bit deceptive: the position code is 5 digits, the first 3 representing
the industry, the last 2 the title. Unless you know what industry the number
stands for, the title description won't in most cases describe the industry
(e.g. Director). However, Emily is not sure whether this field is being used
currently by central alumni. If it isn't being used, the validity/currency of
the information may be questionable. Emily is checking on this.

CI Club-Indicator An MIT club has identified the alumnus as
being a member.

This field was eliminated because the clubs refer to geographic alumni clubs
for the most part.

130

Aug 23 09:41 1989 mstrfile.txt Page 3

BA Company-Name First line of business address. Same as
first line in QQ. We need to determine
whether we want the business address infor-
mation line by line or in one field as in
QQ.

SH Company-Name-Alias Abbreviated or alias form of company name.
Master file writeout says this is keyed
off of the "LE" field, however that field
is for legal name. Might be useful for
locating company information.

Emily does not feel this field would be useful to us. There are other fields
from the company file (see FINAL SELECTION document) which will allow us to
identify companies even though the company name has been spelt differently.

BN Company-Sequence-# Sequence number of company named in business
address of individual.

CO Country-of-Origin Country of origin of foreign alumnus. From
table 123.

DD Death-Date Date of death of individual. We need to
ensure that the Alumni DB has only living
alumni, whether it be via this field or by
some other means.

We don't need this field because Emily can screen out alumni that have died
from our update dump.

DP Department-Affiliation Dept. Affiliation of alum as MIT undergrad
or most recent dept afil. of grad students.
Might not be detailed enough for Sloan grads,
i.e. might lump all Sloanies together.

This is not useful because other fields cover this information.

BB Division-Name Second line of business address, QQ. Usually
division name or postal drop.

This field is not going to be used by central alumni in the very near future.
Other fields will cover this information.

PM Dont-Mail Restrictions on use of address of person
for sending alumni association mail. Uses
table 125. May concern solicitation mail
only and thus not a problem for cover letters.

Not useful to us because concerns solicitations.

FS Formal-Salutation Formal salutation for use in correspondence.
This information is covered by the prefix field, thus is unnecessary.

FE Gender-of-Individual Gender. May not be necessary if have FS.

131

Aug 23 09:41 1989 mstrfile.txt Page 4

HA Home-Address 4 line field for home address. This must be
the main home address?

AD Home-Add-Verified-Date Date home address last verified by alumni
association.

Field AC, which is date last changed, will be used instead of AD.

A2 Home-Area Geographic areas defined by alumni association.
RH Home-Area-Region Larger geographic areas.
A3 Home-Region Geographic regions within larger geographic

areas.
We will be using zipcodes instead of these region codes.

TN Home-Telephone Home telephone number.
HC Home-Telephone-Use Restrictions on the use of home number.

Primarily for solicitation purposes?
Emily is going to screen out all phone numbers with restrictions on them from
our dump, so we will not have any sensitive phone numbers in our database. We
won't therefore need this field.

ZP Home-Zipcode Zipcode by itself. Same as in HA.

MD Maiden-Name Former name if surname has changed. May
not be relevant if only current students
have access to system. But if alumni
can also use, they may want to be able to
identify the business activity of former
classmates.

DG MIT-Degree-Combination MIT Degrees or combinations of degrees held by
alumni.

Duplicative information we have covered with other fields.

Cl MIT-Degree-Course-#'s Course numbers of MIT degrees held or of
studies if no degree.

Yl MIT-Degree-Dates Dates of receipt of degrees or of studies if
no degree held.

Dl MIT-Degrees-Held Degrees held. How does this differ from DG?

FN Name-First Legal first name.
LN Name-Last Legal surname.

LE Name-Legal Complete legal name in sequence first, middle,
last. Which of these fields is more
appropriate for our purposes must be
determined.

We will use the separate name fields, for sorting purposes, rather than this
combined field.

