
Mobi: Automatic Customization of the Mobile

Web

by

Richard W. Chan

MASSAHU~FS INS T Ui
O F TE C H NOLOG Y

AUG 2 4 2010

LIBRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2010

© Massachusetts Institute of Technology 2010. All rights reserved.

A u th or
Department of Elec gineer an o puter Science

May, 2010

SA

Certified by
Robert C. Miller

Associate Professor
Thesis Supervisor

Accepted by.
' A{rthur C. Smith

Chairman, Department Committee on Graduate Theses

ARCHIVES

2

Mobi: Automatic Customization of the Mobile Web

by

Richard W. Chan

Submitted to the Department of Electrical Engineering and Computer Science
on May, 2010, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Mobi is a system that automatically rewrites web pages into formats optimized for web
browsing on mobile devices. The system estimates heuristically which parts of a web
page's content users are most likely interested in, using previously recorded history
of user actions on the Web. By doing so, Mobi is able to remove the unnecessary
portions of the web page and rewrite it in a format more fitting for the mobile device's
form factor. Mobi accomplishes this by having a proxy server inject a client-side script
onto web pages. The script examines previously recorded user actions related to the
web page it is injected onto and rewrites the web page accordingly. The design and
implementation of the system are described, as well as an evaluation over a variety
of web pages.

Thesis Supervisor: Robert C. Miller
Title: Associate Professor

4

Acknowledgments

I would like to thank Rob Miller for his advice and support throughout the project.

This thesis could not have been completed without him, and I am extremely grateful

for having him as my research advisor.

I would also like to thank all the members of the User Interface Design group for

their feedbacks over the designs of Mobi, and especially Chen-Hsiang Yu and Igor

Kopylov, for contributing many valuable ideas and advices.

Special thanks go to my friends at MIT, who make hunting for free food and

sleeping late at night (or not at all) feel like the norm.

Lastly, I would like to thank my family for always being so supportive and encour-

aging throughout the past few years at MIT. I cannot imagine how life would have

been without them.

f6

Contents

1 Introduction

2 Related Work

2.1 End-User Customization

2.2 PageTailor

2.3 Project Joey

2.4 Highlight

2.5 Creo and Adeo

2.6 Mobile Transcoders . . .

3 Design

3.1 Early Ideas

3.2 Design Prototypes

3.2.1 Enlarge in place

3.2.2 Copy to top

3.2.3 Deleting irrelevant content

3.3 Design Decision

3.3.1 Mode change between customized view

3.3.2 Dynamic interfaces

...

...

...

..

..

..

and full page view

.

4 Implementation

4.1 C ustom izer .

4.1.1 Removing irrelevant elements from view

7

13

17

17

18

20

20

22

22

37

37

38

4.1.2 Labels and captions . 40

4.1.3 AJAX and Dynamic changes 41

4.1.4 Mode change to full page view 43

4.2 Action Recorder . 43

4.2.1 Heuristics for recognizing relevant contents 43

4.2.2 Applying action history data 46

4.3 Proxy Server and Script Injection . 46

4.4 Implementation on Mobile Browsers 47

4.4.1 Compatibility Issues . 47

4.4.2 Zooming functionalities . 47

5 Evaluation 49

5.1 Results. 50

5.1.1 aa.com . 50

5.1.2 google.com . 51

5.1.3 wikipedia.org . 53

5.1.4 webmail.mit.edu . 54

5.1.5 facebook. com . 56

5.1.6 expedia.com . 58

5.2 Summary . 59

5.3 Discussions . 59

5.3.1 Limitations . 59

6 Conclusion 63

6.1 Contributions . 63

7 Future Work 65

7.1 Further developments . 65

7.2 User control . 66

7.3 Browser capabilities . 66

7.4 User behavior data . 66

List of Figures

1-1 Comparison between rendering a web page (http://aa.com) on a desk-

top versus on a mobile device. 14

1-2 High-level overview of Mobi's architecture. 16

2-1 Platypus's toolbar on Firefox. 18

2-2 Platypus's Editing mode. 18

2-3 PageTailor's toolbar on a PDA. 19

2-4 An example of a web page after being customized with PageTailor. . 19

2-5 An example of how Highlight records and creates a mobile version of

a website while user is interacting with it. 21

2-6 Menu for accessing and playing back a recording on Adeo. 23

3-1 Prototypes for the enlarge-in-place customization, labelled by their ratios. 29

3-2 Prototype for the copy-to-top customization. 30

3-3 Prototype that customizes the page by hiding everything except for

the relevant content. 31

3-4 Customized version of aa.com created by the Mobi system. 33

3-5 Example showing how user interactions may continue uninterrupted

between mode changes. 34

4-1 Illustration of the implementation for hiding irrelevant elements by

traversing through the document's DOM tree. 39

4-2 Illustration showing which ancestor nodes must have their CSS style

changes undone when two relevant nodes overlap as the result of the

style changes. 40

4-3 Illustration showing the area under which the Customizer looks for

label elements for a text box. 41

5-1 Evaluation of Mobi running on aa.com, showing the elements marked

as relevant and the corresponding customized version using this data. 50

5-2 The search interface on google.com, with elements determined to be

relevant marked in green. 51

5-3 google.com's interface after applying Mobi's customizations. 52

5-4 The search and article interface on wikipedia.org, with elements deter-

mined to be relevant marked in green 53

5-5 wikipedia.org's interface after applying Mobi's customizations. 54

5-6 The interface on webmail.mit.edu for viewing and composing emails,

with elements determined to be relevant marked in green. 55

5-7 webmail.mit.edu's interface after applying Mobi's customizations. . . 55

5-8 Evaluation of Mobi running on facebook.com, showing the elements

marked as relevant and the corresponding customized version using

this data. 57

5-9 Evaluation of Mobi running on expedia.com, showing the elements

marked as relevant and the corresponding customized version using

this data. 58

List of Tables

4.1 Different cases of changes on the DOM tree. 42

5.1 Summary of evaluating Mobi over different web sites. 60

12

Chapter 1

Introduction

Browsing the Web on mobile devices has become very common in recent years.

Thanks to advances in technology, smart phones today enjoy faster network speed

and processing power, allowing for increasingly sophisticated web browsers to run.

However, the mobile web browsing experience remains highly impeded due to their

limited screen size and difficult input methods. Web applications designed for the

desktop browsers are therefore often unsuitable for mobile devices.

To alleviate this problem, some websites are beginning to provide mobile versions

of their applications. However, the wide variety of functionalities and form factors

in different mobile devices makes it impossible for developers to create designs satis-

factory for all mobile users. Because of that, many web sites designed their mobile

versions for the least functional devices and are therefore significantly less usable or

functional than their desktop versions. Alternatively, if developers wish to make use

of the full powers of various devices, a different design will have to be created and

maintained for each device: the high cost of which makes it infeasible for most web

sites.

This thesis describes Mobi, a system that automatically reformats web pages into

versions optimized for mobile browsing. Mobi heuristically look for parts of web

pages that the user is most likely interested in and removes everything other than

the relevant contents from view, providing a stripped down version of the page. The

user may also switch back to the original version of the page if the algorithm removes

Figure 1-1: Comparison between rendering a web page (http://aa.com) on a desktop
versus on a mobile device.

elements the user wishes to interact with.

By removing irrelevant contents from the web page, Mobi increases the user's

efficiency in finding, viewing and interacting with the contents he is interested in.

While some browsers today may have advanced zooming and panning capabilities, it

is still very difficult to interact with a web page that needs to be rescaled to at most

1/3 its original size for it to fit in a mobile device's viewport. For example, a textbox

originally 20 pixels by 100 pixels in size will be 6 pixels by 33 pixels on the screen. In

order to click on the textbox, the user will have to look for something makes up for

less than 0.2% of the screen (assuming dimension of an iPhone browser's viewport)

and zoom in on it until it is big enough on the screen to be clicked on. By reducing

the amount of contents on the screen, Mobi makes it significantly easier for the user

to access contents he is interested in.

To maximize learnability, Mobi keeps the layout and styling of the mobile version

as consistent to the original page as possible. This allows users who are familiar with

the desktop interface already to make use of a familiar interface rather than having

to learn using a completely different design, as is often the case for web sites that

provide mobile versions.

- - . - V .. - - - - - - - I - - - - - - - - t

Mobi is implemented by having a Customizer script that is injected onto all web

pages the user accesses. In order to do so, a proxy server is set up so all requests to

the web routed through the server will have the script injected. As such, the script is

written in JavaScript and may run on any mobile browser that supports JavaScript

and proxy connections.

The method for assessing relevance of the contents on a web page uses knowledge

about users' actions in the past. For instance, if the user always only uses a certain

textbox on a web page, the textbox will be considered highly relevant. In order to

collect this data, Mobi also has an Action Recorder that resides in the user's desktop

browser. The recorder is implemented as a browser extension in Firefox, created

using Chickenfoot [7), itself an extension that enables end-user programming. The

Action Recorder collects data over all clicks and interactions on web pages, as well

as data about how long certain elements had been within the user's viewport. Data

collected by the Action Recorder are pushed to the proxy server, allowing access from

the Customizer script.

