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ABSTRACT

This paper identifies and discusses a number of mechanisms
by which a machine with a suitable high level interface language
might achieve a level of performance which ex.eeds that of a
machine with a conventional von Neumann architecture. A high
level language machine is characterized which is somewhat less
fl3xible than a conventional design, but which significantly
otit-performs the conventional machine when used in a way that
explits the high level language.

K3ywords and Phrases: Computer Architecture,
Machine Organization,
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I. INTRODUCTION

Peter Landin is reportei to have once said that most papers

in 2omputer Science descrioe how their author learned what

someone else already knew [cMseJ70J. This paper is no exceFtion

to that rule. It combines a collection of notions that have

been extracted from the literature with a number of my own ideas

that, although independently derived, have surely been noted

before. Wiile credit for many of the concepts presented belongs

to others, I accept full responsibility for any misrepresenta-

tions or ambiguities which may exist in this presentation.

This paper is intended to serve primarily as an aid to

others in the field of computer design by collecting, organizing

anl commentinj upon these ileas. The scope of this paper does

not permit much in the way of demonstrable results. It is hoped

that the absence of physical realizations tor the mechanisms

that are discussed will be compensated for by a somewhat brcader

perspective than is customary in the literature.

The reader is assumed to be familiar with the principal

semantic features of the APL, PL/I and LISP programming

langaages [M9; M10'; M13). In addition, he should have scme

knowledge of the goals of coatemporary programming systems, the

problems that are encountered and the hardware/software

engiaeering technijues usei in seeking to attain these goals.



T.A. Historical Perspective

There have been many diverse efforts to design a computer

that directly interprets a high level language [AbraP70;

Bashr67; BashT68; BerkK69; .hes771; DennJ71; McFaC70; meggJ64;

1ul1l63; RiceR71; RossC64; ShawJ58; ThurK70; WebeH67; ZaksR71;

M3]. The motivatian for doing so has generally been based upon

either of two assumptions.

First, it has been pastulated that a machine with a high

level interface language zaa provide a significant increase in

useful projramming function without a prohibitive increase in

cOst. One would like to zreate a well disciplined programming

environment ia which run-time programming errors are detected

[flifJ68, p. 14; 3erkK69, p. 60], in which such errors need not

culminate in machine lumps -BashT67; McFaC70], in which

programmiig generality is guaranteed or at least likely

(DannJ69; )ennJ71], etc. H:owevec, it is widely rezognized that,

while desirable features such as these can be programmed upon

contemporary low level machiiAes (indeed, upon Tucing machines!),

the performance cost of implementing such features with

interpretive software is unacceptable [Ilif358, pp. 4,13;

BerkK69].



Second, it has often been assumed that an overall system

performance improvement can be attained by implementing a high

level language more directly. Various designs have sought to

avoid the costly overhead ttiat is normally incurred by software

impleifmented compilers and interpreters [B3ashT67; BashT68;

BarkK69; Ross264; ThurK70; WebeH67]. At least one recent effort

has included several basic operating system functions such as

main storage management and process dispatching [RiceR71].

But whether the goal was enhanced functional capabilities

or the accolerated performance of conventional functions, most

designs of high level language machines to date have been based

upon existing language-independent machine organizations.

Peceatly, an alternative and more promising strategy for

achiaving these goals has Deen to employ a machiae organization

which is specifically designed for the efficient semantic

interpretation of a particular high level langiage [AbraP70;

T.urK7); ZatsR71].

I.B. Objectives

The primary objective of this thesis is to identify the

performance advantages that may be attained, in principle, by a

processor whose machine language is high in level. Most

previous work in this area has sought to achieve higher

computational rates by reducing the number of interfaces, or



layers of interpretation, between the high level language and

tai machiie circuitry. Some efforts have gone further by

tailoring the machine organization to the primary semantic

characteristics of an existing programming language (e.g., to

the array features of APL). This paper will concern itself with

the oerforman-e improvemeats that may be attained over and above

those that accompany a brute-force reduction in the number of

interfaces. It will not restrict its treatment to the features

of any particular existing language. Instead, a set of loosely

compatible language featuces will be proposed with computational

performance in mind. Then, by the consideration of relevant

copatatioaal mechanisms, an attempt will be made to identify

the general ways in which a macaine with a suitabie high level

intecface language can achieve a level of performance which

exceeds that of a machine with a conventional von Neumann

architectur e.

A higa level language machine will be characterized which

is somewhat less flexible than a conventional design, but which

significantly out-performs the conventional machiae when used in

a way that exploits the high level language.

It should be noted that no attempt will be made to address

the lifficult problems of translating from other languages into

the high level machine languige. In most practical systems, the

machine language would have to serve as an effective target



langiage for such transilatioas. Here, the sole zoncern is with

thi hiiqh speel interpretatioa of a single, although excepticnal-

ly powerful, language.
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II. FAV3RABLE LANSUAGE CHARACTERISTICS

This section characterizes a machine language which

pissesses many features that are iesirable ia a programming

system, that are impractical to implement upoa contemporary

machine arhitectures, but taat favorably affect the performance

capabilities of the high level language machine. The language

chiricteristics are discussel in terms of their relation to the

structure of programs and tue nature of primitive objects.

