
EXAMINATION AND MODELING OF A

PROTOTYPE INFORMATION SYSTEM

by.

RICHARD CARL AKEMANN

S.B., Massachusetts Institute Of Technology
(1971)

SUBMITTED IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE

DEGREE OF MASTER OF

SCIENCE

at the

MASSACHUSETTS INSTITUTE OF

TECHNOLOGY

June, 1973

Signature of Author............,.. ..

Alfred P. Sloan School of Management, Mar.

Certified b
Thesis

- 7----
19, 1973

. .. a *00...........

Supervisor

Accepted by ... *................ ** * .* *.

Chairman, Departmental Comm ttee of Graduate Students

-1-
Archives

JUN 28 1973
#**A

EXAMINATION AMD MODELING OF A
PROTOTYPE INFORMATION SYSTFM

by
RICHARD CARL AKEMANN

SUBMITTED TO THE ALFRED P. SLOAN
SCHOOL OF MANAGEMENT ON MARCH 19, 1973

IN PARTIAL FULFILLMENT OF THE
REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

Abstract

Management Science continues to be plagued by a lack of
generalized models for management Information systems. We
have models for other computerized functions: compilers,
assemblers, and operating systems; but we have no
generalized model for information systems.

This paper takes one Information system, Janus,
developed at the Cambridge Project at MIT, and using it as a
prototype, adds certain features to create a more powerful,
sophisticated information manager. The raper finishes with
a revised model of Janus and extrapolates from this to
propose a model for a generalized information system.

The Paper concludes acknowledging the trade-offs
between speed and efficiency on the one hand and oower and
flexibility on the other, but offers documentation that the
trade-offs can be reasonably successfully managed for the
general case.

Thesis Supervisor: Stuart E. Madnick

Title: Associate Professor of Management

-2-

Acknowledgements

The author gratefully acknowledges the helpful

cooperation of Jeffrey Stamen and the rest of the Janus

staff at the Cambridge Project: Pam Hill, Bob Wallace, and

Dorothy Shuford, whose cheerful assistance were instrumental

In collecting material for this paper. The incisive

comments of Professor Stuart Madnick of the Sloan School,

and Professor John Donovan and John Melber of the Electrical

Engineering Department at MIT were helpful in achieving

greater clarity and directness in this paper's presentation.

Finally, and most importantly, the author would like to

thank Stuart Madnick whose time, energy, Interest, and

constant cooperation were inspirational to the author and

largely responsible for the steady, progressive completion

of this paper.

-3-

Table of Contents

Introduction

Chapter One

Chapter Two

page 8

"A Who's Who of Information Systems"

p

"Just How Janus Got Started" p

Chapter Three "A Brief Description of Janus"

age 10

age 19

page 25

Chapter Four "Miscellaneous Modifications to Janus"

page 38

Chapter Five "Automatic Relation Defining" page 62

Chapter Six "Network Relation Defining"

Chapter Seven "Sample Session Using Revised Janus"

page 102

Chapter Eight "Revised Model for an Information

System"

Conclusion

Bibliography

page 112

page 121

page 123

page

List of Figures

Figure 3.1 "A Janus Database"

Figure 3.la "A Single Janus Dataset"

Figure 3.2 "Model of Janus"

Figure 4.1 "Sorted Attribute Storage"

Figure 4.2 "Sorted Attribute Storage
plus Original Attribute"

Figure 4.3 "Pattern Tree Attributes"

Figure 4.4 "Summary of Storage Alternatives"

Figure 4.5 "Janus Model Modifications
for New Storage Strategies"

Figure 4.6 "Alternating Attributes in Storage"

Figure 4.7 "Historian's Record of
Storage Retrieval"

Figure 4.8 "Rings"

Figure 4.9 "Protection Scheme"

Figure 4.10 "Entity Level Attribute Protection"

Figure 5.1 "Two Datasets with
Var Del Attributes"

Figure 5.2 "Two Datasets with Expanded
Var Del Attributes"

Figure 5.3 "Creating a Relation Between
Two Expanded Datasets"

Figure 5.4 "Retrieving Drugs to Treat Pneumonia"

Figure 5.5 "Two New Datasets with
Var Del Attributes"

Figure 5.6 "Two New Datasets with Expanded
Var Del Attributes"

page

page

page

page

page

page

page

page

page

page

page

page

page

26

27

33

40

43

44

47

49

51

53

58

59

60

page 63

page 64

page 66

page 68

page 69

page 70

-5-

List of. Figures Continued

Figure 5.7 "Creating a Relation Between Two
New Expanded Datasets"

Figure 5.8a "Finding Drugs to Treat a
Cough and Fever"

Figure 5.8b "Finding a Disease Whose Symptoms
are a Cough and Fever"

Figure 5.9 "A Synonym Table"

Figure 5.10 "A Codelist Dataset"

Figure 6.1 "Three Interrelated Datasets"

Figure 6.2 "Linking Dataset Three to
Dataset One"

Figure 6.2b "Lists Before any Match is Found"

Figure 6.2c "One Match Found for First List"

Figure 6.3 "Four Interrelated Datasets"

Figure 6.4 "Hash Table for Datasets
One, Two, Three, & Four"

Figure 6.5 "Linking Dataset One to Dataset Four"

Figure 6.6 "Multiple Analytic List Combinations"

Figure 6.7 "Successful Multi-level
Link from One to Four"

Figure 7.1 "A Database Consisting of
Four Datasets"

Figure 7.2 "Hash Table for Revised Datasets
One, Two, Three, and Four"

Figure 7.3 "Analytic Lists with One
Relation Added"

Figure 7.4 "Analytic Lists with One Match"

page 72

page 73

page

page

page

page

page

page

page

74

77

79

85

87

92

93

page 95

page 96

page 97

page 98

page 100

page 102

page 104

page 108

page 109

-6-

Figure 7.5

Figure 8.1

Figure 8.2

Figure 8.3

Figure 8.4

"Analytic Lists with Solution"

"Revised Model of Janus"

"A Basic Information System"

"Primary Model of Janus"

"Block Diagram of a Full Generalized
information System"

page 110

page 113

page 116

page 117

page 118

'7-

Introduction

Since the Inception of computers as information

management instruments, attempts have been made to improve

the speed, flexibility, and programmability of information

management systems. In spite of these efforts to produce

more generalized information management packages, there Is

still roughly one unique Information system for each data

management application. This phenomenon Is due, partly, to

the lack of any generalized model for an information system.

In creating any invention, one must have a generalized model

which describes possible variations and alternatives which

the system may take. A model allows one a framework in which

ones particular application may be placed in perspective. To

date, we have models for compilers and assemblers. Models

for operating systems are in the final stages of

development. However, a model for a generalized Information

storage and retrieval system has not yet been specified from

which all systems may be derived.

In an attempt to confront this problem, this paper will

present first a brief overview of current information

systems noting their basic capabilities and differences. It

will then present one prototype information system and a

model for it which incorporates many of the more attractive

features of present Information systems. From there, the

paper will offer a sample of capabilities which should be

-8-

available but are lacking in the prototype system and offer

possible implementation schemes. It will finish with a

revised model for a generalized information system

incorporating the proposed changes to the prototype.

-9-

Chanter One

A Who's Who of Information Systems

In light of the wealth of information systems generated

to date, the decision as to which systems to examine could

be somewhat difficult. However, the work performed by the

CODASYL systems committee (3, 4) appears to be the most

accessible, comprehensive, and thorough examination of

existing information systems currently published. For this

reason, this paper will use their work to examine four of

the more powerful systems which appear to have features

which one would expect in more advanced and sophisticated

information systems. First, this paper will present a brief

overview of each system and then go into some of the

features of the systems which distinguish them from each

other and point up desired characteristics of higher level

Information storage and retrieval systems.

The first system to be discussed Is IBM's GIS

implemented in 1969 under OS/MFT on the 360/40G with 92K,

and under OS/MVT on the 360/501 with 512K using sequential

and indexed sequential storage.(3, 4) The system was

developed to interrogate and maintain arbitrary user files

responding to "unstructured" and unanticipated user

requests. The files were defined using a special data

-10-

description language and retrieval and updates were

performed using a "high-level" procedural language (a

compiler language) which was designed for use by

non-programmers. The system could be operated In batch or

interactive modes and the internal files were compatible

with standard OS/360 sequential and indexed sequential

storage structures permitting regular OS programs to create

and access GIS files. Provision was made to invoke

user-written assembly language programs explicitly from

procedural task specifications or implicitly from

input/output validation and conversion processes to perform

operations on the data. Tasks were divided into data

description tasks which defined the data structure and the

input files, and procedural tasks for interrogation, update,

and creation. Data definition included defining aspects of

storage structure, file and Item access locks, input and

output data validation and transformation and event

recording. A limited redefinition capability was provided

to redefine certain fields of data, if unused; Interspersed

storage could be used to adjust for the change without

touching existing data. Procedural tasks included queries

In which up to 16 files could be reported and stored in

temporary files. An elaborate report generator was probably

the most attractive feature of the system.

The second system to be examined is System Development

-11-

Corporation's TDMS, implemented under the ADEPT 50 operating

system on the 360/50H in 256K also brought un in 1969,(3,4)

The file structure was a completely inverted file with

cross-indexed tree structures implemented on disk and drum.

The language, designed for non-programmers, could handle

ad-hoc inquiries with rapid response into a database with

hierarchical tree structures. The language was supplied with

subsetting, sorting, and merging facilities and a modest

report-generating capability. Inputted data could be

monitored during input allowing correction of raw values if

necessary. Special translation programs existed to cope with

data in foreign formats coming from other machines or

systems. The system was provided with an on-line "help"

facility to assist the user In solving a particular problem.

The user had the capability to modify, combine, or rearrange

groups of his data.

A third system to be examined Is IDS, implemented by

Honeywell on H6000 hardware in 512K (IBM bytes) using disk

storage.(3,4) Developed In 1963, this system allowed the

user to specify a database specifically tailored to the

requirements of the given application. The system was

heavily dependent on the COBOL compiler being used In the

operating system, and the system used the COBOL compiler to

perform many of Its functions. The IDS functions described

storage, retrieval, and update tasks while standard COBOL

handled all other data manipulation, validations, and

reporting functions. Chain pointers were used to define

structural relationships between groups. A basic structural

element was a "chain" consisting of a "master" group and any

number of "detail" groups. Chains had pointers going both

directions in the sequence. The system had three group

classes for storage and retrieval: calculated groups

accessed on the value of the item within the group, primary

groups accessed using user-furnished pointers, and secondary

groups accessed through their relationship to a specified

master group.

The final system to be examined is IBM's IMS

implemented in 1969 under OS/MFT on a 360/50 in 256K and

under OS/MVT on a 360/50 in 512K using disk storage.(3) In

IMS the user was required to write application programs to

access the database and control transmission of messages to

and from the terminal. The data definition facility was

provided to define the structure and attributes of a file in

the user's database with the capability to re-define

database files as "logical" files which could be accessed

with application programs. Database services included

fetching of data groups through specified identifiers,

fetching of dependents of previous groups, and replacing,

deleting, and storing new groups. The system had a

checkpoint-restart facility to provide recovery from host

-13-

system crashes. The system also provided a facility for

message switching and editing.

