Mobi: Automatic Customization of the Mobile

W MASSACHUSETTS INSTTT ¢
eb OF TECHNOLOGY

by AUG 2 4 2010 /
Richard W. Chan LIBRARIES

Submitted to the Department of Electrical Engineering and Computer
' Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science and Engineering

at the ARCHIVES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2010
© Massachusetts Institute of Technology 2010. All rights reserved.

Author L. B AP R Aeanenn
Department of Electei omputer Science
May, 2010

Certified by. ...t)
Robert C. Miller
Associate Professor
Thesis Supervisor

~

Accepted by ...l

" Withur C. Smith
Chairman, Department Committee on Graduate Theses

Mobi: Automatic Customization of the Mobile Web
by
Richard W. Chan

Submitted to the Department of Electrical Engineering and Computer Science
on May, 2010, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Computer Science and Engineering

Abstract

Mobi is a system that automatically rewrites web pages into formats optimized for web
browsing on mobile devices. The system estimates heuristically which parts of a web
page’s content users are most likely interested in, using previously recorded history
of user actions on the Web. By doing so, Mobi is able to remove the unnecessary
portions of the web page and rewrite it in a format more fitting for the mobile device’s
form factor. Mobi accomplishes this by having a proxy server inject a client-side script
onto web pages. The script examines previously recorded user actions related to the
web page it is injected onto and rewrites the web page accordingly. The design and
implementation of the system are described, as well as an evaluation over a variety
of web pages.

Thesis Supervisor: Robert C. Miller
Title: Associate Professor

Acknowledgments

I would like to thank Rob Miller for his advice and support throughout the project.
This thesis could not have been completed without him, and I am extremely grateful
for having him as my research advisor.

I would also like to thank all the members of the User Interface Design group for
their feedbacks over the designs of Mobi, and especially Chen-Hsiang Yu and Igor
Kopylov, for contributing many valuable ideas and advices.

Special thanks go to my friends at MIT, who make hunting for free food and
sleeping late at night (or not at all) feel like the norm.

Lastly, I would like to thank my family for always being so supportive and encour-
aging throughout the past few years at MIT. I cannot imagine how life would have

been without them.

Contents

1 Introduction

2 Related Work

2.1 End-User Customization
2.2 PageTailor
2.3 Project Joey
2.4 Highlight
25 Creoand Adeo e
2.6 Mobile Transcoders e
3 Design

3.1 Earlyldeas
3.2 Design Prototypes

3.21 Enlargeinplaceo

322 Copytotop . . .« . i i

3.2.3 Deleting irrelevant content
3.3 Design Decision

3.3.1 Mode change between customized view and full page view

3.3.2 Dynamic interfaces

4 Implementation
4.1 CustomizZer e e e e e

4.1.1 Removing irrelevant elements from view

7

13

17
17
18
20
20
22
22

25
25
27
27
30
31
32
33
35

4.1.2 Labelsand captions.,

413 AJAX and Dynamic changes
4.1.4 Mode change to full page view
4.2 Action Recorder,
4.2.1 Heuristics for recognizing relevant contents
4.2.2 Applying action history data
4.3 Proxy Server and Script Injection
4.4 Implementation on Mobile Browsers
4.4.1 Compatibility Issues
4.4.2 Zooming functionalities
Evaluation
51 Results.
5.1.1 aacom
9.1.2 google.com
5.1.3 wikipedia.org
5.14 webmailmitedu
5.1.5 facebook.com
5.1.6 expedia.com
9.2 SUMINATY o,
5.3 Discussions
5.3.1 Limitations
Conclusion
6.1 Contributions
Future Work
7.1 Further developments
72 Usercontrol
7.3 Browser capabilities.
74 User behaviordata

49
50
50
o1
53
o4
96
58
59
39
59

63
63

List of Figures

1-1

3-5

4-1

Comparison between rendering a web page (http://aa.com) on a desk-

top versus on a mobile device. oo 14
High-level overview of Mobi’s architecture. 16
Platypus’s toolbar on Firefox. 18
Platypus’s Editing mode. oL 18
PageTailor’s toolbaron a PDA. 19
An example of a web page after being customized with PageTailor. . 19

An example of how Highlight records and creates a mobile version of

a website while user is interacting with it. 21

Menu for accessing and playing back a recording on Adeo. 23

Prototypes for the enlarge-in-place customization, labelled by their ratios. 29
Prototype for the copy-to-top customization. 30

Prototype that customizes the page by hiding everything except for

the relevant content. Lo 31
Customized version of aa.com created by the Mobi system. 33

Example showing how user interactions may continue uninterrupted

between mode changes. oo 34

Nlustration of the implementation for hiding irrelevant elements by

traversing through the document’s DOM tree. 39

9

9-9
o-6

5-7
5-8

[llustration showing which ancestor nodes must have their CSS style
changes undone when two relevant nodes overlap as the result of the
stylechanges.
Ilustration showing the area under which the Customizer looks for

label elements for a text box.

Evaluation of Mobi running on aa.com, showing the elements marked
as relevant and the corresponding customized version using this data.
The search interface on google.com, with elements determined to be
relevant marked in green.
google.com’s interface after applying Mobi’s customizations.
The search and article interface on wikipedia.org, with elements deter-
mined to be relevant marked in green.
wikipedia.org’s interface after applying Mobi’s customizations.

The interface on webmail. mit.edu for viewing and composing emails,
with elements determined to be relevant marked in green.
webmail. mit.edu’s interface after applying Mobi’s customizations.
Evaluation of Mobi running on facebook.com, showing the elements
marked as relevant and the corresponding customized version using
thisdata.
Evaluation of Mobi running on ezpedia.com, showing the elements
marked as relevant and the corresponding customized version using

thisdata.

10

40

41

50

51
92

o7

List of Tables

4.1 Different cases of changes on the DOM tree. 42

5.1 Summary of evaluating Mobi over different web sites. 60

11

12

Chapter 1

Introduction

Browsing the Web on mobile devices has become very common in recent years.
Thanks to advances in technology, smart phones today enjoy faster network speed
and processing power, allowing for increasingly sophisticated web browsers to run.
However, the mobile web browsing experience remains highly impeded due to their
limited screen size and difficult input methods. Web applications designed for the
desktop browsers are therefore often unsuitable for mobile devices.

To alleviate this problem, some websites are beginning to provide mobile versions
of their applications. However, the wide variety of functionalities and form factors
in different mobile devices makes it impossible for developers to create designs satis-
factory for all mobile users. Because of that, many web sites designed their mobile
versions for the least functional devices and are therefore significantly less usable or
functional than their desktop versions. Alternatively, if developers wish to make use
of the full powers of various devices, a different design will have to be created and
maintained for each device: the high cost of which makes it infeasible for most web
sites.

This thesis describes Mobi, a system that automatically reformats web pages into
versions optimized for mobile browsing. Mobi heuristically look for parts of web
pages that the user is most likely interested in and removes everything other than
the relevant contents from view, providing a stripped down version of the page. The

user may also switch back to the original version of the page if the algorithm removes

13

e lo B RO MR B /. [o) fwunn an comhomePage.do
=

:‘) NnericanNrﬁnes -

Figure 1-1: Comparison between rendering a web page (http://aa.com) on a desktop
versus on a mobile device.

elements the user wishes to interact with.

By removing irrelevant contents from the web page, Mobi increases the user’s
efficiency in finding, viewing and interacting with the contents he is interested in.
While some browsers today may have advanced zooming and panning capabilities, it
is still very difficult to interact with a web page that needs to be rescaled to at most
1/3 its original size for it to fit in a mobile device’s viewport. For example, a textbox
originally 20 pixels by 100 pixels in size will be 6 pixels by 33 pixels on the screen. In
order to click on the textbox, the user will have to look for something makes up for
less than 0.2% of the screen (assuming dimension of an iPhone browser’s viewport)
and zoom in on it until it is big enough on the screen to be clicked on. By reducing
the amount of contents on the screen, Mobi makes it significantly easier for the user

to access contents he is interested in.

To maximize learnability, Mobi keeps the layout and styling of the mobile version
as consistent to the original page as possible. This allows users who are familiar with
the desktop interface already to make use of a familiar interface rather than having
to learn using a completely different design, as is often the case for web sites that

provide mobile versions.

14

Mobi is implemented by having a Customizer script that is injected onto all web
pages the user accesses. In order to do so, a proxy server is set up so all requests to
the web routed through the server will have the script injected. As such, the script is
written in JavaScript and may run on any mobile browser that supports JavaScript
and proxy connections.

The method for assessing relevance of the contents on a web page uses knowledge
about users’ actions in the past. For instance, if the user always only uses a certain
textbox on a web page, the textbox will be considered highly relevant. In order to
collect this data, Mobi also has an Action Recorder that resides in the user’s desktop
browser. The recorder is implemented as a browser extension in Firefox, created
using Chickenfoot [7], itself an extension that enables end-user programming. The
Action Recorder collects data over all clicks and interactions on web pages, as well
as data about how long certain elements had been within the user’s viewport. Data
collected by the Action Recorder are pushed to the proxy server, allowing access from
the Customizer script.

By using action history as the basis of the algorithm, Mobi allows for mobile
versions of web pages to be generated automatically without explicit instructions from
the user or developer of the web pages. Unlike systems that provide end-user mobile
customizations of web pages such as Highlight [13], Mobi does not require the user to
explicitly define and configure mobile versions for each web application. Every web
page visited by the user previously on the desktop will have a corresponding mobile
version automatically in Mobi. Furthermore, for web pages that haven’t been visited
before, if the user has accessed another web page within the same web site that has
a similar structure, Mobi will apply the algorithm using data from that page.