This section does not comprise

lanqage. Such a formidable task

dissertation in itself. What is

ciaracterization that is sufficient

sections of this paper.

the definition of a new

would require a lengthy

sought is a language

to support the following

F or precision, and to avoid the thorny (and here

extraneous) issues of syntax, the program examplas that follow

ia this document will use a simple LISP-like notation:

(operator operandl opecand2 ... operandU)

N3tation variables and constants will be indicated by lower-case

and upper-case symbols, respectively.



TI.A. Proggla Structure

In terms of its program structure, the envisioned high

level machine language most closely resembles the language LISP.

Each of its programs is a structured expression consisting of an

operator and an optional list of operands; and each operand is,

in turn, a structured expression.

As in LISP, the operators and operands within the text of a

program are merely symbols whose meaning depends upon the

environment (or context) ia which the program is invoked. Of

course, various static and lynamic symbol resolation mechanisms

are possible; but what is important is that, in general, the

sanantics of a program cannot be determined prior to symbol

resolution time (which would typically be as late as program

activation time).

The mntivation for these features is twotold. First, it is

desired that there be an equivalency betwaan values and

expressions. It should be passible to replace aay value with an

expression that evaluates to (or "returns") that value, and

vice-versa. in other woris, all language constricts should be

closed under composition. Secoad, there is to be no sacred

distinction between builtin operators and user-defined programs.

It should be possible for a user to redefine any "system"

opieritor, within his own local environment, by providing a



program with the appropriate name. Moreover, the redefinition

of an operator should not in itself require changes to those

programs that use the operator.

The language also possesses a large and powerful set of

builtin operators (a superset of the operators of APL), Of

siagular importance are the execution-sequencing operators which

perform functions analogous to those of the PL/I DO and IF

statements, the COBOL PERF3RM statement, etc. For example,

there wouli be some sort of SEQUENCE operator which evaluates

its operands in strict segueae, a PAaALLEL operator which

evaluates its operands without regard to order (perhaps

employing concurrent hardware processing), a REPEAT operator

which would repetitively evaluate one of its operands either

some number of times, or until some condition is met, and so

forth. (see Figure 1 on page 10)

It is further stipulated that the programs for the high

leveL language machine be "pure". That is, an executing program

may in no way modify itself. This constraint promotes the

genecation of shareable software, outlaws many "tricky"

programmiig practices, ani aliminates certain conmon types of

erecition-time programming errors. It also has implications

rejarding the organization of the language interpreter.



(SEQUENCE expression1 expression2 ... expressionN)

(PARALLEL expressionl expression2 ... expressionN)

(REPEAT expression1 expression2 TIMES)

(REPEAT expression1 WHILE expression2)

(IF expression1 THEN expression2 ELSE expression3)

Figure 1 : Typical execution-sequencing operators

Another important feature of the proposed high level

language is its facility for processing exceptianal conditions.

In this regari, it is unlike either APL or LISP, but similar to

PL/I [M13, pp. 114-106] 4ith its conditions, ON-units, and

Sr'NAL statement. A singlae exception handling mechanism is

provided which handles both builtin and user-generated

exceptions in a uniform way. Upon the occurrence of an

exception, the current activation chain is sequeatially searched

(from the most recent activation to the system "root"

activation) for an exception-action-specification (which

consists primarily of a program to be executed). If an

exception-action-specification which corresponds to the

exception is found, then it is executed as if it were invoked in

the context in which the exception occurred. It may choose to

inspect or molify any variable in that context (subject to the

authorization mechanism), to signal another exception, to return

t3 the Poiat of interruptio, to execute a return (with value)



from the interrupted program, to suspend the process (which

results in a SUSPENSION exception in the process which owns this

process), ani so forth. If no corresponding exception-

actian-specification is found, then an EXCEPTIONEEROR exception

is sigaalled. The system root activation always provides an

eaxcption-action-specification for this exception.

IT.B. Prizitive Data Types

The set of primitive objects that are recognized by the

machine inludes such aggcegate objects as vectors, arrays and

tu-)les. Tiis implies that eaca object in the system has an

as3ociated descriptor whica contains information regarding its

type (e.g., program, character, integer, real or complex) and

shape (e.g., scalar, vector, tuple), as well as an indication of

its ownership, persistence and access-authorization.

Consequeatly, the machine is able to examine the attributes

of the objects that it manipulates, and thereby perform such

functions as operator distribution, domain-rule enforcement and

data protection.

The internal encodings of the object descriptors and values

are inaccessible to the user. Appropriate builtin operators are

pcovided for the purpose of converting an object from one type

to another (e.g., from REAL to ZOMPLEX). Predicate operators,



such as ISINTEGER or ISPRJGRAM, are also provided for the

pairpose of accessing the information in the object descriptors.

Information is written into the object descriptors only by means

of the BUILDOBJECT operator, the sole means foc constructing

objects (the conversion operators employ BUILD3BJECT).

As a result of haviag self-describing data which is

manipulated by an attribute examining machine, it is possible to

have objects whose type and/or value is undefinal. Thus, there

exists an object of uniefined type and undefined value, an

orject whose type is constraiaed to be INTEGER but whose value

is undefiaed, etc. Furthermore, it is reasonable to permit such

unlifined objects to be compoaents of an aggregate object

without requiring that the eatire aggregate object be undefined.

By definition, an attempt to use an undefined part of an object

Cesults il the signalling of an appropriate exception, such as

UNDEINEDVALUE. However, certain operators, such as the builtin

operator waich copies objects from one place to another, and

programmed operators which guote their operands (by using the

builtin QU)TE operator), can be applied to undefined objects or

objects that contain undefined objects and will not signal an

eaxception because they lo not actually use the undefined

information.