With the introduction of IDS in 1963, the

capability for network-structured files was initiated,

dependent, of course , on the capabilities of the host

language (COBOL) with which it was implemented. Although

IMS provided some network-structuring of relations, this had

to be specified before-hand and was not allowed as an

after-thought. With TDMS's completely inverted

tree-structured file, an attribute could be used to subset

the database quickly and easily, or relate two entity groups

together (An entity may be considered the specific unit of

analysis: questionnaire, personnel record of one person,

project record, etc.). However, unlike GIS, IMS, and IDS,

the user had little control over how the information was

structured internally in TDMS. Therefore, if a request

referenced data located in many widely scattered areas of

the system, the user had no capability to restructure the

data to make the operation less expensive.

GIS appeared to be a large database management system

for handling mass quantities of Information. Relations had

to be programmed into the database managment system through

the initial structuring of the information. Otherwise,

lengthly, expensive searches might be needed later to

establish subsets and relations between parts of the

-14-

database.

IMS represented a trade-off between the large-scale

GIS-type information manager and the highly flexible, but

somewhat expensive TDMS system. Relations could be created

and information could be stored semi-conveniently if the

user knew ahead of time just exactly what types of relations

and subsets would be needed. The information could be stored

in tree-structured format and relations could be built-in

across the structure. Unfortunately, revising the trees to

any great extent became a cumbersome process which could

result in having to re-create the entire storage structure.

Another characteristic of these systems was the small

number of data types they were capable of handling. IMS

allowed any data type which the user wished to declare.

However, the system never used this information to handle

the data since all information was simply byte strings to

IMS. One could compute the mean of a number of text strings

as easily as computing the mean of some numbers. All of the

systems allowed numeric (integer or floating-point data) and

text strings consisting of standard alphabetic and special

alphanumeric characters. However, beyond these data types,

only TDMS provided another item type which it called "date".

Dates could be stored in GIS by creating three consecutive

integers or a text string to handle the value, but no

descriptive information told the system that the value was a

date which could be added, subtracted, and manipulated as a

single value. TDMS supplied the capability for Nominal data

(male/female, Yes/No, etc.), but none of the other systems

had this. Other data types not supplied in any of the

systems were Nominal Mutiple (languages spoken: French

and/or English and/or German etc.), and raw bit strings to

handle other data types not anticipated by the system.

Regarding security, GIS had a rather sophisticated

system in which each item, or an entire file could have

query and update access codes (passwords). Thus, two types

of specified read and write access existed at two levels in

the file structure hierarchy. Security on IDS was

Implemented through COBOL at the 01 level definition of a

group. The authority "lock", supplied when the group was

defined, had to match the "key" supplied by the user's OPEN

statement to acquire write access to the data. This did not,

however, provide any protection against other users reading

the data. TDMS did not supply any security to Its own

database. However, since multiple users required multiple

copies of the same database, security could be provided

through the host operating system by giving each user only

the information from the master database which he needed to

work. Updating the database might become rather

problematical In this mode. By using multiple copies of the

database, the host system prevented users from reading or

-16-

modifying each others' databases. IMS implemented security

by specifying which programs could read or write a file. The

user then had one password which he used to log Into the

terminal and others which he Issued to Invoke certain

programs which he was authorized to use. Only certain files

could be modified or read in specific ways by a given

program to which the user had access.

Logging of transactions on the system can be useful

both to remember what types of functions are performed most

frequently, and to provide some record or history as a form

of crash protection. Neither GIS, TDMS, nor IDS provided

this capability. IMS, however, logged both Incoming and

outgoing messages. Query logging could be suppressed but

update logging never was. The log could then be used to

duplicate Input lost during a crash. Performance and

activity statistics were, however, much more difficult to

derive and analyze from this log.

In the programming systems, IMS and IDS, there was no

descriptive database which the programmer could use to

determine at run-time the structure of his database.

Therefore, each program had to know at compile time what the

structure of the database was. If that structure was

changed, then all the programs which referenced altered

portions of the database had to be recompiled with the new

structure.

-17-

Once the database was entered into the system, very

little could be done to define and create new databases as

functions of the old ones with these systems. GIS could

provide a modest capability for accomplishing this, but it

was far from ideal. None of the other systems appeared to

have this capability.

-18-

Chapter Two

Just How Janus Got Started

Like many good ideas, Janus began as a result of

dissatisfaction with existing Information management

systems. During 1968-1969, its present supervisor, Jeff

Stamen, and Alan Kessler, formerly of the CIS at MIT, were

consulting with research projects and supervising students

who were manipulating Dolitical science data with a system

called ADMINS.

ADMINS was designed to be an Interactive data

manipulation language to aid political scientists with their

work in handling broadly varying databases. It provided the

capability for watching data during input and flagging down

bad data items before they were internally stored in the

database. Thus, rather than having to edit and re-input data

after computing a statistic having spent two days

discovering that the erroneous results were caused by

garbage in the data, the data could be caught as it was

entered into the system and modified to prevent wildly

varying results.

Another powerful feature of ADMINS was its subset

analyzer that allowed extensive and efficient subset

specifications which became part of the database. Unions,

complements, intersections, and special entity numbers could

-19-

be stored and used to rapidly access subsetted portions of

the database.

Many special relations could be defined between

datasets varying from one-to-one relations to one-to-many

and many-to-one relations between datasets. Thus, a user

could link two datasets by finding an attribute which was

common to both and then defining a relation between the two

datasets linking through identical occurrences of the

attribute in each dataset. The relations were,

unfortunately, unidirectional, requiring that the inverse

relation be defined to go the other way in the relation.

Also these relations could not handle more complicated

sociometric relations such as a oerson having many friends

who claimed him as one of their friends. The above would

result in many friends being related to many other friends

or a "many-many" relation. A modest selection of parametric

and non-parametric statistics were included which

facilitated analyzing the data from a statistical

standpoint.

Since Admins was a CTSS subsystem, it incorporated a

number of components of the CTSS time-sharing system into

its own system. At any point in the execution the user could

be receiving error messages from the compiler, the CTSS file

structure system, or elsewhere. The entire system demanded

certain core loads, limiting the amount of storage that was

-20-

available for the user's data and analysis work. All-in-all

it tended to be a system for the more sophisticated user and

the simple user could become lost in the complexity of where

the system had left him at any moment.

Another problem and perhaps the most important one in

its obsolescence was its dependence on the CTSS time-sharing

system at MIT. CTSS was a development time-sharing system,

and once the Immediate need for time-shared computing power

was met by other, more sophisticated systems, CTSS was

phased out and users removed from the system. Facing this

situation, Mr. Stamen and Alan Kessler began to rough out a

specification for a new data management system. The design,

called "Penelope", was to be used to construct a computer

model for "a theory of human record handling".(7)

-21-

Penelope was specified to handle the following

functions:

1. Acquisition of certain structures of information
under a categorization scheme as computer records of
Information.

2. Manipulation of the records with logical and
mathematical techniques for information handling and
for scientific purposes.

3. Generation of new records for use by other
Information handlers.

The specification went on to state:

Penelope will manipulate records about items, i.e.
people, things or objects. The records must contain
categorized Information either about items and their
characteristics or about Items in dyadic relations with
other items. The descriptors of this categorized
information with respect to its form, content, and
procedure will also be managed as categorized
information. Thus information used as data for
scientific purposes and the descriptions of this data
are managed in the same structures with the same
processes.(7)

Penelope, which can be thought of as the first draft

for Janus, furnished two major new concepts in data

manipulation. First, there would be a large body of

descriptive data recording the form, content, and definition

of data items. Second, this body of descriptive data would

be managed by the same processes with which the user's data

was managed. Consequently, the user had both the on-line

capability for altering and modifying his own data, but the

added capability for modifying the structures describing his

database. A wide variety of of manipulations of the data

-22-

could be performed while recording the actual changes in the

descriptive data. With the descriptive data, the problem of

older program obsolescence with changing data structures was

eliminated, because the descriptive structures which a

program used to access the data changed with the data

modification. Thus, "application programs" became

self-modifying to the extent that the descriptive data they

used was self-modifying.

While Penelope was being specified at the CIS at MIT,

another statistical, computer effort, the Cambridge Project,

was also working on the problem of database management. The

project was designed to offer social and behavioral

scientists a wide variety of statistical and data

manipulative capability in one "consistent" environment

which could solve the complex probems in analyzing social

science data. A summer study during 1970 at the Cambridge

Project established that a large part of the Project should

become devoted to the subject of data handling. After a

careful investigation of what was currently available in the

field of data managment, a conclusion was reached that no

single existing system could handle the problem or had

adequate capabilities to be revised to solve the Cambridge

Project's data management problem.

A Data Handling Committee was established to address

the problem and devise a specification for one system which

-23-

would supply all the needed features. The committee worked

for the summer with little result since the diversity of

opinions and experience combined with the need for

modularity seemed to lead to numerous dead-ends. Finally,

Jerry Miller of the Stamford Graduate School of Business,

who had developed Datanal at MIT, entered the committee.

Although Dr. Miller's expertise had previously been more

statistically than data handling oriented, Dr. Miller's

presence sparked the group Into positive steps towards a

procedural specification of a data management system.

Together with the help of Dr. Miller and Fred Brookstem, who

had worked on Datatext, Mr. Stamen was able to Insert a

chapter into the summer study of the data management problem

which outlined a proposal for Janus.

In November of 1970, Mr. Stamen was moved Into the

Cambridge Project Central Staff and the specification for

Janus continued. By April of 1971, clearance was acquired to

begin writing a prototype of the Janus system. The

prototype was designed to provide a model of some of the

features which should be present In a more advanced

information handling system. Its presence proved that the

concepts could be Implemented, and work was to progress for

a full Janus system from there.

-24-

Chapter Three

A Brief Description of Janus

At this point, a description of the Janus system might

be helpful in understanding the concepts which will be

presented later in this paper. An entity is the specific

unit of analysis which may be a questionnaire, personnel

record, or some other unit of interest. Attributes represent

characteristics of entities such as occupation, salary,

due-date, date-ordered, etc.. A Janus database is divided

into datasets which have a "population" of entities. For

each entity there are attributes common to all entities with

missing values indicating that a given entity does not have

a value for that attribute. Each database may have a varying

number of datasets, and each dataset, its own population of

entities and attributes per entity. A schematic of a Janus

database appears in figure 3.1, and an example of a single

dataset appears in Figure 3.1a.

-25-

FIGURE 3.1

A Janus Database

dataset one
attributes

entities I

dataset three
attributes

dataset two
attributes

enritiet$e

NOTE: Each dataset may have a
different ratio of entities
to attributes, however, for each
entity there is an attribute
value, even if a missi-ng code.entities

-26-

Fiure 3.1a

A Single Janus Dataset

Ag School Grade

personi 21 Harvard A
person2 19 MIT A
person3 23 MIT B
person4 22 B.U. B
person5 20 N.E. A

Janus has 12 basic types of internally stored data:

1. nominal
2. nominal multiple
3. floating-point number
4. integer
5. text string
6. date-time
7. bit string
8. attribute definition
9. dataset definition
10. relation definition
11. macro definition
12. attribute

Nominal expresses unique values for non-ordinal categories

(Male/Female, Graduate/Undergraduate, etc.). The values

indicating the category are stored internally as integers

although the system deals with them as nominal, remembering

what each integer means.

Integer data is a fixed binary(35) number (as PL/1 is

implemented on GE/645 hardware) and floating-point is

floating binary(27) (again, as implemented) real

-27-

floating-point number.

Text is a string of characters of a given (by the user)

length which usually represents a name or a description of

something. A bit string Is used to contain any other type

of data which Is not specifically Implemented on the system.