The remainder of this thesis covers the design and implementation of Mobi. Chap-
ter 2 describes related work in the area of customizations of the mobile web. Chapter
3 discusses the design of the mobile customizations. Chapter 4 covers the details of
the implementation. The results of running and evaluating the system over a variety
of different web sites is given in Chapter 5. Lastly, Chapter 6 concludes the findings

in this thesis and discusses future works on and related to Mobi.

15

Action
Recorder

B GHIDER TODAY FO8

Proxy Server

-i

o = R WS W W W W W W

Figure 1-2: High-level overview of Mobi’s architecture.

i
1
el
| i
“: !_ a E
B
| &
=]

I
saves 1o

i:mobiie web browser L

Customizer

Chapter 2

Related Work

There are several projects in the domain of providing customizations of the web to
mobile as well as non-mobile devices. The chapter discusses these projects and how

they relate to the motivation and development of Mobi.

2.1 End-User Customization

End-User Customization is a technique for allowing end users of various applications
to modify the interface they see. Several projects currently exist for enabling end-user
customizations of the web on the desktop environment, such as Greasemonkey and
Chickenfoot.

Both Greasemonkey [2] and Chickenfoot [7] [11] are toolkits that empower users
to write scripts that change the appearance of web pages in the user’s browser.
JavaScript code may be written to match certain URL patterns and runs after the
web page is loaded. To be more specific, Chickenfoot provides a sidebar in Firefox
that allows users to create triggers in JavaScript code and configures which pages
they should be applied on.

In essence, this type of system gives users complete control over the appearance
and function of the interface of the web pages they see. However, they also require
the users to be knowledgeable about JavaScript and HTML to program these cus-
tomizations. The Platypus [3] extension seeks to provide a What You See is What

17

RO % F®B 8 ¢ o E =2 @ § S fF £ x =
Help Save Qut Repair Cut Paste Isolate Erase Relax Make BW Center Fix Page Remove Set Style Madify URL Modify HTML Insert HTML View Source

Figure 2-1: Platypus’s toolbar on Firefox.

and Mozilla's technologies supported user mediation in a transparent and usetul way.

Platypus is a Firefox extension which lets you modify a Web page from your browser - "What You See Is What
You Get" -- and then save those changes as a Greasemonkey script so that they'll be repeated the next time you
visit the page. Editing pages to suit your needs is dandy — but making those changes "permanent” is the real
payoff,

some of the things you can do with Platypus include:

Figure 2-2: Platypus’s Editing mode.

You Get (WYSIWYG) graphical interface to Greasemonkey for allowing users to cre-
ate customizations visually to make it easier for non-programmers to create end-user
customizations. It provides functions such as erasing certain elements in the page by
clicking on a button in the toolbar it adds to the browser, and selecting the element
on the page to be erased. Functions such as moving and changing sizes of elements
are done similarly.

While these approaches succeed to various degrees in providing end-user cus-
tomizations on desktop browsers, they are not easily applicable to the mobile en-
vironment. The text-based development environment employed in Chickenfoot and
Greasemonkey are significantly more difficult to use on a mobile phone, due to the
small screens and less convenient typing methods offered by the small built-in or vir-
tual keyboard. Similarly Platypus’s graphical approach is also difficult due to the

need to directly manipulate elements on the page in a small screen.

2.2 PageTailor

PageTailor [6] is a prototype end-user customization system that allows users to
create customizations of web pages directly on the mobile device. As an extension to
the Firefox-based Minimo mobile web browser, PageTailor adds a toolbar interface
similar to the one provided by Platypus, offering functions for removing, rescaling, and

moving elements on the screen. Similar to Platypus, the user may directly manipulate

18

® Remove @ Increase @, Decrease (5 Move) Undo |8 Done

Figure 2-3: PageTailor’s toolbar on a PDA.

o | Mimimo S E 3 & | Minime ;
nne
o ews
Prescntt ponts 1o fre
ob oo
Irag mspechions sbout
e start
‘st human clore’
due in Janusny

Ferguson hais
nrimstc Ruud
Jackie Stewart has

Figure 2-4: An example of a web page after being customized with PageTailor.

certain elements on the page and PageTailor will translate the user’s customizations
into operations for modifying the Document Object Model (DOM) of the web page.

Due to the need for the user to directly specify and create customizations, users
only benefit from PageTailor in their subsequent revisits to the web page. In order to
not have the user repeatedly edit the page every time he visits a web page, PageTailor
stores customizations into persistent storage on the mobile devices and reapplies the

customizations when the user visits the same page again.

The editor toolbar interface provided by PageTailor, while intuitive to use, is still
fairly inefficient due to the form factor and input methods of a mobile device. Even
with the ability to reapply customizations created previously, PageTailor requires the
user to essentially design customizations for every page that they haven’t previously

visited on the mobile device. Changes on web pages also interfere with its ability to

19

reapply customizations. To mitigate this problem, several projects seek to make use

of the desktop environment in creating customizations.

2.3 Project Joey

Mozilla Labs’ Project Joey [4] is a project that allows users to create mobile versions
of web pages by selecting portions of web pages, such as text clippings, pictures,
videos, etc. Project Joey includes a Firefox extension that runs on the user’s desk-
top Firefox browser. The user may specify parts of a web page to be clipped and
upload specification regarding that clipping to the Project Joey server. When the
user browses to the Project Joey server, he may then see a list of clippings previously
created and view those clippings.

Unlike PageTailor, Project Joey makes use of the desktop environment as the
development platform for creating customizations, which are then applied on the
mobile devices. This approach provides the accessibility of the desktop environment

to the editing process of creating end-user customizations.

2.4 Highlight

IBM’s Highlight [13] project is a programming by demonstration system that allows
users to create customizations for their mobile devices on the desktop. Highlight
consists of an extension on the user’s desktop Firefox browser and a proxy server that
the mobile device access the web behind.

To specify how a web application should be customized using Highlight, the user
can open the Highlight designer on the Firefox browser and continue interacting with
the web site normally. Highlight keeps track of the users interactions in what they call
traces of the user actions. Highlight then attempts to generate a mobile customized
version of the application that supports the recorded user interactions. The user may
also manually modify the customized version generated by Highlight directly in their

designer interface.

20

[= e = v
De OB gee e disna [k g Dee

& - & TR [s s it gwTH 1462100 TR et Ui Pues ks Dstreboistietse | B

W Pty iccteed s | | Weala Crose-Frteance || Wik, e Bk Rands. | RO Pares - Sty (@ Corna it - 100 @ Oonarg aptas ot 9 96000 | Mamaredt e 1 "
a8 bentme w1 v ess v A

ekt Dasp 1+ -

Sorybeard s

(H A

(] Muarusb sl src barmm b o oo

Storyboard —T%

]| Auparsabeall rarore sibs-rpecte coskams Al Bavks
—i o - A s |
[A Comtms | | o 28 cortar | | st Ay Mrdabed Srorvhen: Lain | |
Baaks t

- v Showerg L 10 ot " Zart by |
_.-_014_ i i i 224,880 Ripirts | Pagei 1t ! | gt s - = |
PO IR Awise, v boebosh frebs o s I
Saghucn pugeel b - <, ~ i ar {
- -k 2 |

|

Books » "baseball"

| e day b
ches Laseball lestors, foaball, ppoets
Belate-d Searches Laseball lustcay, foabadl, pproen Uhpble bt PREE Suiorr Seve: Shamsers

Preview meer . |
B owser Downg 1 12 o 124 556 Rewaty P Ppa— I
Y ’ B Bpents tusirsted Thie Basslall Bosh by B0iors of Sports |
| 4 ok E - Bustrated (Mordcower - (ot 47, 2006}
» e R IL
et 8y Traday, Bih F 7 1oy ot o e npet | hwes and chosss
e day hores
< [T -

Ehglie for FEEY Saper Sa

s

Sports Matrassd The Pase
1008

oy oo 129 05 019 07
et by Tuwadey Ot 2
Ehgghe for FREE Super %2

The Boy Who Saved Baeel
By i 36 %7 B3 Uied

L e (et by Tuesdny, Qo 24)

i »

Figure 2-5: An example of how Highlight records and creates a mobile version of a
website while user is interacting with it.

To view the customized mobile versions on a mobile device, the user configures
their mobile browser to access the web via a proxy server set up by Highlight. The
proxy server itself contains a full-fledged Firefox browser. As the user visits different
web pages, the in-proxy Firefox browser loads these pages. If customizations had
been previously configured for these pages, these customizations are applied onto the
web page rendered in this browser. The server then forwards this mobile-customized
version of the web page to the mobile browser.

Using this approach, Highlight allows users to easily create customizations of
web pages mainly by demonstrating how the web pages should be interacted with.
Manual modification of the customizations are also relatively easy due to the desktop

environment.

However, Highlight still requires the user to explicitly define customization for each
web page. In other words, for each web page that the user wishes to be customized

when they visit it on a mobile device, he has to open up Highlight and asks it to

21

record his actions on the page. One of the main goals in Mobi is to provide a method

for customizing web pages without the need for user intervention.

2.5 Creo and Adeo

Creo and Adeo [9] [8] are also a programming by demonstration system, but with a
focus different from that of Highlight. Instead of focusing on customizing the interface
of a web page, Creo and Adeo seek to provide a way to automate repetitive tasks on
mobile devices.

Creo is a plug-in on the desktop Internet Explorer browser. The user starts by
opening Creo and starting its recorder when he wishes to record a certain task. By
monitoring user actions in the browser, Creo saves them into macros that may be
replayed in the browser. To make these tasks generalizable Creo also looks at the
user inputs and attempts to generalize them into their associated categories using
Miro (a data detector that uses MIT’s ConceptNet and Stanford’s TAP databases).

After saving these macros in Creo, the user may then open the Adeo program
on their mobile device, which will connect him to the desktop running Creo. When
asked to run a certain macro, Creo will play the macro on the desktop and return the
results to the mobile device.