III. MECHANISMS F3R ACHIEVING IMPROVED PERFORMANCE

This section discusses the perf ormance improvement

mnhinisms that become available to a machine because it has a

suitable high level interface language. For the purpose of this

exposition, these mechanisms are grouped into three classes:

those that apply to what has traditionally been called the

execution-unit (E-unit or ALU) , those that apply to the

ins3tructia- unit (I-unit or CU), and a class of

execution-monitoring mechanisms that do not relate to any part

of a conventional machine. This classification is somewhat

arbitrary; it will sometimes be the case that a particular

machinism could be viewed as belonging to more than one of these

classes.

ITI.A. 22timizatign of Ex2gio2n Evaluation

Part A of this section deals with the techniques that a

high level language machine may use to increase the rate at

whicn it evaluates expressions. The contextual structure of

programs, the presence of primitive aggregate objects and the

implicit management of temporaries are three language features

which are viewel as contributing to a higher expression

evaluation rate.



III.A.1. Zontext-Sensitive 3ptimizations

Because its programs are structured expressions, a high

level language macaine may employ a top-down method of program

execution in which each encountered operator is executed in a

well iefiaed context. Such a machine possesses a wealth of

knowledge concerning its computation that is not determinable

prior to execution time. As a result, it is able to optimize

its performance dynamically ia several ways that are not

pssible on conventional context-free computing zachines.

ITIA.1.a. Avoiling Unnecessary Operations

First, the machine may use the available contextual

infocmation to avoid performing unnecessary operations. For

example, ia order to minimize the cost of tair operation,

certain builtin operators may behave differently depending upon

the context in which they are executed. The results that they

ultilately produce must be the same, of course, but

context-sensitive "short cuts" may be used internally to improve

performance. Thus, in the evaluation of the expression

(LENGTH (CONCATENATE STRING1 STRING2))

there is no need to actually concatenate the two strings

[ElsoM70, p. 167]. All that is required is the length of the

result of concatenating the strings. On a high level language

machine, the CONZATENATE operator could recognize that it was



invoKed as a lirect argument to the LENGTH operator and that it

need not concatenate the strings. Instead, it could return as

its value a string descriptor taat contained the correct result

length but whose value component was undefined. This could be

accomplished by accessing the string descriptors alone, with no

need to even fetch the (possibly lengthy) strings.

Many other optimizations of this sort are possible. Note

that this optimization could not be performed prior to execution

time, as by a compiler, since the resolution of the symbols

LENGTH and CONCATENATE is not then known.

However, it is not possible for context-dependent operators

such as these to avoid all unnessary operations. There is a

large class oE more global work reduction transformations that

may only be performed by the instruction stream interpreter.

Abrams [AbcaP70, pp. 66-63] has identified a number of these

which he separates into tne two processes of drag-along and

beating.

Drag-along is the process whereby the machine defers the

evaluation of each operator and operand for as long as possible.

By deferriag the evaluation of an expression it becomes possible

to simplify the expression in ways which are impossible when

only small parts of the expression are available, Beating

consists of manipulating the deferred expressions, and



particularly the the object descriptors, in order to reduce the

amount of work that needs to be done. For example, the

expression

(TAKE 3 (TIMES (NEGATIVE v) vectorl))

might be reduced to

(TINES (NEGATIVE v) (TAKE 3 vector1))

by the deferral of the non-select type operator TIMES. This

particular transformation avoids (MINUS (SHAPE vectorl) 3)

unne:essary multiplication operations.

IiI.A.1.b. Reoriering Operations

Ramamoorthy [RamaC71] has noted that expression execution

time can be minimized only it consideration is given to the

or1ering of subexpressions. In particular, he has shown that

subexpressions should be evaluated in the order of their

decreasing memory and processor time requirements. But if

sibexpressions are to be reordered to minimize execution time,

the reoriering process must be performed after symbol

resolution. rhe overhead involved in such a dynamic process is

unacceptable when the high level language is implemented upon a

conventional machiie, but the process may well be viable upon a

high level language machine. Thus, when faced with the

ex3cution of several unordered expressions, and when unable to

execute all of the expressions simultaneously, the machine could

rationally choose to tacKle the most resaurce-demanding



exorassians first.

III.A.l.c. Exploiting Special Cases

The tachaological development of writeable control stores

suggests thtat the microprogram for a particular machine might be

many times larger than the capacity of the control store. If a

facility cilli be provided for paging microcole between some

backing store and the control store, it would be useful in

implementiag a high level langaage machine. Essentially, it

would permit the machine to employ a library of highly

specializei micro-procedures. Depending upon the particular

operation to be performed and the context, the machine could

invoke a micro-procedure that is specifically designed to handle

that situation. In effect, the machine would be capable of

extensive "special casing" :similar to the OMD mechanism

dascribel La ElsoM69] withait cequiring a larger than ncrmal

control store.

III.A.2. Parallel Processing of Aggregates

since aggregate objects are primitive witiin its machine

language, i high level language machine may employ specialized

hardware techniques to efficiently deal with then. Homogeneous

ajgregates are particularly amenable to high-speed streaming

through a pipeline, or direct parallel processing by cellular



lojic arrays.

