THE PERFIRMANCE ADVANTAGES OF A HIGH LEVEL LANGUAGE MACHINE
by

JAMES WALTER RYMARCZYK

Submitted in Partial Fulfilliment
of the Requirements for the

Degree of Bachelor of Science
at the
MASSACHUSETTS INSTIIUTE OF TECHNOLOGY

June, 1972

Si;ﬂiture o>f Author . N » . . » * .
Department of Electrical Engineering; May 12, 1972

C?rtified by] » * L[] L2 [2 » L] » L] L »
Th2sis Supervisor

A:Cepte(j by . » » * e » . . .
Chairman, Departmental Committee on Theses

ABSTRACT

This paper idesntifies and discusses a number of mechanisms
by which a machine with a suitable high level interface language
mijht achi2ve a level of parformance which ex-2eds that of a
machine with a conventional von Neumann architecture. A high
lavel languag=2 machine 1is characterized which is somewhat less
flaxible than a <conventional d2sign, but which significantly
oi1t-perforas the conventionial machine when used im a way that
exploits the high level language,

K2ywords and Phrases: Computer Architecture,

Machine Organization,
High Level Language Machine,
Languag=2 Oriented Computer Design,
Computer Command Structures,
Hardware Implementation

of Programming Languages,
High Performance Computer Design.

ii

ACKNOWLEDGEMENT

I an jrateful to Stu Madnick, my thesis supervisor, and to
Daive Kelleher and Steve Zilles of IBM for their genercus efforts
in raviewing and commenting upon this paper.

iii

S2ztion

I.

II,

I1I.

TABLE OF CZONTENTS

INTRODUCTION s e e + e S T T

i,

B.

Historical Perspective .+ .+ + s+ & &

Object ives . . » . . » . * » .

FAVORABLE LANGUAGE CHARACTERISTICS . . .

A,

B.

MECHANISMS POR ACHIEVING IMPROVED PERFORMANCE

A,

B,

C.

Pl‘ogram Structure ., » » »

Primitive Data Types « o s o s o

Optimization of Expression Evaluation .
1, Context-Sensitive Optimizations .

a. Avoiding Unn2c2ssary Operations .

b. Reordering Operations s s s e

c. Exploiting Special Cases o e e
2, Parallel Processing of Aggregates .
3, Parallsl Processing of Special Cases
4, Dynamic Management of Temporaries .

a, Increasing the Use of Temporaries
Instruction Stream Efficiencies ., . .
1. Explicit Procedural Control . s s
2. Deferral of Tactical Decisions .« o
3, Algorithmic Encoding density . . .
4, Hijh Lzvel Interlocking « .+ « « &

Concurrent Error Monitoring e v s s

Page

1"
13
13
14
14
16
17
17
18
19
20
21
21
23
24
27

28

iv

Iv.

A,

I

REFERENCES AND BIBLIOGRAPHY

FINTS

G2neral Machine Organization
Objects

Aspects of

1,
2,

3.

CONCLUSIONS

*

Prograa
Program

Progran

»

Activations

Execution

HYPOTHETICAL HIGH LEVEL LANGUAGE MACHINE

»

Program Interpretation

Representation

33
33
36
36
38
39
42
45
47

56

LIST OF FIGURES

Figure

Typical execution-sequancing operators . . .

Zonventional loop structure for vector operatioans
System/360 implementation of vector addition . .
Systam/360 implementation of inner-product . e
digh l2vel language machine structure . .+ .+
Internil representation of an object s s e e
Internal representation of a PROGRAM object . .
‘Internal representation of a TEXT token . e e
axampl2 of a TEXT object T

Page

10
25
26
26
34
37
39
40

41

vi

I, INTRODUCTION

Petar Landin is reportzd to have once said that most pagers
in Computar Science describe how their author learned what
someone else already knew [M0oseJ70]. This paper is no excegtion
to that rule, It «combin2s a collection of notions that have
baan extracted from the litarature with a number of my own ideas
that, although independently derived, have surely been noted
bafora, Wiila credit for many of the concepts presented belongs
ty> othars, I accept full ra2sponsibility for any misrepresenta-

tions or ambiguities which miy exist in this presentation.

This paper is intend2d to serve primarily as an aid to
others in the field of computer design by collecting, organizing
anl commentinj upon these ileas. The scope of this paper does
not permit much in the way of demonstrable results, It is hoped
that the absesnce of physical rezalizations for the mechanisms
that are discussed will bs compensated for by a somewhat brcader

parspective than is customary in the literature,

The reader is assumed to b2 familiar with the principal
samantic features of thz APL, PL/I and LISP programming
languages [M9; M10; M13]. In addition, he should have scme
knowlaig2 of the goals of coatemporary programming systems, the
problems that are encountered and the hardware/sof tware

engyineering tachnijues usel in se2exing to attain these goals.,

Thers have been many diverse efforts to dessign a computer
that directly interprets a high 1level 1language [AbrarP70;
BashPh7; BashT68; BerkK69; Zhes371; Dennd71; MNcFaC70; MeggJdbl;
MnllA63; RiceR71; RossCobl4; Shawl58; ThurkK70; Wz2beH67; ZaksR71;
M3]. The motivation for doing so has generally bzen based upon

either of two assumptions,

First, it has been pdstulated that a machine with a high
lavel interface language <can provide a significant increase in
us2fal prograaming function without a prohibitive increase in
cost. One would 1like to create a well disciplined programming
environment in which run-time programming errors are detected
[T1ifJ68, p. 14; BerkkK69, p. 60], in which such 2rrors need not
culminate in machine dumps [BashI67; McFaC70], in which
programmiaj Jenerality is guiranteed or at least likely
[D2nnJ69; d2nnJ71], etc., However, it is widely rescognized that,
whil2 desirable fesatures such as these can be programmed upon
contemporary low level machiares (indeed, upon Turing machines!),
the performance cost of implementing such features with
interpretive software 1s unacceptable {I1if358, pp. 4,13;

B2rkk69 J.