Nominal multiple may be used to express multiple

instances of nominal categories. For instance, languages

spoken: French and/or English and/or German and/or Italian

etc..

Date-time is used to record a date and the time of day

of any given event.

Attribute definitions are stored to remember if a new

attribute Is created as a function of old attributes. They

record what the new attribute means as a function of the old

attributes.

Dataset definitions are recorded for much the same

reason as attribute definitions only to remember what

function has been used to define the new dataset from the

old one. Relation definitions specify what two attributes

In two given datasets were used to create the relation and

whether the relation was many-to-one, one-to-many etc..

Macro definitions record any abbreviations which the

user may create to perform a number of Janus commands with

only a few characters.

"Attribute" definitions, as distinguished from the

-28-

"attribute definitions" listed above, are the entire set of

form, content, and procedural definitions which are stored

with an attribute when it is defined and created.

Finally, bit strings are provided to create any data

type which Is not already explicitly handled by the system.

Each 'attribute value for a single entity may have up to

three dimensions: the first two are fixed and the third is

varying. For instance, the attribute, I.Q. score, may have

five rows in one dimension for the number of years over

which It was taken, and ten columns in another dimension for

the number of times each year the score was taken. I.Q.

would then become a two dimensional (5,10) array of 50

scores.

By using the "varying del string" or "var del"

attribute, a third dimension could be added. I.Q. could

become a var del attribute by adding a dimension

representing a varying number of times per week that the

I.Q. test was taken if students wanted their scores to be an

average of scores taken throughout the week to guard against

the "one bad day" effect. Since the number of scores varies

by entity and by attribute(i,j), each weekly score consists

of a unique number of daily scores.

Using Janus, there is the basic capability to define a

raw dataset and define and create attributes. New -

attributes can be defined as functions or multiple

-29-

arithmetic expressions of old ones. This capability to

define new attributes in terms of old ones appeared to be

lacking in the previously examined systems. For instance,

from the raw attributes, age, education, and programming

experience; a new attribute, promotability, can he defined

as 1 for age <= 25 and education <= 3 and experience < 2; 2

for age > 25 and age < 30 and education > 3 & < 5 and

programming experience > 2, etc.. A new attribute can be

defined as an arithmetic function: promotability =

education X experience / age, and so on.

Internal datasets can be defined from raw datasets

consisting only of entities for which a given attribute

meets some condition or for a random sample of a given

dataset. Datasets and individual attributes can also be

deleted once they are of no further use.

Individual attribute values can be modified by using

the "alter" command and missing data has special codes to

indicate that a value is missing from the attribute vector.

Any attribute or combination of attributes can be

displayed using the "display" command. Conditions on other

or displayed attributes can be specified or entity numbers

given to determine for which entities the values are

displayed. For instance, a user may ask to have income and

age displayed for age greater than 42 and occupation equal

to "salesman".

-30-

In the prototype a small statistical facility exists to

compute means, medians, distributions, correlations,

T-tests, crosstabulations, and stem-and-leaf plots for given

attributes. A wider range of statistics is available in the

"Consistent System" which is the file environment developed

by the Cambridge Project which Janus uses for raw,

unstructured file space.

The "defineattributemap" command is provided to

transfer attributes from old datasets into new datasets or

into new attributes whose value is the mean or some other

function of the original attribute values or an attribute

vector in an old dataset. An entire attribute array can be

turned into a mean value for that array or the count of the

number of non-missing attributes in the array.

The most important feature of Janus is probably the

capability to define relations between datasets. Through an

attribute which the user defines to be common to both

datasets, a user can define a link between the two datasets

based on a common or similar attribute between the datasets.

These relations are bi-directional in character allowing the

user to reference either from dataset "A" to dataset "B" or

back from dataset "B" to dataset "A". Consequently, there is

no hierarchy in the relations defining one dataset as

superior or parent to another. What results is a matrix of

relations in the database with each relation defining a

-31-

two-way link between two datasets rather than a tree

structure. This is an important step towards implementing

the relational model of data specified by Codd.(1)

Implementing the capability described in the previous

passage is the structure outlined in figure 3.2. The user

issues commands at the terminal in a narrative-keyword type

of language. These commands go from a command processor to a

lexical analyzer which passes the command broken down into

tokens to a syntax analyzer. The syntax analyzer ascertains

whether or not the command is syntactically correct and

passes it to a semantic analyzer which turns attribute names

into entries in the definition dataset, dataset names into

entries in the inventory dataset, and conditional

expressions into a series of entity numbers representing

entities whose attribute values satisfy the specified

condition, and so on.

The definition dataset stores the information about the

attribute's element type (integer, floating, etc.), when it

was defined and created, what type of dataset it describes

(since the descriptive datasets are also fully described in

the descriptive datasets), and other useful information

about the attribute. The definition dataset also contains

the information necessary to locate and retrieve the item

values for an attribute . These include a pointer to the

attribute, the length in bits of each element of the

-32-

FIGURE 3.2

Model of Janus

Sdefinition ' ?

_ entr e.

CanoniCal '

forms

-33-

attribute, and information necessary to unpack the attribute

values if they are stored "packed" in an attribute record.

The inventory dataset contains an entry for each dataset in

the system including itself and the other system datasets.

This entry specifies what type of dataset the entry Is, what

Its specific ID's are, and various information regarding its

definition and creation such as time defined, created, last

modified and what are its component forms if It was defined

as a function of another dataset.

The semantic analyzer performs its task by running the

attribute name or dataset name through a hash table to get a

key into the proper dataset and the correct location where

the entry is stored in the system dataset thus producing an

inventory entry for a dataset name and a definition entry

for an attribute name. The conditions are sent to a subset

analyzer which sends the condition tokens to a Precedence

analyzer. The precedence analyzer uses the definition

entries to retrieve attribute values and interpret the

conditions based on the precedence of the user-specified

operations or functions to derive a set of entity numbers

which meet the specified conditions.

Once a basic operation has output from the semantic

analyzer, it simply retrieves the attribute values by

passing the definition and inventory entry information and

the specified subset of entity numbers to storage and

retrieval modules which retrieve the requested information.

The routine then performs the requested operation:

statistic, display, modification, or deletion that the

command requests.

All of the basic operations could be accessed through

regular PL/1 subroutine calls, allowing the user to write

his own interface to the Janus system. However, Janus was

designed to be a non-programming system and accessing

desired modules through standard PL/1 could require an

experienced programmer. The user would have to input his own

pointers to definition and Inventory entries and generate

his own calls to the subset analyzer. These tasks would

require greater knowledge of the internal algorithm of Janus

than its designers anticipated for the average user.

The basic operations call various storage and retrieval

strategy modules which know from the attribute's definition

entry just exactly how the requested Information should be

retrieved. These modules return the requested attribute

values to the calling routine.

For instance, the user types:

"compute distribution of grades"

The command finally reaches the "compute" basic operation

which calls a program called, "retrieve", to fetch the

values for the attribute, "grade". It passes retrieve a

-35-

pointer to an entry in the definition dataset which tells

retrieve that "grade" is a nominal attribute with five

values: 1,2,3,4, and 5, and that each value takes up three

bits of packed storage. Retrieve then returns to compute a

set of full fixed binary numbers representing the attribute

values. Compute then uses the definition entry information

to figure out that "1" means "A", "2" means "B" etc. and

produces the following output:

Grade Number %Total

A 50 25%
B 100 50%
C 30 15%
D 10 5%
F 10 5%

When a relation is requested, the relation definition

is used by the basic operation to access definition entries

for the related attributes in the two datasets, and the

paired entity numbers stored in the relation definition

which define the many-to-one or one-to-many pairing of

attributes in the two datasets are used to form the

cross-transfer between the two datasets through the common

attribute in each dataset.

New datasets are added to the database by appending

entries to the inventory dataset and new attributes are

added to a dataset by appending entries to the definition

dataset. Once the attributes are created, the information

-36-

about the creation such as date-time-created,

attribute-record-type, location etc., is stored in the

definition dataset.

For a more complete summary of some of the less

complicated features of the full Janus system see (6). For

a more thorough documentation of Janus's beginning

"prototype" system see (5).

-37-

Chapter Four

Miscellaneous Modifications to Janus

Janus's solution to the information management problem

is by far the most flexible solution of the systems

presented in this paper, but certain areas of inefficiency

leave room for improvement. First, the user may wish more

control over how the data Is actually stored. A user has

the capability to pack two attribute vectors in a single

attribute record, but it may be desirable in some cases to

alternate one item value of one attribute followed by

another value of another attribute. Second, the user must

know exactly what his relations are and how they fit into

his question to use the relation capability. Third, specific

hardware constraints on the population of a database roll in

at about 2000 entities because of the maximum size of a

Multics segment and the sorting times In creating relations.

Finally, protection is an issue for which Janus has high

potential because of the Multics environment but must be

investigated more thoroughly.

User control over storage structure breaks down into

two basic problems. First, there is the problem of linearly

searching attribute records to generate a set of entity

numbers for the attribute values which satisfy a given

condition. This problem could be alleviated by storing the

attributes In sorted form. Second is the issue of storing

together attributes which will frequently be refernced in

the same command.

ConditionalStoraze Strategies

Storing the attributes in sorted order would be a

reasonable solution to the problem of searching entities

whose attributes satisfy a specific condition. With this

solution, a binary search modified to expand both ways from

the matching endpoint to locate multiple occurrences of a

searched key could be used to locate the desired subset of

entity numbers saisfying the user's requested condition.

This, however, would require modifications at both ends of

the retrieval strategy scheme shown In figure 4.1. First,

since the attributes are no longer stored by implicit entity

number order (the first entity in position one, the second

in position two, etc.), a pointer in the definition entry

must point to a set of offsets describing which index within

the attribute record holds the sought-after entity's

attribute value, remembering, of course, that our user may

still wish to reference each entity's attribute value by

entity. This group of entity numbers is the "forward map".

Second, since one must have a way to go from the attribute

value back to the specified entity number, the entity

-39-

FIGURE 4.1

Sorted Attribute Storage

Forward Map

position

1 45
2 53
3 12
4 1
5 14
6 17
7 5
8 4
9 23
10 2
11 34
12 3

Attribute

Record

Alabama
Kansas
Missouri
Texas
Washington

Return Map

position entity

1 4
2 10
3 13
4 8
5 7
6

-40-

numbers associated with each attribute value would have to

be stored with the attribute value or in some other location

in the same order as the attribute values to derive the

entity numbers once a condition was found. This entity group

is the "return map". This list of entity numbers would

represent the inverse of the list used by the definition

entry to locate the attribute values by entity number for

the user. The definition dataset would then maintain, in

addition to its pointer to the attribute record, the two

pointers to the two entity number records or one pointer to

a single record which contained both maps similar to the

double set of attribute pairings used in relations.

Unfortunately, Instead of each attribute occupying one

attribute record, it would occupy one attribute and two

entity number records. If the attribute was merely a value

between one and five, and there were 400 entities In the

dataset, this would represent a serious increase in storage

size. Whereas before only three bits of information were

necessary to store the attribute value, now 3+9+9 bits are

necessary for each entity (2**9 = 512). Since Janus packs

its attribute records (using only three bits to store three

bits worth of information), this would Increase the

attribute storage 600% for each entity In this case. This

doesn't even count the increased storage for the new

pointers and information in each definition entry. A

possible variation for cases in which the attribute values

took far fewer bits of storage than the entity number

record, would be to store the attributes twice, once in

sorted, and once in unsorted form. Then, only one "return

entity" map would be needed as seen in figure 4.2. This

would require 3+3+9 bits per entity amounting to a 400%

increase in storage space, still an unattractive overhead,

but a lesser burden than a 600% overhead,

For an attribute which has only five unique values

(112[31415), perhaps each value should be stored only once.