Indications are that, with the advent of LSI technology,

logic-in-memory components will be more economical than

c)Iaventional "random" logic [for justifications see HenlR69].

It will be possible to incorporate logical functions directly in

the memory because the size (and complexity) of the circuit that

may be placel on a chip is becoming large relative to the

constraint oa the number of chip-to-chip interconnections.

Thus, the most cost-effective coaputer organizations will employ

regular arrays of memory with builtin logic capabilities.

III.A.3. Parallel Processing of Special Cases

There are many operations, such as the operation of

inverting a matrix, for waich there exist several algorithms

which exhibit various degrees of speed and applicability. It is

commonly the case that there is a particular algorithm which

will "work" whenever it is applied to an argument for the which

the >peratian is defined, although it executes rather slowly.

Arl there are several other algorithms which execute

significantly faster, although they only work for special cases

from the domain of arguments. Thus, in the case of matrix

inversion, any noasingular n-by-n matrix may be inverted by

triangular decomposition, requiring slightly more than n3 scalar

multiplications and divisions. However, if the matrix is



symmatric, then its inverse may be obtained in only n3/2 scalar

multiplications and divisions [RalsA65, p. 446, p. 462].

A high level language machine whose performance is of

paramount importance could exploit this situation as follows: To

iavert a mitrix, it could execute two or more iatrix inversion

algorithms in parallel with a domain-test algorithm which would

silect the result from the fastest algorithm that properly

apolies.

Some Dther operations that have special case algorithms of

this sort are the calculation of the determinaat of a matrix,

the aigenvalues and eigenvectors of a matrix and the zeroes of a

polynomial.

IIt.A.4. Dynamic Management of remporaries

In the evaluation of expressions by a higa level language

machine, perhaps the greatest potential performance advantage

results from the ability to dynamically manage temporaries. It

is customary on conventional machines tor each procedure to

somewhat statically possess its own set of reserved temporary

cells. Tiese cells are usually allocated at compile-time,

load-time or activate-time, lue to the computational expense of

software implemented dynamic storage allocation. Conseguently,

the number of stocage calls that are dedicated to use as



tenporaries throughout the system far exceeds the minimum number

that are actually needed.

On a high level language machine, it is possible to

allocate temporaries on demand and release them immediately

after their use. Since a temporary is only used within the

immediate context of an enclosing subexpressioa, a relatively

small amount of storage may be used to efficieatly satisfy the

temporary storage requirements of a large system.

Because the instantaneous storage reguirement for

temporaries is generally small, a very high speed local store

that is integrated with the processor could be used to contain

the temporaries. This implies that references to temporaries

need not contribute to the processor-to-storage data transfer

bottleneck.

III.A.4.a. Increasing the Use of Temporaries

Since references to temporaries may be far more efficient

than references to operanis in main storage, it may be

wartawhile to attempt to increase the ratio of

temporary-references to staraye-references. ane method for

doing so is to employ a machiae language that is expression

oriented and has an abundance of builtin monadic operators.

20



The APL language possesses these characteristics; it

contains a large number of monadic operators which are merely

dyadic operators that assume a iefault value for one of their

operands (e.g., the reciprocal and exponential operators). The

expression oriented nature of APL is demonstratel by the large

percentage of nontrivial programs tnat consist of a single

expression. In contrast, low level machine languages are ill

suited to exploit the efficiencies of temporaries, particularly

when the values involved are nonscalar.

111.3. Instruction Stream Efficiencies

Part B of this sectioa discusses four ways in which a

mi-hLne with a high level interface language can benefit from

having a high level instruction stream. The presence of

operators for explicit execution-sequencing control, the absence

of detailed and unnecessary tactical specifications, the higher

density of program encoding and the freedom from much needless

inteclockiag are presented as factors contributing to higher

instruction-issuing rates.

II.3.1. Explicit Procedural Control

on high performance machines such as the Control Data 7600

aal the IBM System/360 ModeL 195, pipelining and parallelism are



used within the E-unit to achieve a major improvement in the

instruction execution rate. However, much of this increased

power is wasted because the I-unit is unable to decode

instcuctions and issue them to the E-unit at a commensurate rate

[11, pp. 13-13, 31-34; ThorJ7l, pp. 124-125]. Attempts are made

to decode several separate instructions simultaneously, but the

nominally sequential nature of the instructions being decoded

severely limits the effectiveness of this process [BuchW62;

ThorJ71; M1; M4; 18]. The [-unit is continually "surprised" by

conditional branches and otaer discontinuities which require a

reloading of instraction buffers and cause a disruption in the

E-unit pipeline streams. As Flynn [FlynM72, p. 21] has

observed:

... rhus the IBM System/360 Model 91 had execution
resources in excess of 70 MIPS (million instructions per
sec) while this was immediately restricted at a maximum
instruction decode rate of 16 MIPS; further with an average
incidence of branch and data dependencies this was reduced
to 6 4 IPS. Thus the discrepancy betieen available
resources of 70 MIPS and average request rate of 6 MIPS.

If a machine has a hijh level interface language with a

program structure as described in section II.A., then most of

these difficulties with the instruction stream can be

surmounted, By requiring that all procedures be pure, the

I-unit caa be relieved of the responsibility of supporting

write-operations into prefetched instructions.