Seconil, it has often been assumed that an overall systenm
parformanc2 improvement can be ittained by impl2menting a high
lavel language 1adre directly. Various designs have sought to
avdy>id the zostly overhead that 1is normally incurcred by software
implemented compilers andl 1interpreters [BashT67; BashTo68;
Barkk69; RossC64; ThurkK70; Wa2beH67]., At least one recent effort
has included several basic operating system functions such as

miin storaje management and procass dispatching [RiceR71].

But whether the goal was enhanced functional capabilities
or the accalerated performanc2 of conventional functions, most
d2signs of hijyh lavel langaagje machines to date have been based
upon existing lanquage-independent machine organizations,
Rezently, an altarnative and more promisiny strategy for
achizving these goals has bs2n to employ a machiane organization
which is specifically designed for the efficient semantic
intarpretation of a particular high level langaage [AbraP70;

Thurk72; ZagxsR711.

I.8., Qbjectives

The primary objectives of this thesis is to identify the
parformance advantages that may o2 attained, 1in principle, by a
processor whose machine languige 1is high in level, Most
pravious work in this area has sought to ichieve higher

computational rates by reducing the number of interfaces, or

layers of interprestation, between the high level language and
ta2 machiile circuitry. Some 2fforts have gone further by
tailoring th2 machine organization to the primary semantic
characteristics of an existing programming language ({e.g., to
th> array fesatures of APL), This paper will conceran itself with
tha performance improvements that may be attained over and above
thos2 that accompany a brut2-force reduction in the number of
interfaces, It will not rastrict itsvtreatment to the features
of any particular =2xisting language. Instead, 1 set of loosely
compatible language featur2s will be proposed with computational
performanc2 in mind, Then, by the <consideration of relevant
coupatational mechanisms, an attempt will be made to identify
th2 jeneral ways in which a machine with a suitable high 1level
interfac= language can achieve a level of performance which
exceeds that of a machine with a conventional von Neumann

architecturea.

A higa 1l2vel language machine will be characterized which
is somewhat l2ss flexible than a conventional d2sign, but which
siynificantly out-performs the conventional machine when used in

a way that exploits the high level language.

It should be noted that no attempt will be made to address
tha 1ifficult problems of translating from other languages into
th2 high level machine lanjuige. In most practical systeams, the

mazhin2 language would have to serve as an effective target

languaage for such translations. Here, the sole concern is with
tha high speed interpretation of a single, although excepticnal-

ly powerful, language,

THIS PAGE INTENTIONALLY LEFT BLANK

TI. TFAVORABLE LANGUAGE CHARACTERISTICS

This section charactarizas a machine language which
prssesses many features that are desirable ia a programming
system, that are impractical to inmpl2ment updon contemporary
machine arzhitectures, but that favorably affect the performance
capabiliti2s of the high level language machine, The language
characteristics are discuss21 in terms of their rzliation tc the

structure of programs and th2 nature of primitive objects.

This section does not comprise the definition of a new
language. Such a formidable task would require a lengthy
dissartation in itself, what 1is sought 1s a language
characterization that is sufficient to support the following

sactions of this paper.

Por precision, and to avoid the thorny {and here
extraneous) issues of syntax, the program exampl2s that follow
ia this dozum2nt will use a simple LISP-like notation:

{oparator operanil opesrand2 ... operandi)
Notation variables and constants will be indicatesd by lower-case

and upper-case symbols, respactively.

In te2rms of 1its program structure, the 2nvisioned high
lavel machine lanquage most =-losely resembles the language LISP,
Each of its programs is a structured expression consisting of an
oparator and an optional 1list of operands; and =s2ach operand is,

in turn, a structured exprassion,

As in LISP, the operators and operands within the text of a
program are merely symbols whose meaning depends upon the
environment {or context) in which the program is invoked. Of
course, various static and 1d1ynaaic symbol resolation mechanisms
ar2 possible; but what 1is important is that, in general, the
sznantics of a program cannot be determined prior to symbol
r2solution time (which wouldl typically be as late as program

activation time).

The mdotivation for thesz features is twofold., First, it is
desiresd that there be an ejuivalency betw22n values and
expr2ssions. It should be possible to replace any value with an
expr2ssion that evaluates to {or "retuarns") that value, and
vize-versa. In other woris, all language constriacts should be
clos2d under composition, 3econd, there is to be no sacred
distinction b=2twe2n builtin operators and user-dzfined programs,
It should be possible for a user to redefine any "system"

oparator, within his own local environment, by providing a

program with the appropriat2 name, Moreover, the redefinition
of an operator should =not in itself require changes to thcse

programs that use the operator.

The language also poss2sses a large and powerful set of
builtin operators (a superset of the operators of APL). of
siagular importance are th2 2xecution-sequencing operators which
parform functions analogous to those of the PL/I DO and IF
stitaments, the COBOL PERFJORM statement, etc, For example,
ther2 woull b2 some sort of SEQUENCE operator which evaluates
its operands in strict saju2nce, a PARALLEL operator which
avaluates its operands without regard to order ({perhaps
employing concurrent hardware processing), a REPEAT operator
which would repetitively avaluate one of its operands either
som2 numbsr of timnes, or until some condition is met, and so

forth., (s22 Figur2 1 on page 10)

It is further stipulated that the programs for the high
l2vel language machine be "pura", That is, an executing prcegram
may in n> way modify itself. This constraint promotes the
g2neration of shareable software, outlaws many n"tricky"
programmiag practices, andl 2liminates certain common types of
ex2cition-tim2 programming 2rCOCS, It also has implications

rayjarding the organization of th2 language interpreter.