By using action history as the basis of the algorithm, Mobi allows for mobile

versions of web pages to be generated automatically without explicit instructions from

the user or developer of the web pages. Unlike systems that provide end-user mobile

customizations of web pages such as Highlight [131, Mobi does not require the user to

explicitly define and configure mobile versions for each web application. Every web

page visited by the user previously on the desktop will have a corresponding mobile

version automatically in Mobi. Furthermore, for web pages that haven't been visited

before, if the user has accessed another web page within the same web site that has

a similar structure, Mobi will apply the algorithm using data from that page.

The remainder of this thesis covers the design and implementation of Mobi. Chap-

ter 2 describes related work in the area of customizations of the mobile web. Chapter

3 discusses the design of the mobile customizations. Chapter 4 covers the details of

the implementation. The results of running and evaluating the system over a variety

of different web sites is given in Chapter 5. Lastly, Chapter 6 concludes the findings

in this thesis and discusses future works on and related to Mobi.

Desktop

ustens to Action
user actions Recorder

-11111111. Lsaves to
assas DgAY

Proxy Server

*WOO

mobile web browser injects --

I L

Achon
H.stry

uses

Customizer

Mobile

Figure 1-2: High-level overview of Mobi's architecture.

................................

-- N

IMoule I---

Chapter 2

Related Work

There are several projects in the domain of providing customizations of the web to

mobile as well as non-mobile devices. The chapter discusses these projects and how

they relate to the motivation and development of Mobi.

2.1 End-User Customization

End- User Customization is a technique for allowing end users of various applications

to modify the interface they see. Several projects currently exist for enabling end-user

customizations of the web on the desktop environment, such as Greasemonkey and

Chickenfoot.

Both Greasemonkey [2] and Chickenfoot [7] [11] are toolkits that empower users

to write scripts that change the appearance of web pages in the user's browser.

JavaScript code may be written to match certain URL patterns and runs after the

web page is loaded. To be more specific, Chickenfoot provides a sidebar in Firefox

that allows users to create triggers in JavaScript code and configures which pages

they should be applied on.

In essence, this type of system gives users complete control over the appearance

and function of the interface of the web pages they see. However, they also require

the users to be knowledgeable about JavaScript and HTML to program these cus-

tomizations. The Platypus [3] extension seeks to provide a What You See is What

~~(h~ m _V1 a S ±
Help Save Quit Repair Cut Paste Isolate Erase Relax Make BW Center Fix Page Remove Set Style Modfy URL Modify HTM Insert HTML View Source

Figure 2-1: Platypus's toolbar on Firefox.

and Mozilla's technologies supported user mediation in a transparent and usetul way.

Platypus is a Firefox extension which lets you modify a Web page from your browser - "What You See Is What
kou Get" - and then save those changes as a Greasemonkey script so that they' be repeated th- rext time you
visit the page. Editing pages to suit your needs is dandy - but making those changes "permanent" is-the real
3ayoff.

Some of the things you can do with Platypus include:

Figure 2-2: Platypus's Editing mode.

You Get (WYSIWYG) graphical interface to Greasemonkey for allowing users to cre-

ate customizations visually to make it easier for non-programmers to create end-user

customizations. It provides functions such as erasing certain elements in the page by

clicking on a button in the toolbar it adds to the browser, and selecting the element

on the page to be erased. Functions such as moving and changing sizes of elements

are done similarly.

While these approaches succeed to various degrees in providing end-user cus-

tomizations on desktop browsers, they are not easily applicable to the mobile en-

vironment. The text-based development environment employed in Chickenfoot and

Greasemonkey are significantly more difficult to use on a mobile phone, due to the

small screens and less convenient typing methods offered by the small built-in or vir-

tual keyboard. Similarly Platypus's graphical approach is also difficult due to the

need to directly manipulate elements on the page in a small screen.

2.2 PageTailor

PageTailor [6] is a prototype end-user customization system that allows users to

create customizations of web pages directly on the mobile device. As an extension to

the Firefox-based Minimo mobile web browser, PageTailor adds a toolbar interface

similar to the one provided by Platypus, offering functions for removing, rescaling, and

moving elements on the screen. Similar to Platypus, the user may directly manipulate

...................

* Remove Increase q Decrease g Move Undo Done

Figure 2-3: PageTailor's toolbar on a PDA.

Figure 2-4: An example of a web page after being customized with PageTailor.

certain elements on the page and PageTailor will translate the user's customizations

into operations for modifying the Document Object Model (DOM) of the web page.

Due to the need for the user to directly specify and create customizations, users

only benefit from PageTailor in their subsequent revisits to the web page. In order to

not have the user repeatedly edit the page every time he visits a web page, PageTailor

stores customizations into persistent storage on the mobile devices and reapplies the

customizations when the user visits the same page again.

The editor toolbar interface provided by PageTailor, while intuitive to use, is still

fairly inefficient due to the form factor and input methods of a mobile device. Even

with the ability to reapply customizations created previously, PageTailor requires the

user to essentially design customizations for every page that they haven't previously

visited on the mobile device. Changes on web pages also interfere with its ability to

..............

reapply customizations. To mitigate this problem, several projects seek to make use

of the desktop environment in creating customizations.

2.3 Project Joey

Mozilla Labs' Project Joey [4] is a project that allows users to create mobile versions

of web pages by selecting portions of web pages, such as text clippings, pictures,

videos, etc. Project Joey includes a Firefox extension that runs on the user's desk-

top Firefox browser. The user may specify parts of a web page to be clipped and

upload specification regarding that clipping to the Project Joey server. When the

user browses to the Project Joey server, he may then see a list of clippings previously

created and view those clippings.

Unlike PageTailor, Project Joey makes use of the desktop environment as the

development platform for creating customizations, which are then applied on the

mobile devices. This approach provides the accessibility of the desktop environment

to the editing process of creating end-user customizations.

2.4 Highlight

IBM's Highlight [13] project is a programming by demonstration system that allows

users to create customizations for their mobile devices on the desktop. Highlight

consists of an extension on the user's desktop Firefox browser and a proxy server that

the mobile device access the web behind.

To specify how a web application should be customized using Highlight, the user

can open the Highlight designer on the Firefox browser and continue interacting with

the web site normally. Highlight keeps track of the users interactions in what they call

traces of the user actions. Highlight then attempts to generate a mobile customized

version of the application that supports the recorded user interactions. The user may

also manually modify the customized version generated by Highlight directly in their

designer interface.

Storyboard

Preview _
Browser ,'4"41

." .. th Itxi-0%-

Pil 1414 1~ il

Figure 2-5: An example of how Highlight records and creates a mobile version of a
website while user is interacting with it.

To view the customized mobile versions on a mobile device, the user configures

their mobile browser to access the web via a proxy server set up by Highlight. The

proxy server itself contains a full-fledged Firefox browser. As the user visits different

web pages, the in-proxy Firefox browser loads these pages. If customizations had

been previously configured for these pages, these customizations are applied onto the

web page rendered in this browser. The server then forwards this mobile-customized

version of the web page to the mobile browser.

Using this approach, Highlight allows users to easily create customizations of

web pages mainly by demonstrating how the web pages should be interacted with.

Manual modification of the customizations are also relatively easy due to the desktop

environment.

However, Highlight still requires the user to explicitly define customization for each

web page. In other words, for each web page that the user wishes to be customized

when they visit it on a mobile device, he has to open up Highlight and asks it to

record his actions on the page. One of the main goals in Mobi is to provide a method

for customizing web pages without the need for user intervention.

2.5 Creo and Adeo

Creo and Adeo [9] [8] are also a programming by demonstration system, but with a

focus different from that of Highlight. Instead of focusing on customizing the interface

of a web page, Creo and Adeo seek to provide a way to automate repetitive tasks on

mobile devices.

Creo is a plug-in on the desktop Internet Explorer browser. The user starts by

opening Creo and starting its recorder when he wishes to record a certain task. By

monitoring user actions in the browser, Creo saves them into macros that may be

replayed in the browser. To make these tasks generalizable Creo also looks at the

user inputs and attempts to generalize them into their associated categories using

Miro (a data detector that uses MIT's ConceptNet and Stanford's TAP databases).

After saving these macros in Creo, the user may then open the Adeo program

on their mobile device, which will connect him to the desktop running Creo. When

asked to run a certain macro, Creo will play the macro on the desktop and return the

results to the mobile device.

While Adeo and Creo have a somewhat different focus from the goal of Mobi, they

produce interesting findings on the type of automations that may be generated for

the mobile web using a programming by demonstration system.

2.6 Mobile Transcoders

Mobile transcoders share a similar goal with Mobi in that they are designed to auto-

matically convert web pages into version fitting for a mobile device. However, these

applications focus mainly on making web sites function on low-end devices. In other

words, transcoders generally work by removing everything from a web page that

requires advanced browser functionalities.