While Adeo and Creo have a somewhat different focus from the goal of Mobi, they
produce interesting findings on the type of automations that may be generated for

the mobile web using a programming by demonstration system.

2.6 Mobile Transcoders

Mobile transcoders share a similar goal with Mobi in that they are designed to auto-
matically convert web pages into version fitting for a mobile device. However, these
applications focus mainly on making web sites function on low-end devices. In other
words, transcoders generally work by removing everything from a web page that

requires advanced browser functionalities.

22

Adeo Mobile

All Recordings:
& Checking Account Ba
& Look up Movie

= Order Book

e Order Food

L Order Pizza

_) Browse to: Order Onine
_) Browse to: Build your Pizza

labl Submat Information

_) Browse to: Debvery information

[sb Submt Alex, Fasborg, 20 Ames Street, Cambndge, MA, 02142, 617-895-5064, 52

labl Submit. Alex, Faaborg

g 555-5555-5555, 05/0%.

NS 77N G4

_) Finish by displaying: Leaving the Demo

Figure 2-6: Menu for accessing and playing back a recording on Adeo.

Google Mobilizer, for example, is a transcoder that is built into Google search
results that enable low-end smart phones to view web pages even if the web pages do
not provide mobile versions compatible to these phones. It works mainly by removing
many potentially unsupported CSS styles, as well as all the JavaScript code embedded
on web pages.

Unlike mobile transcoders, instead of focusing on compatibility, the design of Mobi

focuses on maximizing efficiency and usability of web pages on mobile devices.

23

24

Chapter 3

Design

Mobi is designed to require as little user intervention as possible. In other words,
after setting up the Recorder on the desktop and the proxy connection on the mobile
browser, no further configuration will be necessary. As such, the interface is designed
to be as learnable as possible. Furthermore, minimalism is highly important due to
the small screen on a mobile device. Overlays on the mobile browser included by
Mobi must therefore take up as little screen real estate as possible.

This chapter describes several early ideas about the type of transformations to
be applied, as well as several prototypes and design decisions of the implemented
version. The following discussions assume that Mobi is able to evaluate and assess
the relevance of various contents on a web page using the data from the Action

Recorder. Section 4.2.1 describes the algorithm for assessing content relevance.

3.1 Early Ideas

The design starts off with several early ideas regarding what kind of transformation

techniques should be applied so as to:

1. Maximize efficiency in accessing relevant contents. For example, the need for

zooming and panning to look for contents should be reduced as much as possible.

2. Retain a sufficiently similar look to the original page. This way, user who had

25

used the desktop version in the past can adapt to using the customized version

without having to relearn an unfamiliar interface.

Zoom and pan

The first idea considers zooming and panning to contents that are most likely inter-
esting to the user. This reduces the need for the user to find the content and therefore
improves the efficiency in accessing that content. However, it is likely for a page to
have contents that are relevant to the user in different locations of the page. In other
words, if the user wishes to access contents that are not heuristically assumed to be

the most interesting, he will not be able to enjoy any improvement.

Copy to top

This idea considers the possibility of copying the most relevant contents to the top
of the page. The user may then prioritize checking contents at the top of the page
and only look at the rest of the page if he cannot find what he is interested in. While
this offers higher efficiency since the user will only have to look at the top of the page
most of the time, there will now be multiple copies of the same contents on the page
and may potentially confuse the users. Furthermore, having multiple copies of the

same elements in the page will likely interfere with the functions of the web page.

Deleting irrelevant content

This idea is perhaps the most aggressive technique. By deleting all content other than
the most relevant contents in the page, this produces the least amount of contents in
the page and makes finding contents in this view the easiest and most efficient. How-
ever, this also makes it impossible to access items that were not considered relevant

by Mobi’s heuristic algorithm.

26

Enlarge in place

Enlarging elements proportional to their assessed relevance ratings is another method
for making relevant items more visible to the user. This method has the benefit of

potentially retaining the same layout of the original page.

Snap-on panning

To minimize the amount of changes to the look of the page, we considered the tech-
nique of modifying the panning speed to make it easier to pan to relevant items. To
be more specific, the browser may slow down panning speed when the viewport is
close to relevant contents and increase panning speed when the viewport is close to
relevant contents. This way, it becomes much easier to “snap” onto relevant items
in the page. This method has the benefit of being able to not modify the styles and

layouts of the page at all.

3.2 Design Prototypes

Of the early ideas considered above, three were chosen for testing and prototyping. In
order to better assess the feasibility of these techniques, several prototypes were made
prior to implementation. The computer prototypes discussed below were created by
modifying screenshots of websites, adding basic simulated interactivity, and viewing
these modified images on a mobile device. The sections below also include discussions

of potential implementation challenges discovered during the prototyping process.

3.2.1 Enlarge in place

Prototypes for the enlarge-in-place technique are shown in Figure 3-1. The prototypes
use aa.com as the web page to be customized, and assume that the most relevant
contents are the forms on the right used for searching for tickets and checking flight

statuses. As mentioned before, the enlarge-in-place technique increases efficiency for

27

accessing the relevant contents by making them more visible than the other contents
on the page.

Several prototypes are created with different ratios in order to assess what ratio is
best for the enlarge-in-place technique. We also considered the possibility of letting
the user change the ratio by including a slider on the page that allows the user to
select a ratio dynamically. |

In the process of creating these prototypes, we discovered challenges regarding
how to best apply this technique. As seen from the screenshots in 3-1, it is difficult to
maintain the look of the page while enlarging certain elements in the page. Elements
that are not enlarged, for instance, may be pushed aside by the enlarged items, in ways
much different from how the original design expected. Furthermore, transformations
via current versions of HTML and CSS do not yet allow for enlarging and rescaling of
elements in a web page. Implementation of this technique will therefore likely require

writing a very customized mobile browser with these functions.

928

» e Mewca.Latm demerca fnd Gartbemn
aneches o | s

b e e Ao Amencn Ao

Vresem vea M R

Password Help
[RPOS—
SPT—

@ DealFinder” | KK | Ao o tame

2.)

"™\ AmericanAirines

Secure
Flight

Figure 3-1: Prototypes for the enlarge-in-place customization, labelled by their ratios.

29

3.2.2 Copy to top

An example of the prototypes made for the copy-to-top technique is shown in Figure
3-2. By placing the relevant contents (the two input forms) in the top of the page, we
may configure the browser to zoom in onto the top of the page when the page loads,
giving user easy access to the most relevant contents on the page. If the user wishes

to access the rest of the page, he may simply pan to the bottom.

® Round-Trip One-Way Muli-City Rudeam 4
Espafiol
From: Lookug e Date
Month = Day = Moming
To: Lookuy Return Date

Month = Day = Ahemoon
| Aiports Wihin OMies ~+ SearchBy
| Price & Schedue < Enhanced
Passengers: 1 = & Schedue
| Promoton Code

My Dates are Flexible

[3) Advanced Search

Prefoence Crkdren Counry o Resdence |
From e To Logkg Flight Munibar
| wdior
Date Time
| Today = Momng 3 i

arture Date
Month =+ Day » Moming
To: Logkue Retwm Date
Month ~ Day = Afemoon
Airports Within OMdes - Search By
Price & Schedule < Enhanced
Passengers_ 1 ~ ® Schedue

| Promoton Code

My Dates are Fiexble
| & advanced Searcn _
| Cabin Preference. Chadren of Residence
e ey famBaleflorts. Gates & Times © ~ | Schedules | Flight Status Notification
' miles Miami, FL $130° Restoctions | |
buy 10 Marsh Harbour, Bahamas From Losim To Loskm N Flght Number
Tampa, FL £160° Besinctions
» DealFinder”| i oemors Harbour, Bahamas Beschoss | | oy Time
Exchrve ofery a0 decoursy
= Santa Fe, NM $99 Resnctons | | 100 Moy m

o
bonus miles Edit Cnes

* Fares shown are each way, based on round-trip
purchase Taxes, fees and condons apply

AA News and Offers

» Changes To Inermational And Domestc
Checke harg

Instant AAdvantas
Addantage § Password Enrofiment!
Lummm about mambs benefls
my e for my next
wst GO

Password Help
Troutle sigring n? Need a new password?

View the Frequently Asked Questions

» DealFr\dOr |M|ﬂmm[_’n
1eers | Copynight | e 1| Brgwser Companoisty | Ste Mag

0 A Amencam\ki.-T

Figure 3-2: Prototype for the copy-to-top customization.

As mentioned before, this has the negative effect of having multiple copies of the

30

same contents on the page. It is uncertain as to what would happen if the user is to
interact first with the contents at the top, and then interact with the other copy on
the screen. For instance, in Figure 3-2, the user may fill in the From field in the form
on the top of the page and then continue to fill in the 7o field in the original copy.

One potential mitigation is to have the contents on the top of the page be a mirror
image of the original content. For instance, we may watch for all events on the mirror
image in the page and apply the same actions onto the original copies. However,
having duplicates of the same content on a user interface is not ideal.

Another complication comes from the low learnability of this interface. Users who
are not aware of what this prototype is supposed to do have trouble figuring out what
it is doing. The contents on the top of the page look like they are a part of the original

interface and can potentially confuse users.

3.2.3 Deleting irrelevant content

Book Flights
@ Round-Trip

? | View/Change Reservations | Flight Check-In
© One-Way Multi-City [AS —

Espaiiol
From: Lookup Departure Date :
i Month ~ Day ~ Morning -
To: Lookup Return Date -
Month + Day ~ Afternoon v

Airports Within 0 Miles ~ Search By
 Price & Schedule <Enhanced

Passengers: 1 ~ @ Schedule

Promotion Code

My Dates are Flexible

Advanced Search
Cabin Preference, Children, Country of Residence

Gates & Times ~ ? | Schedules | Flight Status Notification

From: Lookup To: Lookup Flight Number:
and/or
Date: Time:
Today v Morning v

Figure 3-3: Prototype that customizes the page by hiding everything except for the
relevant content.