(SEQUENCE expressionl expression2 ,.., expressionNl)
(PARALLEL expressionl expression2 ,.. expressionN)
(REPEAT =xprassionl expression2 TIMES)
{REPEAT =2xpressionl WHILE expression2)

(IF =2xpressionl THEN 2xpression2 ELSE expression3)

Figure 1 : Typical execution-sequencing operators

Another importamt feature of the proposed high 1level
language is its facility for processing exceptional conditions.
In this re2gard, it is unlikz either APL or LISP, but similar to
PL/Y [M1), pp. 104-106] with its conditions, ON-units, and
SIGNAL statement, A sinjyl2 exception handlingy mechanism 1is
provided which handles both builtin and user—-generated
exceptions in a1 uniform way. Upon the occurrence of an

excaption, th2 current activation chain is seguentially searched

(from the aost recent activation to the system "root™
activation) for an eaxca2ption-action-specification {which
zoasists primarily of a program to Dbe executed), If an
axception-action-specification wahich corresponils to the

exception is found, then it is executed as if it were invoked in
th2 context in which the 2xception occurred., It may choose to
inspact or molify any variablz2 in that context (subject to the
aunthorization mechanism), to signal another exception, to return

t> the point of interruption, to execute a return (with value)

10

from the intarrupted program, to suspend the process (which
rasults in a SUSPENSION exc2ption in the process which owns this
process), anl so forth, If no corresponding exception-
action-specification is found, then an EXCEPTIONEKROR exception
is sigaalled., The system root activation always provides an

axzeption-action-specification for this exception,

IT.B. Prisitive Data Iypes

The sat of primitiva objects that are recognized by the
mishine inzludes such aggragate objects as vectors, arrays and
tunlas, Tais implies that eacn object in the system has an
associated descriptor which contains information regarding its
type (2.9., program, character, integer, real >r complex) and
shaip2 (e.g., scalar, vector, tuple), as well as an indication of

its ownership, persistence and access-authorization.

Consa2quently, the machine is able to examine the attributes
of the objects that it manipulates, and thereby perform such
fanctions as operator distribution, domain-rule 2nforcement and

data protection,

The internal encodings of the object descriptors and values
ar> inaccassible to the user. Appropriate builtin operators are
praovidad for the purpose of converting an object <from one type

to another (e.g.,, from REAL to COMPLEX). Predicate operators,

1"

such as ISINTEGER or ISPROGRAM, are also provided ¢£or the
parpose of accessing the information in the obj2ct descriptors.
Information is written intd the object descriptors only by means
of the BUILDOBJECT operator, the sole means for constructing

objects (the conversion operators employ BUILDIBJECT).

As a ra2sult of having self-describing data which 1is
manipulated by an attribut2 2xamining machine, it is possible to
have objects whose type and/or value is undefin21, Thus, there
exists an object of undefin=2d type and undefined value, an
object whose typ2 1is constrained to be INTEGER but whose value
is undefined, etc, Purtheramore, it is reasonabl2 to permit such
uniafined objects to be components of an aggregate object
without ra2guiring that th2 2atire aggregate object be undefined,
By d2finition, an attempt to use an undefined part of an object
rasults ia the signalling of an appropriate exception, such as
UNDEFINEDVALUE, However, certain operators, such as the builtin
operator which copies objects from one place to another, and
programm2d operators which Juot2 their operands {(by using the
builtin DUDTE operator), can be applied to undefined objects or
objeczts that contain undefined objects and will not signal an
axception because they 1o not actually use the wundefined

information.

12

IITI. MECHANISMS FOR ACHIEVING IMPROVED PERFORMANCE

This saction discusses the performance improvement
m2zhanisms that become availabls to a machine b2cause it has a
suitabls high level interfac2 language. For the purpose of this
axposition, these mechanisms are grouped into three classes:
those that apply to what has traditionally bz2en called the
execution-unit {(BE-unit or ALU), those that apply to the
instruction-unit {I-unit or cuy, and a class of
execution-aonitoring mechanisms that do not relate to any part
of a3 conventional machine. This <classification is somewhat
aroitrary; it will sometim2s be the case that a particular
m2-hainism could be viewed as belonging to more than one of these

classes.

ITI.A. 2Jptimization of Expression Evaluation

Part A of this section deals with the technigues that a
hiyh level language machine may use to increase the rate at
which it =2valuates exprassions. The contextual structure of
programs, the presence of primitive aggregate objects and the
implicit managema2nt of t2amporaries are three language features
which are view2d as contributing to a higher expression

evaluation rate,

13

III.A.1. Zontext-Sensitive Jptimizatioas

Because its programs ar2 structured expressions, a high
lavel language macaine may 2mploy a top-down method of program
axacution in which each =zncount2red operator is executed in a
w21l Jefiaed contaxt,. Such a machine possesses a wealth of
knowledge concerning its computation that is not determinable
prior to execution time., As a result, it is able to optimize
its performance dynamically in several ways that are not

possible on conventional context-free computing machines,

ITT.A.1.a. Avoiding Unneca2ssary Operations

First, the machine may use the available contextual
infFormation to avoid performing unnecessary operations. For
axampla, ia order to minimize the cost of taeir operation,
certain builtin opzrators may behave differently depending upon
tha context in which they are executed., The results that they
ultinately produce must be the same, of course, but
contaxt-sensitive "short cuts" may be used internally to improve
parformanc2, Thus, in the evaluiation of the expression

(LENGTH (CONCATENATE STRING1 STRING2))
thar is no need to actually concatenate the two strings
[2lsoM70, p. 167]. All that is required is th2 length of the
rasult of concatenatinyg the strings. On a high level language

machine, the CONCATENATE operator could recognize that it was

14

invoked as a lirect argument to the LENGTH operator and that it
ne2d4 not concatenate the strings. Instead, it could return as
its value a string descriptor taat contained th2 Correct result
langth but whose value componant was undefined, This could be
accomplishad by accessing the string descriptors alone, with no

ne=d to even fetch the (possibly lengthy) striags.

Many othar optimizations of this sort are possible. Note
that this optimization could not be performed prior to execution
time, as by a compiler, since the resolution of the symbols

LENGTH and CONCATENATE is not then known,

Howevar, it is not possible for context-dep2ndent operators
suzh as these to avoid all unn2ssary operations. There is a
largs class of more global work reduction transformations that
may only be performed by the instruction stream interpreter,
Ahrams [AbraP70, pp. 66-68] has identified a nuaber of these
which he separates into ta2 two processes of drag-along and

beating.