Of greater importance is the reduction in the number of

branch instructions that need be encounterel. While the

structured programming aspects ot the language can be justified

in user-oriented terms alone -DijkE68; DijKE70; MilIH70], they

havae promising machine performance implications. Language

coastructs such as those described in Figure 1 on page 10 can

convey valuable information to the processor regarding the

content of an iteration, the number of times aa iteration will

be performed, the extent of the true and false clauses on a

conditional, etc. The micaine can, in principle, use this

informatia to organize the use of its resources and thereby

optimize its own performance.

III.3.2. Deferral of Tactical Decisions

A pro3lea that plagues compiler based systems is that of

allocating unique machine resources at a level of detail that

reluires overspecification. The statements fra a high level

language must be mapped inta a sequence of low level

instructions whica reference specific machine registers and

storige locations. This is a complicated task to perform, and

generally requires an optimizing compiler to perform it well.

Even then, what is "good code" for a System 360 Model 50 may be

inefficient on a Model 35, and vice-versa. In fact, on high

performance machines such as the 360/195 these a priori tactical

decisions are a severe handicap. As Chen [Chen711a, p. 74] has



note,:

.. a piece of proceiural language code retains a wealth of
job independence information. A FORIRAN statement
essentially describes a string of causally connected
events; but adjacent statements are often locally
indepeniant of each other, and can be executed
concurrently. Yet the conventional compiling process
obscuces causality. The resultant machine instructions are
tactical prescriptions, imposing unrealistic causality
demanis (one instruction at a time) and arbitrary facility
assignmeats ("register 2", "address 32768"); they becloud
human understanding and impede the debuggia process, and
are such potential sources of computer inefficiency that
machines are known to recoastruct the original statements
internally for better traffic flow.

A machina with a high level interface language may avoid this

problem entirely. The programs that it interprets can be free

from purely machine-oriented constraints.

TI.3.3. Algorithmic Encoiing Density

On a conventional machiae, the high level language

operations that manipulate non-scalar objects generally must be

imolemental by means of the repetition (either iterative or

recursive) of some sequence of low level instructions. Consider

the addition of two vectors with the vector sum replacing one of

the argument vectors. To ba specific, consider a PL/I statement

of the form A=A+B where A and B are vectors of length n. As

Filure 2 (page 25) indicates, there are four logical parts in

the program loop structura whica underlies suca an operation.

The first of these consists of several setup instructions which

ace executed only once at the beginning of the vator operation.



ENTE R
I
V

I setup I

r- ----------

r-->I Scalar I
lOperationi

V
r ----------1
lIncrementi
I Index I

I V

- -Condition
I rest

Initialize registers for loop

e.g., A (i) <- A (i) +B (i)

e.g., i <- i+LenIth (A(i))

Loop until vectors have been
processed

EXIT

Figure 2: Conventional loop structure for vector operations

The remaining three parts, however, are iterated n times in

or ctr to accomplish the operation in an element-by-elemenit

fashion. Thus, a certiin number of memory references,

praportional to n, is required for the purpose of fetching

instructions.

Figures 3 and 4 (page 26) contain "optimal" System/360

impl1ementatioas of the vector addition and inner-product

operitions. rhese programs are optimal in the sense that they

occupy the fewest bytes possible and have the shortest execution

25



L I R3,R5,LOOPCTRL
L R2,A(R3)
A R2,A(R3)
ST R2,A(R3)
BXLE R3,R4,LJJP

LOOPCTRL

A
3

F 'i4'

nv
nF

Setup for iteration
Fetch A(i)
Add 3(i)
Replace A(i) with sum
Loop until A(n) is processed

Initial value for index R3
Limit value m=n*4-1
Increment
Vector of fullword integers
Vector of fullword integers

Figura 3: System/360 implementation ot vector addition

LOOP

L I
SER
L E
ME
AER
BXLE
STE

LIOPZTRL

A
B
INNRPR)D

R3,R5,LJOPCTRL
F2, F2
F4, A (R3)
F4, B (R3)
F2, F4
R3,R4,L3JP
F2,INNRROD

1'

F14e
nE
nE
E

Setup for iteration
Clear accumulator
Fetch A(i)
Multiply by 3(i)
Add to sum
Loop until A(n) is processed
Store sum

Initial value for index R3
Limit value a=n*4-1
Increment
Vector of short float
Vector of shart float
Result of INNERPRODUCT(A,Bd)

FIGMURE 4: System/360 implementation of inner-product

time. They are somewhat unrealistically efficient in that they

assume convenient addressability to all the required data.

Nevertheless, instruction fetching accounts for over 57% of all

menmory references in the case of the vector adlition, and over

63% in the case of the inner-product.

LDOP



A machiae with a high level interface language, as

describel Ln section II, will not be burdened by this overhead

of repetitively fetching atomic instructions. Since its

operators, such as ADD, are builtin and automatically distribute

over vector3, only a single "instruction" neei be fetched in

orier to perform the entire operation.

III.B.4. High Level Interlocking

As noted in Section 111.B.1., the presence of data

dependencies in the instruction stream results in a major

legradation in the instruction execution rate of a conventional

hign-performance machine ,31, pp. 31-34; FlynM72, P. 21].

Elaborate schemes, such as the Scoreboard on the CDC 6600

[rhorJ71; DennJ70], are required to interlock storage references

in order to prevent conflicts (i.e., with respect to a given

storage cell, to insure that no aperation is interchanged with a

write operation).