31

The last prototype was made for the customization that removes everything on a
web page other than the relevant contents. This technique, while simple, is effective
in that it gives users access only to the relevant contents on the page, making it very

efficient to find and access those contents.

Unfortunately, this relies greatly on the ability of the algorithm for determining
which elements in the page the user is looking for. If the user wishes to access
something that is not included in the customized view, this interface will not be

usable.

3.3 Design Decision

Through the prototyping process, we are able to determine the strengths and weak-
nesses of the various customization techniques mentioned above. As a result, we
decide to create Mobi using a combination of the techniques mentioned in sections

3.2.2 and 3.2.3.

Instead of simply deleting all the irrelevant contents from a web page, Mobi will
allow the users to switch between the customized view and the full, original version.
In other words, this is similar to the copy-to-top technique in that it will push the
relevant contents to the top of the page, making them easily accessible as soon as
the page load. Instead of panning to the bottom to access the rest of the contents,
however, the user will instead switch to the full page mode by clicking a button on
a toolbar Mobi overlays on the page. This, in effect, eliminates the issue of having
multiple duplicates of the same contents on the screen. Furthermore, unlike the
original idea of simply deleting all the irrelevant content from the page, the users are
still able to access the rest of the page, giving this approach the advantages of both

of these techniques.

32

4:49 PM

Figure 3-4: Customized version of aa.com created by the Mobi system.
3.3.1 Mode change between customized view and full page
view

Mobi is designed so that interactions with a web page will continue seamlessly under
both the customized mode and the full page mode. For example, if the user fills in

33

From: Lookup To: Loakup
s = } v Book Flights 7 | View/Change Reservations | Flight Check-in
HKS
o] Book: @ Flight Only (O Fight & Hotel - Espanot
From: Lookip Te: w__' Flight Number: Traveling: @ Round-Trip m Redeem o
ke € Cno-tay Looking For Destination ideas?
Mult-City
From: Lookup Te: Lookup
| BOS |HKG
e — s
Departure Date : Retumn Date :
Montn Month |
— e RO R e S
([omies 89
grictions | e
- Passengers : Promotion Code
Emu(em) i
. Cnild or Senior = Promotion Code informaton
fCives {Maximum of 6 passengers per reservation)
ang-inp e S R e R R B e £ S e R
£ Show Results By:
() Prce & Schedue @ Schedule
5 [¥] More Search Options

Figure 3-5: Example showing how user interactions may continue uninterrupted be-
tween mode changes.

the From and To fields in the customized view depicted in Figure 3-4 and realizes
that there are fields in the original page they wish to access (such as the Departure
Date fields), they may switch to the full page view without having to fill in the From
and To fields again. In other words, the mode change between the customized and
full page mode will not interrupt user interactions, as depicted in Figure 3-5.

This method of allowing users switch between modes, however, causes a different
problem. When the user realizes they wish to look for something that may be in the
original page but not in the customized view, clicking on the mode-switch button
causes a very abrupt change to what he is looking at. Contents on the page are
repositioned and resized very differently under these two modes. Because of that,
user may find it difficult to find the elements he was interacting with previously and
continue his work.

To mitigate this problem, we tried different techniques to make it more obvious to
see the connection between contents in the customized view and their counterparts
in the full page view. The first design attempts to do this by creating ghost images

of the contents (semitransparent images of these contents) in the customized view

34

and showing an animation of these ghost images moving from their locations in the
customized view to their corresponding locations in the full page view.

We eventually decided on a simpler design for the transition due to the ghost
images approach being too distracting and ineffective on a small screen that requires
panning and zooming for the animations to be visible. Instead, elements that are in
the customized view are simply highlighted when Mobi switches to the full page mode.
More specifically, these elements have background colors that change gradually from
yellow to their original background colors. This type of effect is common in AJAX
applications and is offered by various web interface toolkits such as script.aculo.us,

used for drawing attention to dynamic changes in a page.

3.3.2 Dynamic interfaces

Mobi is also designed to support dynamic interfaces such as AJAX (asynchronous
JavaScript and XML) applications. This type of applications often add or remove
elements from a web page dynamically using JavaScript. On facebook.com, for exam-
ple, within a profile page, switching between different tabs involve loading contents
asynchronously and adding them onto the web page dynamically.

When faced with these applications, Mobi will maintain the customized view even
when elements are added or removed dynamically. When elements that are considered
relevant to the user are added to the page, these elements will appear dynamically as
expected. Conversely, when elements considered irrelevant are inserted to the page,
Mobi will hide them from view and only show them when the user switches to full

page mode.

35

36

Chapter 4

Implementation

This chapter discusses the implementation of the Mobi system, as well as the algo-
rithms involved in generating the customizations described in Chapter 3. As illus-
trated in Figure 1-2, the system consists of mainly the Customizer, a script written
in JavaScript that is injected into the mobile browser as it visits web pages through
the proxy server in Mobi; the Action Recorder, an extension on Firefox created using
JavaScript with the Chickenfoot system; and the Prozy Server script injection com-
ponents, consisting of a server running Squid [5] and an Apache web server, whose
purp’ose is to inject the Customizer as well as provide access to action history data

for the Customizer script.

4.1 Customizer

The Customizer script is responsible for applying the customizations as illustrated in
Chapter 3 onto web pages. The Customizer is implemented in JavaScript and mainly
works by manipulating the Document Object Model (DOM) [17] and Cascading Style
Sheets (CSS) [16] of web pages. The discussion in the following sections assume being
able to detect what the most relevant elements are on a web page using a heuristic

algorithm that will be described in more detail in Section 4.2.1.

37

4.1.1 Removing irrelevant elements from view

The script starts by looking at the most relevant elements on the web page. The
script then attempts to modify the page so that only the most relevant elements
remain in view. One challenge in its implementation is to somehow accomplish this
without overly modifying the structure of the page. The page must remain functional
after the customizations are applied. Scripts in the page, for instance, may modify
and make use of the DOM tree of the page at any time. Because of this, we must
attempt to customize the page without having to add, remove or move nodes in the

DOM tree.

To accomplish this, the Customizer traverses through the DOM tree: nodes that
are considered highly relevant by the relevance algorithm and the descendants of these
nodes will not be modified; nodes that are not considered relevant will be removed
from view by making them invisible via changing their CSS styles; lastly, ancestors
of relevant nodes must also remain visible (the relevant nodes that are descendants

of these nodes will be hidden otherwise).

In order to make this work efficiently on mobile devices, the algorithm is optimized
as follows: The script starts by getting the list of highly relevant nodes, and marks
these nodes and their ancestors. It then parses the tree from the top. The algorithm
only continues looking at children of a node if the node is an ancestor node of a
relevant element. Nodes that are not relevant or ancestors of relevant nodes is set to
be hidden and their descendants are also hidden as a result. Note that the algorithm
also does not need to look at descendants of a relevant node because those should
be remained untouched. Figure 4-1 illustrates this algorithm, where the nodes with
dashed borders represent the nodes with CSS styles modified so they are hidden from
view; the gray nodes represent elements that are hidden as a result; and the blue
node with bolded border represents a highly relevant node in the page. In effect, this
optimization allows the algorithm to only consider nodes that are immediate children
of nodes marked as ancestors of relevant nodes instead of having to parse the entire

tree.

38

(div][dw)

Figure 4-1: Illustration of the implementation for hiding irrelevant elements by
traversing through the document’s DOM tree.

Reducing white space

Under the algorithm described above, styles of the ancestors of relevant nodes are
not modified. Under this approach however, lots of white space, and, hence, valuable
screen real estate, are wasted due to the spacing and padding in the CSS styling of the
ancestor nodes that are originally intended in the original page to separate contents.
Much of this white space is no longer necessary since much of those contents are now
hidden from view.

We therefore designed the Customizer to remove these white spaces mainly by
looking at the CSS styling of these ancestor nodes and selectively removing padding
and margin when possible.

This, however, must be done carefully. It is not uncommon for web pages to have
designs where these CSS styles are not only used to add spacing between elements,
but also to tweak how elements are positioned. Therefore, it is possible that, after
removing these styling properties, elements may overlap with one another. To avoid
this problem, the Customizer checks, after applying these customizations, whether
elements from different subtrees overlap with one another. If elements are found to
overlap with one another, the Customizer must undo the CSS style changes on the
ancestors of these elements. To be more specific, for pairs of elements that overlap

and are not ancestor of one another, CSS changes on all ancestors of the two ele-

39

body

Figure 4-2: Illustration showing which ancestor nodes must have their CSS style
changes undone when two relevant nodes overlap as the result of the style changes.

ments (but not common ancestors between the two) are undone. Figure 4-2 provides
an illustration of what happened when two nodes (marked with blue background)
overlap. The nodes with red backgrounds represent ancestor nodes that have their

style changes undone.

4.1.2 Labels and captions

When Mobi determines that elements such as text boxes and images are highly rele-
vant and must be included in the customized view, Customizer also makes sure that
their corresponding labels or captions are included in the view as well. In the example
of aa.com shown in Figure 3-4, for instance, labels for the From: and To: fields are
also included in the customized view.

This is done mainly by having the Customizer look for elements close to images
and input fields that are marked as relevant, and include those in the customized view
as well. More specifically, the Customizer looks at each element that is marked as
relevant. It traverses the subtree under the ancestor several levels above the marked el-
ement, looking for elements that are enclosed by the rectangle centered at the marked

element, with twice the size of the marked element. Figure 4-3 illustrates how this

40

¥rom Iﬂ"' fa
G

Aoty Fo%w | [Ve “ By

e

Figure 4-3: Illustration showing the area under which the Customizer looks for label
elements for a text box.

works: the text box marked by the green box is the element marked as relevant,
while the rectangle with yellow dotted border represents the area under which the
algorithm looks for elements that are potentially labels for the input field. Note that,
in the case of images, instead of double the size of the marked element, a constant

value is added to width and height.