Drag-along is the procass whereby the machine defers the
evaluation of each operator and operand for as long as possible,
By d2ferring the evaluation of an expression it bacomes possibie
to simplify the expression in ways which are impossible when
only small parts of the expression are available. Beating

consists of manipulatiny the deferred expressions, and

15

particularly the the object descriptors, in order to reduce the
amount of work that neads to be done, For example, the
2xprassion

(TAKE 3 (TIMES (NEGATIVE v) vectorl))
might be reduced to

(TIMES (NEGATIVE v) (TAKE 3 vectorl))
by the d=2fsrral of the non-selact type operator TIMNES. This
particular transformation avoids (MINUS (SHAPE vectorl) 3)

unn2cessary multiplication operations.,

ITI.,A.1.b. Reorisring Op2rations

Ramamoorthy [RamaC71] has noted that expression execution
time can be minimized only if consideration is given to the
oriaring of subexpressions., In particular, he has shown that
subexpressions should be =2valuated 1in the order of their
dacreasing memory and processor time requirements, But 1if
sibexprassions are to be reordered to minimize execution time,
thz reoriering process must be performed after symbol
rasolution., The overhead involved in such a dynamic process is
unicceptable when the high lavel language is implemented ugpon a
convantional machiae, but the process may well be viable upon a
high 1level 1lanjuage machine, Thus, when faced with the
exacution of several unordered =2xpressions, and when unable to
execiate 31l of the expressions simultaneously, th2 machine could

rationally choose to tacklz the most resosurce-demanding

16

expr2ssions first,

Irr.a.l.c, Exploiting Spacial Cases

The tachaological devzlopma2nt of writeable <control stores
sujyasts that th2 aicroprogram for a particular machine might be
many times larger tham the cipacity of the control store, 1If a
facility co1ll be provided for paging microcol2 between some
bazking stors and the control stors, it would be useful in
implementingy a high level language machine, Essentially, 1t
would perait the machin=2 to employ a 1library of highly
specialized wmicro-procedures, Depending upon the particular
oparation to be performed and the <context, th2 machine could
invoke a micro-procedure that is specifically designed to handle
that situation. In effect, th2 machine would be capable of
extensive "special «casing"™ [similar to the OMD mechanism
iascribed in ElsoM69] withoat requiring a larger than ncrmal

control store,

ITTI.A.2, Parallel Processingy of Aggregates

Since aggregate objects ar2 primitive witain 1its machine
langaage, 3 high 1level language machine may employ specialized
hardware techniques to efficiently deal with thea, Homogeneous
ajjragatas are particularly am2nable to high-speed streaming

through a pipelin2, or dir2ct parallel processing by cellular

17

logic arrays.

Indlications are that, with the advent of LSI technology,
lojic-in-ma2mory components will Dbe more economical than
co>nvantional "random" logic [for justifications see HenlRé69].
It will be possible to incorporate logical functions directly in
th> memory because the size (and complexity) of the circuit that
may be placel on a chip is bz2coming large relative to the
constraint oa the number of chip-to-chip interconnections,
Thus, the most cost-effective computer organizations will employ

ragular arrays of memory with builtin logic capabilities,

ITTI.A.3., Parallel Processiny of Special Cases

There are many operations, such as ths2 operation of
inverting a matrix, for waich thers exist several algorithms
which exhibit various degrees of speed and applicability. It is
commonly the case that there is a particular algorithm which
will "work" whenever it is appliad to an argument for the which
the speration is defined, although it executes rather slowly.
Ani thers are several other algorithms which execute
sigynificantly faster, although they only work for special cases
from the domain of arguments, Thus, in the <case of matrix
invarsion, any nonsingular n-by-n matrix may be inverted by
triangular decomposition, raquiriang slightly mor2 than n3 scalar

multiplications and divisioans, However, if the matrix 1is

18

symm2tric, th2n its invers=2 may be obtained in only n3/2 scalar

maltiplications and divisions [RalsA65, p. 446, p. 462].

A hijya level language machine whose performance 1is of
paraaount importance could exploit this situation as follows: To
invert a matrix, it could execute two or nmore natrix inversion
aljyorithms in parallel with a domain-test algorithm which would
s2lect th2 result from th2 fastest algorithm that properly

apolies.

Some oSther operations that have special case algorithms of
this sort ar2 the calculation of the determinant of a matrix,
tha 2igenvalu2s and eigenvactors of a matrix and the zeroes of a

polynomial,

IIr.A.4, Dynamic Managem2nt of Iemporaries

In th2 evaluation of expressions by a higan level language
machine, parhaps the greatest potential performance advantage
rasults from the ability to dynamically manage temporaries. It
is customary on <conventional machines <for each procedure tc
somewhat statically possess its own set of reserved tempcrary
calls, Taese cells are usually allocated at compile-tinme,
123d-time or activate-time, lue to the computational expense of
software implemented dynamic storage allocation., Consequently,

th2 numbar of storage <=21lls that are dedicited to use as

19

t2aporaries throughout the system far exceeds the minimum number

that are actually needed,

On a high 1level 1lanjuage machine, it 1is possible to
allocate temporaries on desmand and release tham 1immediately
after their use, Since 1 temporary 1is only wused within the
immediate context of an enclosing subexpression, a relatively
small amount of storage may be used to efficiently satisfy the

tamporary storage regquirements of a large system,

Because the instantansous storage raguirement for
t2mporariss is generally smill, a very high sp2ed 1local store
that is integrated with the processor could be used to contain
th2 temporaries, This implies that references to temporaries
ne2d not contribute to the processor-to-storags data transfer

bottleneck.

IrII.,A.4,a., 1Increasing the Use of Temporaries

Sinc2 references to t=2aporaries may be far more efficient
than references to operanis 1in main storaje, it may be
wortavhile to attenpt to increase the ratio of
temporary-referencas to storaye-references, Jdne method for
doing so is to employ a machine language that 1is expression

oriented and has an abundance of builtin monadic operators.,

20

The APL language possess:zs these <characteristics; 1t
contiins a large number of monadic operators which are merely
dyadic operators that assam2 a default value for ome of their
oparands {(e.q., the reciprocal and exponential operators). The
exprassion oriented nature of APL is demonstrated by the large
parcantage of nontrivial programs tnat consist of a single
expra2ssion., In contrast, low 1lavel machine languages are ill
suit2d to e2xploit the efficiencies of temporaries, particularly

whan the values involved are nonscalar.