With each value could be stored the entity numbers that

maintain that value for a given attribute. Thus, the

pointer that pointed to an entity number record in the first

case could be flagged to point to an attribute value tree as

in figure 4.3. At the first node of the tree would be a

number telling how many distinct values the attribute took

on. This first node could have "n" value pointers to the

second level of nodes. Each second level node would tell how

many entity numbers existed for that value of the attribute.

and list the entity numbers for that specific, unique

attribute value. This structure is very similar to what

Janus currently uses for command syntax trees. By using this

form of storage, in addition to the original attribute

record, each of the entity numbers would only have to be

stored only once. However, this would entail the burden of

-42-

FIGURE 4.2

Sorted Attribute Storage

sorted attribute
vector

Alabama
Kansas
Missouri
Texas
Washington

position

1
2
3
4
5

retur ntity unsorted attribute

*e ty entity vector

4 1 New York
10 2 Arkansas
13 3 Tennessee
8 4 Alabama
7 5 New Mexico

-43-

ill

entity
4
10
13
8
7

FIGURE 4.3

"Pattern Tree" Attributes

-44-

indirect references through the pattern tree to get to the

entity-attribute types. This might be considered as a

specialized solution for large databases with attributes

having few unique values. A second variation is to

eliminate the first record of normally stored attribute

values keeping only the tree of values. However, this would

necessitate searching each entity record to find given

attribute values or sets of attribute values when a

condition is given for another attribute. This overhead

would become prohibitively expensive.

Yet a third possible solution, and the most likely

candidate for implementation on the first full version of

Janus is the idea of a "set record". This entity number

record would contain simply a set of entity numbers

generated for one frequently referenced condition of an

attribute. This would be implemented by having the subset

module first test the attribute value stored at the

beginning of all set records for the attribute pointed to by

the definition entry. If the specified condition on an

attribute matched the attribute value for which the set

record of entity numbers was stored, then it would retrieve

the entity numbers directly from the set record instead of

expensively interpreting the condition on all the attribute

values to generate a new set of entity numbers. This would

be a limited, singular case of the "pattern tree" storage

described above in which only one or a few sets of entity

numbers would be maintained or only one or two branches of

the "pattern tree" stored.

A fourth possible solution for attributes

would be to store and retrieve the values using a hash

coding scheme. The values would be hashed into an attribute

record. This would require, however, that the attribute

record be roughly 1.5 times the size of a regular attribute

record and would incur the same overhead as the sorted

attribute case. Therefore, it could only be considered

feasible for enormously long text or hit strings.

Thus, four possible solutions to more efficient subset

reference storage have been presented in this passage. Each

might be useful for a specific variation of subset

management problems as illustrated in figure 4.4.

Figure 4.4

Summary of Storage Alternatives

Storage Method

sorted attribute records

"pattern tree" set records

singular set records

hashed attributes

Conditions For Invocation

large number of unique
attribute values each of
which is an equally likely
candidate for subsetting

few unique attribute values
and a large number of entities

one subset of attribute values
used frequently to subset the
database

attributes are very long
text or bit strings

The first, sorted attribute storage with entity and inverse

entity indices, is for cases where there are a number of

unique attribute values, each of which is an equally likely

candidate for sample subsetting. Second, is the case where

there are very few unique attribute values and a very large

database. The third is a case of one particular subset being

used very frequently and dominating the subsetting

capability, a "set record" of entity numbers. And finally,

when attribute values are long text or bit strings, a

special case of the first solution, hash the attribute

values. The user should have the capability to specify which

of these alternate storage froms he might wish to use.

-4i7-

However, a slightly intelligent system might wish to prompt

him. If the subset module reported to the historian

frequent varying or unique references to a particular

attribute, the historian might ask a definition facility to

query the user as to whether he wished that attribute to be

stored in one of the forms outlined in cases one and three.

Secondly, the raw attribute creation facility could note the

presence of very few unique attribute values (as would be

the case with nominal data that could be caught by the

definition facility), note the population, and query the

user as to whether "method two" should be added to the

storage structures. Third, the data definition facility

could catch a long text string attribute as the user defined

it and query the user as to whether the hash-coding

technique should be used to store the attribute. The user

could then be guided by the system as to which storage form

might be most beneficial to him. These additions to the

Janus model are schematically diagrammed in figure 4.5.

Convenient Storaze

The second major storage issue to be addressed is that

of keeping attributes together which are referenced

frequently in the same command. Two major attributes may

often be used together for conditions or displayed together.

For this reason, the user may want to store them in the same

FIGURE 4.5

Janus Model Modifications
for New Storage Strategies

-49-

general location so that they can be accessed quickly, In

the Multics environment, one has very little control over

how data is actually stored on secondary storage. However,

as a rule, page faults are one of the more expensive costs

of the system and information stored on a single page, stays

together. Therefore, if all needed information can be stored

on one 1024 word page, costs are minimized. If two

attributes were stored alternately (first one followed by

the other) as in figure 4.6, then a set of offsets for each

entity's value would have to be recorded for the entry. An

alternate solution would be to record the function used to

compute the attribute's position in the attribute record

from the entity number. However, the advantage of using

either of the above two methods appear to be far outweighed

by disadvantages. The only real advantage would be if the

two referenced attribute records could not fit, once packed

consecutively, in a single page. By having them located

side-by-side, a given condition might be found before having

to cross a page boundary. This latter saving also assumes

that the attribute values would be rank-ordered, consistent

with the case one storage proposal. However, if the

attributes are not rank-ordered, even this advantage is

lost.

The more practical implementation would be one in which

the attributes were stored consecutively in an attribute

-50-

FIGURE 4.6

Alternating Attributes in Storage

attribute one
entity record

attribute record Alternate Function
1 Solution,

attr o value one attribute one address
attr two value one 2*entjty:# - 13 ~attr one value two 2et

4 attr two value two attribute two address
attr one value three =2 * entity #1 th%
LL twU

-51-

va ue reec

record. The user himself could request this scheme, or the

historian could observe from the Information passed to it by

the display operations or conditions that two or more

attributes were frequently being referenced together.

Detecting this condition, the historian would signal the

re-definer module (the re-definer previously presented) to

query the user as to whether the attributes should be

extracted and stored over again in a single page together.

The user can already perform this repacking operation

himself in the full Janus system.

The historian as currently implemented in the Janus

system records for each call to a program how long that call

took In computer time and page waits. It also records

various other types of information, such as the maximum

stack level that a user reaches, how much temporary storage

is used in a command line, etc.. The function of the

historian could be extended to include a record of each

attribute referenced; how many times it is referenced, with

what conditions, and with what other attributes it is

referenced as illustrated in figure 4.7. "How many times"

would be a single Index, and "for what conditions" would be

an offset to an area containing a single or a set of

distinct attribute values representing referenced

conditions. "With what other attributes" would be an offset

to a set of attribute hash table indices representing

-52-

FIGURE 4.7

Historian's Record of Storage Retrieval

attribute index number of times,
from hash table referenced

offset to indices
of other attribu
referenced A

075432
036431
777777
777777
368421
777777
777777

offset to
conditional values
with which referenced

063421
053172
777777
777777
421378
777777
777777

-53-

I

entries into the definition dataset (attributes).

Periodically, at the end of a session, the historian might

process this information to look for certain patterns. These

patterns would include a high index for "number of

references to an attribute". Multiple occurrences of given

conditions on each attribute and multiple references to

another attribute with a given attribute would be another

pattern to be flagged. (if said pattern had not already been

spotted and silenced.) Once a condition was flagged, the

user could be queried whether action should be taken and

further queries would be suppressed by an action flag. This

capability would be similar to but more powerful than IMS's

"logging of transactions". Crash protection would not be a

primary objective since segments are transferred to

secondary storage shortly after they are written. But this

would provide a greater analytic capability than IMS's

transaction logging.

Database Size Constraints

Database sizes are constrained by a number of problems.

Among the more important of these are maximum sizes of

Multics segments and sorting times for creating relations in

large databases.

The segment size constraint is a present hardware

limitation in Multics which restricts the size of any

storage segment to 64K words. This restriction may be lifted

in the future. However, currently slated for implementation

is a facility for specifying files as containing multiple

segments. A chaining is performed between the segments of

these "multi-segment files" giving the appearance of a much

larger segment. This could be used as an interim solution

to the database size constraint.

Yet another, perhaps more important constraint is the

time it takes to sort an array of over 500 items. Already

some of the fastest documented sorts are being used to

perform this (algorithms 271, & 347 of the CACM, quickersort

and faster quickersort). Even radix-exchange sorts do not

exceed the speed of this highly-tuned shell sorts. What

would remain is to perform sort-merging on arrays of over

2000 elements. This would entail first assessing the

distribution of the array to be sorted and establishing what

maximum number of pages which could he referenced by one

call to quickersort be used given the current load on the

operating system. (Each time more than one page is being

sorted, one faces the risk of a very expensive page fault.

The only surely safe amount to sort at one time is one

page.) Then the sort would have to divide the sample into

the correct number of "n"-page segments to be sorted. The

value, "n", would be determined such that the chance of a

page fault during sorting would be minimized while

-55-

considering the other parameters such as sorting times for

"n"/"m" entities.

Another costly solution to the sorting problem is to

hash the attribute values. This, however, must include the

costs of grabbing the temporary storage necessary to perform

the hashing and retrieval of indices which indicate where

the hashed values originate. Unfortunately, the number of

page faults necessary to perform this process Is

significantly prohibitive to discourage hashing. However,

the availability of scratch space in a paged environment

would certainly make this possibility worth considering

should the cost of page faults drop immensely.

Protection

A fourth area which Janus Is beginning to address is

protection. The Multics environment allows user-project

unique access keys on each segment. These specify for each

user on the system whether or not he may read, write,

execute, or add to a given segment. However, this would not

be adequate for protection In Janus storage structures since

many attributes can be stored In a single segment or

attribute record. Consequently, something more clever is

needed. Multics also has a protection concept known as

"rings". This employs a simple Idea of fences in which

anyone In an inner ring can get to anyplace In an outer ring

-56-

with no difficulty. However, only certain programs can cross

the fences to get from an outer ring into an inner ring as

Illustrated in figure 4.8. Access for a user could initially

be set to null on programs which crossed the rings. These

programs could be stored under secret names in

subdirectories of directories to which the user had only

write access In a ring external to the database as in figure

4.9. When a user typed in a certain password, he would be

given execute access to the proper programs only long enough

to perform the given operation on a database. "Quits" would

be caught and clean-ip performed before returning control to

the user. The user would have a difficult problem trying to

stop the process in the middle and figure out what was going

on before the historian recorded what he was doing and filed

a report to the project supervisor. This "ring" or

"privileged program" implementation scheme would be similar

to that used by IMS in implementing Its protection

mechanism.