This problem will continue

language machine but will be of a

one: thing, most storage references

machine will be generated internill

by the programmer. For example,

builtin operator applied to vector

machine generation of the numerous

to exist on a high level

much smaller magnitude. For

made by a high level language

y by the machine rather than

the programmer's use of a

operands will result in the

storage references that are



required to process the elements of the vector.- Since these

references are generated oy a fixed algorithm that can be

designed to be conflict free (in the extreme case, a pipeline

scehenata may be used), the machine may issue these references

without the burden of interlocking. Of course, interlocking

will still be necessary on a larger scale to prevent conflicts

amo)nj the liiga level operators. But the interlocking mechanism

will need to be used much less frequently.

III.X oncurent Error Monitoring

Hardware reliability has iacreased manytold over the past

tea years ani is expectel to continue to improve. This is

largely due to developments in component tecanology and the

introduction of sophisticate hardware-error detection and

correctibn schemes.

Unfortinately, software has not experienced a similar

iaprovement in reliability. Moreover, the complex operating

systems which have emerged since the days of IBSYS, and which

cmatinue to expand in scope, place increasing emphasis upon

reliability. It is now commonplace for a simple malfunction in

tie systeD software to crash an entire system with its many

sinultaneous users. Yet, despite the apparent and growing

crisis, no widely-used and general-purpose system (e.g., OS/360

or CP-67/CMS) has overcome this problem. It is generally



a-knowledgad that powerful pcogramming systems, as we know them

today, are never completely debugged.

A major reason for the uncliability of software is that

many common types of software errors cannot be detected

prictically on contempacacy systems. If all detectable

execution-time errors are, in fact, to be detected cn a

conventional machine with a low level machine language, then

same substantial fraction of the machine's instruction execution

rate must be expended continally upon error checking [a partial

exceotion is the Burroughs 36700 family of machines which have a

lw level machine language that does reflect certain software

requirements, particularly for block-structured laiguages, and

that is more conducive

cantemporary systems, but

error checking (e.g.

distinguishable); see M5

incurred rejardless of th

the technology with which

machine laaguage is low in

high level language semant

emil-y hardware techniques

perform error monitoring.

performed by meaas of

instructions which consu

cimpating power. Virtua

to software reliability than other

that provides only a small degree of

, instructions an1 data are

and 3rgaE71]. This cost must be

e machine's internal organizaticn or

it is implemented. As long as the

laval, and hence does not convey any

ics to the machine, the machine cannot

(such as parallelism) to efficiently

lastead, error monitoring can only be

tae addition of explicit machine

me some fraction of the machine's

Illy ao general-purpose programming
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syst2-ms employ extensive run-time error checking because the

costs involved are unacceptable.

For example, consider the problem of detecting illegal

subscripting operations in a language such as PL/I. There are

basically tio approaches that are used. First, there is the

totally interpretive approaca as exemplified by CPS [M12]. In

CBS, all PL/I statements are interpreted by software and

sibscripting errors are therefore easy to detect and handle.

BIt the accompanying performance degradation limits the

usefalness of the system to certain program development

activities. In particular, it is infeasible to use such a

system as the basis for a frequently executed operating system

or for computation-intensive application programs.

A second approach, waich is compiler oriented, is to

perform subscript testing within a particular program only if a

program-checkout option was specified at compila time [MI1, pp.

172-173]. This scheme is based upon the assumption that one

wites a program, fully debugs it using the program checkout

facility, and then installs the debugged program with the error

tests removed. Howevec, in practice, many non-trivial

programmiag bugs manifest themselves days, or even years, after

a program las been in productive operation.



In order to get a rough measure of the overhead involved in

p3Ecfrmirg this type of error checking on a contemporary

machine, saveral "off-the-shelf" PL/I (F) [M11] programs were

run both with and without the compiler generate1 SUBS2RIPTRANGE

anI STRINGRANGE' tests. It was found that this simple ty .e of

error checking was accompanied by a 15% to 179% increase in

program execution time and a 6B% to 97% increase in program

size.

Although the compiler generated tests were not as efficient

as hand-coded tests, they were reasonably good. Perhaps the

overhead could be reduced by at most a factor of two. However,

it siould also be noted that the test case programs did not make

heavy use of subscripting or string manipulations. Programs

that make extensive use of these facilities would undoubtably

incur a higher penalty.

On a machine with a high level machine language, this type

of error letection could 0e performed concurrently with the

actual computation that is being monitored.
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IV. HYP3IHETICAL HIGH LEVEL LAN3UAGE MACHINE

This section describes a machine which is designed for the

sole purpose of directly executing a high level language of the

type described in Section I. Of necessity, many details are

omitted. Some important topics such as object ownership and

Dersistence are not even addressed. The details that are

provided are intended to illustrate the nature of the machine;

the specific values that are used for design parameters are

meant to be reasonable but generally have not been subjected to

system-wide tradeoffs.

IV,A. General Machine Orjanization

The proposed machine is a shared resource multiprocessor

with a structure as indicated in Figure 5 (page 34). The

functions of each I-unit are to step through a linearized

encoding of a program written in a high level machine language,

to maintaia the current state of execution for that program, and

to issue reguests for computation to the E-unit and await the

results. Ihe E-unit services the computational needs of the

I-units. It consists of a collection of specialized functional

units (FU's) which are centrally coordinated.