ITI.B3., Instruction Stream Efficieancies

—— - — ———— —— - o——

part B of +this section discusses four wiys in which a
mishine with a high level interface language can benefit from
having a high level instruction strean, The presence of
op2rators for explicit execution-sequencing control, the absence
of datailed and unnecessary tactical specifications, the higher
dansity of program encoding and the freedom from much needless
intarlockiay are presented as factors contributing to higher

instruction-issuing rates.,

I7T1.3.1., Explicit Procedaral Control

On hijh performance machines such as the Control Data 7600

ani the IBM Systa2m/360 Mod=i 195, pipelining and parallelism are

21

us2d within the E-unit to achis2ve a major improvement in the
instruction execution rate, However, much of this increased
power 1s wasted because the I-unit 1is unable to decode
instructions and issue them to the E-unit at a commensurate rate
[41, pp. 1)-13, 31-34; ThorJ71, pp. 124-125], Attempts are made
to> dz2code seva2ral separate instructions simultaneously, but the
nominally saquential nature of the instructions being decoded
saverely 1limits the effectiveness of this process [BuchW62;
ThorJ71; M1; M4; M83]. The [-unit is continually "surprised" by
conditional branches and otaer discontinuities which require a
r2loading of instruction buffers and cause a disruption in the
E-unit pipeline streanms, As Flynn [FlynM72, p. 21] has
observed:
++s» Thus the IBH Systam/360 Model 91 had execution
resources in excess of 70 HMIPS (million iastructions per
sec) while this was immediately restrictel at a maxinunm
instruction decode rate of 16 MIPS; further with an average
incidance of branch and data dependencies this was reduced

to b6 MIPS, Thus the discrepancy petween available
resources of 70 MIPS and average reguest rate of 6 MIPS,

If a machine has a high level interface language with a
program structure as described in section II,A.,, then most of
thasa2 difficultiss with the instruction stream can be
surmounted, By raquiring that all ©procedures be pure, the
I-anit <c<aan be relieved of th2 responsibility of supporting

write~-operations into prefastched instructions.,

22

Of grzater importance is the reduction in the number of
branzh instructions that need be encounter2i, While the
structurel programming aspects of the language can be justified
in user-oriented terms alon2 [DijkE68; DijkE706; ®illH70], they
have promising machine parformance implications. Language
coastructs suzh as those described in Figure 1 on page 10 can
convay valuable information to the processor regarding the
=ont2nt of an iteration, th2 number of times an iteration will
be perform2d, the extent of the true and fals2 clauses on a
conditional, etc. The miacaine can, in principle, wuse this
information to organize the us2 of 1its resourc2s and thereby

optimize its own parformanc=2.

I7TI.3.2. Def=2rral of Tactical D=cisions

A proslem that plaguss compiler based systems is that of
allocating unique machine resources at a level of detail that
rajuires overspecification. Th2 statements £frd>m a high level
language nmust bz mapped into a sequence of low 1level
instructions whica referancze specific machine registers and
storags locations. This is a complicated task to perforn, and
ganarally requires an optimiziny compiler to parfornm it well,
Fven than, what is "good cod2" for a System 360 Model 50 may be
inafficient on a Model 85, and vice-versa,. In fact, on high
parformance machines such as the 360/195 these a priori tactical

da~isions iare a severe handicap. As Chen [Chenl71a, p. 74] has

23

notei:

... a piece of proceiural language code retains a wealth of
job independence information, A FORTRAN statement
essentially describes a string of «causally connected

events; but adjacent statements are often locally
ind2p2niant of each other, and can be executed
concurrently., Yet ths2 conventional coapiling process

obscures causality, Th2 resultant machine instructions are
tactical pre2scriptions, imposing unrealistic causality
demanis (ons instruction at a time) and arbitrary facility
assigameats {"registar 2%, "address 32768"); they becloud
human understanding anl impede the debugginy process, and
are such potantial sources of computer in2fficiency that
machines are known to recoanstruct the orijinal statements
internally for better traffic flow.

A machin2 with a high level interface language may avoid this

problem sntira2ly., The programs that it interpr2ts can be free

from purzly machine-oriented constraints,

III.B.3. Algorithmic Encoding D2nsity

On a conventional machine, the high level 1language
oparations that manipulate non-scalar objects g=2nerally must be
implamant=1 by means of the r2petition (eithar iterative or
razursive) of some2 sequenc2 d>f low level instructions. Consider
tha addition of two vectors sith the vector sum ra2placing one of
the2 argument vectors, To b2 specific, consider a PL/I statement
of the form A=A+B where A and B are vectors of length n. As
Fijure 2 {page 25) indicates, there are four logical parts in
th2 program Lloop structur2 whica uanderlies such an operation.
Tha first of these consists of several setup instructioans which

ar> axecut2d only once at ta2 b2jyinning of the vac-tor operation,

24

ENTER

v
| e
{ Setup | Initialize registars for loop
f W — |
|
v
"""
r--=->} Scalar | 2.9., A{l) <- A(i)#*B (1)
| |Oparation]
; [W |
| |
] v
] | et |
1 jIncrement| 24gey 1 <- i+Lenjyth(A(1))
i] Index |
’ | I — |
| |
] v
] fo————————
t————jCondition} Loop until vectors have been
] Test | processed
| SRR ———
1
v
EXIT

Pigure 2: Conventional loop structure for vector operations

Th2 remaining thra2e parts, howsver, are iterited n times in
oriar to accomplish the operation in an element-by-element
fashion. Thus, a certain number of memdry references,
proportional to n, 1is ra2quirel for the purpose of fetching

instructions.