The way that protection could be implemented at the

entity level would be an attribute of passwords which the

user would have to match for each entity he wished to

reference. The same Idea could be applied to attribute-level

protection by having passwords stored from definition

entries which the user would have to match to reference an

attribute as in figure 4.10. These passwords could be placed

-57-

FIGURE 4.8

"Rings"

ring ;ring ring 0

two (one ('the subervisoi

user is
out here

anyone can go this way

only "read databasd"
goes through the

"gate"

reports to the historian

-58-

FIGURE 4.9

Protection Scheme

1 directory to which user
has "write-execute" access

2 sub-directory to which user
has null access

program to which user hasprogram null access under garbage
name

Steps:
1. catch all "quits"
2. set access first to "read-execute" on sub-directory
3. set access on program to "read-execute"
4. execute request using the ring-crossing program
5. restore accesses

-59-

FIGURE 4.10

Entity and Attribute Level Protection Schemes

definition
entr

Definition Dataset

attribute
name

attr one
attr two
attr three
attr four
attr five

attribute
password

nonesuch
whenever
ifyouwill
missing
missing

attribute of passwords
for each entity

missing
Johnsname
Georgesname
missing
missing

NOTE: missing values signify either "no aceess" or "all access"

-60-

in an Inaccessible ring from the user and be referenced by a

program that simply matched passwords and did not allow

reading the already stored passwords.

Formatted Outout

A fifth major area where Janus Is weak Is in formatted

report generation. However, the most difficult aspect of

accessing attributes for display Is handled by a single

PL/1-callable module. A specialized program could be written

by a user to handle a specific formatted output problem

which called the display module using PL/1. Beyond that

capability, writing a more sophisticated display facility Is

essentially a trivial but tedious process of algorithm

design.

-61-

Chapter Five

Automatic Relation Defining

The relational capability of Janus is its most powerful

analytic feature. Using this, the user can create any

relation structure he wishes between datasets including

matrix or tree structures. This capability will be

demonstrated using a few examples.

-62-

Figure 5.1

Two Datasets with Var Del Attributes

Dataset One -- drupInfection

Drug

penicillin
aureomycin
neomycin

Dataset Two -- diseaseinfect

infections

respiratory

staph
viral
I nflammatory

infections

respiratory, staph, strep
inflammatory, coccol
viral respiratory

ions

Diseases

pneumonia, tuberculosis,
bronchitis

boils, cauliflower, lesions
colds, Hongkong_flu
strep_throat, acutecongestion

(The author claims to lack even vestigial levels of medical
expertise)

in figure 5.1 is a listing of two datasets. The first

one is a set of drugs and a variable number of infections

which the drugs will cure. The second dataset contains a

list of infections and the various diseases which can

produce these infections. A doctor comes with the question:

"What drug should I use to cure pneumonia?"

To solve this problem one must first expand these

-63-

datasets to create unique pairs of drugs and the infections

which they cure, and infections with the diseases they

represent. This creates two expanded datasets whose

attributes appear as seen in figure 5.2.

Figure 5.2

Two Datasets with Expanded Var Del

Dataset Three -- drug_infecti

Druix

l.penicillin
2.penicillin
3.penicil11in
4. aureomyci n
5.aureomycin
6.neomycin
7.neomycin

Attributes

onsexpand

infections

respiratory
staph
strep
inflammatory
coccal
viral
respiratory

Dataset four -- diseaseinfectionsexpand

Infections Diseases

a.respiratory pneumonia
b.respiratory tuberculosis
c.respiratory bronchitis
d.staph boils
e.staph cauliflower
f.staph lesions
g.viral colds
h.viral Hong_Congflu
i.inflammatory strep_throat
j.inflammatory acute-congestion

Each infection has listed

treat the infection. Each

for it one drug which is used to

disease has one infection which

represents the symptoms of the disease.

A relation is defined between the two datasets based on

all Infections which match between the two datasets. This

generates a set of entity number pairs going from the

expanded drugInfections dataset to the expanded

diseaseinfections dataset and back the other way as seen In

figure 5.3.

-65-

Figure 5.3
Creating a Relation Between Two Expanded Datasets

definerelation drug_diseases manymany from
infections in drugInfections_expand to
infections in diseaseinfections-expand

Datasetthree

1 respiratory
2 staph
3 strep
4 inflammatory
5 coccal
6 viral
7 respiratory

Relation Pairs

these entity number pairs
match entities In dataset
three with entities in
dataset four using the
attribute: "infections"

dset3-index dset4-index

1-a
1-b
1-c
2-d
2-e
2-f
4-1
4-j
6-b
6-h
7-a
7-b
7-c

Datasetfour

a respiratory
b respiratory
c respiratory
d staph
e staph
f staph
g viral
h viral
I inflammatory
j inflammatory

Inverse relation Pairs

these entity number pairs
match entities in dataset
four with entities in
dataset three using the
attribute: "infections"

dset4-Index dset3-index

a-1
a-7
b-1
b-7
c-1
c-7
d-2
e-2
g-6
g-6
h-6
i-4
j-4

-66-

For each infection in the first dataset there is a matched

infection in the second. For instance, the pair, "1-a", in

the first column means that entity "1" in dataset three

matches entity "a" in dataset four. These match because

entity "1" in dataset three and entity "a" in dataset four

both contain the attribute value, "respiratory". Going back

to the two expanded datasets in figure 5.2, we see that

respiratory appears in the first entity for both the third

and the fourth datasets. The two attributes, "penicillin"

and "pneumonia" also appear for entity one in the two

datasets. Therefore, using the "1-a" pair in figure 5.3,

one can pair the disease, "pneumonia" with the drug to treat

it, "penicillin.

Finally, all that remains is to display for a given

disease, all the drugs which will cure it going through the

relation between the infections in the two datasets as seen

in figure 5.4.

-67-

Figure 5.4

Retrieving Drugs to Treat Pneumonia

display drugs, in drug_infectionsexpand
for image of disease_Infectionsexpand

for disease = "pneumonia"

Output:

Druas

penici ll in
neomyci n

Now, to make problems more difficult, for each

infection we have a set of symptoms, and for each disease

there is a set of symptoms as In figure 5.5.

-68-

Figure 5.5

Two New Datasets with Var Del Attributes

Datasetfive-- infection-symptoms

infections
respiratory
staph
viral

inflammatory

Svmptoms

cough, fever, sore_throat, nasal_drip
fever, swelling
sore_throat, swollen_glands, nasal_drip,

aching
fever, aching, swollenglands

Datasetsix -- Diseasesymptoms

Diseases SvmotsQ

pneumonia
bronchitis
boils
colds
HongCong_flu

cough,
cough,
fever,
cough,

swol 1

fever
fever, sore_throat
swelling
corethroat, nasal_drip

englands, aching, sore_thoat

Each of these datasets is expanded into the expanded

datasets appearing in figure 5.6.

-69-

Figure 5.6

Two New Datasets with Expanded Var Del Attributes

Infect ionsymptomsexpand

infection Svmotoms

respiratory
respiratory
respiratory
respiratory
staph
staph
viral
viral
viral
viral
inflammatory
inflammatory
inflammatory

cough
fever
sorethroat
nasaldrip
fever
swelling
sorethroat
swol lenglands
nasaldrip
aching
fever
aching
swol lenglands

di sease-symptoms_expand

pneumonia
pneumonia
bronchitis
bronchitis
bronchitis
bolls
boils
colds
colds
colds
Hongkong_flu
HongKong_flu
Hongkong_f 1 u

cough
fever
cough
fever
sorethroat
fever
swelling
cough
sore_throat
nasal_drip
swollen_glands
aching
sore_throat

-70-

A relation is defined between the Inflated

infectionsymptoms dataset and the expanded drug_infections

dataset producing the cross-reference shown in figure 5.7.

-71-

Figure 5.7

Creating a Relation Between Two New Expanded Datasets

Dataset Three
(drug_infections_expand)

1 respiratory
2 staph
3 strep
4 inflammatory
5 coccal
6 viral
7 respiratory

infectionsymptoms_expand

A respiratory
B respiratory
C respiratory
D respiratory
E staph
F staph
G viral
H viral
I viral
J viral
K inflammatory
L inflammatory
M inflammatory

Relation pairs Inverse relation pairs
(see figure 5.3 for explanation)

1-A
1-B
1-C
1-C
2-E
2-F
4-J
4-L
4-M
6-G
6-H
6-1
6-J
7-A
7-B
7-C
7-D

A-1
A-7
B-1
B-7
C-1
C-7
D-1
D-7
E-2
F-2
G-6
H-6
1-6
J-6
K-4
L-4
M-4

-72-

Finally, the doctor says, "I have someone with a cough and a

fever, what should I give him?" To ask this question, the

user would display for symptoms = cough and fever in the

expanded infectionsymptoms dataset all the drugs that will

cure it In the expanded drugInfections dataset going

through the relation between the two datasets as seen in

figure 5.8a.

Figure 5.8a

Finding Drugs to Treat a Cough and Fever

display drug, for Image of infection-symptoms
for symptoms = cough & symptoms = fever

Output:

Druni

penicillin
penicillin

From the prevalence of penicillin as the solution, the

doctor might infer that penicillin would be the best choice.

From there, the doctor might wish to discover what disease

the system assumes he Is treating. For this, he would ask

for all the diseases and symptoms for symptoms = cough and

fever. This would yield the results appearing in figure

5.8b.

-73-

Figure 5.8b

Finding a Disease Whose Symptoms are a Cough and Fever

display disease in diseasesymptoms_expand
for symptoms = cough & symptoms = fever

Output:

Disease

pneumonia
bronchitis

He could conclude from these results that he was treating

either pneumonia or bronchitis, with a reasonable question

as to which. If he computed a distribution in the first case

Instead of displaying all of the outputted variables, he

could have each solution printed only once.

This process of creating maps and cross-references can

become somewhat complex. It might be desirable to free the

user of some of this burden of mapping, relation-defining,

and complicated display commands.

One solution to this problem is to maintain a

sophisticated database administrator, as in IMS, whose

personal task would be creating all the mappings and

relations and maintaining the database. From that point, the

more naive user could be given a set of abbreviations which

performed the complicated display command more simply.

For instance, the doctor might type:

gimme drugs for cough & fever

The system would then perform the following abbreviation

substitutions on the statement:

gimme dr gs -' r

display, drugs,-in drug_infections_expand for Image

of infectionsymptomsexpand for symptoms

cough -fever

coughland for symptoms =,fever

This way, the simple statement:

"gimme drugs for cough and fever"

would perform the complicated request for the doctor.

Beyond this capability, defining maps and relations

automatically for the user becomes somewhat more

complicated. One solution would be for the system to

automatically create the map of a defined dataset with var

del attributes as soon as the user exits from the system, or

upon a command request from the user, After this, the user

would simply ask for the display in the normal fashion:

-75-

display drugs, for symptoms = cough and fever

The system responds:

cough and fever are not attributes in your present
dataset, would you like to create a relation with the
infectionsymptoms dataset through the attribute,
"Infections"?

Before giving this response, the system would first have had

to search the definition dataset for the attributes, cough

and fever; having ascertained that the attributes did not

have the proper dataset ID's (i.e. were not attributes in

the current dataset) it would then check both datasets for

some attribute with a name common to both datasets. Finding

a match, it would query the user whether the matching

attribute pair should be used to create the relation.

Receiving a "no" reply, the system would continue to search

the definition dataset for entries until the list was

exhausted as in figure 5.9 At this point, a new mechanism

would be needed to create the relation.

