
Automated Cameraman
by

Yaser Mohammad Khan
B.S. Electrical Engineering and Computer Science

Massachusetts Institute of Technology 2010

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science
MASSACHUSETTS INSTITUTE

OF TECHNOLOGY

at the Massachusetts Institute of Technology AUG 2 4 21
June 2010

LIBRARIES

Copyright 2010 Massachusetts Institute of Technology. All rights reserved.

ARCHIVES

The author hereby grants to M.I.T. permission to reproduce and to distribute publicly paper and
electronic copies of this thesis document in whole and in part in any medium now known or

hereafter created.

Author
Department of Electrical Engineering and Computer Science

May 21, 2010

Certified by
D ",hristopher J. Terman

Senior Lecturer, Department of Electrical Engineerirrg and Computer Science
Thesis Supervisor

Accepted by
I Christopher J. Terman

Chairman, Department on Graduate Theses

(this page intentionally left blank)

Automated Cameraman
by

Yaser Mohammad Khan

Submitted to the Department of Electrical Engineering and Computer Science on May 21, 2010
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

1 ABSTRACT

Advances in surveillance technology has yielded cameras that can detect and follow motion

robustly. We applied some of the concepts learnt from these technologies to classrooms in an

effort to come up with a system that would automate the process of capturing oneself on video

without needing to resort to specialized hardware or any particular limitation. We investigate

and implement several image differencing schemes to detect and follow motion of a simulated

lecturer, and propose possible future directions for this project.

Thesis Supervisor: Christopher J. Terman
Senior Lecturer, Department of Electrical Engineering and Computer Science

(this page intentionally left blank)

2 TABLE OF CONTENTS

1 Abstract ...-.. --.. - ----------------............................. 3

2 Table of Contents ... - ---------................ 5

3 List of Figures ..--.... ----------................------- 7

4 Introduction .. 12

5 Test Setup ..----------------------..............- 13

6 Algorithm s..- -.. ----------....... 18

6.1 Scenario ...-...-------------------................... 18

6.2 Thresholding ...----..--------------......... 19

6.2.1 Basic Algorithm ...---- 19

6.2.2 M orphological operations.. 21

6.2.3 Analysis .. 24.......24

6.3 Histograms...----------.... . ----------................. 25

6.3.1 Basic Algorithm and Parameters ... 25

6.3.2 Analysis ... 31

6.4 Codebooks ... 34

6.4.1 Basic Algorithm ... 34

6.4.2 Analysis ... 35

7 Im plem entations and results... 37

7.1 General considerations .. 37

7.1.1 Autocontrast ... 37

7.1.2 Movement Zones-...................... --... 39

7.2 Thresholding----...-----------.... ---.. 40

7.2.1 Implementation .. 40

7 .2 .2 R e su lts ... 4 2

7.3 Histograms... 47

7.3.1 Implementation .. 47

7.3.2 Results-----. . ---.. 48

7.4 Codebooks --............----... 53

7.4.1 Implementation ---.. 53

7.4.2 Results ... 54

8 Future work...54

9 Conclusion...56

10 W orks Cited .. 57

11 Appendix A ... 60

12 Appendix B .. 61

13 Appendix C .. 65

14 Appendix D ... 69

3 LIST OF FIGURES

Figure 3.1: The interaction between PC and the camera .. 15

Figure 4.1: A very basic background differencing scheme. Two frames (luma components) are

subtracted and thresholded to binary (1-bit) image. A morphology kernel is then applied to

clean up noise, and a center of movement is calculated to which the camera is directed.. 21

Figure 4.2: Morphological operations performed on a thresholded binary difference image. The

original has movement on the lower right corner, but everything else is noise. Opening

removes noisy foreground pixels (white), while closing removes noisy background pixels.

The order of the operations matters, as is evident from the figure. We used opening first

and then closing, because it was more important to eliminate noisy foreground pixels (that

might affect the center of movement) than noisy background pixels (which won't affect

center of m ovem ent). .. 23

Figure 4.3: A basic summed histogram scheme. A difference matrix is summed in both x-and y-

dimensions and normalized to yield significant peaks, which indicate movement. 26

Figure 4.4: Raw histograms for images between which no movement happens. Notice the range

of the raw data and compare it with the range in Figure 4.5. .. 27

Figure 4.5: Raw histograms for images between which movement does happen. Notice the

range of data, and compare the values of the peaks here to those of the peaks in Figure

4 .4 ... 2 8

Figure 4.6: The noise tends to cancel itself out when summing differences, but adds up when

summing absolute differences (sometimes to the point of occluding the actual peak)......29

Figure 4.7: Raw and Normalized histograms of movement (left) and no movement (right). Noise

tends to keep most points within 4 standard deviations, whereas movement has points

significantly above 4 standard deviations. .. 30

Figure 4.8: An example of a false positive. There is no movement, yet a point lies above 4

standard deviations. Unfortunately these incidences happen more frequently than desired.

.. 3 0

Figure 4.9: Sequence of histograms when the camera is moving (in the x-direction) while the

object is stationary. For the most part, the motion smoothens the histogram (particularly

the x-direction). However, there are peaks above 4 standard deviations (especially in y-

h isto g ra m s)...3 3

Figure 4.10: An example of how the codebook method would work. It first learns the

background by generating pixel ranges in between which most background values lie. It

also keeps track of how frequently each of the range is hit while learning the background.

Stale entries that have not been hit for a while are probably noise or foreground values

and a regular removal of stale values keeps them out of the codebook. The prediction

phase can then assess whether an incoming pixel value falls within the background range,

in which case it is labeled background, otherwise it is classified as foreground. The

algorithm intermediately goes through learning and prediction phases to keep the

background ranges in the codebook fresh... 35

Figure 5.1: Contrasting-enhancing approaches, showing how an image is affected along with its

histogram. Note that in the original, most of the pixels seem to occupy a narrow range in

the middle of the spectrum, leaving the rest of the spectrum empty and wasted. PIL's

implementation takes the same histogram and just stretches it out across the spectrum, so

that pixels utilize the full width of the spectrum Linearized cumulative histogram

equalization also stretches out the pixel values across the spectrum, but tries to keep the

cumulative distribution function constant, thereby ensuring that the pixel values are more

or less evenly distributed. ... 38

Figure 5.2: An example of a video analysis frame. The top left image is the luma portion of the

actual incoming frame with movement zones drawn on top. A crosshair also appears if

movement is detected. The top right image is the reference image. The bottom left image

is the thresholded image, whereas the bottom right is the thresholded image after noise

reduction with morphology operators. Note that even though there was no movement,

the thresholded image shows up some foreground pixels (which are removed by

morphology operators). The noise free mask does not have any foreground pixels, thus no

crosshair appears in the top left corner.. 42

Figure 5.3: A sequence of frames showing the system behavior over a still camera but a moving

object. Crosshairs mark movements. Note that the reference images are blurred

sometimes (because they are averages of the past 3 frames). Also note the importance of

m orphological cleanup... 43

Figure 5.4: A series of panels showing how the algorithm fails. For each panel, the actual scene

being seen by the camera is shown by the left picture, and the algorithm internals at the

very same instant are being shown by the corresponding video analysis picture on the

right. A: Subject has entered the real scene, but the algorithm doesn't see it yet. B: Subject

is about to exit the scene, and the algorithm still doesn't see anything (it is still processing

old frames). C: Subject finally enters the scene in the algorithm picture, causing the

algorithm to direct the camera to move to where it thinks it is, even though in current

time, the subject is on the opposite edge. D: The camera moves and looses the subject. E:

The algorithm still sees a person, but in actuality, the subject has been lost. F: Cache is

flushed, the algorithm and the actual camera will both see the same thing again now, but

the subject has been lost. ... 45

Figure 5.5: A sequence of pictures depicting how well the thresholding algorithm tracked once

the frame rate was reduced. A: The initial scene. B: A subject enters the scene. C: The

camera immediately moves towards the subject. D: The subject moves to the right edge of

the camera frame. E: The camera follows. F: The subject starts walking towards the left

edge of the camera frame. G: The subject nearly exits the frame. H: But the camera

immediately recovers and recovers the subject. I: The subject stays in the center and

moves around, but the camera holds still and does not move. Note: The subject was

w alking at norm al speed. ... 47

Figure 5.6: Another example of a video analysis frame. The top left image is again the current

frame with movement zones drawn atop. Crosshairs appear in case of movement

detection. The top right image is the reference image. The bottom left image is the

difference matrix summed in the y-direction (projected onto the x-axis), whereas the

bottom right image in the difference matrix summed in the x-direction (projected onto the

y-axis). ..-- ---------------...................------ 49

Figure 5.7: A series of panels showing the run of the histogram algorithm. A: No object in view,

the y-histogram is particularly noisy and above threshold, but absence of x above the

threshold ensures no movement is detected. B: An object moves into view and is reflected

in the x-histogram, but the y-histogram remains noisy. C: The x-histogram shows two well-

behaved peaks, but they're not above the threshold, so are discarded. D: Both histograms

are above the threshold now, but the y-histogram has single point peaks, thus those peaks

are disqualified. E: y-histogram is noisy again, thus no movement is detected still. F: Finally

som e m ovem ent is detected.. 50

Figure 5.8: Two examples of false positives. Both occur in movement zones (near the top).