There are a number of reasons for coupling the multiple

I-units to a common E-unit. First, because the builtin



|LogiC-in-Memory)
I Cache I

I E-unit I

r-----i r -----
I-unit I-unit jI-unitj 1 -unit

r------i r----,- r r ----- ,
jCache I ICacae I JCache I Icache I

Figure 5: High level language machine structure

op3rators are numerous and complex, an E-unit is necessarily

quita large. Furthermore, iost of the FU's (such as the FU6S

which perform the matrix inversion, square coot and index

operations) are used irregularly. Thus, it is unreasonable to

dedicate a complete E-unit to each instruction stream.

Second, the E-unit operations need to be interlocked in

orller to prevent conflicts. If multiple E-units were used, they

would not really be independent, but would need to be centrally

coordlinated anyway.

Third, and lastly, the E-unit for a high level language

machine can accept requests at a much higher rite than it can
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possibly complete them -- this familiar pipelining phenomencn is

accentuated by the more substantial operations that are builtin

on such a machine.

The interface between the I-units and the E-unit may be

either synchronous or asynchronous. Attractive approaches have

been iavestigated by Flynn :FlynM72] and by Plummer [PiumW72].

It appears that the synchrony or asynchrony of the interface

protocol is not sensitive tj tae use of a high level machine

language.

Underlying the processor is a one-level storage system

whic! provides an effectively inexhaustable number of uniguely

named spaces. Each space consists of an orderai set of fixed

length cells (16 bits per -ell) which are consecutively

addressed. If the space names are 48 bits in length, then up to

2.3.1014 distinct spaces may be addressed without needing to

reuse space names. At a space generation rate of one space

every five microseconds, the machine could run for about 39

years before running out of unique names. Spaces created for

the purpose of holding machine generated temporaries are not

implemented in the one-level storage systea, and do not

contribute to the consumption of space names.

Each I-unit has its own cache store as an interface tc the

storage hierarchy. Since all programs are read-only, these

35



caches are unidirectional aad ace not interlocked, either with

eich other or with the activity of the E-unit. The E-unit cache

possesses logic-in-memory capaoilities and is organized in

sectors [as described in StonH70 and ThurK70].

IV.B. Objegts

Each object stored within the system consists of a space

which contains a descriptor and an associated value. As shown

in Figure 5 (page 37), the descriptor specifies the object type,

structure and access constraints. For aggregate objects, it

also specifLes the object caak and dimensions.

IV.C. Asgacts of Prog2a Int ergetation

There are three temporal phases in tae process of

interpreting a machine language program on this hypothetical

machine: a translation phise in which the character string

representation of a program is used to generate a PROGRAM

3oject, an activation phase in which a PROGRAI object and an

ENVIRONMENT object are used to generate an ACTIVATION object,

ani an execution phase ia which an ACTIVATION object is

executel. This section iiscusses several key aspects of these

different phases of program interpretation.



Bit: 0123456789ABCDEF

r----------------i
Cell 0 jAAAABBBCDDDDEEEEJ

Cell 1 IFFFFFFFFFFFFFFFFI

Cll 2 1IGGGG GGGGGG)

Cell 3 1GG GGGGGGGGGGGGGJ

Cell n IVVVVVVVVVVVVVVVV4
1-----------------

A AAA - Object ?ype: indefined, Logical, Integer,
Real, Complex, Character, Label, System
or Mixed

BBB - Object Structure: Undefined, Scalar,
Vector or Array

C - Value Pcesent Flag

DDD) - Object Access Constraints:
0000 - uncoastrained
0001 - walue constrained
0010 - type constrained
0100 - cank constrained
1000 - limension constrained
1100 - struzture constrained

EEE - Object Descriptor Extension

FF...F - Optional rank field (present for arrays)

GG..G - Optional dimeasion fields (present for
vectors and arrays, field repeats for
arrays)

VV...V - Value eacaded in as many cells as
required

Figure 6: InternaL repcasentation of an object
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IV.C.1. Program Representation

A PRO3RAM 3bject,, which is an object of type SYSTEM, is

cceatei by applying the TRANSLATE operator to in operand which

evaluates to a character string object whose value denotes a

program. If errors are detected in the source program during

translatimn, then the TRANSLATE operator signals appropriate

exc2ptions. rhis allows the program that invoka TRANSLATE to

decile whether to continue or to abort the operation.

As Figure 7 (page 39) illustrates, a PR3GRAM object is

comprised of five elements. The first is a copy of the

c-iaracter string object from which the PROGRAM object was

dhcived. rhe second, a TEXT object, is an object of type SYSTEM

whici contains an encoded linearization of the program tree.

The third, a LINKAGE object, is also a SYSTEM object. It serves

as a linkage vector for binding nonlocal symbols. The fourth, a

SYIB)L object, is a SYSnBM object which servas as a symbol

table, containing such information as the symbolic names for all

tokens ii the TEXT object. And the fifth component is a

boundary address (3DY) which is used to distinguish between

local and nonlocal symbol references.

An object of singular importance is the TEXT object, which

soecifies the actual algorithm to be performed in the course of

eKecuting a given program. It consists of an ordered set of
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Bit: 3123456789ABCDEF

r - -- - -- - - -

Cell 0 1O11131011111000I

Calls 1-3 ptr. to SOURCE

Cells 4-6 ptr. to TEXT

Calls 7-9 ptr. to LINKAGEJ
--------------------------- 4

Cells 10-12 ptr. to SY&BOL
r-------------------

elemants tait are either op trand pointers or TEXT tokens of the

form shown in Figure 8 (page 43). Figure 9 (page 41) contains

an example of a TEXT object (note that this object has undergone

symbil resolution; i.e., it is part of an ACTIVArION object).