A perfectly plausible possibility is that a given

attribute in one dataset means the same thing as an

attribute by another name in another dataset. To establish

the fact of their similarity, a synonym table could be

created. This would contain, for each attribute, a list of

synonyms by which the attribute was known in other datasets

-76-

FIGURE 5.9

A Synonym Table

offset

definition entry

45

33

59
72
85

hash
-4-table

indices

Hash Table

attribute name dataset 11
attribute ID dataset index

population
synonym one
do1 dim 1
synonym two
real attribute
larengitis
cold

33
777
24

777
24
27
32

1

2

4
4
4

33
21
24
2&
24
25
27

+*-actual index in the hash
table of the real attripute

4-or which this is a
synonym

index of this entry in the given
idataset

The ID of the dataset in the inventory
The ID of the attribute in its dataset

(777 means it is a synonym)

-77-

enti ty
numbe r

1
2-,
3
4
5
6
7

or by other people. This entry in the synonym table could

be pointed to by an Index in the definition dataset. As the

relation-creator searched the hash table, it would reference

an attribute's synonyms to check for common names.

Another problem which the system might face would be

attributes which mean the same, but have different coding

forms in different datasets. For instance, in one dataset

there may be an attribute, "marital status", which would, in

another dataset, be called "marriage state" as pictured in

figure 5.10. Fortunately, such cases as these occur

frequently when the attribute is nominal; that is, each

attribute takes on only a limited number of possible values.

Each of these values has associated with it a specific

"codelist" or name for the nominal category. These

"codelists" are stored In a "codelist dataset". For two

attributes in different datasets which had the same

codelists In the codelist dataset, one would need only to

check the two attributes' codelists to determine that they

represented the same information. Discovering these

identical attributes could be a once-per-session task

performed at the end of the session. Synonyms would be

created in each dataset for the common nominal attributes.

Complicating this issue is the entire subject of

attributes or attribute groups which store the same

information, but are coded differently. For instance, the

-78-

FIGURE 5.10

A Codelist Dataset

attribute name codelist offset

654278

057342

codelist dataset

cocci
strep
staph
virus
worm
word

bacteria are only cocci's, streps,
and staphs

but germs include bacteria plus
viruses, worms, and words

-79-

bacteria

germs

possible
codelists

single attr

separated/di

which contai

mar Ita

2

3

4

ibute sets, (single/married &

vorced) could be re-defined as a new attribute

ned all the information of the original two:

s tat us

f attr

f attr2

f attr2

= 1 if attrl = single

1 = married & attr2 = missingcode

= separated

= divorced

This is a simple exercise in redefining attributes from

given specifications.

automatically, however,

interpretive problem.

attribute in which data

codelists in the other

generated containing, f

dataset, the number of

represents numerically.

attribute in either of

largest number of codel

Performing this redefinition

presents an extremely complex

The system must first ascertain which

set contains the largest superset of

dataset. A table must first be

or each nominal attribute in each

codelists and what each codelist

The system would begin with the

the two datasets containing the

ists and search for all recurrences

of those

the numbe

attribute

told to d

create al

codelists in the other dataset. It would

r of recurrences and proceed to the next

recording the number of recurrences. It

ispose of recurrences equalling only one

l the other new compound multiples of new

record

largest

could be

and to

-80-

attributes. Once the new compound multiples were created,

the system would query the user one-by-one starting from the

largest consolidated multiple pair (the one which had the

greatest number of codelists matching In both the datasets)

which the user would wish to use to create the relation.

Unfortunately, the solution could become somewhat

expensive as the system searched all possible codelist

attributes in both datasets for optimal matches, and the

results would not necessarily be meaningful. For instance,

the codelist elements, "white" and "black", could be used

both as indicators of school colors or some-such, and race.

However, a relation between the attributes, "school colors"

and "race" would not necessarily be very meaningful.

Consequently, the user would have to be asked for each

match, whether or not the relation between the two

attributes would be desirable.

Therefore, the only practical Implementation scheme

appears to be through the synonym table. This would use the

following algorithm. (Following figure 8.1 through this

expanation might prove immensely helpful to readers.):

1. Subset analyzer receives attributes in a condition
expression. It cannot locate the given attributes In
the default dataset and queries the user whether it
should invoke the relation-creator.

2. The relation creator searches the definition dataset
for the unidentified attributes. As it searches, each
attribute's synonyms, if any, are checked for a match.

-81-

Note: although abbreviations could be used to handle all
synonyms at the command line, synonyms must be present to
make distinctions between synonym names for the system at
the dataset level.

3. If the attributes cannot be found in the definition
dataset, the system informs the user and returns to
command level.

4. If the attributes are found, the specified
dataset_id's are noted and a relation is sought between
the inital and specified datasets, using the relation
table.

5. If either dataset has a map dataset (specified by a
flag in a inventory dataset) the map dataset is used
instead of the original dataset.

6. If a relation is found, the subset is formed using
the image of the specifed attributes.

7. Otherwise, the system attempts to create a relation.

8. The definition dataset is searched using attributes
in the initial dataset to search for a match. The
attribute name and its synonyms are searched against
all attributes and their synonyms in the target
dataset.

9. Failing a match, the user is informed and the system
returns to command level.

10. Finding a match, the user is queried whether he
would like to create the relation using those two
attributes. Receving a no, the system returns to step
eight.

11. Getting a go-ahead for creation, it creates the
relation between the two datasets and goes to step six.

Note: all map datasets must automatically be created on a
"leave" from Janus unless the "suppress map" option is
turned on in the user's profile. Otherwise, this mapping
will have to be performed before the relation may be
created.

-82-

Using this scheme, automatic relations could be created,

somewhat expensively, in Janus. The project administrator

would be an excellent insurance against "garbage-In:

garbage-out". However, I believe the algorithm presented

would be a reasonable substitution for a sophisticated user

who understood the system.

-83-

Chater iL

Network Relation Defining

The subset problem is easily solved when the relation

needed to produce the subset is dyadic, that is, it connects

only two datasets together. But what if the problem becomes

more difficult and two datasets must be linked through their

relation to yet a third dataset? For instance, suppose we

have the three datasets shown in figure 6.1.

Three Interrelated Datasets

attributes:
name

Ackerman
Binder
Oberst

dataset two

(residences)

soc. sae #
315488577

483126834
218364312

(drivers

street
629 Lincoln

372 Shawnee
212 Lefty

home cIty
Kokomo
Marion
Anderson

registration)

attributes:
name
Ackerman
Oberst

soc. gs #
315488577
218364312

regIstratIon #
27A513
34C113

(parking tickets)

attributes:
city
Kokomo
Anderson

badze #
G654
G386

registration #
27A513
27C633

A user wants to know the cities in which a given person has

accumulated parking tickets that were not

using a license plate number.

in his home city

To do this, the user

the command:

display city in
and registration

parking tickets for
in parking tickets

city "- home.city
= "27A513"

The subset analyzer recyives this and searches dataset three

for the attribute, "homecity". Failing to find the

-85-

issues

attribute, it hands the condition to the relation-definer.

The relation-definer first uses the normal dyadic relation

creation process to attempt to find the attribute,

"homecity" from the attribute, "city".

Failing a satisfactory match, it then invokes the

creation algorithm for triadic relations. This algorithm

begins with the two attributes which must be matched: "city"

and "home-city". These two attributes form the starting

point for two analytic lists as shown in figure 6.2.

-86-

Fige, 6.2

Linking Dataset Three to Dataset One

Hash Table

attr Ibute naing dataset J.D

name 1
ss # 1
street 1
home_city 1
name 2
ss # 2
reg # 2
city 3
badge # 3
reg # 3

Analytic Lists

list for dataset list for dataset
three one

attr name dset JID attr name .4.e.. .JJ

city 3 home_city 1

reg # name

Beginning with the attribute in the "initial dataset"

(city), it searches the hash table for an attribute whose

dataset ID matches that of the initial attribute which is in

this case "reg #". It then searches the hash table for

another attribute or synonym that matches "reg #" from

-87-

another dataset, and finding that "reg #" is also present in

dataset two, it enters this attribute and its dataset ID

into the analytic list as a potential candidate for a

relation between the two datasets. If an attribute with a

dataset ID of two had already been added to the list and the

potential for a relation with dataset two had already been

developed, then there would be no need to add another

possibility for a relation with dataset two to the list. The

relation creator would then proceed to find a match for the

next attribute found whose dataset ID is three in the hash

table.

Once a match has been found and entered Into the first

analytic list for the initial attribute, the process is

performed to enter an attribute into the second analytic

list for the target attribute ("homecity"). In this case,

the attribute which appears in the second analytic list in

figure 6.2 is "name" which appears both In dataset one and

dataset two. After one attribute has been added to the list

for the initial and the target attributes, a comparison is

performed between the two analytic lists to discover if any

dataset ID appearing in the first list also appears in the

second list. In this case, dataset two appears in the first

list for the attribute, "reg #", and in the second list for

the attribute, "name". Through these two attributes in

dataset two a path has been found from dataset one to

-88-

dataset three. The relation-creator then creates two

relations: one from the initial dataset to the Intermediate

dataset using the attribute, "reg #", and one from the

intermediate dataset to the target dataset using the

attribute, "name". The relation-creator would issue two

commands which, if the user typed them himself, would be:

createrelation from reg # in parking tickets (dataset
three) to reg # in drivers_registration (dataset two)

createrelation from name in drivers_registration
(dataset two) to name in residences (dataset one)

Once this Is accomplished, the relation-creator simply

retrieves a double image, going through the two relations

just defined to retrieve the requested information. This

would be equivalent to typing:

display city in parkingtickets for image of
reg#_relation for image of name_relation for homecity
"= city

This command would then display all the cities in which a

person had accumulated parking tickets that were not in his

home city.

This, then, becomes a process for creating relations

through two datasets (which I am calling triadic relations)

which may be summarized in the following algorithm:

-89-

1. The relation creator has followed the "attempt to
create a dyadic relation" process and failed.

2. The two attributes being related and their dataset
ID's are placed in two analytic lists. The first list
is for the "initial attribute" (the attribute in the
current default dataset) and the second list is for the
"target attribute" (the attribute in the distant
dataset).

3. If any relations have been defined between the
initial or the target datasets and other datasets, the
attributes forming these relations and the dataset ID's
of the related datasets are added to the list and used
as new initial or target attributes. This step is
iterated repeatedly until all existing relations to the
relevent datasets are found.

4. Beginning with the initial attribute's dataset ID,
the hash table is searched for another attribute with a
dataset ID equal to that of the initial attribute. The
attribute matching the initial attribute's dataset ID
will be called the "intermediate attribute".

5. The hash table is then searched for another
attribute or synonym with the same name as the
intermediate attribute's. This matched attribute will
be called the "matching attribute".

6. If the matching attribute's dataset ID does not
appear previously in the first analytic list (i.e. the
dataset with the ID of the matching attribute Is not
represented by another attribute in the first analytic
list) then the user is asked whether the matching
attribute should be added to the first (initial
attribute's) list. If the answer Is "yes" then the
attribute is added.

7. If the entire table is searched with no match, then
another attribute whose dataset ID matches that of the
Initial attribute is chosen, and another, until a match
is found or the hash table is exhausted of attributes
with the inital dataset ID. Step three is re-iterated
for the match.

8. If no match Is found and the first list has no
entries other than the Initial attribute, the attempt
for the triadic case is declared a failure.

-90-

9. If no match is found and the first list has at least
one additional entry, steps three through six are
repeated for all possible matches in the second list
and the algorithm proceeds to step eleven.

10. Steps three through seven are performed for the
second list (the target attribute) until a match is
found or the hash table is exhausted of attributes in
the target attribute's dataset.