Unfortunately, this algorithm seems to emit a lot of false positives. 51

Figure 5.9: A sequence of images that depict how the camera reacted with the histogram

algorithm. It tracked very loosely until 00:24 at which point it completely lost the subject

and started w andering ... 52

4 INTRODUCTION

A valuable tool in the arsenal of the modem education system is the advent and use of video

cameras. With the growing proliferation of online education, as well as open courseware

initiatives such as MIT Open Courseware (OCW), it has become imperative to provide some

interactive mode of instruction other than simple written records or notes. While nothing beats

the classroom experience, an adequate substitute is a digital video of the event, which not only

enables the content to be distributed to a larger number of people, but also provides means to

keep record of the event (this may be important to, say, a lecturer who may have forgotten how

he explained a certain topic before, or to a student, who perhaps doesn't remember or couldn't

write down what the lecturer was saying fast enough).

Recording video requires remarkably little equipment (just a video camera), but it does require

two people to participate. One is the subject, who gets videotaped; the other is the cameraman,

who does the videotaping. One may get away with not using a cameraman, instead fixing the

camera on a tripod and staying within the camera frame being videotaped. However, this method

is impractical for a number of reasons, one of which is that the lecturer doesn't know when he's

not in frame (he may go slightly out of frame occasionally), and the other being the restriction of

movement in the lecture hall (most lecturers like to make use of the space allotted to them).

These reasons make it almost a certainty that a cameraman is present when the lecture is being

recorded.

Advances in video surveillance security cameras have led to the popular use of pan-tilt-zoom

(PTZ) cameras. These cameras are close-circuit television cameras with remote motor

capabilities. If these are substituted for the cameras normally used in lectures, there may be a

practical way of automating the role a cameraman normally takes in the videotaping, by having

these cameras move themselves instead of having a human move them.

We decided to investigate techniques that would reliably allow the automated motion of a

camera tracking a moving object, specifically a professor in a lecture hall. Because standard PTZ

cameras won't do custom image processing (nor are they computationally very powerful), we

decided to use a computer to accomplish that task for us, and in the end just tell the camera

where to go. We will first examine the test setup used to simulate the situation [Chapter 3],

followed by a description of the few algorithms we explored [Chapter 4], and our specific

implementation of them and results [Chapter 5]. We will conclude with remarks on the future of

this project and what needs to be done before the project is ready [Chapters 6 and 7].

5 TEST SETUP

The test rig consisted of the following hardware set up:

1. Network Camera: Panasonic KX-HCM280. This was a standard Pan-Tilt-Zoom (PTZ)

Camera with a built-in web-based controller interface. It also had composite video output

connections.

2. TV-Tuner card: Hauppauge WinTVPVR-500. Only the composite input of the card was

used.

3. Processing machine: A stock Intel Core i7 920 with 12 GB of 1066MHz DDR3 RAM

running Ubuntu 9.10 ("Karmic Koala") with kernel support for TV-Tuner card.

In addition the following software utilities were used:

1. ivtv-utils: This is a package available on Ubuntu. Useful for controlling the TV-Tuner

card.

2. pyffmpeg: Python module used for grabbing video frames from the card video stream.

3. numpy/scipy/matplotlib/PIL: A number of python modules for performing image

processing

The camera was connected to the web (through an Ethernet cord) as well as to the processing

machine (via a composite cable to the TV-Tuner card). However one peculiarity resulted as a

consequence. The web-based interface and controller only support two display modes: 320x240

and 640x480. The default output format of the composite video though was 720x480 (standard

NTSC). The two incompatible resolutions posed problems later when comparing the images

from the two different sources in order to determine the location of corresponding objects. In

order to standardize things, a program packaged with ivtv-utils, v412-ctl was used to scale down

the composite video input to the TV Tuner card from 720x480 to 640x480.

The ivtv video4linux drivers are built in to the Linux kernel from 2.6.26 onwards. As such, the

set up of the TV-Tuner card is a matter of plugging it in and rebooting the machine (Ubuntu

should automatically detect it). However, the control of the card is still performed through an

external utility like v412-ctl, which can change inputs (by default, the input is set to Tuner, when,

in our case, Composite is needed), scale resolutions (from the default 720x480 to 640x480) and

perform numerous other related tasks.

Figure 5.1: The interaction between PC and the camera

Though the composite video output of the camera is enough for getting frames to perform

processing on, an Ethernet connection to the PTZ is also required for accessing the camera

controller and issuing move commands. So, while the composite video serves as the sensor

branch, the web interface serves as the motor branch to the camera [see Figure 5.1]. The

controller itself is a script hosted on the camera's web server called nphControlCamera. The

various arguments to the script were reverse engineered from the camera's web interface, and it

is worth it to go over them.

The way the camera moves is that you provide coordinates to it relative to the current frame (and

its size), and the camera moves such that those coordinates become the center coordinates of the

new camera position. If you specify coordinates that are already the center coordinates of the

current frame, the camera won't move at all.

The controller requires HTTP packets in the form of POST data to determine how to move [see

Appendix Afor sample code]. It takes in seven arguments:

1. Width: Only supports either 640 or 320

2. Height: Only supports either 480 or 240

3. Title: Default is 1, but seems to be unaffected by other values

4. Language: Default is 0 but other values are fine

5. Direction: Default is "Direct," but unaffected by other values

6. PermitNo: A random number string the function of which is still unknown

7. NewPosition: A tuple that contains the x and y coordinates of the center of the frame you

wish to move to. In other words, this variable takes in the x and y coordinates of a pixel

in the current frame that becomes the center pixel in the new frame. NewPosition.x holds

the x-coordinate, whereas NewPosition.y holds the y-coordinate.

Four of the seven variables (Title, Language, Direction and PermitNo) seem to contribute

nothing to the actual movement. Alteration of their values does not seem to impact the

movement of the camera in any way. For example, PermitNo is hardcoded to a value 120481584

in our implementation of the code, but could easily be anything else (the web interface seems to

change this value periodically at random).

The other three variables (Height, Width and NewPosition) are important for the movement of

the camera. The new position is calculated relative to the height and width specified. For

example, specifying a value of <320,240> for NewPosition while the Width and Height are

specified to be 640 and 480 respectively causes the camera to not move at all (because those

coordinates already specify the center of the current frame). However, having the same value for

NewPosition while specifying the Width and Height to be 320 and 240 respectively causes the

camera to move to the lower right (so it can center its frame on the lower right pixel specified by

the coordinates).

There is one more crucial piece of information. When multiple command moves are issued, the

camera controller queues them up and then executes them in order. This can be disastrous if two

command moves are issued with reference to a particular frame, but since the camera controller

executes the second only after the first move has been completed, it may execute the second with

reference to the wrong frame. A good example is when a camera detects movement in a corner of

frame 1 (say, at [0,0]) and decides to move towards it. While moving, it passes through frame 2,

where it detects another movement at [0,0], so the system issues another move command.

However, because the camera is still moving, it does not execute the command, but instead

queues it. The camera stops moving at frame 3, when the [0,0] coordinate of frame 1 is the center

coordinate. Now it starts executing a move to [0,0] again even though it is relative to frame 3 and

not frame 2 (where the movement was detected). Thus we end up in a frame that is centered at

[0,0] of frame 3 instead of being centered at [0,0] of frame 2.

Other specifications of the camera are unknown. We have no information about how long it takes

to move to a given coordinate. We also don't know the size of the movement queue. When

provided with wrong information (for example a coordinate outside the frame), the controller

simply seems to ignore it.

6 ALGORITHMS

6.1 SCENARIO

The context of the camera we envisioned was in the back of a classroom, trying to follow a

professor teaching. Several observations need to be made regarding this context:

1. Because the data feed is probably in real-time, heavy duty image processing cannot be

done because the camera needs to know quickly what position to move to before the

object moves out of the frame.

2. A move command should be avoided from being issued every frame because we don't

know how long it takes to complete a move. The movement queue feature of the camera

is a problem here, because the camera will continue moving long after it should have

stopped.

3. There needs to be some movement tolerance, not just for accommodating noise, but also

for eliminating jitter. A very shaky camera would result otherwise, because even a slight

movement would cause a move command to be issued.

4. The background is dynamic. There will be heads of students moving around in the

background, and the background itself might change after the camera moves.

5. The method needs to be general enough such that it follows all professors provided they

don't wear very specific clothing that exactly matches the background.

The basic class of algorithms most suited to the context above are known as background

differencing algorithms [1][2]. Background differencing is an image processing technique where

change is detected between two images by finding some measure of distance between the two

(usually just subtraction). The two frames are called the reference frame and current frame. The

technique is attractive because of its low computational overhead and conceptual simplicity. It is

a particularly useful option when most of pixels in the two pictures are similar, and there are only

slight alterations between the two. Thus, it is well suited for videos, because successive frames in

videos usually have little change between them.

Subtraction of two images very similar to each other yields a lot of values close to zero, with the

values only significantly diverging if the pixel values of the two images are vastly different.

Portions of the image that are relatively constant or are uninteresting are called background,

whereas the interesting changes are known as foreground. Segmentation of the background and

the foreground is the key concept that drives most of the algorithms in this class. In our

discussion above we assumed that the reference image contains the background, thus anything

new added to the background must be in the current image (which we can locate by background

subtraction). However, it is not always so easy to obtain a background and fit it in one reference

frame. We will discuss a few schemes we implemented along with a motivation for why we

implemented them, and then discuss the results we achieved with each.