B ise :c t.ecome to 'earby Piza
Browetc C) Or

] Browse t: Buc vour Pizza

] Browseto De vey fcoimm on

Subvi kex Faacg 22Aves reet Carndge. 32142 617-899-5064. S2
Submt -4ex. Fa r 555-5555-5555,55 C5 05.

j ins b> dso ayng Leain the Demo

Figure 2-6: Menu for accessing and playing back a recording on Adeo.

Google Mobilizer, for example, is a transcoder that is built into Google search

results that enable low-end smart phones to view web pages even if the web pages do

not provide mobile versions compatible to these phones. It works mainly by removing

many potentially unsupported CSS styles, as well as all the JavaScript code embedded

on web pages.

Unlike mobile transcoders, instead of focusing on compatibility, the design of Mobi

focuses on maximizing efficiency and usability of web pages on mobile devices.

Adeo Mobile C '71|

24

Chapter 3

Design

Mobi is designed to require as little user intervention as possible. In other words,

after setting up the Recorder on the desktop and the proxy connection on the mobile

browser, no further configuration will be necessary. As such, the interface is designed

to be as learnable as possible. Furthermore, minimalism is highly important due to

the small screen on a mobile device. Overlays on the mobile browser included by

Mobi must therefore take up as little screen real estate as possible.

This chapter describes several early ideas about the type of transformations to

be applied, as well as several prototypes and design decisions of the implemented

version. The following discussions assume that Mobi is able to evaluate and assess

the relevance of various contents on a web page using the data from the Action

Recorder. Section 4.2.1 describes the algorithm for assessing content relevance.

3.1 Early Ideas

The design starts off with several early ideas regarding what kind of transformation

techniques should be applied so as to:

1. Maximize efficiency in accessing relevant contents. For example, the need for

zooming and panning to look for contents should be reduced as much as possible.

2. Retain a sufficiently similar look to the original page. This way, user who had

used the desktop version in the past can adapt to using the customized version

without having to relearn an unfamiliar interface.

Zoom and pan

The first idea considers zooming and panning to contents that are most likely inter-

esting to the user. This reduces the need for the user to find the content and therefore

improves the efficiency in accessing that content. However, it is likely for a page to

have contents that are relevant to the user in different locations of the page. In other

words, if the user wishes to access contents that are not heuristically assumed to be

the most interesting, he will not be able to enjoy any improvement.

Copy to top

This idea considers the possibility of copying the most relevant contents to the top

of the page. The user may then prioritize checking contents at the top of the page

and only look at the rest of the page if he cannot find what he is interested in. While

this offers higher efficiency since the user will only have to look at the top of the page

most of the time, there will now be multiple copies of the same contents on the page

and may potentially confuse the users. Furthermore, having multiple copies of the

same elements in the page will likely interfere with the functions of the web page.

Deleting irrelevant content

This idea is perhaps the most aggressive technique. By deleting all content other than

the most relevant contents in the page, this produces the least amount of contents in

the page and makes finding contents in this view the easiest and most efficient. How-

ever, this also makes it impossible to access items that were not considered relevant

by Mobi's heuristic algorithm.

Enlarge in place

Enlarging elements proportional to their assessed relevance ratings is another method

for making relevant items more visible to the user. This method has the benefit of

potentially retaining the same layout of the original page.

Snap-on panning

To minimize the amount of changes to the look of the page, we considered the tech-

nique of modifying the panning speed to make it easier to pan to relevant items. To

be more specific, the browser may slow down panning speed when the viewport is

close to relevant contents and increase panning speed when the viewport is close to

relevant contents. This way, it becomes much easier to "snap" onto relevant items

in the page. This method has the benefit of being able to not modify the styles and

layouts of the page at all.

3.2 Design Prototypes

Of the early ideas considered above, three were chosen for testing and prototyping. In

order to better assess the feasibility of these techniques, several prototypes were made

prior to implementation. The computer prototypes discussed below were created by

modifying screenshots of websites, adding basic simulated interactivity, and viewing

these modified images on a mobile device. The sections below also include discussions

of potential implementation challenges discovered during the prototyping process.

3.2.1 Enlarge in place

Prototypes for the enlarge-in-place technique are shown in Figure 3-1. The prototypes

use aa.com as the web page to be customized, and assume that the most relevant

contents are the forms on the right used for searching for tickets and checking flight

statuses. As mentioned before, the enlarge-in-place technique increases efficiency for

accessing the relevant contents by making them more visible than the other contents

on the page.

Several prototypes are created with different ratios in order to assess what ratio is

best for the enlarge-in-place technique. We also considered the possibility of letting

the user change the ratio by including a slider on the page that allows the user to

select a ratio dynamically.

In the process of creating these prototypes, we discovered challenges regarding

how to best apply this technique. As seen from the screenshots in 3-1, it is difficult to

maintain the look of the page while enlarging certain elements in the page. Elements

that are not enlarged, for instance, may be pushed aside by the enlarged items, in ways

much different from how the original design expected. Furthermore, transformations

via current versions of HTML and CSS do not yet allow for enlarging and rescaling of

elements in a web page. Implementation of this technique will therefore likely require

writing a very customized mobile browser with these functions.

Figure 3-1: Prototypes for the enlarge-in-place customization, labelled by their ratios.

Secure
Flight

... 1:1

1:1.

- 0ft VM4W

T.1 L W am D

- een, . Dr -. A .moen

mm em semcn

To" * o MTh ing

T *W 1--:
de Tw
Tody . Mm

smm -mamm

1:3

...........

3.2.2 Copy to top

An example of the prototypes made for the copy-to-top technique is shown in Figure

3-2. By placing the relevant contents (the two input forms) in the top of the page, we

may configure the browser to zoom in onto the top of the page when the page loads,

giving user easy access to the most relevant contents on the page. If the user wishes

to access the rest of the page, he may simply pan to the bottom.

* Round-Trip One-Way My & C! 1 in

from Loam W " Date

_Moth Day - Moning -
TO: Loolt Retumt Date

Month - Day - Aftettoon

AirportWtO 0 Mats . Search By
Price & Schedule <Enhanced

Passengers 1- A Schedule

Promotion Code

My Dates areFexdble
M Advancedt Search
Cabin Ptefesoc Children. Coudrv of Residence

Ror Loo1 To Look1o Flight Number

Date: Tim:
Today . Momning

Secure

Flight

Pootton Code

e-o tArnwcanDkts IMy Dates we Flexible
f' 8 Advanced Search

eCab Preference Chidren Counityof Residence
Fare Sale Alerts _______________

a rbo, FL B &j0 Restnctions F t L To tf ett.a

Tampa, FL W
to G o rs Harbou, Bahamas Djjl R r-

Santa Fe, NM Today .Rorncog

to Los Angeles, CA

EdC Login to Vet AAdvatg Balanoes Other AccountPe~eence
*Fae shoaeehay basedo ound-trip
prcase Taxes, tees andO condibonst appl Nod a aad test

AAdvaage PassWd Enrcimed!l"
AA News and Offers L... a.m bens

S Chanioes To Inte na And Domestic v Adaage NTnber on ths computter for my next

at MeLot America And Caribbe
Checked Owt Loodotots

0 Facebook, Twdter And Amentca Awetes

vie AN Ntews View As Offers

Password Help
Trouble sgg in? Need a new password?

View the Frequntly Asked Questtons

W DOS et19%deC Ir l ren Esaled

A!'!L _T. eh AA Careers I~prg g t R AQ(LQ ,jY I Qs mjSr _eP13L|Br1e. omab U3,treshj

A j~ ffi

Figure 3-2: Prototype for the copy-to-top customization.

As mentioned before, this has the negative effect of having multiple copies of the

R otatd-Trip ' onewWay My~g

from Lao lartue Date
Mot - Day , Morning

To: Laelg Reum Date:
Moth - Day - Afteroon

Airports hOin 0 miles . Sach By
Price & Schedue < Enhanced

Passengers 1- Schedule

211 0 eass now

eAw tt 1

same contents on the page. It is uncertain as to what would happen if the user is to

interact first with the contents at the top, and then interact with the other copy on

the screen. For instance, in Figure 3-2, the user may fill in the From field in the form

on the top of the page and then continue to fill in the To field in the original copy.

One potential mitigation is to have the contents on the top of the page be a mirror

image of the original content. For instance, we may watch for all events on the mirror

image in the page and apply the same actions onto the original copies. However,

having duplicates of the same content on a user interface is not ideal.

Another complication comes from the low learnability of this interface. Users who

are not aware of what this prototype is supposed to do have trouble figuring out what

it is doing. The contents on the top of the page look like they are a part of the original

interface and can potentially confuse users.