4.1.3 AJAX and Dynamic changes

To ensure that the customized version works for dynamic interfaces, the Customizer
listens for changes in the DOM. When a change occurs, the Customizer ensures that
the elements that are affected appear or disappear according to their relevancy. In
other words, after each change to the DOM, the customized version should look as if
customizations have been reapplied to the page with the new DOM structure.
However, it is infeasible for the Customizer to reapply the entire script every time
a change occurs to the page, due to the potentially very high frequency of dynamic
changes in advanced interfaces. A typical AJAX call and interface change, (as is the
case with the AJAX search interface on google.com) for instance, may cause more than

50 changes to the DOM within less than a second. Because of this, the Customizer

41

Type of parent Inserting relevant node Inserting irrelevant node Removing node

relevant node no fixes needed no fixes needed no fixes needed
ancestor of relevant node no fixes needed require fixes no fixes needed
neither require fixes no fixes needed no fixes needed

Table 4.1: Different cases of changes on the DOM tree.

must be designed so that, after these dynamic changes occur, it should take as little

computations as possible for the customized interface to quickly adapt and fix itself.

To achieve this, the Customizer installs a listener on the DOM tree that gets
notified whenever a node is inserted or changed. The script must then apply fixes
depending on whether the node inserted is considered relevant, as well as the type
of parent node this node is inserted into to. An overview of different cases of these

events is shown in Table 4.1.

The main types of events that cause problems are ones where irrelevant nodes are
inserted into parent nodes that are ancestors of relevant nodes; and when relevant
nodes are inserted onto parent nodes that are hidden. In the first case, the irrelevant
nodes being added to parent nodes that are ancestors of relevant nodes will cause
them to be visible (since the ancestor nodes are visible). In the second case, relevant
nodes that are inserted onto parent nodes that are irrelevant and therefore hidden

will cause those relevant nodes to be hidden as well.

In order to fix these problems, upon changes to the DOM, the Customizer script
looks at the node that is added. If the node is assessed to be irrelevant, and if the
parent is marked as an ancestor node, we hide the node by modifying its CSS styles.
On the other hand, if the node is assessed as relevant to the page, we must check to
make sure the parent is not hidden. This is done by tracing through its ancestors.
If the first marked ancestor encountered is a relevant node, we can be sure that the
parent is visible (since it is a descendant of a relevant node) and no modification is
necessary. However, if the first marked ancestor is marked as an ancestor of a relevant
node, this indicates that the parent is hidden and all ancestors of the added node are

modified to have their styles reset to be visible.

42

4.1.4 Mode change to full page view

As discussed in the design, the user must be able to switch between the full page view
and the customized view dynamically. To achieve this, upon clicking the mode switch
button, the Customizer traverses the tree. For each element that had their CSS styles
changed, we make sure to have their original styles saved in their JavaScript object
prior to the changes. By doing this, switching mode simply requires resetting the

styles of the elements back to the ones previously saved.

4.2 Action Recorder

The Action Recorder is the component responsible for monitoring user actions on the
desktop and using these action histories to evaluate relevance ratings of the elements
inside web pages.

The Action Recorder is written as a Firefox extension built using Chickenfoot.
The Action Recorder is basically a script that runs every time the user visits a web
page. The script installs listeners that monitor clicks and inputs on a web page, as
well as a View Tracker that keeps track of what contents the user is looking at on a
web page. Using these data, the Recorder is able to heuristically compute scores for
different elements on a web page representing an estimate of how relevant they are to
the user. These scores are saved into a database and are therefore accessible by the

Customizer.

4.2.1 Heuristics for recognizing relevant contents

The algorithm Mobi uses for assessing and estimating how relevant contents are on a

web page depends on the assumptions that:

e Elements that user interacts with frequently are highly relevant to the function

of the web page;

e Elements with readable contents that the user spends a long time looking at

are also highly relevant to the web page’s function.

43

Detecting what the user interacts with directly is fairly easy. The Action Recorder
sets up listeners that listen to clicks over the web page and records the targets of the
clicks (whenever the targets are input fields or links). Similar listeners may be set up

for other user actions.

Determining what the user is looking at, however, is very challenging. The most
accurate way to do this is clearly with eye-tracking apparatus similar to the ones
described in Jakob Nielsen’s research on using eye-tracking technology for usability
studies [14]. However, Mobi is developed for use by normal end-users and we will
therefore attempt to use some simple heuristics to simulate this type of functions by

monitoring user’s actions in the browser.

The Action Recorder includes a View Tracker that keeps track of the contents
within the browser’s viewport. One basic assumption it makes is that the user must be
looking at contents within the viewport. By doing so, it can increment the relevance
scores for elements that contain readable contents and are mostly within the viewport
of the browser. To determine whether elements are mostly in the viewport, we use
a basic calculation: (where C represents the area of the content element, and V

represents the area of the viewport)

c Vv

(COV CHV)
ax

This basically computes a value representing how much of a certain element is
inside the viewport, and, in the case that the content is very large, computes how
much of the viewport is used for displaying the element. The View Tracker increments
the score for the element if this value is above a threshold of 50%. The scores of these
elements are incremented periodically (every 2 seconds) to track how long they have

been in the view.

Additionally, to increase accuracy of the View Tracker, instead of simply incre-
menting the scores periodically, the Tracker only does so when the web page has
focus. This way the Tracker will not fire when the browser is not actually in the

screen. Furthermore, to make sure the Tracker doesn’t fire unnecessarily, when the

44

user interacted with the page (e.g. clicked on a button or entered something into a
text field), which indicates that the user is probably not reading the page, the Tracker
will delay firing again for a period of time. Similarly, scrolling the page quickly will
also cause a delay to the Tracker.

To order for the Customizer to be able to figure out what the most relevant
contents are in a page, the Action Recorder keeps track of an integral score for each
relevant element. The View Tracker increases the scores of the contents in view by
1 every time it runs, while interactions such as clicking increases the scores by 4 per
click. In other words, each click on an element is regarded as roughly equivalent to
having the element in view for 8 seconds.

Originally, the View Tracker is implemented to only consider elements that contain
readable contents: e.g. elements with lots of rendered text or ones with large images.
However, this proves inadequate as much of the web today is structured so text and
contents are divided into many elements. For instance, an HTML table is a common
method for presenting contents, but is not recognizable under this method because
each cell in a table is unlikely to contain a lot of text.

We therefore added another method for identifying content elements: using the
number of repeated similar elements in a node. The google.com search results page,
for example, contains a list of search results, each having very similar styles and look.
The View Tracker should, therefore, attempt to also detect these lists as content
elements and consider them relevant if the user spends a long time looking at the
lists.

To do this, we notice that similar elements often share the same CSS class names
and are of the same types of nodes (e.g. DIV, TR, P). Therefore, the View Tracker will
consider elements that have children of similar style classes and node types content
elements and update their scores accordingly.

To implement this efficiently, we have the script traverse the entire DOM once
after the web page finishes loading. For each node, the script keeps a count of the
types of classes seen in its top two levels of descendants (children and grandchildren).

The node is considered a content node if a significant fraction of its children or

45

grandchildren share the same class. The View Tracker then periodically checks if
the content elements on the page are inside the viewport and updates the scores
accordingly. Note that, to cope with pages with dynamic contents, the script also

periodically traverses the DOM to look for new content nodes.

4.2.2 Applying action history data

The scores representing the relevance of elements on webpages are stored in a database,
identified by the URL of the web page and the XPath [18] identifying the elements.
In order to make the system robust and generalizable, the XPaths are constructed
to be as general as possible. For instance, whenever possible, CSS class names and
ID names will be used instead of HTML tag names. This decreases the dependence
of the XPaths on the exact DOM structure of the web page and allows history data
from one page to be useable on different pages as well.

As mentioned previously, the Customizer script requires using history data in
creating customizations specific for the web page it is running on. To do so, the script
always attempts to look for data for URLs that matches the web page’s location most
accurately. More specifically, if exact URL matches cannot be found, the script will

use data from a URL that shares the longest prefix string with the page’s location.

4.3 Proxy Server and Script Injection

The proxy server uses Squid, a caching proxy that supports all common protocols
such as HTTP and HTTPS [5]. It is configured to inject a SCRIPT tag onto all web
pages. The SCRIPT tag links to a JavaScript script that bootstraps the Customizer
script as well as requests history data from the database corresponding to the URL
of the web page.

Note that one small challenge in this approach is that, because the database
resides on a different domain from that of the current web page, the script may not
make direct AJAX calls to the server. Instead, it creates another SCRIPT element
that loads the data from the database in JSON format and fires a callback upon

46

completion, starting the Customizer script and providing it with the necessary history

data.

4.4 Implementation on Mobile Browsers

4.4.1 Compatibility Issues

While mobile browsers such as the iPhone’s Safari browser and the Android browser
both support most of the features in modern web browsers such as JavaScript, various
quirks and challenges were discovered during implementation.

Both browsers lack support for XPath evaluation (the Android browser has an
interface for accessing XPath evaluation functions, but are not yet implemented),
which is necessary since the history data identifies elements on a web page by XPaths.
As a workaround, Mobi uses Google AJAXSLT [12], an old AJAX library made in
2005 when XPath is not yet commonly supported. This library provides a method for
doing XPath evaluation, although it is clearly less efficient than the native functions
provided on desktop browsers.