6.2 THRESHOLDING

6.2.1 Basic Algorithm

The simplest way to segment a scene from two images into background and foreground pixels is

to establish a threshold. If the difference between corresponding pixels from the two images is

smaller than the threshold, then it is considered a minor difference (probably due to noise), and

that pixel is labeled background, otherwise, if the difference is bigger than the threshold, then it

is deemed significant, and the pixel is declared foreground. The process is known as thresholding

[see Figure 6.1]. The schema described assumes a binary value for each pixel (either it's a

foreground or it's a background), but this need not be the case always. A weighting factor may

be applied to assign the degree to which we are confident a certain pixel is foreground or

background (perhaps based on how close it is to the threshold). For our purposes, we will always

treat it as binary.

The resulting thresholded (often binary) matrix is called the mask. It marks regions where the

differences are too big as foreground, and regions where differences are small as background.

The value for the threshold determines the sensitivity of foreground detection, but that can be

tinkered to find good thresholds [3]. Because most of the change that happens is along the luma

axis and less so along the chroma axis, color information can usually be ignored in differencing

and subsequent thresholding.

As expected, thresholding isn't a perfect way of removing noise. Even though it offers a

tolerance level for varying values of a background pixel between successive frames (the

variation is due to noise), there will always be background pixels above that threshold. If we

raise the threshold too high, we risk missing some actual foreground. So after the preliminary

mask is created, we use morphological operators to clean up noise.

Once the segmentation and clean up is done, the foreground centroid can be calculated as the

center of movement, which gives us a point to direct our camera to. As mentioned before, the

center of movement may be calculated by using a binary mask, or it can be calculated by a

weighted difference matrix.

Frame 0

Difference Thresholded

Figure 6.1: A very basic background differencing scheme. Two frames (luma components) are

subtracted and thresholded to binary (1-bit) image. A morphology kernel is then applied to clean up

noise, and a center of movement is calculated to which the camera is directed.

6.2.2 Morphological operations

Mathematical morphology was developed by Matheron and Serra [4][5][6] for segmenting and

extracting features with certain properties from images. In a thresholding scheme, every pixel is

treated independent of surrounding pixels, which is not often the case (objects usually occupy

more than one pixel). The intuition behind using morphological operations for cleaning noise is

that, unlike objects, noise is usually spatially independent. Therefore, if there is one pixel that

has been segmented as foreground among a number of pixels that are all background, then this

pixel is probably just a false positive (that is, it's really just a background pixel, because

everything else surrounding it is also background).

There are two basic morphology operators: erosion and dilation. Both use a kernel with an

anchor/pivot point. Erosion looks at all the points overlapping with the kernel and then sets the

pivot point to be the minimum value of all those points. Dilation does the same except the pivot

point gets assigned the maximum value of all the overlapping points. Erosion tends to reduce

foreground area (because foreground pixels are usually assigned the higher value in a binary

segmentation scheme), whereas dilation increases it (consequently reducing background area).

The problem with erosion is that though it is effective in removing false positives ('salt noise'), it

also chips away on the true positive areas of the foreground. A combination of the two operators

may be applied which approximately conserves the area of the foreground. Opening is a

morphological operation delineated by first erosion and then dilation, both by the same kernel. It

preserves foreground regions that have similar shape to the kernel or can contain the kernel. It

sets everything else to be the background, thus getting rid of small noisy foreground pixels [see

Figure 6.2].

Closing is the dual of opening (opening performed in reverse) and is defined by performing

dilation first and then erosion. It tends to preserve background regions that have the same shape

as the kernel or can fit the kernel. Dilation itself can be used for filling in holes of background

pixels ('pepper noise') when they are surrounded by foreground pixels, but the problem is that it

tends to chip away on the boundaries of the actual background also. Performing erosion

following dilation mitigates this effect, thus getting rid of noisy background pixels without

encroaching too much of the actual background territory [see Figure 6.2].

Co

Figure 6.2: Morphological operations performed on a thresholded binary difference image. The
original has movement on the lower right corner, but everything else is noise. Opening removes noisy
foreground pixels (white), while closing removes noisy background pixels. The order of the operations

matters, as is evident from the figure. We used opening first and then closing, because it was more
important to eliminate noisy foreground pixels (that might affect the center of movement) than noisy

background pixels (which won't affect center of movement).

6.2.3 Analysis

Image differencing seems to be the right way of thinking, but there are a few problems. This

framework has a nice capability of being general enough that it does not depend on any

particular image in question [7]. However, it has the crucial problem of being limited to a static

background (thus being unable to segregate a moving background from foreground). Earlier

work also faced the same problem, with Nagel [1] quoting, "The literature about scene analysis

for a sequence of scene images is much sparser than that about analyzing a single scene."

Original work done on the automated tracking of cloud motion in satellite data (for estimation of

wind velocity) [8] seems too specific and difficult to generalize to other scenes. Other work [9]

analyzed vehicle movements in street traffic, wherein they used the cross-correlation of a

template vehicle (initially interactively selected from a particular frame), to find the location of

the vehicle in the next frame. A window around the new location then becomes the new template

to be used for cross-correlation in the following frame. This process iterated over a sequence of

images thus follows the movement of a car. Some tolerance from noise is afforded by the

dynamic update of the template at each frame, but the process as a whole can easily go wrong

with the wrong choice of templates, and moreover does not address the question of dynamic or

moving background. Another work [10] describes the tracking of prominent gray features of the

objects, but this requires the objects to have specialized features that can be identified as

'prominent,' and also only tracks objects one at a time. Nagel [1] generalizes the framework to

extract moving objects of unknown form and size, but his method also doesn't deal with moving

cameras and requires image sequences where the object does not occlude the background (thus

the background is extracted from image sequences where the foreground does not occupy that

particular space).

Thus, in general, the major problem with this scheme seems to be its inability to model and

handle a moving background (such as wind blowing through trees). A dynamic background

causes problems by causing everything to be classified as foreground (and thus movement). In

our context, every time the camera moves, everything in the new frame is very different from the

reference frame, confusing the algorithm into thinking that everything is part of the foreground

and making the camera prone to moving again.

To make a better scheme, an attempt must be made to study or at least mitigate the effects that

camera movement has on background generation (by either disqualifying all frames received

during movement as ineligible for forming a background, or simply not allowing any movement

in the period of time immediately following a previous movement until a new reference image

has been generated to compare with the new frames to make a proper decision). A method that

may help us do that requires histograms to segment images.

6.3 HISTOGRAMS

6.3.1 Basic Algorithm and Parameters

An alternative method to thresholding (for segmentation) is to use summed histograms in x, and

y dimensions. This requires the difference matrix to be summed in both the x and the y directions

to obtain two histograms. These two histograms are normalized and everything above a certain

threshold is defined as movement. The centroid of these points can then be designated the center

of movement, and the camera instructed to move to that point [see Figure 6.3].

Frame 0

D iterence

Sur inx direcjonl
Change

No rmaze Computecen toid o
r oints above certainl

threshol

Figure 6.3: A basic summed histogram scheme. A difference matrix is summed in both x-and y-
dimensions and normalized to yield significant peaks, which indicate movement.

The types of histograms expected (given a static background) are shown in Figure 6.4 and Figure

6.5. When no movement happens between two images [see Figure 6.4], most of the activity in

the histogram is associated with noise and thus usually falls within a narrow range. There are

false peaks, but usually not significant enough to pose as actual movement (this is a challenge

that the normalization scheme must address). On the other hand, when actual movement occurs

[see Figure 6.5], it shows up in the histogram as a significant peak dominating all the noise.

Histogram in the y-direction

200 300
y pixel coordinatex pixel coordinate

Figure 6.4: Raw histograms for images between which no movement happens. Notice the range of the
raw data and compare it with the range in Figure 6.5.

Because it does not matter whether an object has appeared or disappeared in the new frame, there

is a temptation of summing absolute differences along a given coordinate, rather than just the

differences. However, this idea is a bad one because when summing just differences, some of the

noise tends to cancel itself out, but adds up when summing absolute differences [see Figure 6.6].

The spiky behavior of the histogram in the nonmoving profile shows how noisy the signal can be

despite absence of movement. Preprocessing filtering is a good idea that might remove some of

noise. A filter kernel is applied to each pixel and changes the value of the pixel depending on the

Histogram in the x-direction

surrounding pixels (for example the median filter sets the value of the pixel to be the median of

the surrounding pixels). A number of filters can be useful, in particular the median filter (most

useful for salt-and-pepper kind of grainy noise in the image that was usually the case with our

camera) and the Gaussian filter (smoothens noise in general).

Frame 0 Frame 1

Histogram in the x-direction

400
x pixel coordinate

Histogram in the y-direction

100 200 300 400 5
y pixel coordinate

Figure 6.5: Raw histograms for images between which movement does happen. Notice the range of
data, and compare the values of the peaks here to those of the peaks in Figure 64.

5 -

0

-5

-10

-15

-20

-25

-30
0

3
C,

2 ' ' aD
C) 3

CDC

00 20 0 0 800 20 40 0

li 0 2

-1 <1

-21 0 U

0 200 400 600 800 0 200 400 600 800
X-Pixel coordinate X-Pixel coordinate

Figure 6.6: The noise tends to cancel itself out when summing differences, but adds up when summing
absolute differences (sometimes to the point of occluding the actual peak).

The normalization of the raw histograms is another important aspect that needs to be addressed.

The initial (really bad) normalization scheme was to normalize to the maximum absolute value

of the histogram (making the range of the data between 1 and -1), and then specifying movement

as everything above 0.8 or below -0.8. The most obvious problem with this normalization

scheme is that it will produce a movement centroid even when there isn't one (because even

images with no movement will have a noise peak that will get mapped above 0.8 or below -0.8).