Figauras 3 and 4 (page 26) contain "optimal" System/360
implementations of the va2ctor addition and inner-product
oparations., These programs are optimal in the sense that they

ozcupy the fewest bytes possible and have the shortest execution

25

. | R3,R5, LOOPCTRL Setup for iteration

LOOP L R2,A(R3) Fetch A (i)
A R2,A(R3) Add 8 (i)
ST R2,A(R3) Replace A (i) with sun
BXLE R3,R4,L00P Loop until A{n) is processed
LOOPCTRL DC FeO? Initial valus for index R3
DC Fip? Limit value a=n*4-1
DC Fig? Increment
A DS nF Vector of fullword integers
3 DS nF Vector of fullword integers

Figur2 3: System/360 implem2ntation of vector addition

LA R3,R5,L00PCTRL Setup for iteration
SER F2,F2 Clear accumulator
LOOP LE Fi, A (R3) Fetch A (i)
ME FU4,B(R3) Multiply by 3({1)
AER F2,F4 Add to sum
BYXLE R®R3,R4,L00P Loop until A{n) is processed
STE F2,INNRPROD Store sum
LOOPZTRL DC FiD? Initial value for index R3
DC Fin? Limit value a=p*4-1
DC rge Increment
A DS nk Vector of short float
B DS nk Vector of short float
INNRPRID DS E Result of INNEEPRODUCT (A,B)

FIGURE 4: System/360 implementation of inner-product

time, They are somewhat unr2alistically efficiant in that they
assume convenient addressability to all the required data,
Naverthelass, instruction fetching accounts for over 57% of all
mamory references in the case of the vector adilition, and over

63% in the case of the inner-product,

26

A machine with a high level 1interface language, as
d2scribed in Section II, will not be burdened by this overhead
of repetitively fetching atomic instructions, Since 1its
opa2rators, such as ADD, ar2 builtin and automatically distribute
ovar vectors, only a singles "instruction®™ neel be fetched in

orler to parform the entires operation,

ITI.8.4, High Level Interlocking

As noted 1in Section III,.B.1., the presence of data
d=pendencies in the instruction stream results in a major
j2gradation in the instruction sxecution rate of a conventional
hign-performance wmachine [#41, pp. 31-34; FlyaM72, P. 21].
Elaborate schem2s, such as tha Scoreboard on the CDC 6600
{ ThorJd71; DennJd70], are rejuired to interlock storage references
in order to prevent conilicts (i.,e., with respect to a given
starage cell, to insure that no operation is interchanged with a

writz2 operation).

This problem will continue to exist on a high level
language machine but will be of a much smaller magnitude, For
on2 thing, most storage r2fz2rencaes made by a high level language
machine will be generated internially by the machine rather than
by the programmar, For =example, the programm2r's use of a
builtin operator applied to vector operands will result in the

machine generation of the numerous storage referznces that are

27

raquire2d to process the =2lements of the vector, Since these
raferancas are g¢enerated by a fixed algorithn that can be
dasigned t> be conflict fr22 (in the extreme casz2, a pipeline
s-henata may be used), the machine may issue these references
without the pburd2an of interlocking. 0f cours=2, interlocking
will still be necessary on a larger scale to prevent conflicts
amonjy the hign l=2vel operators., But the interlocking mechanism

will ne=2d to b2 used much less frequently.

IIT.C. Congucrent Error Honitoring

Hardwire reliability has increased manyfoll over the past
taa years ani 1is expected to continue to improve, This is
larg2ly due to davelopments in component tecanoldgy and the
introduction of sophistizated hardware-error Jdetection and

correctisn schenes,

Unfortunately, softwar2 has not experienced a sismilar
inprovement in reliability. Moreover, the complex operating
systams which have emerged since the days of IBSYS, and which
continue to =2xpand in scop2, place increasinj emphasis upon
r21iapility. It is now commonplace for a simpls malfunction in
ti12 systenm software to <crash an entire system with its many
sinaultan=souas usars. Yet, despite the apparent and grewing
crisis, no wilely-used ani general-purpose systa2am (e.J., 05/36C

or CP-67/ZMS) has overcom2 this problenm. It 1is generally

28

acknowledg2d that powerful programming systems, as we Know thenm

tnoday, are n2vear completely debugged,

A major reason for the unreliability of software 1is that
many common types of software errors cannot be detected
prictically on contemporary systems. If atl detectable
exacution-tims =2rrors ara2, ian fact, to be destected <c¢n a
convantisnal machine with a low leval machine language, then
same substantial fraction »f the machine's instruction execution
rate must b2 2xpenied continially upon error checking [a partial
axc2ption is the Burroughs B6700 family of machines which have a
15>% level machine languag2 that does reflect <c2rtain software
raquirements, particularly for block-structured laaguages, and
that 1is mora conducive to software reliability than other
contamporary systems, but that provides only a small degree of
2arror checking {2egs, instructions ani data are
distinguishable); see M5 and Orgag71]. This cost nust be
inzurrad ra2jyardlsss of th2 machine's internal organizaticn or
the technology with which it is implemented, As long as the
machine laaguage is low in l2vel, and hence does not coavey any
high lsvel language semantics to the machine, th2 machine cannot
emplny hardware techniques (such as parallelism) to efficiently
parform 2rror monitoring. Iasteiad, error monitoring can only be
parformed by m23as of tae addition of explicit machine
instructions which <consam2 some fraction of the machine's

compating powar, Virtually no general-purpdse progragming

29

systams eamaploy extensive run-time error checking because the

costs involved are unacceptable,

For =2xampls, consider th2 problem of detecting 1llegal
suds>ripting operations in 1 language such as PL/I. There are
basically two approaches that are used. Pirst, there is the
totally interpretive approaca as exemplified by CPS [#12]. 1In
~pg, all PL/I statements are interpreted by software and
subscripting errors are tharefore easy to detact and handle.
But the accompanying pe2rformance degradation 1limits the
us2falness of the syst2m to certain program development
activitioes, In particular, it is infeasible to use such a
systam as the basis for a frequantly executed operating system

or for computation-intensive application programs,

A sa2coni approach, waich is compiler orisnted, is to
parform subscript testing within a particular program only if a
program-checkout option was specified at «compil2 time [d11, PP
172-173]. This scheme is based upon the assumption that one
wcitss a program, fully debugs it using the program checkout
fazility, and then installs the debugged program with the error
tasts renovad, However, in practice, many non-trivial
programmingy bugs manifest tha2mselves days, or even years, after

a program aas besn in productive operation.