3.2.3 Deleting irrelevant content

4Round-Thp Cone-Way MuLCit E] 1 1

Espalol
From: Lookup earture Date:

Month - Day Morning

To: Lookup Return Date:
Month - Day ' Afternoon

Airports Within 0 Miles - Search By
Price & Schedule < Enhanced

Passengers: 1 w Schedule

Promotion Code

My Dates are Flexible
+ Advanced Search

Cabin Preference, Children, Country of Residence

From: Lookup To: Lookup F gh Number:
and/or

Date: Time:
Today V Morning - G

Figure 3-3: Prototype that customizes the page by hiding everything except for the
relevant content.

i7- -=' - , - _"'

The last prototype was made for the customization that removes everything on a

web page other than the relevant contents. This technique, while simple, is effective

in that it gives users access only to the relevant contents on the page, making it very

efficient to find and access those contents.

Unfortunately, this relies greatly on the ability of the algorithm for determining

which elements in the page the user is looking for. If the user wishes to access

something that is not included in the customized view, this interface will not be

usable.

3.3 Design Decision

Through the prototyping process, we are able to determine the strengths and weak-

nesses of the various customization techniques mentioned above. As a result, we

decide to create Mobi using a combination of the techniques mentioned in sections

3.2.2 and 3.2.3.

Instead of simply deleting all the irrelevant contents from a web page, Mobi will

allow the users to switch between the customized view and the full, original version.

In other words, this is similar to the copy-to-top technique in that it will push the

relevant contents to the top of the page, making them easily accessible as soon as

the page load. Instead of panning to the bottom to access the rest of the contents,

however, the user will instead switch to the full page mode by clicking a button on

a toolbar Mobi overlays on the page. This, in effect, eliminates the issue of having

multiple duplicates of the same contents on the screen. Furthermore, unlike the

original idea of simply deleting all the irrelevant content from the page, the users are

still able to access the rest of the page, giving this approach the advantages of both

of these techniques.

Figure 3-4: Customized version of aa.com created by the Mobi system.

3.3.1 Mode change between customized view and full page

view

Mobi is designed so that interactions with a web page will continue seamlessly under

both the customized mode and the full page mode. For example, if the user fills in

33

....

see ful page - shortened vei~on

From: _L .,yLook:pL

SOS HKG
& Book, Rt hOy 0 RgM&Notai Es

Lookup To: Lookup R ia mber: TaUng.. Round-Tdp Akmst Q"r

ood~o a Lokng For Destiaon deas?

From: L g To:

1806 1KG

AirportaOthn leAirport Wilhn ro"Wia

Departure Do*: itetur Dim:

mn FOay- fmanth Day

Passeges : Prornnen Coe:

-] Chid or Senior P) Promn Code Wiformabon

it CIDe" IMax mum of 6 passegers per reservato
jnd-ip

Show Result By:
0 Pnce & Schedlie @ Schedule

EMore Search Optians s

Figure 3-5: Example showing how user interactions may continue uninterrupted be-
tween mode changes.

the From and To fields in the customized view depicted in Figure 3-4 and realizes

that there are fields in the original page they wish to access (such as the Departure

Date fields), they may switch to the full page view without having to fill in the From

and To fields again. In other words, the mode change between the customized and

full page mode will not interrupt user interactions, as depicted in Figure 3-5.

This method of allowing users switch between modes, however, causes a different

problem. When the user realizes they wish to look for something that may be in the

original page but not in the customized view, clicking on the mode-switch button

causes a very abrupt change to what he is looking at. Contents on the page are

repositioned and resized very differently under these two modes. Because of that,

user may find it difficult to find the elements he was interacting with previously and

continue his work.

To mitigate this problem, we tried different techniques to make it more obvious to

see the connection between contents in the customized view and their counterparts

in the full page view. The first design attempts to do this by creating ghost images

of the contents (semitransparent images of these contents) in the customized view

and showing an animation of these ghost images moving from their locations in the

customized view to their corresponding locations in the full page view.

We eventually decided on a simpler design for the transition due to the ghost

images approach being too distracting and ineffective on a small screen that requires

panning and zooming for the animations to be visible. Instead, elements that are in

the customized view are simply highlighted when Mobi switches to the full page mode.

More specifically, these elements have background colors that change gradually from

yellow to their original background colors. This type of effect is common in AJAX

applications and is offered by various web interface toolkits such as script.aculo.us,

used for drawing attention to dynamic changes in a page.

3.3.2 Dynamic interfaces

Mobi is also designed to support dynamic interfaces such as AJAX (asynchronous

JavaScript and XML) applications. This type of applications often add or remove

elements from a web page dynamically using JavaScript. On facebook. com, for exam-

ple, within a profile page, switching between different tabs involve loading contents

asynchronously and adding them onto the web page dynamically.

When faced with these applications, Mobi will maintain the customized view even

when elements are added or removed dynamically. When elements that are considered

relevant to the user are added to the page, these elements will appear dynamically as

expected. Conversely, when elements considered irrelevant are inserted to the page,

Mobi will hide them from view and only show them when the user switches to full

page mode.

36

Chapter 4

Implementation

This chapter discusses the implementation of the Mobi system, as well as the algo-

rithms involved in generating the customizations described in Chapter 3. As illus-

trated in Figure 1-2, the system consists of mainly the Customizer, a script written

in JavaScript that is injected into the mobile browser as it visits web pages through

the proxy server in Mobi; the Action Recorder, an extension on Firefox created using

JavaScript with the Chickenfoot system; and the Proxy Server script injection com-

ponents, consisting of a server running Squid [5] and an Apache web server, whose

purpose is to inject the Customizer as well as provide access to action history data

for the Customizer script.

4.1 Customizer

The Customizer script is responsible for applying the customizations as illustrated in

Chapter 3 onto web pages. The Customizer is implemented in JavaScript and mainly

works by manipulating the Document Object Model (DOM) [17] and Cascading Style

Sheets (CSS) [16] of web pages. The discussion in the following sections assume being

able to detect what the most relevant elements are on a web page using a heuristic

algorithm that will be described in more detail in Section 4.2.1.

4.1.1 Removing irrelevant elements from view

The script starts by looking at the most relevant elements on the web page. The

script then attempts to modify the page so that only the most relevant elements

remain in view. One challenge in its implementation is to somehow accomplish this

without overly modifying the structure of the page. The page must remain functional

after the customizations are applied. Scripts in the page, for instance, may modify

and make use of the DOM tree of the page at any time. Because of this, we must

attempt to customize the page without having to add, remove or move nodes in the

DOM tree.

To accomplish this, the Customizer traverses through the DOM tree: nodes that

are considered highly relevant by the relevance algorithm and the descendants of these

nodes will not be modified; nodes that are not considered relevant will be removed

from view by making them invisible via changing their CSS styles; lastly, ancestors

of relevant nodes must also remain visible (the relevant nodes that are descendants

of these nodes will be hidden otherwise).

In order to make this work efficiently on mobile devices, the algorithm is optimized

as follows: The script starts by getting the list of highly relevant nodes, and marks

these nodes and their ancestors. It then parses the tree from the top. The algorithm

only continues looking at children of a node if the node is an ancestor node of a

relevant element. Nodes that are not relevant or ancestors of relevant nodes is set to

be hidden and their descendants are also hidden as a result. Note that the algorithm

also does not need to look at descendants of a relevant node because those should

be remained untouched. Figure 4-1 illustrates this algorithm, where the nodes with

dashed borders represent the nodes with CSS styles modified so they are hidden from

view; the gray nodes represent elements that are hidden as a result; and the blue

node with bolded border represents a highly relevant node in the page. In effect, this

optimization allows the algorithm to only consider nodes that are immediate children

of nodes marked as ancestors of relevant nodes instead of having to parse the entire

tree.

Figure 4-1: Illustration of the implementation for hiding irrelevant elements by
traversing through the document's DOM tree.

Reducing white space

Under the algorithm described above, styles of the ancestors of relevant nodes are

not modified. Under this approach however, lots of white space, and, hence, valuable

screen real estate, are wasted due to the spacing and padding in the CSS styling of the

ancestor nodes that are originally intended in the original page to separate contents.

Much of this white space is no longer necessary since much of those contents are now

hidden from view.

We therefore designed the Customizer to remove these white spaces mainly by

looking at the CSS styling of these ancestor nodes and selectively removing padding

and margin when possible.

This, however, must be done carefully. It is not uncommon for web pages to have

designs where these CSS styles are not only used to add spacing between elements,

but also to tweak how elements are positioned. Therefore, it is possible that, after

removing these styling properties, elements may overlap with one another. To avoid

this problem, the Customizer checks, after applying these customizations, whether

elements from different subtrees overlap with one another. If elements are found to

overlap with one another, the Customizer must undo the CSS style changes on the

ancestors of these elements. To be more specific, for pairs of elements that overlap

and are not ancestor of one another, CSS changes on all ancestors of the two ele-

.

div div div

Figure 4-2: Illustration showing which ancestor nodes must have their CSS style
changes undone when two relevant nodes overlap as the result of the style changes.

ments (but not common ancestors between the two) are undone. Figure 4-2 provides

an illustration of what happened when two nodes (marked with blue background)

overlap. The nodes with red backgrounds represent ancestor nodes that have their

style changes undone.