Another issue is the absence of the getBoundingClientRect [10] method on iPhone’s
Safari. The method is needed by functions such as finding labels and captions as
described in Section 4.1.2 and finding overlaps between elements of different subtrees
as described in Section 4.1.1. While a workaround exists (traversing through all
the parents of an element and summing up their position offsets from their respective
parents), again, this creates another performance hit in comparison to having a native

method for computing an element’s location and dimension.

4.4.2 Zooming functionalities

Another implementation issue comes from the lack of a way to dynamically zoom
in/out or change the scale of a web page. While both the iPhone and Android
browsers allow the users to manually zoom in and out via clicking a button or using

gestures, neither of which provides another programmable interface to do this from

47

client-side JavaScript.

Part of the designs of Mobi’s customizations include being able to zoom in so
that the customized view fits the screen on page load and zoom out automatically
when the user switches to full page mode. In order to prototype this idea, Read4Me,
an experimental multimodal web browser built on top of the Android browser, is
modified to include a JavaScript API for zooming. Mobi’s functionalities, integrated
with the zooming functions are successfully developed and tested on the Read4Me

browser.

48

Chapter 5

Evaluation

This chapter provides an evaluation of the Mobi system as well as discussions over
the findings from the evaluation. Mobi is tested and evaluated over a variety of
different web sites. Various tasks are performed and recorded on the desktop browser
on these web sites and the mobile customized version created by Mobi are evaluated
formatively.

Functions of the interfaces in the websites evaluated may roughly be categorized

as follows:

e Readable contents: pages whose main purpose is to provide contents. Article
pages on news sites such as nytimes.com are examples of this type of inter-
face. These pages often contain mostly static readable contents rather than

interactive elements.

e Search: a feature provided by many web sites for locating contents. The search
engine functions on google.com is one example of this feature. The interface for
looking for tickets on aa.com may also be considered a search interface. This
type of interface often contains a form of one or more input fields for specifying

the parameters of the search and a page listing the results of the search.

e Function-based: interfaces that serve certain specific functions and often have
side effects. For instance, the interface for composing an email, submitting a

comment or making a bid on an auction site all fall under this category.

49

Various web sites are qualitatively evaluated based on how successful tasks of the
categories above continue to function on the customized version generated by Mobi.
Web sites that generated particularly interesting findings are discussed further in
the following section. A list of all the web sites and their corresponding results are

summarized in Section 5.2.

5.1 Results

The results of an end-to-end evaluation of the Mobi system is shown in the following
sections. To perform this evaluation, we first performed various tasks on these web
sites, allowing the Action Recorder to capture our actions on the page and assess
which elements on the page are most relevant to the user. The Customizer then uses

this information to apply customizations onto the page.

5.1.1 aa.com

From Lookip To: Lookup Fiight Number:
andior |

[PR o

ama. o

Figure 5-1: Evaluation of Mobi running on aa.com, showing the elements marked as
relevant and the corresponding customized version using this data.

The home page of aa.com was used as the basis of the prototypes in Mobi’s design.

We first perform tasks such as searching for flight tickets and checking flight statuses.

50

The implemented Mobi system is able to correctly detect the input fields necessary
for doing these tasks as relevant contents and generate result similar to the original
design as described in Section 3.3, as seen in Figure 5-1.

The search interface for flight tickets and flight statuses work in the same ways as
they do in the original interface, including the dynamic auto-completion function for
the location input fields, which continues to work properly in the customized view.
Submitting the form takes the user to the results page showing a list of tickets they
may purchase, as it did on the desktop interface.

The customization offered by Mobi successfully removes everything in the page
other than the fields the user needs to complete their task of finding tickets or checking
flight statuses, making it a significantly more efficient interface than the original
desktop version. If the user wishes to access the rest of the page, the mode switch
button on the top allows him to easily switch back to the original view. The transition
flashes the fields he sees in the customized view, allowing him to continue interacting

with those elements.

5.1.2 google.com

Web images Yideos Maps News Shoosing Gmal mam v Web imoges Vdeos Maos Mews Shoeping Omal more v
RSN WChan@igmel com | Gooale | Saings » | Sion out RichWChan@gmail com | Vet Nissory | Settings v | Sn out
Go JSIC MIT Search
) 11l Everything | Massachusems institula of Technology Sy
O ’8 e T Maps m s o I!T OpenCoursgWare
4 " fee Motes, Gytatus, & Le
- Cambraige WA 02478 | e
- Morm 817) 2631006
et 18 Wi accurinh " I—
Aovmrcaa ewr A tim 5o o
Longungs Tren Lest -Move indoenaton »
* More search 100s MIT
MIY corectnd io i1 advanvemnt o snostodge and \
o et of shdentn L anean Tl aant e 4 o

Marked as relevant contents

Adversmng Prograsns Buseess Sohuiors About Googie 3

10 Provasy M sty oms 51 s =
Freo Oniing Course Maorials | MIT

Nt 218 o107 562 T POt 0 T M 0500
matena's used in the teaching of virusly al of WIT's.

Couirtad availkihe ON N We frie of charge ...
ccwmitaty’ Cached Semiar

[nitiute of Technoiogy (WIT) & a

Figure 5-2: The search interface on google.com, with elements determined to be rele-
vant marked in green.

51

The search engine google.com is a good representative of common search interfaces,
and is also one of the most popular websites on the internet. The interface of the
search engine mainly consists of the input form in the home page and the results page

that appears after submitting a query, as seen in Figure 5-2.

see full page

uselts Institute of Technols
mitsioan.mitedu
77 Massachusetts Avenue |

Cambridge. MA 02139
(617) 253-1000
Get directions - 13 this accurate?

| 5 reviews - Wie a revew
B More informabon =

mit
MIT is devoted 1o the of and of students in areas that

contribute 10 or prosper in an environment of m and technology.
web.mit edw’ - Cached - Similar

Admissions Video

Frea Online Course Matenals | MIT .. Jobs

Graouate Researcn

Educaton Visitng MIT

Maore resuits from mit.edu =

E nkin ials | MIT OpenCourseWare

Newws and information on the project 1o make the course matenals used in the teaching of
winually ail of MIT's courses availabie on the Web, free of charge ..

cow.mit.edu’ - Cached - Simitar

Massach Institute of Tech - Wikipedia, the free ... |
The Massachusetts Institute of Technology (MIT) s a mvm resaarch university located n
Cambridge, Massachusetis. MIT has five schools and cne coliege, ..

an wikipedia.org/wikiMassachusetts_Institule_of_Technalogy - Lac'ed Similar

MIT Department of Earth, Atmospheric and Planetary Sciences (EAPS)
Photo Caption: The n:pagmphy of Mars shows pnlnpchnuuwo recognize from Earh's
surlace. rmm Contact if

Figure 5-3: google.com’s interface after applying Mobi’s customizations.

After demonstrating the tasks of inputting search queries and viewing search re-
sults in the results page, Mobi was able to correctly detect the input field for the search
query, the button for searching, and the list of search results as relevant contents. The
customizations made by Mobi also runs successfully on google.com’s interface, as seen
in Figure 5-3. On the query page, only the query input box and the search button
remains in the view to allow efficient access to these elements. Upon clicking and sub-
mitting the query, a list of search results is shown while everything else in the original
search results page (e.g. the sidebar and ads) considered irrelevant is removed from
the view. In other words, the user is able to immediately view and access the search
results after submitting the query.

Note that google.com uses AJAX in their retrieval of search results. Instead of
loading another page to view the search results, in order to reduce latency, google.com
queries its server via JavaScript and displays the results asynchronously onto a DIV

element that is added dynamically onto the page. In effect, google.com shows an ex-

52

ample of Mobi working correctly under dynamic interfaces, as intended in the original

design described in Section 3.3.2.

5.1.3 wikipedia.org

Marked as relevant contents

Cr——prrepe—— [T Tr—
Sray

WY s b Fox o . T B,

v e
ot e grnan o por AT e e rmreage s e VT 4 eI
o gy 0 g 0 e e gt w0 e h oY

[wr ot vy

1 ot 1y, 1 e By 1B 1 vpran B g

L
fo. %
(Ere
e e ool e
e .t e . v v e 078 0%
osteraia wve’ * 00 8 4t g P o o P D s o Y
raan™ w8 g
o s T

' bt
o]

s
v e rard

N\

Marked as relevant contents

i v 20 L gt b et e,
irgassce s0tc wana 458 winmgees *

= re
= "u M

.

Jary Aveccan wverey 7 T4 ot arvmien 47 hamora Uogs o
fic oo wcpen w3 vmdin b o cowmy o e
]

i

FEp
{

010 L) o o T D it vt wcorry o s ™

v
oo wors 100 v e e 0 s by A Covrence P

Bahasa Inconesia « Halians + paw « Liekay « Magysr + Nededands » 5588 « Nerge jbokondl] + Polga «
Portugode « Pycoosd + Romiird « Soventing » Cproo ! S0 « Suomi + Swenti + Tirkge « el « Tidng Vil »

T 7 v om0 Y N Y
Adrikauns » Aragones + Asturiany « Kyt Aysyen - A2arbaycan | b eper * .
Ve T i nn) + Bosansi
Mo + Cyroeaeg + Eesb - DAvixs + Euskars + = Fryse - Gaesige + Galego * 4=

Figure 5-4: The search and article interface on wikipedia.org, with elements deter-
mined to be relevant marked in green.

wikipedia.org, a web-based collaborative encyclopedia, gives an example of an
interface that contains functions for both searching and serving readable contents. As
shown in figure 5-4, wikipedia.org consists mainly of a search page and a encyclopedia
article page corresponding to the entry the user searched for.

The customizations made by Mobi remove various unnecessary decorative elements
from the search page, such as the image of a stack of books near the bottom of the
page; as well as the many various language options that were never used or looked at.
Note that elements such as Wikipedia’s icon and the list of common languages remain
in the customized view. This is because they were inside the browser’s viewport for a
significant period of time, causing Mobi to consider them potentially relevant content
elements.