30C

In ordar to get a rough m2asure of the overhead involved in
parforming this type of arror checkxing on a contemporary
machine, sa2veral M"off-tha-shelf" PL/I (F) [M11] programs were
ran hoth with and without the compiler generatel SUBSCRIPTRANGE
anl STRINGRANGT tests, It was found that this simple type of
error checking was accompanied by a 15% to 179% increase in

program 2xecution time and a 68% to 97% incre2iase in progranm

size,

Although the compiler g2nerated tests were not as efficient
as hand-coi2d tests, they were reasonably good. Perhaps the
ovarh2ad could b2 reduced by at most a factor of two. However,
it should also be noted that the test case programs did not make
h2avy us2 of subscripting or string manipulations, Programs
that make extensive use of these facilities would undoubtably

inzur a higher penalty.

On a nachine with a high level machine language, this type

of arror i2tection could bz performed concurrently with the

actual computation that is b2ing nmonitored,

31

THIS PAGE INPENTIONALLY LEFT BLANK

32

Iv, HYPDOTHETICAL HIGH LEVEL LANGUAGE MACHINE

This section describes 1 machine which is designed for the
sole purpose of directly ex=2cuting a high level language of the
type described 1in Section IIL. Of necessity, miny details are
omitted., Som2 important topics such as object ownership and
parsistenc2 are not even addrassed, The details that are
providad are intended to illustrate the nature of the machine;
the specific values that are used for design parameters are
m=2int to b2 reasonable but y2nerally have not ba2en subjected to

svstem-wide tradeoffs,

IV.A., Gzn2ral Machine Organization

The proposed machine is a shared resourc2 multiprocessor
with a structure as indicated in Figure 5 (page 34). The
functions of each I-unit are to step through a linearized
ancoling of a program writta2n in a high level machine language,
to maintain the current stata2 of execution for that program, and
t> issue raguests for computation to the EB-unit and await the
r2sults, The E-unit services the computational needs of the
IT-units., It consists of a <collaction of specialized functional

units (FU's) which are centrally coordinated.

There are a number of re2asons for coupling the multiple

I-uanits %5 a common E-unit. First, ©because the builtin

33

- -1

Logic-in-N¥emory|

o s

Cache |
—— ——d
|
l
[It |
| E-unit |
| W — |
| I I
fe—————————1 1
| =3 lte———y |
| | | {
| S | === r——==773 ="
} I-unit| JI-unit| jI-unit] jI-unit
L b | i ——d | I — 3 | I » |
| | i |
1 | | |
r—————= 3 =777 1 3 T i |
{Cache2 | jCacha | jCache | jCaches |
| N— | i —_— i F] i 3

Figure 5: High level language machine structure

op2rators are num=2rous and complex, an E-unit is necessarily
quit2 larga. Furthermore, most of the FU's (such as the FU's
which perform ths wmatrix inversion, square root and index
oparations) are used irregyularly. Thus, it is unreasonable to

dadicate a complete E-unit to each instruction stream.

Second, the E-unit operations need to be interlocked 1in
orlar to prevent conflicts, If multiple E-units were used, they
wonlil not really be independant, but would need to be centrally

cooriinated anyway.

Third, and lastly, ths E-unit for a high 1level language

machine can accept reguests at a3 much higher rate than 1t can

34

po3sibly complete them -- this familiar pipelining phenomencn is
accentuated by the more substantial operations that are builtin

on such a machine,

The interface between the I-units and the E-unit may be
either synchronous or asynchroaous, Attractive approaches have
beaan iavestigated by Flynn FlynM72]} and by Plummer [PlumW72].
It appears that the synchrony or asynchrony of the interface
protocol 1is not ssnsitive td> the use of a high level machine

language.

Underlying the processor 1is a one-level storage systenm
whicn provides an effectively inexhaustable number of uniquely
nimed spacas, Each spac2 consists of an orderzd set of fixed
length «cells (16 bits per zell) which are consecutively
addresssed., If the space nanmes are 48 bits in length, then up to
2.3#1014 distinct spaces may be addressed without needing to
rans2 space2 names. At a space (Jeneration rata of one space
evary five microseconds, the machine <could run for about 39
y2ars before running out of unigue names, Spaces created for
th2 purpose of holding wmachine generated temporaries are not
implemented in the one-level storage systea, and do not

contribute to the coasumption of space names,

Fach I-unit has its own cache store as an interface tc the

storage hierarchy., Since all programs are read-only, these

35

cach2s ar=2 unidirectional and are not interlocked, either with
23zh othar or with the activity of the E-unit. The E-unit cache
possasses logic-in-memory cCapapilities and 1is organized 1in

sectors [as described in StonH70 and ThurK70].

Fach obj2ct stored within the system consists of a space
which contains a descriptor and an associated value. As shown
in Figqure 5 {page 37), the da2scriptor specifies the object type,

structure and acc2ss constraints, For aggregate objects, it

also spacifies the object rank and dimensions.

IV.C. Asp2cts of Program Interpretation

There are three tamporal phases in taz process of
interpreting a machine langjuag2 program on this hypothetical
machine: a translation phase in which the <character string
repra2sentation of a program 1is used to generate a PROGRAH
snjest, an activation phase in which a PROGRAY object and an
ENVIRONMENT object are us2di to generate an ACIIVATION object,
anl an =execution phase in which an ACTIVATION object is
ax2cated, This s2c-tion discusses several key aspects of these

diffarent phases of program interpretation.

36

AAAA

BBB

DDD)

FFe oW T

VVeeoV

Bit: 0123456789ABCDEF

Cell O |AAAABBBCDDDDEEEER]

o :
Ca2ll 1 |FFFFFFFFFFFFFFFF|

- —

4
B]
Cell 2 |G35G6GGGEGGGGGGGG]
: |

Cell 3 |GGGGGGGGGGGGGGGH]

o 3
Cell n JVVVVVYVVVVVVVVVV|
bommmmmmm e 4

Object Type: Undefined, Logical, Integer,
Real, Complex, Character, Label, Systenm
or Mixed

Object Structure: Uandefined, Scalar,
Vector or Array

Value Prasent Flag

Obj=ct Access Constraints:
0000 - unconstrained
0001 - value constrained
0012 - type constrained
0100 - rank constrained
1000 - 3imension constrained
1100 - structure constrained

Object Descriptor Extension

Optional rank field (present for arrays)

Optional dimension fields {(present for
vectors and arrays, field repeats for

arrays)