4.1.2 Labels and captions

When Mobi determines that elements such as text boxes and images are highly rele-

vant and must be included in the customized view, Customizer also makes sure that

their corresponding labels or captions are included in the view as well. In the example

of aa. com shown in Figure 3-4, for instance, labels for the From: and To: fields are

also included in the customized view.

This is done mainly by having the Customizer look for elements close to images

and input fields that are marked as relevant, and include those in the customized view

as well. More specifically, the Customizer looks at each element that is marked as

relevant. It traverses the subtree under the ancestor several levels above the marked el-

ement, looking for elements that are enclosed by the rectangle centered at the marked

element, with twice the size of the marked element. Figure 4-3 illustrates how this

ACV. V

Figure 4-3: Illustration showing the area under which the Customizer looks for label
elements for a text box.

works: the text box marked by the green box is the element marked as relevant,

while the rectangle with yellow dotted border represents the area under which the

algorithm looks for elements that are potentially labels for the input field. Note that,

in the case of images, instead of double the size of the marked element, a constant

value is added to width and height.

4.1.3 AJAX and Dynamic changes

To ensure that the customized version works for dynamic interfaces, the Customizer

listens for changes in the DOM. When a change occurs, the Customizer ensures that

the elements that are affected appear or disappear according to their relevancy. In

other words, after each change to the DOM, the customized version should look as if

customizations have been reapplied to the page with the new DOM structure.

However, it is infeasible for the Customizer to reapply the entire script every time

a change occurs to the page, due to the potentially very high frequency of dynamic

changes in advanced interfaces. A typical AJAX call and interface change, (as is the

case with the AJAX search interface on google. com) for instance, may cause more than

50 changes to the DOM within less than a second. Because of this, the Customizer

- - 1 1 -=--

Type of parent Inserting relevant node Inserting irrelevant node Removing node
relevant node no fixes needed no fixes needed no fixes needed

ancestor of relevant node no fixes needed require fixes no fixes needed
neither require fixes no fixes needed no fixes needed

Table 4.1: Different cases of changes on the DOM tree.

must be designed so that, after these dynamic changes occur, it should take as little

computations as possible for the customized interface to quickly adapt and fix itself.

To achieve this, the Customizer installs a listener on the DOM tree that gets

notified whenever a node is inserted or changed. The script must then apply fixes

depending on whether the node inserted is considered relevant, as well as the type

of parent node this node is inserted into to. An overview of different cases of these

events is shown in Table 4.1.

The main types of events that cause problems are ones where irrelevant nodes are

inserted into parent nodes that are ancestors of relevant nodes; and when relevant

nodes are inserted onto parent nodes that are hidden. In the first case, the irrelevant

nodes being added to parent nodes that are ancestors of relevant nodes will cause

them to be visible (since the ancestor nodes are visible). In the second case, relevant

nodes that are inserted onto parent nodes that are irrelevant and therefore hidden

will cause those relevant nodes to be hidden as well.

In order to fix these problems, upon changes to the DOM, the Customizer script

looks at the node that is added. If the node is assessed to be irrelevant, and if the

parent is marked as an ancestor node, we hide the node by modifying its CSS styles.

On the other hand, if the node is assessed as relevant to the page, we must check to

make sure the parent is not hidden. This is done by tracing through its ancestors.

If the first marked ancestor encountered is a relevant node, we can be sure that the

parent is visible (since it is a descendant of a relevant node) and no modification is

necessary. However, if the first marked ancestor is marked as an ancestor of a relevant

node, this indicates that the parent is hidden and all ancestors of the added node are

modified to have their styles reset to be visible.

4.1.4 Mode change to full page view

As discussed in the design, the user must be able to switch between the full page view

and the customized view dynamically. To achieve this, upon clicking the mode switch

button, the Customizer traverses the tree. For each element that had their CSS styles

changed, we make sure to have their original styles saved in their JavaScript object

prior to the changes. By doing this, switching mode simply requires resetting the

styles of the elements back to the ones previously saved.

4.2 Action Recorder

The Action Recorder is the component responsible for monitoring user actions on the

desktop and using these action histories to evaluate relevance ratings of the elements

inside web pages.

The Action Recorder is written as a Firefox extension built using Chickenfoot.

The Action Recorder is basically a script that runs every time the user visits a web

page. The script installs listeners that monitor clicks and inputs on a web page, as

well as a View Tracker that keeps track of what contents the user is looking at on a

web page. Using these data, the Recorder is able to heuristically compute scores for

different elements on a web page representing an estimate of how relevant they are to

the user. These scores are saved into a database and are therefore accessible by the

Customizer.

4.2.1 Heuristics for recognizing relevant contents

The algorithm Mobi uses for assessing and estimating how relevant contents are on a

web page depends on the assumptions that:

" Elements that user interacts with frequently are highly relevant to the function

of the web page;

* Elements with readable contents that the user spends a long time looking at

are also highly relevant to the web page's function.

Detecting what the user interacts with directly is fairly easy. The Action Recorder

sets up listeners that listen to clicks over the web page and records the targets of the

clicks (whenever the targets are input fields or links). Similar listeners may be set up

for other user actions.

Determining what the user is looking at, however, is very challenging. The most

accurate way to do this is clearly with eye-tracking apparatus similar to the ones

described in Jakob Nielsen's research on using eye-tracking technology for usability

studies [14]. However, Mobi is developed for use by normal end-users and we will

therefore attempt to use some simple heuristics to simulate this type of functions by

monitoring user's actions in the browser.

The Action Recorder includes a View Tracker that keeps track of the contents

within the browser's viewport. One basic assumption it makes is that the user must be

looking at contents within the viewport. By doing so, it can increment the relevance

scores for elements that contain readable contents and are mostly within the viewport

of the browser. To determine whether elements are mostly in the viewport, we use

a basic calculation: (where C represents the area of the content element, and V

represents the area of the viewport)

CnV CnV
max C ' V

This basically computes a value representing how much of a certain element is

inside the viewport, and, in the case that the content is very large, computes how

much of the viewport is used for displaying the element. The View Tracker increments

the score for the element if this value is above a threshold of 50%. The scores of these

elements are incremented periodically (every 2 seconds) to track how long they have

been in the view.

Additionally, to increase accuracy of the View Tracker, instead of simply incre-

menting the scores periodically, the Tracker only does so when the web page has

focus. This way the Tracker will not fire when the browser is not actually in the

screen. Furthermore, to make sure the Tracker doesn't fire unnecessarily, when the

user interacted with the page (e.g. clicked on a button or entered something into a

text field), which indicates that the user is probably not reading the page, the Tracker

will delay firing again for a period of time. Similarly, scrolling the page quickly will

also cause a delay to the Tracker.

To order for the Customizer to be able to figure out what the most relevant

contents are in a page, the Action Recorder keeps track of an integral score for each

relevant element. The View Tracker increases the scores of the contents in view by

1 every time it runs, while interactions such as clicking increases the scores by 4 per

click. In other words, each click on an element is regarded as roughly equivalent to

having the element in view for 8 seconds.

Originally, the View Tracker is implemented to only consider elements that contain

readable contents: e.g. elements with lots of rendered text or ones with large images.

However, this proves inadequate as much of the web today is structured so text and

contents are divided into many elements. For instance, an HTML table is a common

method for presenting contents, but is not recognizable under this method because

each cell in a table is unlikely to contain a lot of text.

We therefore added another method for identifying content elements: using the

number of repeated similar elements in a node. The google.com search results page,

for example, contains a list of search results, each having very similar styles and look.

The View Tracker should, therefore, attempt to also detect these lists as content

elements and consider them relevant if the user spends a long time looking at the

lists.

To do this, we notice that similar elements often share the same CSS class names

and are of the same types of nodes (e.g. DIV, TR, P). Therefore, the View Tracker will

consider elements that have children of similar style classes and node types content

elements and update their scores accordingly.

To implement this efficiently, we have the script traverse the entire DOM once

after the web page finishes loading. For each node, the script keeps a count of the

types of classes seen in its top two levels of descendants (children and grandchildren).

The node is considered a content node if a significant fraction of its children or

grandchildren share the same class. The View Tracker then periodically checks if

the content elements on the page are inside the viewport and updates the scores

accordingly. Note that, to cope with pages with dynamic contents, the script also

periodically traverses the DOM to look for new content nodes.

4.2.2 Applying action history data

The scores representing the relevance of elements on webpages are stored in a database,

identified by the URL of the web page and the XPath [18 identifying the elements.

In order to make the system robust and generalizable, the XPaths are constructed

to be as general as possible. For instance, whenever possible, CSS class names and

ID names will be used instead of HTML tag names. This decreases the dependence

of the XPaths on the exact DOM structure of the web page and allows history data

from one page to be useable on different pages as well.

As mentioned previously, the Customizer script requires using history data in

creating customizations specific for the web page it is running on. To do so, the script

always attempts to look for data for URLs that matches the web page's location most

accurately. More specifically, if exact URL matches cannot be found, the script will

use data from a URL that shares the longest prefix string with the page's location.