Another alternative means of normalization is to find the z-score for each histogram data point

(by subtracting the mean and dividing by the standard deviation). If the noise follows a normal

distribution then 99.7% of the points should fall within 3 standard deviations. Thus, if a point is

above, say, 4 standard deviations, then it must be movement (with a high degree of probability)

[see Figure 6.7]. However, even this notion is prone to errors and false positives [see Figure 6.8].

Raw HistogramRaw Histogram

Figure 6.7: Raw and
to keep most points

Raw Histogram

800

1

0.5

0

-0.5

-1.5L
0

800

200 400 600
X-Pixel coordinate

Normalized: (Raw-mean)/sd

0 200 400 600
X-Pixel coordinate

800

800

Normalized histograms of movement (left) and no movement (right). Noise tends
within 4 standard deviations, whereas movement has points significantly above 4

standard deviations.

Normalized: (Raw-mean)/sdRaw Histogram

600 0 200 400
Y-Pixel coordinate

600

Figure 6.8: An example of a false positive. There is no movement, yet a point lies above 4 standard
deviations. Unfortunately these incidences happen more frequently than desired.

0 200 400 600
X-Pixel coordinate

Normalized: (Raw-mean)/sd

0 200 400 600
X-Pixel coordinate

0 200 400
Y-Pixel coordinate

Raw Histogram

6.3.2 Analysis

The method is limited in scope and use for many reasons. It is prone to noise and thus detects a

lot of false positives, causing the camera to sometimes move without any apparent reason.

However, it does seem to work slightly better than thresholding, for one particular reason: it

tends not to 'see' movement when the camera is moving.

First, a similar observation to that made for thresholding can be made here: noise is spatially

independent (most of the peaks occur alone). This observation can be used to mitigate the effects

of noise by using a peak clustering algorithm to detect how many points a certain peak has. If a

peak is just a single point, then there is a high probability that it is just noise. However, if a peak

consists of multiple points, then there is a spatial correlation and it is probably significant. Thus,

peaks that have below a certain number of points can be designated noise peaks (and thus not

considered movement). Other peak finding algorithms [11] may also be implemented which

reliably find a proper peak. A note to make here is that these algorithms introduce additional

complexity in the form of more parameters to the model, whose values need to be tinkered with

for an optimum to be found.

Other ways of mitigating noise factor is to average of several frames for the reference. A

particular reference frame may have a noisy pixel that has an atypical value (due to noise).

However, if several frames are averaged together, the effect of noise is considerably diminished

(because other frames will have the proper value of that pixel), and the pixel value appears closer

to its actual mean. The downside to using this method is that averaging many frames while the

camera is moving might be a bad idea because then the reference will have the mean of many

different values.

The reason this method is interesting is because it allows us to study the effects of a moving

camera on the image differences. This scheme (like the previous thresholding scheme) assumes a

static background, and it was initially unclear what effect the movement of the camera has. It

turns out that the method tends to ignore movement while the camera is in motion. While the

camera is moving, everything is changing sufficiently such that the standard deviation of the data

is large, thus most points fall within a few standard deviations (and don't qualify as movement).

This is an improvement over our previous thresholding method because in the thresholding

method, once the camera started moving, everything was always considered foreground, so the

camera never stopped moving. In this method, once the camera starts moving, it is difficult to

make it notice something as foreground, so tends not to move again. Once the camera stops

moving, the background establishes quickly again, and the camera can move again. This

phenomenon is true for most cases, but does fails sometimes [see Figure 6.91.

It is worth noting the smoothing effect camera movement has on the histograms. Generally, this

fact makes the method insensitive to object movement parallel to the camera motion while the

camera is in transition, and very sensitive immediately after transition. So once a move command

has been issued, the camera is more likely to move again.

Thus this method, while better than thresholding (because it does not 'see' movement most times

when the camera is moving), still fails often enough to warrant a more explicit modeling of a

dynamic background.

frames 1-2 frames 2-3
6

U)4

2

-2

-4

4

2

0

)

(D -2

200 400
y-pixel coordinate

frames 4-5

x-pixel coordinate

200 400
y-pixel coordinate

6

U)
4

2

a) 0

-2

-4(

6

x-pixel coordinate

0 200 400
y-pixel coordinate

frames 5-6

x-pixel coordinate

4

2

0
a)

S-2

-4

-6 . .
0 200 400

y-pixel coordinate

x-pixel coordinate

200 400
y-pixel coordinate

frames 6-7

0 200 400 600
x-pixel coordinate

0 200 400
y-pixel coordinate

0 200 400 600
x-pixel coordinate

6

4

-2
C
a) 0
C-)
C

,~-2

-4
0 200 400

y-pixel coordinate

frames 7-8

x-pixel coordinate

10

5

0

-5

-10.
0 200 400

y-pixel coordinate

Figure 6.9: Sequence of histograms when the camera is moving (in the x-direction) while the object is
stationary. For the most part, the motion smoothens the histogram (particularly the x-direction).

However, there are peaks above 4 standard deviations (especially in y-histograms)

x-pixel coordinate

S2

COL)

-2

-4

6

4

.CI
3k 2

C

a) 0

S-2

-4

frames 3-4frames 0-1

6.4 CODEBOOKS

6.4.1 Basic Algorithm

A simplistic perspective for modeling a dynamic background was provided by Kim [12][13].

They use a data structure known as 'codebooks' to hold information about the background

model. Each pixel carries its own codebook, which is created during a specified training period.

A codebook consists of ranges of pixel values that are found on that pixel during the specified

training period. During the training period, if a particular pixel value doesn't fall under an

existing entry in the codebook (i.e. a range of values), then a new entry is created for it.

Otherwise the existing entry is updated to contain that pixel value. A record is kept for which

entry does not get hit often, and these 'stale' entries are deleted on a periodic basis, particularly

at the end of a learning period (because they're either noise or foreground). Once the learning

period is over, the algorithm analyzes each pixel of the incoming frame and determines whether

the new value hits one of the entries in the codebook. If it does, then we have a match with the

background, and that pixel is designated background in that frame. However, if we don't, then

we haven't seen that value at that pixel in the background before, so it is probably a foreground

pixel [see Figure 6.10]. Once image segmentation is done, we can use the standard

morphological operators to clean up noise from the mask and identify the center of movement

(like in the thresholding scheme).

background codebook of pixel:
pixel value-- between and 10 (last hit 1 frames ago)

between 50 and 60 (last hit: 4 frames ago

background codebook of pixel:
between 1 and 10 (last hit: 2 frames ago)
between 50 and 60 (last hit 1 frames ago

pixel,

background codebook of pIxel:
miss between 1 and 10 (last hit: 2 frames ago)

between 0 and 60 (last hit: 1 frames agobetween 120 and 130 (last hit: 1 frames ago)

LEARNING

PREDICTING

background

Figure 6.10: An example of how the codebook method would work. It first learns the background by
generating pixel ranges in between which most background values lie. It also keeps track of how

frequently each of the range is hit while learning the background. Stale entries that have not been hit
for a while are probably noise or foreground values and a regular removal of stale values keeps them

out of the codebook. The prediction phase can then assess whether an incoming pixel value falls
within the background range, in which case it is labeled background, otherwise it is classified as

foreground. The algorithm intermediately goes through learning and prediction phases to keep the
background ranges in the codebook fresh.

6.4.2 Analysis

Codebooks are a useful introduction to dynamic background modeling. Their utility lies in

recognizing the inadequacy of a single unimodal distribution to characterize a pixel, especially

when the background changes. Other studies have also recognized this problem, but addressed it

in different ways, for example, using a mixture of Gaussians (MOG) to model the pixel values

[14]. But as Kim [13] notes, there are problems with the MOG approach, namely in the

sensitivity and model-building of fast varying backgrounds.

Codebooks are best used for quasi-periodic background changes, such as the movement of leaves

in a tree that is in the background. In this particular application, a particular pixel codebook has

only two dynamic ranges (that of the sky, and that of a leaf when it comes into the pixel).

Codebooks allow the presence of more than one background value for a pixel, and thus allow

detection of a foreground when it is 'between' two backgrounds. One of its best features is its

adaptability. Stale entries are periodically deleted from the codebook, thus, if the scene has

changed considerably from the initial training period, the codebook entries pertaining to the old

scene will soon grow stale and be deleted.

The disadvantages of the codebook method include the learning period during which there is

always a danger of the algorithm learning a piece of existing foreground as part of the

background model, but even that can be overcome [12]. Some studies [15] suggest the addition

of another layered model (called the cache) that differentiates between short-term and long-term

background and foreground pixels, and may help keep the training periods shorter.

7 IMPLEMENTATIONS AND RESULTS

7.1 GENERAL CONSIDERATIONS

Two features were present in all three schemes we implemented.

7.1.1 Autocontrast

Consider the case of a stationary scene immediately before and after the lights are switched on.

Thresholding will probably segment the whole scene as foreground, because the pixel values

change sufficiently under different lighting conditions. Similarly, consider a dark scene, where

the difference in pixel values between one dark object and its surroundings isn't that significant.

Thus, any movement by the dark object will probably go undetected by thresholding, because the

difference in its pixel intensity from the surroundings isn't high enough to beat the threshold.