11. Once at least one match has been found for the
initial and the target attributes, or the condition
described in step eight has been reached, a comnarison
is performed.

12. Each dataset ID in the second list is searched for
an occurrence of a dataset ID in the first list.
Finding a match between two dataset ID's in the two
lists, a path has been found between the initial and
the target dataset which we will call the "intermediate
dataset" and the relation-definer proceeds to step
twelve. Otherwise, steps three through six are
performed once again for each list and the
relation-definer proceeds to step ten. If the
algorithm has already reached step eight, declare a
failure.

13. Finding a path, two relations are created: one
between the initial dataset and the intermediate
dataset based on the first path attribute, and one
between the intermediate dataset and the target dataset
based on the second path attribute.

14. A double image is then performed through these two
newly created relations to derive the requested set of
entity numbers.

Using this algorithm, only the hash table need be searched

to create the needed relations.

This algorithm would be used in the following fashion

to solve the problem:

-91-

display city in parking tickets for city 'a home_city
in parking_tickets and registration = "27A523"

1. An attempt to create a dyadic relations results in
no attributes matching from parking tickets to
residences.

2. The attributes being related, "city" and "homecity"
are placed in the two analytic lists as seen in figure
6.2b.

Figure 6.2b

Lists Before any Match is Found

Analytic Lists

List for Dataset list for Dataset
Three One

attrname dset ID attrname dset ID

city 3 home_city 1

"City" goes into the initial analytic list and
"homecity" goes into the target analytic list.

3. No relations exist in the database.

4. The hash table appearing in figure 6.2 is searched
for another attribute whose dataset ID is the same as
"city". The first attribute encountered other than the
initial attribute is "badge #". "Badge #" becomes the
intermediate attribute.

5. The hash table is searched for another attribute
with the same name as "badge #". This is found nowhere
else in the table, so from the rule in step six,
another attribute Is chosen.

4. The new attribute which becomes the intermediate
attribute is "registration #".

-92-

5. The hash table Is searched for another attribute
with the same name as "registration #". This is found
for dataset two so "registration #" becomes the
matching attribute. (An alternate form to this step is
to have the user suggest attributes to become the
matching attributes If he wished; thus allowing the
user to lead the system if he liked.)

6. A dataset ID of two does not appear previously In
the first analytic list; the user is queried if
"registration #" should be added to the analytic list.
Receiving an affirmative reply, "registration #" is
entered Into the first analytic list as seen in figure
6.2c.

Figure 6.2c

One Match Found for First List

Analytic Lists

List for Dataset list for Dataset
Three One

attrname dset la attrname dset ID

city 3 home_city 1

reg # 2

10. Steps three through seven are performed for the
second analytic list.

4. The hash table in figure 6.2 is searched for an
attribute whose dataset ID Is the same as 'home_city".
The first attribute encountered Is "name".

6. A dataset ID of two does not appear previously in
the second analytic list; the user is queried if
"name" should be added to the target analytic list.
Receiving an affirmative reply, "name" Is entered into
the second analytic list as seen in figure 6.2.

-93-

11. One match has been found for each the initial and
the target attributes. A comparison should be
performed.

12. The target list is searched for an occurrence of
dataset two appearing in the initial list. Since a
dataset ID of two appears in the first list for the
attribute, "registration #", and in the second list
for the attribute, "name", a path has been found
between the initial and target attributes and dataset
two becomes the intermediate dataset.

13. Two relations are created: one between dataset
three and dataset two based on the attribute,
"registration #", and one between dataset two and
dataset one based on the attribute, "name". This
process was shown on page 63.

14. A double image is then performed through these two
newly created relations to derive the requested set of
entity numbers as was shown on page 63. The mapping
process was illustrated in figure 5.3.

Once triadic relations have been achieved, it seems

only one more logical step to get to quadratic relations.

For this, the four datasets appearing in figure 6.3 will be

used.

-94-

Figure 6.3

Four Interrelated Datasets

dataset one (residences)

attributes: name, social security #, street, home_.city

dataset _= (drivers registration)

attributes: name, social security #, registration #

dataset three (parking tickets)

attributes: city, badge #, registration #

dataset four (policemen)

attributes: badge #, # arrests, officer

These datasets generate the hash table appearing in figure

6.4.

-95-

Figure 6.4
Hash Table for Datasets One, Two, Three, and Four

Hash Table

attribute name

name
ss #
street
home_city
name
ss #
reg #
city
badge #
reg #
badge #
arrests
officer

dataset ID

1
1
1
1
2
2
2
3
3
3
4
4
4

Our user wishes to know if officer O'Reilly h

parking tickets to the highly prominent citiz

Beverly Street. To do this, he types:

display street in residences for officer
"O'Rei 1lly"

as

en

been giving

s living on

in policemen =

The subset analyzer quickly announces failure and passes the

subset to the relation-creator who follows the rules for

dyadic and triadic relation creation and reaches the point

displayed in figure 6.5, ready to announce failure.

-96-

index

1
2
3
4
5
6
7
8
9
10
11
12
13

Figure 6.5

Linking Dataset One to Dataset Four

Analytic Lists

list for dataset list for dataset
one four

(initial) (target)
attr name dset ID attr name dset ID

street 1 officer 4

name 2 badge # 3

No more unique datasets can be added to these lists, and no

match between the attributes' dataset ID's in the two lists

can be found.

To continue from here, the two analytic lists must be

imagined as list stacks. At each level we achieve a failure,

we stack another level on top consisting of a number of

initial and target attributes, until step seven is achieved

for both lists at which point we stack yet another level.

Using each possible pair of attributes in the two lists

other than the initial pair as new new initial and target

attributes, the process continues.

-97-

Figure 6.6

Multiple Combinations of Initial-Target Pairs

Analytic

list for dataset
one

attr name dset ID

attr 1 1

attr 3
attr 5

Li sts

list for dataset
two

attr name dset

attr 2 2

attr 4
attr 6

list for
three

attr name

attr 3

Analytic

dataset

3

Lists

list for
four

attr name

attr 4

dataset

dset Il

4

Analytic

list for dataset
five

attr 5 5

Lists

list for
six

attr 6

For instance, if as in figure 6.6, there are two lists

consisting of two elements each; four possible

"initial-target" pairs could be used to form new initial and

-98-

dataset

6

target attributes and the algorithm presented previously for

triadic relations would continue at the next level with the

new pair of attributes until a failure was reached. At this

point, the second combination would be tried until failure,

then the third, etc.. Once all the pairs had failed, the

first failure would be used to extract new initial and

target attributes and another level would begin. This trial

and error approach is similar to that used by the PLANNER

and CONNIVER projects at MIT; although it is not as

sophisticated and, hopefully, not as expensive in computer

time as these higher-level "learning" languages.

As higher levels are reached, this method becomes

geometrically costly. However, in the normal case, probably

only one new pair would ever get beyond step seven, and the

process could be quite orderly, with only one pair being

eligible for recursively applying the algorithm at the end

of each level. Future research might, however, devote itself

to a linear algebra tyne of solution which might be more

efficient for the case of many attribute pair candidates at

each given level.

However, in this case the solution is quite simple

because only one pair exists at the next level and this

single pair is the only candidate for forming new "initial"

and "target" attributes and restarting the algorithm. At the

second level, in figure 6.7, only one, new, unique match is

-99-

found because there are only four datasets in all.

Fieure 6.7

Successful Muti-Level Link from
Dataset One to Dataset Four

Analytic

list for dataset
one

attr name

street

dset I D

1

Li sts

list for
two

attr name

officer

dataset

dset ID
4

name badge # 3

Second Level

name badge #

reg #

This condition would have been considered at the previous

level to be the condition in step seven; a failure under the

triadic algorithm. However, the previous level assumed that

a dyadic relation had already been attempted and would not

look for a dyadic relation at the first level. At the second

level, this condition represents a possibility for a simple

-100-

dyadic relation between the two datasets. As it turns out,

step eleven reveals a path between the target attribute's

dataset and the first match In the initial attribute's list.

This path is created by making datasets two and three

equivocal after detecting and creating the dyadic relation

at the second level. Since datasets two and three are

equivocal from the first relation at the second level, the

dataset ID for "name" matches the dataset ID for "badge #"

at the first level, and a success is achieved. Consequently

at the first level, a relation has been created which will

define for us on what steets people live to whom officer

O'Reilly has been giving parking tickets.

This chapter has shown how simply employing the

information in the hash table can be used to solve simple

network-type relational problems in this revised version of

Janus. This would become too cumbersome in the case of many

datasets with over roughly four levels of relational

indirection, but in the simple case, it is a rather quick,

effective solution to the problem of creating automatic

relations for the user.

-101-

Sample Session Using Revised Janus

The following projected interaction between the user

and the revised Janus has been prepared to show the system

in action implementing the automatic relation-defining

capabilities outlined in chapters five and six. As each

capability is used, a note is made of which proposed

modification Is being used. The datasets appearing In table

7.1 will be used for this session.

Figure . 1

A Database Consisting of Four Datasets

dataset 2=e (residences)

attributes: name, social security #, address, domicile

dataset two (drivers registration)

attributes: driver, social security #, registration #

dataset three (parking tickets)

attributes: city, badge #, licence plate

dataset four (policemen)

attributes: badge #, # arrests, officer

-102-

Since there are certain attributes whose names do not

reflect their direct relation to attributes in other

datasets, the user first defines a series of synonyms to

indicate the equivalence of one attribute to another in

another dataset:

addname street for address in residences

addname city for domicile in residences

addname name for driver in drivers_registration

addname reg # for lic plate in parking tickets

addname name for officer in policemen

These statements add the first attribute name as a synonym

to the second in the specified dataset. Consequently, any

reference to that synonym would be equivalent to referencing

the real attribute. This series of addnames would result in

the hash table appearing in figure 7.2.

-103-

Figure L

Hash Table for Revised Datasets
One, Two, Three, and Four

at;t name
address
badge #
badge #
city
city
domicile
driver
lic plate
name
name
name
officer
reg #
reg #
ss #
ss #
street
arrests

dset .L D
1
3
4
1
3
1
2
3
1
2
4
4
2
3
1
2
1
4

attr ID

777

777
777

777

777

dset index

6

7
12

8

1

note: Unnecessary elements In hash table have been omitted.
Attributes with Attribute ID's of "777" are
synonyms whose actual attributes' Indices
are indicated by the dataset index.

Elements unimportant for the purposes of this analysis have

been omitted to improve the ease of understanding the table.

Once the synonyms have been added, It is possible for

the relation-definer to create all relations necessary for

obtaining needed subsets since attributes which have the

same types of values in different datasets are

-104-

index
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

cross-referenced by synonyms of the same name.

The first request the user wishes Is for the street on

which a driver lives whose registration number is "27A513".

To do this the user types:

display street, for reg # In drivers registration =
"27A513"

The subset analyzer ascertains that "street" is not in the

"drivers registration" dataset. Upon ascertaining that no

relation exists between "residences" and "drivers

registration" it queries the user whether a relation should

be attempted:

display: no relation exists between residences and
drivers registration, would you like to create one (yes
or no):

Receiving an affirmative reply, it passes the problem to the

relation-definer who attempts a dyadic relation. "Street"

quickly is recognized as a synonym for "address" which

resides in dataset one. Since "drivers registration" is

dataset two and the attribute, "name" is found to exist In

both datasets one and two, name is spotted as a relation

possibility and the user Is queried:

Would you like to use the attribute, "name", to form a
relation between residences and drivers registration.