4.3 Proxy Server and Script Injection

The proxy server uses Squid, a caching proxy that supports all common protocols

such as HTTP and HTTPS [5]. It is configured to inject a SCRIPT tag onto all web

pages. The SCRIPT tag links to a JavaScript script that bootstraps the Customizer

script as well as requests history data from the database corresponding to the URL

of the web page.

Note that one small challenge in this approach is that, because the database

resides on a different domain from that of the current web page, the script may not

make direct AJAX calls to the server. Instead, it creates another SCRIPT element

that loads the data from the database in JSON format and fires a callback upon

completion, starting the Customizer script and providing it with the necessary history

data.

4.4 Implementation on Mobile Browsers

4.4.1 Compatibility Issues

While mobile browsers such as the iPhone's Safari browser and the Android browser

both support most of the features in modern web browsers such as JavaScript, various

quirks and challenges were discovered during implementation.

Both browsers lack support for XPath evaluation (the Android browser has an

interface for accessing XPath evaluation functions, but are not yet implemented),

which is necessary since the history data identifies elements on a web page by XPaths.

As a workaround, Mobi uses Google AJAXSLT [12], an old AJAX library made in

2005 when XPath is not yet commonly supported. This library provides a method for

doing XPath evaluation, although it is clearly less efficient than the native functions

provided on desktop browsers.

Another issue is the absence of the getBounding ClientRect [10] method on iPhone's

Safari. The method is needed by functions such as finding labels and captions as

described in Section 4.1.2 and finding overlaps between elements of different subtrees

as described in Section 4.1.1. While a workaround exists (traversing through all

the parents of an element and summing up their position offsets from their respective

parents), again, this creates another performance hit in comparison to having a native

method for computing an element's location and dimension.

4.4.2 Zooming functionalities

Another implementation issue comes from the lack of a way to dynamically zoom

in/out or change the scale of a web page. While both the iPhone and Android

browsers allow the users to manually zoom in and out via clicking a button or using

gestures, neither of which provides another programmable interface to do this from

client-side JavaScript.

Part of the designs of Mobi's customizations include being able to zoom in so

that the customized view fits the screen on page load and zoom out automatically

when the user switches to full page mode. In order to prototype this idea, Read4Me,

an experimental multimodal web browser built on top of the Android browser, is

modified to include a JavaScript API for zooming. Mobi's functionalities, integrated

with the zooming functions are successfully developed and tested on the Read4Me

browser.

Chapter 5

Evaluation

This chapter provides an evaluation of the Mobi system as well as discussions over

the findings from the evaluation. Mobi is tested and evaluated over a variety of

different web sites. Various tasks are performed and recorded on the desktop browser

on these web sites and the mobile customized version created by Mobi are evaluated

formatively.

Functions of the interfaces in the websites evaluated may roughly be categorized

as follows:

" Readable contents: pages whose main purpose is to provide contents. Article

pages on news sites such as nytimes.com are examples of this type of inter-

face. These pages often contain mostly static readable contents rather than

interactive elements.

* Search: a feature provided by many web sites for locating contents. The search

engine functions on google.com is one example of this feature. The interface for

looking for tickets on aa.com may also be considered a search interface. This

type of interface often contains a form of one or more input fields for specifying

the parameters of the search and a page listing the results of the search.

* Function-based: interfaces that serve certain specific functions and often have

side effects. For instance, the interface for composing an email, submitting a

comment or making a bid on an auction site all fall under this category.

Various web sites are qualitatively evaluated based on how successful tasks of the

categories above continue to function on the customized version generated by Mobi.

Web sites that generated particularly interesting findings are discussed further in

the following section. A list of all the web sites and their corresponding results are

summarized in Section 5.2.

5.1 Results

The results of an end-to-end evaluation of the Mobi system is shown in the following

sections. To perform this evaluation, we first performed various tasks on these web

sites, allowing the Action Recorder to capture our actions on the page and assess

which elements on the page are most relevant to the user. The Customizer then uses

this information to apply customizations onto the page.

5.1.1 aa.com

From To:

Marked as relevant contents

Figure 5-1: Evaluation of Mobi running on aa.com, showing the elements marked as
relevant and the corresponding customized version using this data.

The home page of aa. com was used as the basis of the prototypes in Mobi's design.

We first perform tasks such as searching for flight tickets and checking flight statuses.

iiiMiiiiiiim: ::::::: , - , - - - - 111111111111 - - A- -- - - - - I

The implemented Mobi system is able to correctly detect the input fields necessary

for doing these tasks as relevant contents and generate result similar to the original

design as described in Section 3.3, as seen in Figure 5-1.

The search interface for flight tickets and flight statuses work in the same ways as

they do in the original interface, including the dynamic auto-completion function for

the location input fields, which continues to work properly in the customized view.

Submitting the form takes the user to the results page showing a list of tickets they

may purchase, as it did on the desktop interface.

The customization offered by Mobi successfully removes everything in the page

other than the fields the user needs to complete their task of finding tickets or checking

flight statuses, making it a significantly more efficient interface than the original

desktop version. If the user wishes to access the rest of the page, the mode switch

button on the top allows him to easily switch back to the original view. The transition

flashes the fields he sees in the customized view, allowing him to continue interacting

with those elements.

5.1.2 google.com

W"b IM YW MW1 NMWMeJ CO WMebV I Ym MMi %ft %W& QMW M
ftWCbOVeeeW* CIO= ___" ftw~hm- . I

GOGo WT SeGoGoole

vanrked asd green. AMO3"t uaa aMe I

matsrt.V useWa Buwef So" iAain GfvriWryaOc* ~

vantN make in0 gren

The search engine google. com is a good representative of common search interfaces,

and is also one of the most popular websites on the internet. The interface of the

search engine mainly consists of the input form in the home page and the results page

that appears after submitting a query, as seen in Figure 5-2.

ee. foe pag full Pa"e

Massachusetts Institute of Techn ooy

7 Massachusatts Avenue
GOO SM"Mh Camstiege. MA o2 139Google Search DO202

Get directns -1s his accurate

?MT
MIT i devoted toh advancement cf knowledge and educarit of sudents in ares that
contlbute to o prosper in an envimmmrent of science and technology.

emit.Jed- Cached - Silar
Admnssions Video
Free Odine Course Materials I MIT - Jdbs
Graduase Researoh
Educabon VisiAng MIT
More rsults from mtteau.

Free Onine Course Materias I MIT OpenCourseWare
News and infenrson an the pirtfed to rnme me cose materials used In the teaching di
virtually all of MUti courses anafatoe on me Web, tree of charg
oaw.mitedu/ - Cached - Sinfiar

Massachusetts Institute of Technoogy -V Wkipedia, the free -
The Mileuseotweatte InatRuele of Teenetegy (MT) is a prte research university located in
Crnoge. Massachusetts. Wr lhes fine sdhools end one colleg..
S aikipedia.orgsrksassachusetts Institute ot Technology - Cached - Similar

MT Departrnet of Earth Atnmosheric and Planetary Sciences (EAPS)
Photo Caption: The topography of Mars shows geologe eatures we recognize fromi Earths
surface. more infornation MIT -Coreact normnation.

Figure 5-3: google.com's interface after applying Mobi's customizations.

After demonstrating the tasks of inputting search queries and viewing search re-

sults in the results page, Mobi was able to correctly detect the input field for the search

query, the button for searching, and the list of search results as relevant contents. The

customizations made by Mobi also runs successfully on google. com's interface, as seen

in Figure 5-3. On the query page, only the query input box and the search button

remains in the view to allow efficient access to these elements. Upon clicking and sub-

mitting the query, a list of search results is shown while everything else in the original

search results page (e.g. the sidebar and ads) considered irrelevant is removed from

the view. In other words, the user is able to immediately view and access the search

results after submitting the query.

Note that google. com uses AJAX in their retrieval of search results. Instead of

loading another page to view the search results, in order to reduce latency, google. com

queries its server via JavaScript and displays the results asynchronously onto a DIV

element that is added dynamically onto the page. In effect, google.com shows an ex-

ample of Mobi working correctly under dynamic interfaces, as intended in the original

design described in Section 3.3.2.

5.1.3 wikipedia.org

.4 4'i~k !P h . F~ I1 L ; Ill .x 1kprte e i c~. - Seven% ne - F po S rirA . Sac %W .s G~k aM c - roa- rn

Figure 5-4: The search and article interface
mined to be relevant marked in green.

on wikipedia. org, with elements deter-

wikipedia.org, a web-based collaborative encyclopedia, gives an example of an

interface that contains functions for both searching and serving readable contents. As

shown in figure 5-4, wikipedia. org consists mainly of a search page and a encyclopedia

article page corresponding to the entry the user searched for.

The customizations made by Mobi remove various unnecessary decorative elements

from the search page, such as the image of a stack of books near the bottom of the

page; as well as the many various language options that were never used or looked at.