The other methods will have the same problems as thresholding. Both these cases are contrast

issues, and can be rectified by contrast-enhancing algorithms. We tested two implementations:

Python Imaging Library (PIL) comes built-in with an auto-contrast feature, and our own

implementation of a contrast-enhancing algorithm that uses histogram equalization (based on

[16]). Histogram equalization works by spreading out the most frequently used pixel values

across the histogram, using space in the histogram that wasn't previously occupied. It transforms

the cumulative distribution function of the histogram to something that is more linear, thus

increasing global contrast. PIL's implementation, on the other hand, does not seem to linearize

the cumulative distribution function, opting instead to increase local contrast in the image. PIL's

implementation seems to subjectively do better at enhancing contrast, so it was used [see Figure

7.1].

Orfginal Picture
111111111|

089

60,4

K

so 200 Isy
Axe4 WAnsft~ VM

;togram Equalization

0

0*iI I1 1111 1HM

WA*I I iMU y VakO

250 30

Figure 7.1: Contrasting-enhancing approaches, showing how an image is affected along with its
histogram. Note that in the original, most of the pixels seem to occupy a narrow range in the middle
of the spectrum, leaving the rest of the spectrum empty and wasted. PIL's implementation takes the

same histogram and just stretches it out across the spectrum, so that pixels utilize the full width of the
spectrum Linearized cumulative histogram equalization also stretches out the pixel values across the
spectrum, but tries to keep the cumulative distribution function constant, thereby ensuring that the

pixel values are more or less evenly distributed.

250 300

7.1.2 Movement Zones

It is not practical to always direct the camera to the center of the foreground. Even if we come up

with a way to robustly eliminate noise from it such that the foreground always indicates

movement, doing so would result in a jittery, shaky and always moving camera. This

phenomenon results from the fact that foreground centroids change with the slightest motion, and

morphology operators make it even more difficult to keep a constant centroid (even if they were

to hypothetically operate at subpixel level). It seems unnecessary to move the camera when the

movement centroid has moved only one pixel over. For example, consider a foreground centroid

moving within a square 5 pixels wide in the center of the frame. Two points are of immediate

concern. First, if a camera follows this centroid, it will, as mentioned above, always be moving,

even though the movement happens relatively at the same spot (thus the camera should just stay

still). Second, a centroid roughly around the same spot indicates that either there shouldn't be

movement going on there (that it is noise), or even if there is, it should be of no concern to the

camera (movements like hand gestures fall into this category).

Obviously where the centroid is calculated also makes a big difference. If the movement centroid

occurs consistently in the center of the frame, the camera probably shouldn't move. However, if

it occurs consistently near the edge of the frame, the camera should probably move towards it.

Keeping this idea in mind, we established variable movement zones for our implementations.

Thus whenever a foreground centroid is calculated near the center of the frame, the camera

ignores it and does not move. Only when a centroid is calculated near one of the edges does the

camera move.

Unfortunately, this solution has its own problems. Establishing movement zones only on the

edges means that whenever the camera moves, it is always completely swinging to one edge.

There are no slight movements with this approach; most of the motion of the camera involves

wildly moving from one edge to the other. A reasonable compromise would be not to instruct the

camera to move directly to the centroid, but to move slightly in that direction and then reassess

the situation. This compromise has not yet been implemented, but is planned.

7.2 THRESHOLDING

7.2.1 Implementation

The code implemented for thresholding is attached in Appendix B. As mentioned before, the

code uses pyffmpeg to grab incoming frames, and first converts them to grayscale (and a float for

ensuing calculations), then uses PIL's autocontrast feature to enhance contrast. It subtracts the

resulting frame from a previously stored reference frame, followed by binary thresholding and

noise cleanup with morphology operators (opening first, then closing) using a 3x3 kernel. A

center of mass for the foreground pixels (if any are present) is then calculated, and is checked

against the movement zones. If the centroid is present within a movement zone, the camera is

forwarded the coordinates for movement and told to move. Because we don't want the camera to

detect movement while it is moving (because it will queue up that movement command and

execute it later), we generally allow a grace period of a few frames after a move command is

issued during which another move command cannot be issued. The original frame is then sent to

be incorporated into the reference image.

There are a few parameters to be taken into consideration. The threshold for segmentation plays

a big effect in how sensitive we want the movement detection to be (a lower threshold increases

sensitivity, but unfortunately also lowers specificity as the system starts detecting a lot of false

positives). We initially set the threshold arbitrarily to 15. The size of the morphology kernel is

another determinant in movement detection. Too small a kernel means noise doesn't get cleaned

up properly, but too big might mean you miss movement. We initially arbitrarily set the kernel

arbitrarily to 3x3; we considered changing it to 5x5, but 3x3 seemed to do a reasonable job. The

movement zones were established 60 pixels away from the edges of the frames (which were

640x480 pixels in size). The no-movement time window established right after a movement

command is issued was initially set to 10 frames.

The reference image was generated by averaging over the past few frames. The number of

frames to average over is another parameter, and we set it to 3 (1 makes the previous frame the

reference image, 10 makes the average of the previous 10 frames the reference image). We also

had the option of using a 'running average' method to establish reference frames. This method

weighs the newest frame to be incorporated into the reference higher than the previous already

existing frames. The rationale behind this method is that the newest frame is the most recent

update of the background, and as such information from it matters more than information from

the past frames, so consequently it should be attached a heavier weight. We did not implement

this method.

Preprocessing filtering of the incoming images was also initially considered and implemented (in

the form of Median and Gaussian filters), but this ultimately did not change the results

significantly, so it was dropped.

7.2.2 Results

We first tried the method with a moving person but fixed camera to get a gauge of its tracking

capabilities with the parameters mentioned above [see Figure 7.2]. The camera seemed to track

fine with these parameters. There is some uncertainty along the y-axis, where the tracker jumps

around the length of the body frame, but the x-axis is spot on [see Figure 7.3].

Figure 7.2: An example of a video analysis frame. The top left image is the luma portion of the actual
incoming frame with movement zones drawn on top. A crosshair also appears if movement is

detected. The top right image is the reference image. The bottom left image is the thresholded image,
whereas the bottom right is the thresholded image after noise reduction with morphology operators.
Note that even though there was no movement, the thresholded image shows up some foreground

pixels (which are removed by morphology operators). The noise free mask does not have any
foreground pixels, thus no crosshair appears in the top left corner.

Figure 7.3: A sequence of frames showing the system behavior over a still camera but a moving object.
Crosshairs mark movements. Note that the reference images are blurred sometimes (because they are

averages of the past 3 frames). Also note the importance of morphological cleanup

Next, we tested the system on a moving person with a camera that is allowed to move (pan and

tilt) also. The results were not promising at all. The camera refused to follow a person even

loosely, which was surprising, given how well it had tracked a person when it was still. We

eventually discovered a surprising reason behind this problem.

The algorithm draws its frames from the TV-tuner card directly, and performs image processing

on them, which includes not only segmentation related processing, but also processing related to

showing us what it is actually doing. This may not sound like much, but it adds up. For example,

it redraws and resizes every frame at least four times (on the video analysis frames displayed on

the computer) in order to show us what it sees. These processes, in addition to numerous

computationally expensive segmentation processes like morphological cleanups, make it so such

that by the time the algorithm is done with the current frame and is ready to accept another

frame, the camera is already somewhere else. The algorithm draws from a small pool that queues

up frames as they arrive. But because each frame is unable to get processed fast enough, the

frame queue gets backed up. So long after the object has moved out of view, the camera is still

analyzing old frames that had the object in it, and is tracking the object in those frames. It gives

movement commands based on those old frames ad the camera moves in current time based on

that old data. This seemingly gives the illusion that the camera is acting on its own and not

following the object. Occasionally the frame queue gets flushed and the algorithm receives a

current frame, which confuses the algorithm even more. We discovered this problem while

having the web interface of camera showing us its direct output, and trying to compare it with the

output of the processed images, which seemed to lag by a significant number of frames [see

Figure 7.4].

Figure 7.4: A series of panels showing how the algorithm fails. For each panel, the actual scene being
seen by the camera is shown by the left picture, and the algorithm internals at the very same instant
are being shown by the corresponding video analysis picture on the right. A: Subject has entered the

real scene, but the algorithm doesn't see it yet. B: Subject is about to exit the scene, and the algorithm
still doesn't see anything (it is still processing old frames). C: Subject finally enters the scene in the
algorithm picture, causing the algorithm to direct the camera to move to where it thinks it is, even
though in current time, the subject is on the opposite edge. D: The camera moves and looses the
subject. E: The algorithm still sees a person, but in actuality, the subject has been lost. F: Cache is

flushed, the algorithm and the actual camera will both see the same thing again now, but the subject
has been lost.

There is no easy solution to this problem. One partial solution is to see how well the

camera tracks without displaying anything about the internals of the algorithm. That might be

suitable for the final product, but for testing purposes, it is hard to assess performance without

knowing internal states of the algorithm. Another solution is to slow down the frame rate being

input to the algorithm. This allows the frames to be processed by the algorithm at a reasonable

speed without letting a lot of frames pile up in the queue.

We tried seeing how the camera would react with no internals displayed on the monitor,

but we still got the same wandering motion. It is difficult to say what went wrong this time

because we have no data on the internal state of the algorithm, but we suspect the reason was the

same as above. One particular behavior that reinforces this hypothesis is that the camera kept

moving long after it was in a position where it could not have possibly have detected any

movement.

We also tried reducing the frame rate to about 2 fps (previously it was the standard NTSC

framerate of 29.97 fps). Initially, when we displayed internals on the monitor, we ran into the

same problem where the algorithm lagged behind the actual video. However, when we ran the

algorithm without displaying anything on the screen, it seemed to work! It was definitely slightly

sluggish, partially perhaps because of the low frame rate, but it definitely seemed to be following

properly (it did not 'wander' and did not find any centroids when things were not moving in the

actual video) [see Figure 7.5}. It is difficult to assess the exact status of the algorithm without

knowing anything about the internal states, so an investigation into the effect of frame rates on

this particular implementation of the method is recommended for the future. An optimized frame

rate would provide frames to this implementation of the algorithm at the rate with which it can

process them.