Thinking a minute, the user decides that a person's name Is

a non-unique identifier and suspects a better relaion can

-105-

be found. He therefore responds negatively and another

attribute is sought. Before searching long, the

relation-definer finds the attribute, "social security #"

which is common to both datasets and once again queries the

user:

Would you like to use the attribute, "ss #" to create a
relation between residences and drivers registration
(yes or no)?

The user quickly acknowledges the uniqueness of a person's

social security number and sports an affirmative reply. The

system then proceeds to create the relation, and using the

process described in figure 5.3, derives the set of entity

numbers in residences whose social security numbers match

the social security numbers in drivers registration for

registration = "27A513". The system then types the

following output:

street

2 629 Lincoln

The sign, "#", is the entity number in residences of the

attribute satisfying the requested condition. This entity

number is typed whether or not it is requested. It provides

an easy handle by which to reference the entity uniquely

later.

The user now wishes a list of the home addresses of all

-106-

people who have received parking tickets from officer

O'Reilly. The user types:

display street in residences for name In policemen
= "O'Reilly"

The subset analyzer balks and queries the user:

display: no relation exists between residences and
policemen, would you like to create a relation (yes or
no)?

The user responds affirmatively and the relation-definer

attempts a dyadic relation. The attribute, "name", (a

synonym In the dataset, "policemen") is found to be common

to both datasets and the user Is once again queried:

Would you like to use the attribute, "name", to create
a relation between policemen and residences (yes or
no)?

The user ponders this a moment and concludes that this would

only give him O'Reilly's address which is not what he wants,

so he responds negatively. The system then searches for

another possible match, and, finding none, declares the

relation attempt defunct:

No dyadicc relation can be found between policemen and
residences, would you like to attempt a triadic
relation (yes or no)?

The user feels the necessity to continue since there must be

a relation somewhere to handle the problem, so he responds

affirmatively. The system begins two analytic lists

-107-

Immediately adding the relation from dataset one to dataset

two to the first analytic list arriving at the two lists in

figure 7.3.

F inure LJ_

Analytic Lists with One Relation Added

Analytic Lists

list for dataset list for dataset
four three

a ttr name d set JD .a;J;r name iset. JJD.

street 1 name 4

ss # 2

It then follows algorithm a little way and discovers that

the attribute, "name", appers in both dataset two and

dataset four so it quesries the user:

Would you like to use the attribute, "name" to create a
relation between policemen and drivers registration
(yes or no)?

The user realizes once again that this merely gives him

O'Reilly's registration which is not what he wants, so he

answers negatively. The algorithm continues for the first

list and finds, "registration number", which is common to

datasets two and three, so it queries the user:

-108-

Would you like to use the attribute, "registration
number" to create a relation between drivers
registration and parking tickets (yes or no)?

Realizing that this Is the needed link between parking

tickets and a person's registration, the user responds

affirmatively. This results in the attribute, "reg #" being

added to the first analytic list producing the table

appearing in figure 7.4.

Figure 7.4

Analytic lists with One Match

Anal

list for dataset
four

attr name dset ID

street 1

ytic Lists

list for dataset
three

attr name dset 1a

name 4

ss #

reg #

The algorithm then

list and discovers

common to datasets

proceeds to find a match for the second

rather quickly the attribute, "badge #",

four and three, so it queries the user:

-109-

Would you like to create a relation between policemen
and parking tickets using the attribute, "badge #",(yes
or no)?

The user realizes that this forms the needed match between

policemen and the parking tickets they have written so he

responds affirmatively. This results in the algorithm adding

the attribute, "badge #" to the second analytic list

producing the table appearing in figure 7.5.

Figure 1,1

Analytic lists with a Solution

Analytic Lists

list for dataset list for dataset
four three

attr name dset IJ attr name dset ID

street 1 name 4

ss # 2

reg # 3 badge # 3

At this point, the algorithm spots the fact that dataset

three appears in both lists, creates the two relations, and

performs the triple image to find the streets on which

people live to whom officer O'Reilly gives parking tickets.

The following output is produced:

-110-

street

1 629 Lincoln

The user is relieved to discover that officer O'Reilly has

not given tickets to the organization's people on Fairfax

street.

In a brief set of two examples, this chapter has shown

how the revised system and the algorithms proposed therein

may be used to solVe- a set of simple problems. Although

these exercises have not been a comprehensive display of the

system's power, it is felt that they have presented an

overview of what could be done with an automatic relation

searcher and definer.

-111-

Chapter Elght

Revised Model for an Information System

In figure 8.1 is a revised model of Janus which

incorporates the ideas presented in chapters four and five.

The major changes between this and the primary model of

Janus are in the special storage and retrieval modules, the

new definition facility, the expanded historian, the

relation creator, and a slightly modified hash table which

performs the synonym capability suggested in chapter five.

The special storage and retrieval modules handle the

set records, sorted and hashed attribute value records and

the storage and retrieval forms of these new Internal

storage strategies. This includes the special entity maps

for sorted attributes, the tree structures for full and

partial set records, and the supplementary hash tables

(instead of entity maps) for the attributes which might be

hashed .

The new definition facility provides the capability for

the historian's information to be used at the end of a

session to re-define and create attributes under one of the

special storage forms outlined in chapter four. This

"re-definer" would function similarly to the

relation-creator attribute mapper at the end of a session,

-112-

FIGURE 9.1

Revised Model of Janus

special case -F-regular canonical

L canonical forms forms

special virtual
conditions storage Vitual Database

-113-

deciding what capability was needed to produce faster, more

efficient subset retrieval based on accumulated information

from the historian.

The relation-creator is drawn into play at two points

in the execution of the Janus system. One occurs at the end

of the session when the user exits from the system. Here,

the relation creator discovers which datasets have newly

created var-del attributes by checking the definition and

inventory datasets. Discovering new var-del attributes, It

expands the datasets on the var-del attributes creating one

new dataset for each var-del attribute. This function could

conceivably be invoked just before a relation-creation, thus

limiting the number of expanded datasets in the database.

The second point at which the relation-creator is invoked is

when a condition expression contains attributes which do not

belong to the default dataset. The subset-analyser passes

the relation-creator the attributes to be used to create new

relations.

The final modification in the hash table is simple but

effective. Each synonym is stored in the table with the

dataset_id, attribute_id, and entry number of its major

attribute. In each definition entry is an offset to an area

containing the entry numbers of the synonyms in the hash

table as shown previously in figure 5.9. Since most

references will go from synonym to attribute name, this form

-114-

of storage will be fast, effective, and efficient.

This, In a nutshell, summarizes the changes to be made

to the Janus model to achieve capabilities of a more

sophisticated, advanced Information system. However, what

is also important is what this means conceptually, in terms

of a generalized information system model.

In the simplest case, we began with an information

system consisting of a user interface, basic operations

(alternately accessible from a programming language),

storage and retrieval modules, and canonical forms leading

to a virtual database as in figure 8.2. This model was

expanded to specify components of the user interface:

command processor, lexical and syntactic phases, semantic

phases, and a mission control module. System descriptive

datasets were specified as being used by basic operations

and storage and retrieval modules to access the virtual

database. A simple historian and the subset analyser were

added to arrive at the present model of Janus in figure 8.3.

Finally, the special retrieval modules, active historian and

two "dummy users" (the relation-creator and new definition

facility) were added to create the revised model of Janus

appearing in figure 8.1.

In terms of unit modules, figure 8.1 seems to break

down into the basic block diagram in figure 8.4. In this

structure, there are regular and special storage and

-115-

FIGURE 8.2

A Basic Information System

canonical forms

-116-

FIGURE 8.3

Model of Janus

entr es -

canon i caI
forms

417 -

virtual database

FIGURE 8.4

Block Diagram of a Generalized Information System

-118-

retrieval modules and databases and a descriptive dataset.

There is a historian and basic operations. There Is also a

user interface which is rather similar to a compiler in its

functons. Surrounding all of this there Is finally a number

of "dummy users" who perform all types of extra functions

for the user when he does not perform them himself. These

are types of "helpers" or aids to more efficient work. These

"helpers" add characteristics of an intelligent, powerful

information system to Janus.

The first "dummy user" could be an automatic "help"

facility to assist the user when he encountered trouble in

an inputted command line. It would take the flagged output

from the syntax analyzer and ascertain whether it meritted

Instruction on the use of the command to the user, minor

patching to create a syntactically correct command, or

complete expressed confusion on the part of the command

processor.

Dummy user two is the subset module described in the

revised Janus model. His function is to determine if a

subset exists in the dataset. if it does not, he calls dummy

user three, the relation-creator in the revised Janus model

whose task is to build any relations which are necessary to

deliver the needed subset.

Dummy user four is the redefiner who creates new data

storage formats if the historian determines that cheaper

-119-

storage forms are more appropriate. This dummy user would

then create the new storage form as requested by the

historian checking the user to make sure it was clear to

proceed.

Dummy users two and four were described in chapter

four, and dummy user three was described in chapter five.

-120-

Conclusion

This paper has presented a number of alternative

solutions to the information management challenge, throwing

out solutions which were too costly and retaining solutions

which solved with some reasonable level of efficiency and

effectiveness typical query problems. Any conceptual

modification proposed in this paper could become a thesis in

itself once assumptions regarding the hardware, the

software, the overall environment In which the system

resides, and the size and nature of the database being

manipulated have been fixed. A few assumptions were made

about using a pointer-capable language such as PL/1 and a

paged environment, which may be realistic given current

computing trends; but the rest of the paper had to deal with

database size, data types, and query problems as unknown

variables.

I must conclude that any system which offers extensive

power and flexibility to handle A=Y type of ad-hoc inquiry

will invoke a serious overhead in intelligent but expensive

"dummy users" as outlined in this paper. Perhaps for this

reason, IBM, with IMS, has demanded that a great deal be

known about what types of questions will be asked before the

information is stored and structured internally; thereby

offering at least semi-optimal effectiveness and efficiency

in user requests.

-121-

However, the proposals in this paper do offer a great

deal of flexibility and power for a minimal cost and will

deal with a major subset of information needs. With minor

modifications they would also fit neatly into the Janus

relational data handling system. Therefore, although I do

not contend that these proposals are panaceas to the

information problem, I do believe they go a long way towards

producing the informational capability demanded of modern

computing systems.

-122-

1. Codd, E.F., "A Relational Model of Data for Large Shared

Data Banks", Communications Qf the AC-M, vol. 13, #6, June,

1970, pp. 377-387.

2. Dodd, C.G., "Elements of Data Management Systems",

Computin Surveys, vol. 1, #2, June, 1969, pp.117-132.

3. Feature Analysis of Generalized Database Management

Systems, CODASYL Systems Committee Technical Report, ACM,

New York, May, 1971.

4. A Survey of Generalized Database Management Systems,

CODASYL Systems Committee Technical Report, ACM, New York,

April, 1969.

5. User's Manual for Ib& danus Prototvoe System, Cambridge

Project, Cambridge, Mass., (to be published).

6. Stamen, J.P. and Wallace, R.M., "Janus: A Data Management

and Analysis System for the Behavioral Sciences", Cambridge

Project, Cambridge, Mass., (to be published).

7. Kessler, A.R. and Stamen, J.P., "Penelope -- Design for

an Information Management System for Categorized Dyadic

Relations", Center for International Studies, MIT,

Cambridge, Mass., May, 1968.

-123-

Biblioaraohv