Note that elements such as Wikipedia's icon and the list of common languages remain

in the customized view. This is because they were inside the browser's viewport for a

significant period of time, causing Mobi to consider them potentially relevant content

elements.

After searching for a term, the article page is shown with only the contents of the

article. Elements such as the sidebar and options such as discussing and editing the

Mailced as relevant contents
Mao..cNaet tnhikul of Tectroloo

n- - V

M~aeeimetend ela rgilsis''li

e i l i xel

full paq.

WIKIPEDIA IEW ecirects here For ohe use se MIT (danaon).

EThe Massachusett Institute ofrh itCq3 O Technology (MIT) as a private Massihuset Intitute of3 M 00rae, 7 V-ilyN*
Wilresarch university locatedl inehnlg

Deutsch Esp@aiol Cambridge. Massachusetts. MIT has
Doe tree EnZ~vepr&5. La eeorkgeois We

Dutivh schools and one colleV

Pcntaining a calc ot 32 academic
Fra tsugus PoNder deparlandents wth a strong emphasis

Lercrlt A en epasneo e encycep hiefi)ttpl

0*0. w. e c .s on scientific and technological
reerch. MIT a one of two private M

Itailiao PYCMMland-giant uniwrfies " and as also C

unirse net locted inrehning
Portugubs NederlandseoA &WWOpkM Me Do0 w escsped Founded by Wlliam Barton Rogers

tC. a 00 in ing rp tot cami

reidustralization of the United Slates,
the university adopted the European E
university model an. emphaSed

in~Esr~ko 1861 (On repos8t8he5nrasn

laboratory intruction from an early 1565 (opened 16)
date

1
6 its current 168-acre (58.0 ha) 90I P'it

Catat - sky - Dansk -Deutsch - English - Espal- Esperanto - campus opened in 1916 and extends EndoWment us$&.0 bini21
Franc~ais -1Y-f- Bahasa Indonesia - Itatanco m- Liatuvi- Magyar - over 1 mile (1.6 km) along the I

Nndaranin - AAr - Nrak (hnkrnAl - Pnttki - Pnrtini*u - Pwmii - RnmAnn - nrvthwn hank nf tha (nntia :ive Cr

Figure 5-5: wikipedia.org's interface after applying Mobi's customizations.

article are removed since they were never used by the user. However, the title of the

article, which is clearly relevant to the function of the page, is also removed.

Note that the customization is not specific to only the articles with recorded

history. Mobi is able to apply the same customization as shown in Figure 5-5 to

different articles successfully, giving an example of Mobi's ability to apply action

history across similar pages, as described by Section 4.2.2.

5.1.4 webmail.mit.edu

webmail.mit.edu is a web-based email system with a fairly common interface. For

this interface, we tests specifically functions such as composing emails to make sure

functions of the original interface is retained in the customized interface Mobi creates.

As seen in Figure 5-7, Mobi retains all the elements necessary for reading the list

of emails and composing new emails. In the email composition page, Mobi keeps

all the elements within the form, and the functions that existed in the original page

continues working as expected in this view.

While the page functions fine, Mobi is keeping more elements in the screen then

necessary. Ideally, since there are fields in the email composition page that the user

From Wifpedia, the free encyclopedia Coordinates: 42-392 N 7092111'V

Figure 5-6: The interface on webmail. mit. edu for viewing and composing emails, with
elements determined to be relevant marked in green.

eeW ful pageP

00 37;09/1OAnne Muster Jobs at Qualconm! 7 KS

OL 37;09/1 OAnne Hunter Proect-based HCI Deslig Coloqkiu7 KB
-0 37,09/1OCyntba Skier Tonight: D.E. Shaw Info Session, 79 KS
00 37,09/10 Anne Hunter Sign up now as a Tutor or Tutee en 8 K8

00 37'09/1 OCynthia Skier Coatue Management seeking softw9 K

00 37 09/1 OAnne Hunter 9.77 Computational Perception (N#8 KB

00 37 09/Cynthea Skier Right now an 34-401Al - Pasta, Ch9 KB
0o 37 09/09Anne Hunter Queck Job for lads Security Expert 7 KB
00 37 09/09Anoe Hunter UROP. Cognitive Machines Group. 17 KB

00 37 09/09Anne Hunter BCG Information Session - THURSD&9 KB

0 37 09/09Anne Hunter UROP, Locavores, Organic Farms, F8 KB

0 37 09/09Anne Hunter Masters RAships/Theses. Me infor8 KB
00 37 09/09Anne Hunter Special UOG Class - Intro to Convex 7 KB

00 37 09/09Anne Hunter UROP. Three-Dimensional SynthetimS KB

0O 37109/0SAnne Hunter Scholarship Awards to attend a M58 KB
00 37409/09.Anne Hunter UROPs, ExtrAct, Media Lab 9 KB
00 37409/09Anne Hunter [No Subject] 8 KB
00 37409/O9Anne Hunter UROPs, OpenFace ToolKit. Media Lag KB

O 3709/09Anne Hunter UROP. GoodApp, Cloud EnvironmenS KB

00 37409/09Anne Hunter UROPs! Pumnbers Wanted :: C4FCMS KB

Figure 5-7: webmail.mit.edu's interface after applying Mobi's customizations.

has never used before, such as the Charset field and options such as Requesting

receipts, it would be more efficient to have those items removed from the customized

view as well.

The reason for Mobi to not be able to do so is caused by how the algorithm

for detecting relevant contents was designed (see Section 4.2.1). When the Action

Recorder is monitoring the user's actions on the page, it detects that the user had

4,

been looking at the form for a long time while he was drafting an email. Because of

that, it assesses that the form may contain important readable contents and marks

it as a highly relevant element and it is therefore included onto the customized view.

This suggests that we may potentially consider having Mobi consider content elements

that include form fields differently.

5.1.5 facebook.com

facebook.com gives an interesting example of a modern web page that is designed

to be highly interactive, uses advanced CSS design techniques and has a dynamic

interface that uses AJAX and loads various components asynchronously to decrease

latency. As shown in Figure 5-8, Mobi succeeds in certain areas and fails in others.

By monitoring user actions, Mobi is able to detect correctly the information con-

tents on the Info tab, as well as the area containing all the pictures in the Photo tab.

When the user switches to those tabs, Mobi is able to correctly capture and display

these contents. Note that switching to different tabs causes contents to be loaded

from the facebook.com server asynchronously using AJAX. As these contents are dy-

namically added to the interface, Mobi successfully recognizes the relevant portion of

the contents and is able to reformat the page accordingly.

On the Wall tab of the profile page, however, Mobi fails to display anything (other

than the links for switching to different tabs). This prevents the user from accessing

functions such as viewing wall posts and adding comments without switching back to

the full page mode.

The reason behind this is the failure of the relevance assessment algorithm to

correctly recognize the wall messages and comment input form as relevant contents.

This is caused by the way facebook.com designs its AJAX interface for loading the

contents of the Wall tab: in order to allow JavaScript that is included onto the page

asynchronously after the contents of the Wall finishes loading, the element containing

the wall posts is assigned a unique ID every time the contents of the Wall tab updates.

Because of the way action history data references elements via XPaths (see Section

4.2), changing the ID will cause references to elements previously recorded by the

(a) The interface on facebook. com's profile pages, with elements determined to be relevant marked in green.

(b) facebook.com's interface after applying Mobi's

Rich Chan
Wall info Photos Boxes +

customizations.

Figure 5-8:
customized

Evaluation of Mobi running on facebook. com, showing the elements marked as relevant and the corresponding
version using this data.

U ~

-
m -

bEE ~=
- urn____
*~IU :m m -

Rich Chan
Wall info PhotosUoxes +

Rich Chan
Wall info Photosioxes +

The things you care about will now link to actual Pag
We matched your current profile info to related Pages.

View Page suggestions *

Basic Information

Networks MIT '09
Coogle

Se X Male
Current Cty Boston. MA
Birthday October 24. 197
Relationship Status Single
Inerested In Women
Looking for friendship

A Relationship
Whatever I can get

Poliical Views Very Liberal

Ukes and interests

Activities HKSS, CSAIL

Interests PS3. Anime, Novels, food
Favorite Music Canto MusicJfop

facebohk

fAalbook

5- p4

3-65

Action Recorder to fail. As such, the relevance assessment algorithm fails to apply

history data that references the Wall elements, and those elements will consequently

never be recognized as relevant.

5.1.6 expedia.com

___i
See futll page

Leaving from: Going to:
WM %-s-aemose MW on 14gOr *NOW Ads AS O M A WA X IN Boston, MA (OS-Logan Intl.)

Anytime Anytime

Ho - Ca

o~ e

e (I m ae r i Marked as relevant contents

00. 4 14, t& - tj 6- '

Figure 5-9: Evaluation of Mobi running on expedia. com, showing the elements marked
as relevant and the corresponding customized version using this data.

expedia.com gives another example where Mobi fails to successfully include all

contents necessary for performing the site's functions. As shown in Figure 5-9, Mobi

fails to detect the Search for Flights button as a relevant element despite the fact

that we did demonstrate clicking on it to the Action Recorder. This prevents the

user from being able to perform the page's function (for searching flights) since he is

unable to click on the button in the customized view.