After searching for a term, the article page is shown with only the contents of the

article. Elements such as the sidebar and options such as discussing and editing the

53

WIKIPEDIA

English
The Free Encyciopedia

3286 000+ articios

B¥E
ZU-EEER

Deutsch
Die ireie

1 065 000+ Artias

Frangais
Liencyclopédie libre

045 000+ artcies.

English

From the free i C

Redirectad from MIT)

@ 1235882°N 71 .00211°Y

"MIT" redirects here. For other uses, see MIT (disarnbiguation).

The Massachusetts Institute of
Technology (MIT) is a private
research university located in
Cambridge, Massachuselts. MIT has
five schools and one college,
«<containing a total of 32 academic
depariments, with a strong emphasis |
on scientific and technological
research. MIT is one of two private
land-grant universties”™ and is also
a sea-grant and space-grant
university.

Founded by William Barton Rogers
in 1861 in response to the increasing
industrialization of the United States,
e ty adopled the Europ

university model and emphasized

Massachusetts Institute of
Technology

Mens ot Manus

Mind and Hang! 'l

(=3

laboratory instruction from an earty 1861 (opened 1865)

date.™ s current 168-acre (68.0 ha)
campus opened in 1916 and extends |
over 1 mile (1.6 km) along the |
nnrtharn hank nf tha Charins River

Private
Ll + Catala + Cosky « Dansk » Deutsch « English + Espafiol + Esperanto
Frangais « {+0{ » Bahasa indonesia * taliano * n"aw + Lietuviy + Magyar *

Nedarands « FZRSE « Norsk (hokmal « Polski « Pominids « Punrxd « RomAnd -

US $8.0 bason™!
Philip Clay

Figure 5-5: wikipedia.org’s interface after applying Mobi’s customizations.

article are removed since they were never used by the user. However, the title of the
article, which is clearly relevant to the function of the page, is also removed.

Note that the customization is not specific to only the articles with recorded
history. Mobi is able to apply the same customization as shown in Figure 5-5 to
different articles successfully, giving an example of Mobi’s ability to apply action

history across similar pages, as described by Section 4.2.2.

5.1.4 webmail.mit.edu

webmail.mit.edu is a web-based email system with a fairly common interface. For
this interface, we tests specifically functions such as composing emails to make sure
functions of the original interface is retained in the customized interface Mobi creates.

As seen in Figure 5-7, Mobi retains all the elements necessary for reading the list
of emails and composing new emails. In the email composition page, Mobi keeps
all the elements within the form, and the functions that existed in the original page
continues working as expected in this view.

While the page functions fine, Mobi is keeping more elements in the screen then

necessary. Ideally, since there are fields in the email composition page that the user

o4

Marked as relevant contents MIT WebMall Marked as relevant contents

B o Messege Composition

112" 091 QL1O0N gt Sriee Tanght B Lham totn Sastinn, 7om, Chotben bobbon, om b6 03
VAT @) B 0 A s s ap mew on & Patoe b Botms o i Coarge v lls lutmong

wrr ro00)
Naghs mow on 34 40141 Fasta Chahan Parm, & Mesthass O
Quich 1ot Tt Ras Scwity Eiprt

UROP, Cogative Warmnen 6o, wedat st

- THMIDAY. Saptember 1008, 130 -
UROP, Lacarares, Dgens | 4ems, §aimers aad Cammsenty

-
I Bactien s

Sinsming
RPN, Eatrie, Neda Loa

URDPe, Ogard pce Taaili 1. Mades | o8
UROF. CosaAps. Cload Envreamen:, Wed:a (ab
URDF - CoICM Needn (rupe!

dea o

Pt LIOP. Activm Tachmcloges. Weda |ab
Tradong bate Sevsn. Jom Grome A Pasts dme

Formanent and Gommer If Jotn. Chevran, infelovnan 9/18
Lo g0,

.
™ gl

Figure 5-6: The interface on webmail.mit.edu for viewing and composing emails, with
elements determined to be relevant marked in green.

[send Message [Save Draft [Cancel Message

-fullpv R

2 37:09/10.Anne Hunter Jobs at Qualcomm! 7KB
D) 37:09/10 Anne Hunter Project-based HCI Design Colloquiu? KB
@ 37.09/10Cynthia Skier Tonight: D.E. Shaw Info Session, 79 KB
T3 37:09/10Anne Hunter Sign up now as a Tutor or Tutee in 8 KB
2 37'09/10Cynthia Skier Coatue Management seeking softw9 KB
T 37'09/10Anne Hunter 9.77 Computational Perception (Ni8 KB
I 37'09/09 Cynthia Skier Right now in 34-401A! - Pasta, Ch9 KB
@ 37'09/09 Anne Hunter Quick Job for Rails Security Expert 7 KB
I 37'09/09.Anne Hunter UROP, Cognitive Machines Group, M7 KB
(@ 37'09/09 Anne Hunter BCG Information Session - THURSD.9 KB
D@ 37'09/09.Anne Hunter UROP, Locavores, Organic Farms, F8 KB
@ 3709/09 Anne Hunter Masters RAships/Theses, New Infoi8 KB
= 37'09/09 Anne Hunter Special UG Class - Intro to Convex 7 KB
T2 37'09/09.Anne Hunter UROP, Three-Dimensional Syntheti8 KB
(X 37109/09 Anne Hunter Scholarship Awards to attend a M.58 KB
T2 37t09/09 Anne Hunter UROPs, ExtrAct, Media Lab 9 KB
(@ 37(09/09 Anne Hunter [No Subject] 8 KB
D= 37i109/09. Anne Hunter UROPs, OpenFace ToolKit, Media La8 KB
C@ 37109/09.Anne Hunter UROP, GoodApp, Cloud Envircamen 8 KB
@ 37:09/09 Anne Hunter UROPs! Plumbers Wanted :: C4FCM8 KB

Wester (150-8859-1) _ g. :

O

Figure 5-7: webmail.mit.edu’s interface after applying Mobi’s customizations.

has never used before, such as the Charset field and options such as Requesting
receipts, it would be more efficient to have those items removed from the customized
view as well.

The reason for Mobi to not be able to do so is caused by how the algorithm
for detecting relevant contents was designed (see Section 4.2.1). When the Action

Recorder is monitoring the user’s actions on the page, it detects that the user had

29

been looking at the form for a long time while he was drafting an email. Because of
that, it assesses that the form may contain important readable contents and marks
it as a highly relevant element and it is therefore included onto the customized view.
This suggests that we may potentially consider having Mobi consider content elements

that include form fields differently.

5.1.5 facebook.com

facebook.com gives an interesting example of a modern web page that is designed
to be highly interactive, uses advanced CSS design techniques and has a dynamic
interface that uses AJAX and loads various components asynchronously to decrease
latency. As shown in Figure 5-8, Mobi succeeds in certain areas and fails in others.

By monitoring user actions, Mobi is able to detect correctly the information con-
tents on the Info tab, as well as the area containing all the pictures in the Photo tab.
When the user switches to those tabs, Mobi is able to correctly capture and display
these contents. Note that switching to different tabs causes contents to be loaded
from the facebook.com server asynchronously using AJAX. As these contents are dy-
namically added to the interface, Mobi successfully recognizes the relevant portion of
the contents and is able to reformat the page accordingly.

On the Wall tab of the profile page, however, Mobi fails to display anything (other
than the links for switching to different tabs). This prevents the user from accessing
functions such as viewing wall posts and adding comments without switching back to
the full page mode.

The reason behind this is the failure of the relevance assessment algorithm to
correctly recognize the wall messages and comment input form as relevant contents.
This is caused by the way facebook.com designs its AJAX interface for loading the
contents of the Wall tab: in order to allow JavaScript that is included onto the page
asynchronously after the contents of the Wall finishes loading, the element containing
the wall posts is assigned a unique ID every time the contents of the Wall tab updates.
Because of the way action history data references elements via XPaths (see Section

4.2), changing the ID will cause references to elements previously recorded by the

56

LS

i -
RS
:_ BB
SST— e -365
e e e R e
e! :_ :-._---w-‘-
EE! E_ f_ -

b |
i
LE

5 o m

i ‘M

3
Il

(a) The interface on facebook.

com’s profile pages, with elements determined to be relevant marked in green.

Rlch Chan
Wall |nfo PhotosBoxes 4

Rich Chan
Wall |nfo PhotosBoxes &

The things you care about will now link to actual Pag
We matched your current profile info 10 related Pages.

View Page suggestions »

Basic Information

Favorite Music

Networks MIT 00
Coogle
Sex Male
Current City Boston. MA
Birthday October 24, 1987
Relationship Status Single
Interasted in Women
Looking For Friendship
A Relationship
Whatever | can get
Political Views Very Liberal
Likes and Interests
Activities HKSS, CSalL
Interests P53, Anime, Novels, Food

Canto Music, JPop

Rich Chan
Wall info

Photos Boxes 4

(b) facebook.com’s interface after applying Mobi’s customizations.

Figure 5-8: Evaluation of Mobi running on facebook.com, showing the elements marked as relevant and the corresponding

customized version using this data.

Action Recorder to fail. As such, the relevance assessment algorithm fails to apply
history data that references the Wall elements, and those elements will consequently

never be recognized as relevant.

5.1.6 expedia.com

0 Waicoms . Avuaty § sember? | Sor i | My Sreeey By Accousr | Cumseer Supoor l. she § \ 12
6> pe dia Leaving from: Going to:
e P ﬂ!: Aciies DEALSACETERS Mage Business T jl!osxon. MA (BOS-Logan Intl.)