Figure 7.5: A sequence of pictures depicting how well the thresholding algorithm tracked once the
frame rate was reduced. A: The initial scene. B: A subject enters the scene. C: The camera immediately

moves towards the subject. D: The subject moves to the right edge of the camera frame. E: The
camera follows. F: The subject starts walking towards the left edge of the camera frame. G: The

subject nearly exits the frame. H: But the camera immediately recovers and recovers the subject. 1:
The subject stays in the center and moves around, but the camera holds still and does not move.

Note: The subject was walking at normal speed.

7.3 HISTOGRAMS

7.3.1 Implementation

The code implemented for the histograms method is attached in Appendix C. Just like the

thresholding method, this method uses pyffmpeg to retrieve frames from the TV-tuner card and

preprocesses them (autocontrasting and conversion to float) before subtracting them from the

reference image. After that the differences are summed up along both axes and normalized.

Points above 4 standard deviations are extracted and run through a peak-clustering algorithm,

which gathers points into peaks and then ensures each peak has at least a certain number of

points. The centroid of the peaks is then calculated in both dimensions and together these give a

coordinate for the center of movement.

There are many parameters that can be adjusted for this algorithm. The standard deviation

threshold was set to be 3.6 after manual observation of movements in many pictures, though it is

sometimes increased to 4. As is the problem with thresholding, lowering the standard deviation

value too much leaves the algorithm prone to false positives, while raising it too high risks

missing actual movement. We also need to specify a value for how many points a peak should

have before it is not classified as noise; we assigned it a value of 3. Peak clustering, as we

implemented it, also requires one argument. It must be given a value for how close points have to

be in order to be considered part of the same peak. We assigned this parameter a value of 2.

The movement zones and the no-movement time window were both kept the same as before (60

pixels from the edges and 10 frames, respectively). The reference frame, as before, was again

taken to be the average of the past 3 frames.

7.3.2 Results

As done in the thresholding case before, we first applied the algorithm to a stationary camera that

is observing a mobile target to gauge an estimate of how good our initial parameters were [see

Figure 7.6]. This decision turned out to be prudent when we discovered our algorithm to be not

very sensitive [see Figure 7.7] or specific [see Figure 7.8] with the initial parameters. Another

important thing that stood out was the slow run time of the algorithm. The image analysis would

sometimes crawl while displaying on the screen.

Figure 7.6: Another example of a video analysis frame. The top left image is again the current frame

with movement zones drawn atop. Crosshairs appear in case of movement detection. The top right

image is the reference image. The bottom left image is the difference matrix summed in the y-
direction (projected onto the x-axis), whereas the bottom right image in the difference matrix

summed in the x-direction (projected onto the y-axis).

From the figures, it becomes obvious that our parameters need tweaking. We can also conclude

from the figures that the histogram projected onto the y-axis (y-histogram) seems to be much

noisier than the x-histogram. We decided to keep our value of standard deviation at 3.6, but

decrease the number of points required in a peak to 2. We also decided to increase the size of a

peak cluster

4
At I A A

k

~,r <A

IA

II

p
A A

A A

Figure 7.7: A series of panels showing the run of the histogram algorithm. A: No object in view, the y-
histogram is particularly noisy and above threshold, but absence of x above the threshold ensures no

movement is detected. B: An object moves into view and is reflected in the x-histogram, but the y-
histogram remains noisy. C: The x-histogram shows two well-behaved peaks, but they're not above

the threshold, so are discarded. D: Both histograms are above the threshold now, but the y-histogram
has single point peaks, thus those peaks are disqualified. E: y-histogram is noisy again, thus no

movement is detected still. F: Finally some movement is detected.

Figure 7.8: Two examples of false positives. Both occur in movement zones (near the top).
Unfortunately, this algorithm seems to emit a lot of false positives.

The change in parameters did slightly better, but not by much. Ultimately this method is

susceptible to a lot of false positives, and to do well in it, we need to figure out the proper

combination of its parameters, which is an optimization problem.

Nevertheless we decided to test the algorithm on a moving camera with our current set of

parameters. Our first few runs concluded with the camera not moving at all despite being

presented with ample movement. It also suffered from the same problem of lagging behind the

actual video. Our subsequent tries consisted of not displaying the internals of the algorithm and

getting a feel for how well it tracked. The camera started out well, but eventually lost track again

[see Figure 7.9].

Figure 7.9: A sequence of images that depict how the camera reacted with the histogram algorithm. It
tracked very loosely until 00:24 at which point it completely lost the subject and started wandering.

Experience with the histogram method suggests that it is a useful tool for

conceptualization, but doesn't do well for practical purposes, unless an optimal parameter

configuration is found.

7.4 CODEBOOKS

7.4.1 Implementation

The codebook method functions by having intermittent periods of learning followed by

prediction phases during which it is ready to track movement [code attached in Appendix D].

There is an initial learning period also. Stale entries are flushed after some predetermined

interval, and this keeps the codebook updated. The key to this method is maximizing the

prediction phase. After every movement, it learns for given number of frames and establishes a

background before being ready to predict again. Prediction itself is done by comparing the

current value to the values in the codebook for that pixel. If there is a match, it is assigned to the

background, otherwise it is a foreground. The usual morphological operators can be used to clean

up noise after segmentation, and finally a centroid can be calculated for determining the center of

movement.

There are many parameters for this algorithm. We need to set the initial learning period, how

long to learn the background for in subsequent learning periods, the interval (and thus the

prediction phase) between two learning periods, and the frequency with which stale values are

flushed. In addition, we need to set a general limit for each entry in the codebook, when to

extend them and when to start a new range. Because prediction can now happen 'between' two

background values, we need to establish both high and low thresholds for segmentation (a certain

value being 'above' the background does not guarantee that it is a foreground, because it might

be close to another background range).

We set the initial learning period for the algorithm to be 120 frames. The algorithm clears its

stale values after the initial learning period and thereafter every 500 frames. It relearns the

background every 250 frames for 30 frames and after every movement command issued. We left

the higher and lower thresholds for segmentation to be 15 (as for thresholding), and the

codebook range entry extends its range if a value is within 10 of the already existing range,

otherwise a new range is created.

We set the morphology kernel to be the same 3x3 kernel we used before for thresholding. The

movement margins also remained the same.

7.4.2 Results

Our implementation of the algorithm is still in rudimentary stages, and unfortunately we were

unable to make it work to the point where we would have any meaningful results. As it stands,

our implementation is too slow, and seems to take a long time in learning the background. Thus

it never gets to the predictive phase.

8 FUTURE WORK

The schemes we implemented are very basic: many more interesting algorithms have been

developed and would be worth implementing (or at least investigating) for the future. A majority

of these algorithms fall in one of the three categories [17]: background generation and

subtraction, tracking using shape information, and region based tracking. Most of the techniques

we implemented are based on the first category, but we have yet to implement a robust

background generating algorithm. Some algorithms suggest the use of stationary cameras with a

PTZ camera to build a common coordinate framework and register the PTZ camera plane in it to

establish a background [18]. However, this requires extra mounted cameras at various angles to

the lecture stage, which may not always be available in the setting of a class. Another tracking

method [19] uses a probabilistic framework and incorporates Bayesian approaches to generate a

background in the presence of moving foreground objects. Another tracking method [17] that

may be most feasible for us uses the camera panning and tilt angle information whenever the

camera moves to reuse part of the old background in the generation of a new background.

Essentially, the camera angles are used to generate a 3D model of the scene, and using this

information, the old background is registered to the corresponding pixels in the new background,

and image differencing done with respect to this information. Segmentation is done by

thresholding and noise cleanup with morphological operations (as we have done), but tracking is

done by histogram intersection [20], which the study claims 'provides good performance in

computing similarities for objects with deformation.' In contrast, our current implementation

does not use a tracking system, which, in retrospect, is a good idea to implement, because a

classroom will have many movements, of which only one (the lecturer) needs to be followed.

The study notes that their system does not process images captured while the camera changes

views, because of uncertainty in panning and zooming angles for these intermediate frames. This

is the conclusion we reached also, that intermediate frames that occur during movement should

be discarded, or somehow disqualified. Special mention must be made to note the fact that this

method requires the knowledge of panning and tilting angles, and these would need to be

extracted from the camera somehow.

Tracking as noted before, is another feature that should be implemented in our system. The

authors above used coloring information and histogram intersection [20] to establish which

objects from foregrounds of two consecutive images corresponded most to each other and a

similarity index was used to track the object. We need not limit to this implementation, and some

interesting work published in this field holds more promise, especially regarding tracking

humans in crowded environments [21].

9 CONCLUSION

The implementation of an automated cameraman is a promising venture, but one that is far from

being completed. Previous implementations of such systems have usually been used for

surveillance only, and this opportunity offers the extension of expertise gained in those studies

for application in a more common environment such as a classroom. Among the many

advantages this system offers, is the reduction of cost by reducing the number of people required

to operate a camera, and convenience of setting up a way to film yourself without needing

anyone else.