IV.C.2. Program Activations

The builtin ACTIVATE opecator is used to create an

ATIVATIDN object given a PR3GRAM object and one or more

ENVIRONMENr objects. It accamplishes this operation by making a

copy of the PROGRAM object and then manipulating the new object

in a privileged way. Its functions include allocating an

"activation area" of storage, storing the area aidress into the

hih orler 35 bits of BDY, creating the re4uired instances of

local symbols in this "activation area", binding operands to

pcgram symbols, and resolviig nonlocal symbols by searching the



Bit: 0123456789ABCDEF

IABBCCCC2CCCCCCCI

A - Builtin/Defined Flag

This flag is set to 1 by the symbol resolution
mechanism (shen creating an ACTIVATION) it this
symbol resolves onto a builtin operator. Hence,
during execution, builtin operators are
immediately self-identifying.

BB - Operand Designator

00 - no operands (symbol is niladic)
01 - one operand (symbol is monadic)
10 - two 3perands (symbol is dyadic)

and first operand has no operands
11 - abitcary number of operands

rhis field indicates the number of operands
that are actually being passed to the symbol.
(It does not indicate the number of operands
that the symbol will accept; symbols may
caoose to accept varying numbers of operands)
Its purpose is to reduce the number of
operand poiaters that are required.

CC...2 - Token Offset

If this offset is greater than tie low order
13 bits of BDY (in the ACTIVATI3N object),
then this offset points to an entry in the
nonlocal symbol LINKAGE object; else this
offset, waea appended to the higi order 35
bits of BDY, coastitutes the spice name of
an object that is local to this ACTIVATION.
A program may reference up to 8192 distinct
objects.

Figuce 8: Internal Representation of a TEXT token
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Source program:

(ASSI3N X (SUM Y (F-N1 (MAX X Y Z) (FCN2 Y))))

Corresponding TEXT object:

Bit: 312 3456769ABCDEF

)11J13131111103311

11101 'ASSIGN' I
i ----------------- I
13001 X
I------------
11101 'SUA' 3
I-----------------1
13001 Yi

-----------------

1 2 i

1111I 'MAX' I

3

3 1

3

13001
I -------

1000i 1
I ---------
10011 FCN2

1001 Y

Figure 9: Example of

Contaias

object descriptor

builtin dyadic opcode

niladic reference

builtin dyadic opcode

niladic reference

a-adic reference

operand pointer

operand pointer

builtin n-adic opcode

operand pointer

operand pointer

operand pointer

niladic reference

niladic reference

niladic reference

monadic reference

niladic reference

a TEXT object



ENVIRONMENr objects in the sequence provided (each ENVIRONMENT

object may also specify a successor ENVIRONMENT object)

IV.C.3. Program Execution

An ACTIVATION may be executed by the application of the

builtin EXECUTE operator. The execution of a program involves a

number of activities in the I-unit and E-unit portions of the

ma chine.

The I-unit is envisionel as consisting of three major parts

which operate under central control: a token fetch unit, a

linkage fetch unit and an instruction assembler. The token

fetch unit has its own cache from which it reads (in a highly

sequential manner) the tokans that are contained in the TEXT

object component of the program. It is equiped with hardware

stacks so that it may conveniently recurse when walking its way

through the program in a top down fashion. The linkage fetch

unit reals the contents of the LINKAGE object component of the

program in order to obtain tie space name of an object to which

a nonlocal symbol has been bound. The instruction assembler

buills logical instructions for the E-unit by collecting an

opcole and a list of the space names for its operands. It then

issues the logical instructions to the E-unit and awaits the

reply, which is either the space name of the resultant object,

or an exception.



The E-unit does all the actual fetching of operands and

interlocks upon the operaad space names. The actual layout of

the value component of an Agjregate object is determined by the

characteristics of the vArious functional units and the

logic-in-memory cache. It is crucial to the performance of such

a machine that its objects Da internally orgaaized in order to

maximize spacial locality since the one-level store will used so

extensively.
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V. 2ONCLUSIONS

This paper has investigated a variety of mechanisms by

wtich a machine that directly interprets a suitable high level

langiuage might expect to achieve improved pecformance. One

result of this effort is a catalog of such mechanisms, which may

b: of some use in the design of high performance computers.

Another result is an iacreased understanding of the

sijnifican:e (in terms of performance) of adopting a high level

macrhine languige. It is now the author's view that the use of a

low level machine language, as an intermediate interface between

the high level language and the machine, has two inherent

effects upon the potential execution rate of the high level

language.

First, the low level interface restricts the amount of

relevant semantic information which flows froi the executing

program to the machine. The computer is deprivei of most of the

iatent of the high level apecations. While, with yesterday's

technology, it was acceptable to decompose a program into a

sequ3nce of context-free atomic orders, advances in technology

now permit a high performance Maciine to profitably employ a

knowledge Df the macroscopic operators and operands.
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Second, artificial conustraints are imposei upon the the

camputatioa because a low level language, by its very nature,

impacts detaila: tactical prescriptions. These unwanted

conastraints have long been an abstacle to the design of high

performance machines and will become even less acceptable as the

functional capabilities of hardware increases.
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