The failure to capture the Search for Flights button is caused by how expedia. com

uses unconventional HTML elements as interactive elements. Instead of actually

using an INPUT button element, the Search button is in fact a DIV element with

background images, with a listener programmed in JavaScript listening to it click

events. Because the Action Listener only captures events on elements such as input

elements and links, clicks on the image are not detectable and the relevance score for

the Search button is never incremented.

5.2 Summary

Table 5.1 provides a summary of how Mobi works over a variety of different websites,

evaluated under aspects such as:

" whether the layout and styles of the customized view remain consistent (layout);

" whether the customized view successfully hides the irrelevant contents and

thereby improves the efficiency of the page (efficiency);

" and whether the customized view is able to successfully retain all the relevant

contents for the page to serve its original function (functionality).

5.3 Discussions

As seen in Table 5.1, Mobi works well on a majority of the websites tested. Only

two websites have functionalities that cannot be provided by the customized view

(facebook.com, whose problems regarding dynamic contents as described in Section

5.1.5 prevent functions such as posting wall messages; expedia.com has interactive

elements that are actually DIV elements, as described in Section 5.1.6).

While the rest of the websites have customizations that function properly, various

issues and limitations of the Mobi system's customizations techniques are discovered.

The following section discusses these limitations.

5.3.1 Limitations

As a by-product of removing irrelevant contents from the page, it is unavoidable

to modify the placement and positioning of various elements in the page. Because

of that, the styles of the original page that was designed for the original view may

Website

google. com
wikipedia. org

webmail. mit. edu
nytimes. com
facebook. com

ebay. com
craigslist. com

cnn. com
flickr. com

weather. com
cnet. com
ehow. com

amazon. com
yelp. com

yahoo.com
expedia. com
imdb.com

mapquest. com
reference. com

usps. com
stellar. mit. edu

Layout Efficiency
x

Functionality

bad

bad

)i P

over different web sites.Table 5.1: Summary of evaluating Mobi

no longer apply well on the customized view. This is especially the case for web

sites with creative interfaces, either for aesthetics or optimization purposes. For

instance, web sites that uses CSS to position elements at exact locations; web sites

with elements that overlap; and web sites that have backgrounds with assumptions

about the locations of various elements are all likely going to have customizations

that fail to preserve the original layout.

The evaluation also shows weaknesses that exist in the algorithm for detecting

relevant elements. The functionality issues are often caused by the algorithm not

recognizing elements that should be included onto the view (false negatives); while

the efficiency issues are caused by the algorithm overly estimating the relevance of

too many elements (false positives).

These types of limitations clearly require further exploration and will be discussed

in more details in Section 7.

62

Chapter 6

Conclusion

Mobi provides a system that automatically customizes web pages for mobile devices

without any user intervention. Web interfaces designed for desktop use are made to

be more efficient and easier to use on mobile devices, without sacrificing the func-

tionalities of their original desktop versions. Using data that it collects from desktop

browsers passively, Mobi is able to provide customizations that are specific to the

tasks relevant to the users.

As presented by this thesis, the design and implementation of Mobi encounter

various challenges, including the need to design customization techniques under the

constraints of mobile devices such as small screens and difficult input methods; the

need for these customizations to work over designs and layouts that differ greatly from

website to website; the various limitations of web browsers and HTML specifications;

as well as the need of a method to accurately assess how relevant various elements

on a web page are to the user. While Mobi clearly still has flaws, as shown by the

evaluation in Section 5, the current implementation of Mobi shows promising results

and I expect high potentials from future iterations.

6.1 Contributions

In summary, Mobi makes the following contributions:

9 The design and implementation of a mobile web page customization system that

works on all major smart phones today.

* The design of various customization techniques applicable to mobile devices.

* Methods for assessing the relevance of various elements on a web page using

data about user behaviors on the web page in a desktop environment.

" A qualitative evaluation of this automatic customization technique applied over

many different web pages.

Chapter 7

Future Work

7.1 Further developments

While the first working prototype of Mobi is complete, many areas of the system

deserve further exploration and development.

As mentioned in Section 5.3.1, more research needs to be done to develop bet-

ter methods in keeping the layout and design of the page consistent when applying

customizations onto the page. Keeping the design consistent with the original page

allows users to better make use of knowledge they had already about the familiar

desktop interface, potentially making the interface easier to learn and use.

While the algorithm for recognizing relevant contents produces promising results

for many of the websites we tested, it is clearly still in need of more work and de-

velopment. It is overly aggressive for certain web pages and also too conservative at

times. More in-depth analysis should be done to evaluate the success and accuracy

of the algorithm. The algorithm may also potentially benefit from machine learning

techniques.

A more technical quantitative evaluation of the system should also be done to

better assess the success and feasibility of Mobi. The evaluation as described in

Section 5 is very formative. As the project matures through further development and

iterations, more technical user studies should be performed to guarantee unbiased

conclusions about the success of the system.

7.2 User control

Considering the many heuristics and automations involved in Mobi, there may be

benefits in providing users with some manual control over how Mobi works. Early

iterations of Mobi, for instance, includes a prototype of an interface that allows users

to add and remove contents from the customized view on their mobile device. In-

formation about these additions and removals can be saved at the proxy server and

reapplied upon subsequent visits to the page.

This feature, however, makes the interface more complicated and is eventually

removed for that reason. With a more suitable design, though, this may be a good

way to increase the usability of the customized interface as it gives users direct control

over what they see.

7.3 Browser capabilities

The capabilities of web browsers and specifications such as HTML and CSS [15] are

changing rapidly. Some of the problems faced during implementation, as described

in Chapter 4, can be mitigated as advancements in newer browsers are developed.

There are discussions of CSS 3, for example, to include features such as zooming [1]

that would allow specific portions of DOM elements to be rescaled. Part of the reason

that we abandoned the enlarge-in-place prototype, as described in section 3.2.1, was

partly because of the lack of a method for doing this.

7.4 User behavior data

The user behavior data collected by the Action Recorder may potentially be used

for many other purposes as well. Similar to the approach in Creo and Adeo [9], for

example, such data may provide a basis for creating automation techniques that would

make working on a mobile device, with its difficult input methods, more efficient.

Another potential idea is to create a corpus of shared data between multiple users

of Mobi. For example, data collected from one user's browser may be used by other

users as well. This way, customizations may be created for a web page even if the

user has never been to the page before. This approach will likely run into issues such

as privacy and security, but is a great potential method for further increasing Mobi's

robustness in automatically creating customizations for the mobile web.

68

Bibliography

[1] Css zoom. http://www.css3.com/css-zoom/. [Online Document].

[2] Greasespot. http://www.greasespot.net/. [Online Document].

[3] Platypus. http://platypus.mozdev.org/. [Online Document].

[4] Project joey - mozillawiki. https://wiki.mozilla.org/labs/joey. [Online
Document].

[5] Squid: Optimizing web delivery. http://www.squid-cache.org/. [Online
Document].

[6] Nilton Bila, Troy Ronda, Iqbal Mohomed, Khai N. Truong, and Eyal de Lara.
Pagetailor: Reusable end-user customization for the mobile web. In Proceedings
of the First International Conference on Mobile Systems, Applications, and
Services (MobiSys), 2003.

[7] Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C.
Miller. Automation and customization of rendered web pages. In UIST, 2005.

[8] Alexander Faaborg. A goal-oriented user interface for personalized semantic
search. Master's thesis, Massachusetts Institute of Technology, 2006.

[9] Alexander Faaborg and Henry Lieberman. A goal-oriented web browser. In
Proceedings of the SIGCHI conference on Human Factors in computing
systems, 2006.

[10] Mozilla Foundation. Dom:element.getboundingclientrect.
http://developer.mozilla.org/en/docs/dom:document.elementfrompoint.
[Online Document].

[11] MIT CSAIL UID Group. Chickenfoot.
http://groups.csail.mit.edu/uid/chickenfoot/. [Online Document].

[12] Google Inc. Google ajaxslt. http://goog-ajaxslt.sourceforge.net/. [Online
Document].

[13] J. Nichols and T. Lau. Mobilization by demonstration: Using traces to
re-author existing web sites. In Proceedings of IUI'2008.

[14] Jacob Nielsen and Kara Pernice. Eyetracking Web Usability. New Riders Press,
2009.

[15] W3C. Cascading style sheets: Current work.
http://www.w3.org/style/css/current-work. [Online Document].

[16] W3C. Cascading style sheets level 2 revision 1 (css 2.1) specication.
http://www.w3.org/tr/css21/. [Online Document].

[17] W3C. Document object model (dom). www.w3.org/dom/. [Online Document].

[18] W3C. Xml path language (xpath) version 1.0. http://www.w3.org/tr/xpath/.
[Online Document].