A lot of work, however, still needs to be done before the system can be robust enough to put in a

classroom environment. A proper background modeling and generation algorithm still needs to

be implemented, making special note of its complexity, which plays a huge part in how feasible

it is for use in a real-time system. In our experience, the best system was also the simplest (the

thresholding system). A tracking algorithm also needs to be considered and implemented, and

the whole system needs to be optimized over many parameters before it is ready.

10 WORKS CITED

[1]. Formation of an object concept by analysis of systematic time variations in the optically

perceptible environment. Nagel, H. -H. 2, s.l. : Elsevier, Inc., April 1978, Computer Graphics and

Image Processing, Vol. 7, pp. 149-194.

[2]. Extraction of moving object descriptions via differencing. Yalamanchili, S., Martin, W. N.

and Aggarwal, J. K. 2, s.l. : Elsevier Inc., February 1982, Computer Graphics and Image

Processing, Vol. 18, pp. 188-201.

[3]. A threshold selection methodfrom gray-level histograms. Nobuyuki, Otsu. 1, January 1979,

IEEE Transactions on Systems, Man and Cybernetics, Vol. 9, pp. 62-66.

[4]. Matheron, G. Random Sets and Integral Geometry. New York: Wiley, 1975.

[5]. Serra, J. Image analysis and mathematical morphology. London : Academic Press, 1982. Vol.

1.

[6]. Image analysis using mathematical morphology. Haralick, R. M., Sternberg, S. R. and

Zhuang, X. 4, s.l. : IEEE Computer Society, July 1987, IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 9, pp. 532-550.

[7]. Early processing of visual information. Marr, D. October 1976, Philosophical Transactions of

the Royal Society of London, Series B, Biological Sciences, Vol. 275, pp. 483-519.

[8]. Objective methods for registering landmarks and determining cloud motions from satellite

data. Hall, D. J., et al. 7, s.l. : IEEE Computer Society, July 1972, IEEE Transactions on

Computers, Vol. 21, pp. 768-776.

[9]. The description of scenes over time and space. Leonard, Uhr. New York: ACM, 1973, AFIPS,

Proceedings of June 4-8 National Computer Conference, Vol. 42, pp. 509-517.

[10]. Acquisition of moving objects and hand-eye coordination. Chien, R. T. and Jones, V. C.

Tblisi : Morgan Kaufmann, 1975, Proceedings of the 4th Joint Conference on Artificial

Intelligence, Vol. 1, pp. 737-741.

[11]. Comparison of public peak detection algorithms for MALDI mass spectrometry data

analysis. Yang, Chao, He, Zengyou and Yu, Weichuan. 4, January 2009, BMC Bioinformatics,

Vol. 10.

[12]. Real-time Foreground-Background Segmentation using Codebook Model. Kim, K., et al. 3,

June: s.n., June 2005, Real-time Imaging, Vol. 11, pp. 167-256.

[13]. Background Modeling and Subtraction by Codebook Construction. Kim, K., et al. 2004, IEEE

International Conference on Image Processing, Vol. 5, pp. 3061-3064.

[14]. A framework for high-levelfeedback to adaptive, per-pixel, mixture-of-gaussian

background models. Harville, Michael. London : Springer-Verlag, 2002, Proceedings of the 7th

European Conderence on Computer Vision, pp. 543-560.

[15}. Background Updating for Visual Surveillance. Kim, Kyungnam, Harwood, D. and Davis,

Larry S. 2005, International Symposium on Visual Computing (ISVC), Vol. LNCS 3804, pp. 337-

346.

[16]. Acharya, Tinku and Raj, Ajoy K. Image Processing: principles and applications. Hoboken:

Wiley and Sons Inc., 2005. pp. 111-113.

[17}. Real-Time Video Tracking Using PTZ Cameras. Kang, S., et al. Gatlinburg, TN : s.n., 2003,

Proceedings of 6th International Conference on Quality Control by Artificial Intelligence, Vol.

5132, pp. 103-111.

[18]. Monitoring activities from multiple video streams: establishing a common coordinate

frame. Lee, L., Romano, R. and Stein, G. 8, s.l. : IEEE Computer Society, August 2000, IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, pp. 758-767.

[19]. Statistical Background Subtraction for a Mobile Observer. Hayman, Eric and Eklundh, Jan-

Olof. Washington DC : IEEE Computer Society, 2003. Proceedings of the Ninth IEEE International

Conference on Computer Vision. Vol. 2, p. 67.

[20]. Color Indexing. Swain, M. J. and Ballard, Dana H. 1, 1991, International Journal of

Computer Vision, Vol. 7, pp. 11-32.

[21]. Tracking Multiple Humans in Crowded Environment. Zhao, Tao and Nevatia, Ram. 2004.

Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern

Recognition. Vol. 2, pp. 406-413.

11 APPENDIX A

Sample code snippet for the movement of the camera. This is the functional part of the HTML
page:

<FORM METHOD="POST" ACTION="http://ptz.csail.mit.edu/nphcontrolcamera"
TARGET="Message">

<INPUT TYPE=hidden NAME="Width" VALUE="640">
<INPUT TYPE=hidden NAME="Height" VALUE="480">
<INPUT TYPE=hidden NAME="Title" VALUE="1">
<INPUT TYPE=hidden NAME="Language" VALUE="2">
<INPUT TYPE=hidden NAME="Direction"
<INPUT TYPE=hidden NAME="PermitNo"
<TABLE BORDER=0 CELLSPACING=0 CELLPADDING=0>
<TR>
<TD><INPUT TYPE=text NAME="NewPosition.x"></TD>
<TD><INPUT TYPE=text NAME="NewPosition.y"></TD>
</TR>

<INPUT TYPE=submit value="Go!">
</FORM>

VALUE="Direct">
VALUE=" 120481584 ">

Same thing in Python requires the urllib module:

params=urllib.urlencode({'Width':'640','Height':'480','Title':'l','Language':
'1','Direction':'Direct','PermitNo':'120481584','NewPosition.x':str(xpos),'Ne
wPosition.y':str(ypos)})
f=urllib.urlopen('http://ptz.csail.mit.edu/nphcontrolcamera',params)

12 APPENDIX B

Code for thresholding. Note that it does not display any image analysis on the screen.

Code for thresholding. Note that it does not display any image analysis on the screen.

import modules
from pyffmpeg import *
from PyQt4 import QtCore
from PyQt4 import QtGui

import sys, numpy, pdb, Image, ImageFilter, ImageOps
import urllib, scipy.ndimage
from collections import deque

#create a 2D gaussian kernel
def gaussiangrid(size = 5, sd = 1):

Create a square grid of integers of gaussian shape
e.g. gaussian grid() returns
array([[1, 4, 7, 4, 1],
4, 20, 33, 20, 4],
7, 33, 55, 33, 7],
4, 20, 33, 20, 4],
1, 4, 7, 4, 1]])

m = size/2
n = m+1 # remember python is 'upto' n in the range below
x, y = numpy.mgrid[-m:n,-m:n]
multiply by a factor to get 1 in the corner of the grid
ie for a 5x5 grid fac*exp(-0.5*(2**2 + 2**2)) = 1
fac = numpy.exp((m**2)/(sd**2))
g = numpy.exp(-0.5*(x**2 + y**2)/sd**2)
return g

def cluster_peaks(peakspointtopointthreshold):
clustered_peaks=[]
for i in range(len(peaks)+1):

if i==len(peaks):
return clusteredpeaks

elif i==0:
clusteredpeaks.append([peaks[i]])

else:
if (clustered_peaks[-1][-1]+pointtopointthreshold) < peaks[i]:

clustered peaks.append([])
clusteredpeaks[-1].append(peaks[i])

#creates a GAUSSIAN Filter
class GAUSSIAN(ImageFilter.BuiltinFilter):

name = "Gaussian"
def init_(self, size=5, sd=1):

gg = gaussian grid(size,sd).flatten().tolist()
self.filterargs = (size,size), sum(gg), 0, tuple(gg)

class ImageObserver:
def init_(self, *args):

#DON'T TOUCH THESE (initialization variables)-----------------
self.reference=-1 #store reference image data here

#(to compare with next frame)
self.framecheck=0 #stores if this is the frame we want to check
self.frame=0 #stores the frame number (since movie started)
self.frames=deque() #stores the frames to average over
self.movement=0 #stores countdown to when movement can happen
kernel for morphological operations
self.morphkernel=numpy.array([[1,1,1],[1,1,1],[1,1,1]])
#--

#VARIABLE PARAMETERS! (modify to heart's content)-------------
#frame thresholds
self.framerate=15 #frequency of checking frames for movement

(1 checks every frame)
self.frameavg=3 #number of frames to average over as background

(must be at least 1)
self.framemove=3 #number of frames to wait after a move command

is issued before another move command can
be issued

#movement zones
self.xmovleft=60 #pixels from left
self.xmovright=60 #pixels from right
self.ymovtop=60 #pixels from top
self.ymovbot=60 #pixels from bottom
#thresholds
self.ithresh=15 #threshold for noise tolerance when converting

to binary

def observe(self,thearray):
#convert to grayscale/luma, enhance contrast, and then convert to a float
blacknwhite=numpy. as array(
ImageOps autocontrast (Image. fromarray (thearray).convert ("L"'))) /1.0

#do actual image processing to detect movement
#check if this is the frame we want to check for movement
if self.framecheck==f:

#pdb.set# ftrace(
#make sure this is not first image (otherwise we have no reference)
if not(isinstance(self.reference,int)):
#take difference of the images
imgdiff=self reference-blacknwhite
#convert to binary by thresholding
imgdiff [imgdiff<=self ithresh 1=0
imgdiff[imgdiff>selfithresh=