PX Name-Mailing-Prefix Prefix to be used for mailing purposes. Uses

132

Aug 23 09:41 1989 mstrfile.txt Page 5

table 110.
SF Name-Mailing-Suffix Suffix for mailing purposes. Uses table 111.

HD Pref-Address-Indicator Preference for receipt of mail, business or
home.

HE Pref-Address-Usage Restrictions on preferred address usage for
alumni association purposes.

Restrictions relate to solicitations, therefore we don't need this field.

RP Pref-Area-Region
PA Preferred-Area Geographic area of preferred address.
PB Preferred-Region Geographic region of preferred address.
We will use zip versus region codes.

PZ Preffered-Zipcode Zipcode of preferred address as its own field.
These preferred address fields are somewhat
duplicative of home address, alternate address,
etc.. The best form of address for the alumni
DB project will have to be determined.

Emily suggests this would be a key field for the alumni database to have
because it will make querying much easier. If you know you want to contact an
alumnus at his/her preferred address, you can sort off of this field rather
than off the preferred address indicator, home address field and business
address field.

SQ Sequence-Number Unique number identifying each alumni on the
master file. Links records in other files to
master file.

QD W-Addr-Use Restrictions on the use of work address,
for alumni association mail. Table 125.

QC W-Phone-Use Restrictions on the use of work telephone
number for alumni association purposes.

These restrictions relate to solicitations, thus they are not applicable.

WD Withdrawn-Date Date alumnus withdrew from MIT if no degree
received. We need to make sure we can tell
who actually received a degree from those who
did not.

We don't need this field because the degree code for non-degree individuals is
distinct from those of degree'd individuals, and we will be using degree codes.

BC Work-Line-3 Third line of business address. Usually
street and number.

BD Work-Line-4 Fourth line. City/st/zipcode.
These fields will no longer be used by central alumni.

BT Work-Phone Business telephone number.

133

Aug 23 09:41 1989 mstrfile.txt Page 6

BX Work-Prefer-Code Person prefers to receive mail at business
address.

This field is no longer going to be used by central alumni.

TB Work-Type Principal type of business engaged in by
company. May be more descriptive than
sic code.

Emily believes that this field is not useful, and that our interests will be
covered by the sic-code field.

134

BIBLIOGRAPHY

Banks, Alan, Andrea Flamburis and Laurence Kooper. "Placement Assistant System." Manuscript,
M.I.T. 1988.

Baggeroer, William L. and John M. Fox. "Student Information System, Sloan School of Management,
Preliminary Analysis and Design." Manuscript, M.I.T. 1974.

Barth, Richard R.. "A Microcomputer Network Design for the Sloan School Admissions Office."
Manuscript, M.I.T. 1989.

Hoffer, Jeffrey A. and Fred R. McFadden. Data Base Management. Benjamin/Cummings Publishing
Company, 1988.

Kooper, Laurence Stanley. "A Composite Information System for the Sloan Placement Office."
Master's Thesis, M.I.T. 1988.

Lavigne, Jean Camille and Denis Henri Porges. "A Management Information and Control System For

a School: Its Application to the Sloan School of Management." Masters Thesis, M.I.T. 1971.

Madnick, Stuart E. and Y. Richard Wang. "Logical Connectivity: Applications, Requirements, and an

Architecture." CIS/TK Working Paper #2061-88, M.I.T. 1988.

Orlikowski, Wanda, et al. "DBMS Software Review." Manuscript, M.I.T. 1989.

Redwine, Samuel T. "The Implementation of a Management Information and Control System for the
Sloan School of Management." Masters Thesis, M.I.T. 1972.

Tener, Lisa. "Organizational Issues Involved in the Development of the Placement Assistant System
at the Sloan School of Management." Manuscript, M.I.T. 1988.

Treacy, Michael E., et al. "Systems Requirements Study of the Masters Program Office of the Sloan
School of Management." Manuscript, M.I.T. 1986.

135