Anytime j Anytime j

N e d‘cu. b‘wh matters

Memona Dy Sewngs

Adus (Y6-44) Benawry [03+) Ohidee |';_‘|'
fa W (o o e W

AdSEONY! saatch cohions (Brine. Csls. NOMND]

Fignt = J-Ngre Vagas Ty
Suniae Awets - Cartte

P Sarre G

Figure 5-9: Evaluation of Mobi running on ezpedia.com, showing the elements marked
as relevant and the corresponding customized version using this data.

expedia.com gives another example where Mobi fails to successfully include all
contents necessary for performing the site’s functions. As shown in Figure 5-9, Mobi
fails to detect the Search for Flights button as a relevant element despite the fact
that we did demonstrate clicking on it to the Action Recorder. This prevents the
user from being able to perform the page’s function (for searching flights) since he is
unable to click on the button in the customized view.

The failure to capture the Search for Flights button is caused by how expedia.com
uses unconventional HTML elements as interactive elements. Instead of actually
using an INPUT button element, the Search button is in fact a DIV element with
background images, with a listener programmed in JavaScript listening to it click

events. Because the Action Listener only captures events on elements such as input

58

elements and links, clicks on the image are not detectable and the relevance score for

the Search button is never incremented.

5.2 Summary

Table 5.1 provides a summary of how Mobi works over a variety of different websites,

evaluated under aspects such as:

e whether the layout and styles of the customized view remain consistent (layout);

e whether the customized view successfully hides the irrelevant contents and

thereby improves the efficiency of the page (efficiency);

e and whether the customized view is able to successfully retain all the relevant

contents for the page to serve its original function (functionality).

5.3 Discussions

As seen in Table 5.1, Mobi works well on a majority of the websites tested. Only
two websites have functionalities that cannot be provided by the customized view
(facebook.com, whose problems regarding dynamic contents as described in Section
5.1.5 prevent functions such as posting wall messages; ezpedia.com has interactive
elements that are actually DIV elements, as described in Section 5.1.6).

While the rest of the websites have customizations that function properly, various
issues and limitations of the Mobi system’s customizations techniques are discovered.

The following section discusses these limitations.

5.3.1 Limitations

As a by-product of removing irrelevant contents from the page, it is unavoidable
to modify the placement and positioning of various elements in the page. Because

of that, the styles of the original page that was designed for the original view may

39

Website Layout Efficiency Functionality

google.com a00d 200 o00d
wikipedia.org good good 000d
webmail. mit.edu o000 000
nytimes.com OO o00d
facebook.com 00 bad
ebay.com 200 |
craigslist.com o0 000
cnn.com o00d il
flickr.com 000 o00d pood
weather.com |
cnet.com
ehow.com 00 oood
amazon.com 00 oo0d o00d
yelp.com oood o00d 000d
yahoo.com 000(cood 000(]
expedia.com 000 00d bad
imdb.com 200
mapquest.com 00 o000
reference.com 000 o00d
usps.com rO0Cd 000
stellar.mit.edu ro0d

Table 5.1: Summary of evaluating Mobi over different web sites.

60

no longer apply well on the customized view. This is especially the case for web
sites with creative interfaces, either for aesthetics or optimization purposes. For
instance, web sites that uses CSS to position elements at exact locations; web sites
with elements that overlap; and web sites that have backgrounds with assumptions
about the locations of various elements are all likely going to have customizations
that fail to preserve the original layout.

The evaluation also shows weaknesses that exist in the algorithm for detecting
relevant elements. The functionality issues are often caused by the algorithm not
recognizing elements that should be included onto the view (false negatives); while
the efficiency issues are caused by the algorithm overly estimating the relevance of
too many elements (false positives).

These types of limitations clearly require further exploration and will be discussed

in more details in Section 7.

61

62

Chapter 6

Conclusion

Mobi provides a system that automatically customizes web pages for mobile devices
without any user intervention. Web interfaces designed for desktop use are made to
be more efficient and easier to use on mobile devices, without sacrificing the func-
tionalities of their original desktop versions. Using data that it collects from desktop
browsers passively, Mobi is able to provide customizations that are specific to the
tasks relevant to the users.

As presented by this thesis, the design and implementation of Mobi encounter
various challenges, including the need to design customization techniques under the
constraints of mobile devices such as small screens and difficult input methods; the
need for these customizations to work over designs and layouts that differ greatly from
website to website; the various limitations of web browsers and HTML specifications;
as well as the need of a method to accurately assess how relevant various elements
on a web page are to the user. While Mobi clearly still has flaws, as shown by the
evaluation in Section 5, the current implementation of Mobi shows promising results

and I expect high potentials from future iterations.

6.1 Contributions

In summary, Mobi makes the following contributions:

e The design and implementation of a mobile web page customization system that

63

works on all major smart phones today.
e The design of various customization techniques applicable to mobile devices.

e Methods for assessing the relevance of various elements on a web page using

data about user behaviors on the web page in a desktop environment.

e A qualitative evaluation of this automatic customization technique applied over

many different web pages.

64

Chapter 7

Future Work

7.1 Further developments

While the first working prototype of Mobi is complete, many areas of the system
deserve further exploration and development.

As mentioned in Section 5.3.1, more research needs to be done to develop bet-
ter methods in keeping the layout and design of the page consistent when applying
customizations onto the page. Keeping the design consistent with the original page
allows users to better make use of knowledge they had already about the familiar
desktop interface, potentially making the interface easier to learn and use.

While the algorithm for recognizing relevant contents produces promising results
for many of the websites we tested, it is clearly still in need of more work and de-
velopment. It is overly aggressive for certain web pages and also too conservative at
times. More in-depth analysis should be done to evaluate the success and accuracy
of the algorithm. The algorithm may also potentially benefit from machine learning
techniques.

A more technical quantitative evaluation of the system should also be done to
better assess the success and feasibility of Mobi. The evaluation as described in
Section 5 is very formative. As the project matures through further development and
iterations, more technical user studies should be performed to guarantee unbiased

conclusions about the success of the system.

65

7.2 User control

Considering the many heuristics and automations involved in Mobi, there may be
benefits in providing users with some manual control over how Mobi works. Early
iterations of Mobi, for instance, includes a prototype of an interface that allows users
to add and remove contents from the customized view on their mobile device. In-
formation about these additions and removals can be saved at the proxy server and
reapplied upon subsequent visits to the page.

This feature, however, makes the interface more complicated and is eventually
removed for that reason. With a more suitable design, though, this may be a good
way to increase the usability of the customized interface as it gives users direct control

over what they see.

7.3 Browser capabilities

The capabilities of web browsers and specifications such as HTML and CSS [15] are
changing rapidly. Some of the problems faced during implementation, as described
in Chapter 4, can be mitigated as advancements in newer browsers are developed.
There are discussions of CSS 3, for example, to include features such as zooming [1]
that would allow specific portions of DOM elements to be rescaled. Part of the reason
that we abandoned the enlarge-in-place prototype, as described in section 3.2.1, was

partly because of the lack of a method for doing this.

7.4 User behavior data

The user behavior data collected by the Action Recorder may potentially be used
for many other purposes as well. Similar to the approach in Creo and Adeo [9], for
example, such data may provide a basis for creating automation techniques that would
make working on a mobile device, with its difficult input methods, more efficient.
Another potential idea is to create a corpus of shared data between multiple users

of Mobi. For example, data collected from one user’s browser may be used by other

66

users as well. This way, customizations may be created for a web page even if the
user has never been to the page before. This approach will likely run into issues such
as privacy and security, but is a great potential method for further increasing Mobi’s

robustness in automatically creating customizations for the mobile web.

67

68

Bibliography

[1] Css zoom. http://www.css3.com/css-zoom/. [Online Document].
[2] Greasespot. http://www.greasespot.net/. [Online Document)].
[3] Platypus. http://platypus.mozdev.org/. [Online Document).

[4] Project joey - mozillawiki. https://wiki.mozilla.org/labs/joey. [Online
Document).

[5] Squid: Optimizing web delivery. http://www.squid-cache.org/. [Online
Document].

[6] Nilton Bila, Troy Ronda, Igbal Mohomed, Khai N. Truong, and Eyal de Lara.
Pagetailor: Reusable end-user customization for the mobile web. In Proceedings
of the First International Conference on Mobile Systems, Applications, and
Services (MobiSys), 2003.

(7] Michael Bolin, Matthew Webber, Philip Rha, Tom Wilson, and Robert C.
Miller. Automation and customization of rendered web pages. In UIST, 2005.

[8] Alexander Faaborg. A goal-oriented user interface for personalized semantic
search. Master’s thesis, Massachusetts Institute of Technology, 2006.

[9] Alexander Faaborg and Henry Lieberman. A goal-oriented web browser. In
Proceedings of the SIGCHI conference on Human Factors in computing
systems, 2006.

[10] Mozilla Foundation. Dom:element.getboundingclientrect.
http://developer.mozilla.org/en/docs/dom:document.elementfrompoint.
[Online Document].

[11] MIT CSAIL UID Group. Chickenfoot.
http://groups.csail. mit.edu/uid/chickenfoot/. [Online Document].

[12] Google Inc. Google ajaxslt. http://goog-ajaxslt.sourceforge.net/. [Online
Document].

[13] J. Nichols and T. Lau. Mobilization by demonstration: Using traces to
re-author existing web sites. In Proceedings of IUI’2008.

69

[14] Jacob Nielsen and Kara Pernice. Eyetracking Web Usability. New Riders Press,
2009.

[15] W3C. Cascading style sheets: Current work.
http://www.w3.org/style/css/current-work. [Online Document].

[16] W3C. Cascading style sheets level 2 revision 1 (css 2.1) specication.
http://www.w3.org/tr/css21/. [Online Document].

[17] W3C. Document object model (dom). www.w3.org/dom/. [Online Document].

[18] W3C. Xml path language (xpath) version 1.0. http://www.w3.org/tr/xpath/.
[Online Document].

70