Value encoded in as many cells as
requirad

Figur=2 6: Internal repr2sentation of an object

37

IVv.C. 1. Program Representation

A PROGRAM object, which 15 an object of type SYSTEH, 1is
cr2atel by applying the TRANSLAT'E operator to 1in operand which
evaluates to a character striny object whose value denotes a
program. If errors are detected in the source program during
translatisn, then the TRANSLATE opesrator signils appropriate
excaptions, This allows th2 program that invok21 TRANSLATE to

dezile whether to continu2 or to abort the operation,

As Figure 7 (page 39) 1illustrates, a PROGRAM object 1is
coaprised of five elements, The first 1is a copy of the
caaracter string object from which the PROGRAM object was
darived., The second, a TEXT objact, is an object of type SYSTEHN
which contains an encoded linearization of th2 program tree,
Th=2 third, a LINKAGE object, is also a SYSTEM object. It serves
as a linkage vector for binding nonlocal symbols. The fourth, a
SY¥BIL object, is a SYSIEM object which servas as a symbol
tabla, containing such information as the symbolic names for all
toke2ns 11 the TEXT object, And the fifth component is a
boundary address (8DY) which is wused to distinguish Dbetween

lozal and nonlocal symbol references.

An object of singular importance is the TEXT object, which
spacifies the actual algorithm to be performed in the course of

exz2cuting a2 given prograa, It consists of an ordered set of

38

Bit: 0123456789ABCDEF

T 1
Cell 0 101110101111100001
- ———1
Ca21lls 1-3 { ptr. to SOURCE |
e 1
Cells 4-6] ptr. to TEXT]
- —4
Ca21ls 7-9 { ptr, to LINKAGE]
-y
Cells 130-12 | ptr. to SYHBOL |
| o 4

Cells 13-15 | boundary (BDY) |
| . ——

e d

Figur2 7: Internal repr2sentation of a PROGRAMN object

elam2nts that are either operand pointers or TEXT tokens of the
form shown in Figure 8 (page 40). Figure 9 (page 41) contains
an examplz of a TEXT object {(notz2 that this object has undergone

syabol resolution; i.e.,, it is part of an ACTIVATION object).

IV.C.2. Program Activations

The builtin ACTIVATE operator is used to «create an
ACTIVATION object given 1 PRIGRAM object ani one or more
ENVIRONMENT objects. It accomplishes this operation by making a
copy of th2 PROGRAM object and then manipulating the new object
in a privileged way. Its functions 1include allocating an
"activation area™ of storage, storing the area aidress into the
hiyh ord=ar 35 bits of BDY, creating the reguirad instances of
lozal symbols in this "activation area", bindingy operands to

program symbols, and resolviag nonlocal symbols by searching the

39

BB -

Figure B8:

Bit: D123456789AaBCDEF

Builtin/Defined Flag

This flay 1s set to 1 by the symbol resolution
mechanism (#hen creating an ACTIVATION) if this
symbol resonlves onto a builtin operator. Hlence,
during ex2cution, builtin operators are
immediately s=21lf-identifying.,

Jperand D2signator

70 - no operands (symbol is niladic)
21 - one operand (symbol is monadic)
10 - two operands (symbol is dyadic)

and first operand has no operands
11 - abitrary number of operands

This field indicates the number of operands
that are actually being passed to the symbol.
(It does not indicate the number of cperands
that the symbol will accept; symbols may
canose to accept varying numbers of operands)
Its purpose is to reduce the number of

operand pointars that are required.

Token Offsat

If this offset is greater thanm tae low order
13 bits of BDY {in the ACTIVATION obiject),
then this offset points to an entry in the
nonlocal symbol LINKAGE object; else this

of fset, when appended to the hijh order 35
bits of BDY, coanstitutes the spice name of
an object that 1s local to this ACTIVATION,.
A program may r2ference up to 81392 distinct
objects,

Internal Represantation of a TEXI token

40

Source program:

(ASSISN X (SUM Y (PCN1 (MAX X Y 2)

Corresponding TEXT object:

Bit:

312 3456739ABCDEF

- - T T =3

121171010111110001]

j110] *ASSIGN' |

1300] X |
- - ———1|
11101 tsgne i
|-—————————
10004 Y i
......_..._...___._..--.._.!
12114 PCN1 |
| ———————— e e e
| 2 |
| - -——1
] 5 1
i- - -1
11114 *MAX Y i
|-
] 3]
-]
| 3 |
l-————————q
| 3 |
“““""“““‘_i
1000} Fe |
___-___-_--—---_-3
13090 Y |
| -————————————]
1000} VA |
|-
§100 1] FCN2 |
|-
1000} b4 }
RS |
Figure 9:

Contains

(FCN2 Y))))

object descriptor

builtin
niladic
builtin

niladic

dyadic opcode
reference
dyadic opcode

reference

n-adic reference

operand
operand
builtin
operanid
operand
operani
niladic
niladic
niladic
monadic

niladic

Example of a TEXT object

pointer
pointer
n-adic opcode
pointer
pointer
pointer
reference
reference
reference
reference

reference

41

ENVIRONMENT objects in the seguence provided (each ENVIRONMENT

object may also specify a successor ENVIRONMENT object).

IV.C.,3. Program Execution

An ACTIVATION may be =2xecuted by the application of the
builtin EXECUTE op=2rator. The execution of a program involves a
number of activities in th2 I-unit and E-unit portions of the

machine,

The I-unit is envisioned as consisting of three major parts
which operate under <central control: a token fetch unit, a
linkage f2tch unit and an instruction assembler., The token
fatch unit has its own cache from which it reads (in a highly
sa2jqua2ntial manner) the tokasns that are contained in the TEXT
object component of the program, It is eyguiped with hardware
stacks so that it may conveniently recurse when walking its way
through th2 program in a top down fashion., Th2 1linkayge fetch
unit realds th2 contents of the LINKAGE object component of the
program in order to obtain the space name of an object to which
a nonlocal symbol has besn bound, The instruction assembler
bailds 1ogical instructions for the E-unit by collecting an
opcode and a list of the space names for its oparands. It then
issue2s the 1logical instructions to the E-unit and awaits the
r2vly, which is either th2 spac2 name of the r2sultant ob ject,

or an exception,

42