#remove noise by first open (erode->dilate) then
#close (dilate->erode)
binar=scipyndimagebinary_dilation(
scipyndimage binary erosion (imgdiffself.morphkernel,

1,None,None,1),
self.morphkernel,,NoneNone,)

binar=scipy ndimage binaryerosion

scipy.ndimage.binarydilation(binar,self.morphkernel,
1,None,None,0),

self.morphkernel,1,None,None,1)
#pdb.settrace()
#import pylab
#pylab.figure(1).show()
#pylab.plot(xhist)
#pylab.show()
#pylab.figure(2)
#pylab.plot(yhist)
#pylab.show()

#everything left is movement, find its center of mass

com=scipy.ndimage.centerofmass(binar)

#pdb.settrace()
#make sure there is a center of mass
if not(numpy.isnan(com[O])) and not(numpy.isnan(com[1])):

xpos=round(com[1])
ypos=round(com[0])

print "location:"+str(xpos)+", "+str(ypos)
#pdb.set_trace()
if ((xpos < self.xmovleft or

xpos > (blacknwhite.shape[1]-self.xmovright) or
ypos < self.ymovtop or
ypos > (blacknwhite.shape[0]-self.ymovbot))

and self.movement==0):
print "Moving Now!"
params=urllib.urlencode({'Width':'640',

'Height':'480',
'Title':'1',
'Language':'1',
'Direction':'Direct',
'PermitNo':'120481584',
'NewPosition.x':str(xpos),
'NewPosition.y':str(ypos)})

f=urllib.urlopen('http://ptz.csail.mit.edu/nphcontrolcamera',
params)

self.movement=self.framemove

if len(self.frames)>=self.frameavg:
self.frames.popleft()

#add this image to the list of images being averaged over
self.frames.append(blacknwhite)

self.reference=sum(self.frames)/len(self.frames)
#if self.frame>170:
pdb.settrace()

self.movement=max(self.movement-1,0)
self.framecheck=(self.framecheck+1)%self.framerate
self.frame+=1

create the reader object
mp=FFMpegReader()

open an audio video file

vf=sys.argv[1]
sys.stderr.write(I"opening...")
TSVIDEORGB24={ 'videol':(O, -1,
mp.open(vf,TSVIDEORGB24)
print "opened"
tracks=mp.get_tracks()

{'pixel format':PixelFormats.RGB24})}

connect video and audio to their respective device
ld=ImageObserver()
tracks[O].setobserver(ld.observe)
print "duration=",mp.duration()

play the movie
mp.run()

13 APPENDIX C

This is the code for histograms. Note that it doesn't display any analysis on the screen.

import modules
from pyffmpeg import *

from PyQt4 import QtCore
from PyQt4 import QtGui

import sys, numpy, pdb, Image, ImageFilter, Imageops, urllib
from collections import deque

#create a 2D gaussian kernel
def gaussiangrid(size = 5, sd = 1):

Create a square grid of integers of gaussian shape
e.g. gaussiangrid() returns
array([[1, 4, 7, 4, 1],
4, 20, 33, 20, 4],
7, 33, 55, 33, 7],
4, 20, 33, 20, 4],
1, 4, 7, 4, 1]])

m = size/2
n = m+1 # remember python is 'upto' n in the range below
x, y = numpy.mgrid[-m:n,-m:n]
multiply by a factor to get 1 in the corner of the grid
ie for a 5x5 grid fac*exp(-0.5*(2**2 + 2**2)) = 1
fac = numpy.exp((m**2)/(sd**2))
g = numpy.exp(-0.5*(x**2 + y**2)/sd**2)
return g

def cluster_peaks(peaks,pointtopointthreshold):
clustered_peaks=[]
for i in range(0,len(peaks)+1):

if i==len(peaks):
return clusteredpeaks

elif i==0:
clustered peaks.append([peaks[i]])

else:
if clustered peaks[-1][-1]+pointtopointthreshold < peaks[i]:
clustered peaks.append([])
clusteredpeaks[-1].append(peaks[i])

#creates a GAUSSIAN Filter
class GAUSSIAN(ImageFilter.BuiltinFilter):

name = "Gaussian"
def init_(self, size=5, sd=1):

gg = gaussian grid(size,sd).flatten().tolist()
self.filterargs = (size,size), sum(gg), 0, tuple(gg)

class Imageobserver:
def init_(self, *args):

#DON'T TOUCH THESE (initialization variables)-----------------
self.reference=-1 #store reference image data here

(to compare with next frame)
self.framecheck=0 #stores if this is the frame we want to check
self.frame=0 #stores the frame number (since movie started)
self.frames=deque() #stores the frames to average over
self.movement=0 #stores countdown to when movement can happen
#---

#VARIABLE PARAMETERS! (modify to heart's content)-------------
#frame thresholds
self.framerate=1 #frequency of checking frames for movement

(1 checks every frame)
self.frameavg=3 #number of frames to average over as

background (must be at least 1)
self.framemove=20 #number of frames to wait after a move command

is issued before another move command can
be issued

#movement zones
self.xmovleft=60 #pixels from left
self.xmovright=60 #pixels from right
self.ymovtop=60 #pixels from top
self.ymovbot=60 #pixels from bottom
#thresholds
self.xsdthreshold=3.6 #movement threshold for x-pixels
self.ysdthreshold=3.6 #movement threshold for y-pixels
self.noofpeakpixels=2 #least number of pixels in the peak

(otherwise treated as noise and discarded)
self.pixeltolerance=3 #how close pixels must be to be considered

part of the same peak

def observe(self,thearray):
#convert to grayscale/luma, enhance contrast, and then
convert to a float
blacknwhite=numpy.#asarray

ImageOps.autocontrast(Image.fromarray(thearray).convert(g"Lh)))/1.0
#do actual image processing to detect movement
#check if this is the frame we want to check for movement
if self.framecheck==:

#pdb.set oltrace(
#make sure this is not first image (otherwise we have no reference)
if not(isinstance(self.referenceint)):
#take difference of the images
imgdiff=selfp.reference-blacknwhite
xhist=imgdiff.sum() #sum it along both axes
yhist=imgdiff .sum(1)
xhist=(xhist-xhist.mean())/xhist.std() #normalize it
yhist=(yhist-yhist.mean())/yhist.std()
#pdb.set_trace()
#import pylab
#pylab.figure(1) .show()
#pylab .plot (xhist)
#pylab.show()
#pylab.figure(2)
#pylab.plot(yhist)

#pylab.show()

#find deviations above and below the predefined threshold
#x-pixel number above threshold (as tuple)
xposlistindices=numpy.nonzero(abs(xhist) > self.xsdthreshold)
#y-pixel number above threshold (as tuple)
yposlistindices=numpy.nonzero(abs(yhist) > self.ysdthreshold)

#cluster peaks (a few point peak is probably noise)
xcluster=clusterpeaks(xposlistindices[0].tolist(,

self.pixeltolerance)
ycluster=clusterpeaks(yposlistindices[0].tolist(,

self.pixeltolerance)

#eliminate peaks with only a few points
for xpeak in xcluster[:]:

if len(xpeak)< self.xmovleft or
xpos > (blacknwhite.shape[1]-self.xmovright) or
ypos < self.ymovtop or
ypos > (blacknwhite.shape[0]-self.ymovbot))
and self.movement==0):

params=urllib.urlencode({'Width':'640',
'Height':'480',
'Title':'l',
'Language':'l',
'Direction':'Direct',
'PermitNo':'120481584',
'NewPosition.x':str(xpos),
'NewPosition.y':str(ypos)})

f=urllib.urlopen('http://ptz.csail.mit.edu/nphcontrolcamera',
params)

self.movement=self.framemove

if len(self.frames)>=self.frameavg:
self.frames.popleft()

#add this image to the list of images being averaged over
self.frames.append(blacknwhite)

self.reference=sum(self.frames)/len(self.frames)
#if self.frame>170:
pdb.settrace()

self.movement=max(self.movement-1,0)
self.framecheck=(self.framecheck+1)%self.framerate
self.frame+=1

create the reader object
mp=FFMpegReader()

open an audio video file
vf=sys.argv[1]
sys.stderr.write("opening...")
TSVIDEORGB24={ 'videol':(0, -1, {'pixel format':PixelFormats.RGB24})}
mp.open(vf,TSVIDEORGB24)
print "opened"
tracks=mp.get_tracks()

connect video and audio to their respective device
ld=Imageobserver()
tracks[O].setobserver(ld.observe)
print "duration=" ,mp.duration()

play the movie
mp.run()

14 APPENDIX D

This is the code for codebooks. It takes a long time to learn, and has some bugs.

import modules
from pyffmpeg import *
from PyQt4 import QtCore
from PyQt4 import QtGui

import sys, numpy, pdb, Image, ImageFilter, ImageOps
import urllib, scipy.ndimage
from collections import deque

#create a 2D gaussian kernel
def gaussiangrid(size = 5, sd = 1):

Create a square grid of integers of gaussian shape
e.g. gaussiangrid() returns
array([[1, 4, 7, 4, 1],

4, 20, 33, 20, 4],
7, 33, 55, 33, 7],
4, 20, 33, 20, 4],
1, 4, 7, 4, 1]])

m = size/2
n = m+1 # remember python is 'upto' n in the range below
x, y = numpy.mgrid[-m:n,-m:n]
multiply by a factor to get 1 in the corner of the grid
ie for a 5x5 grid fac*exp(-0.5*(2**2 + 2**2)) = 1
fac = numpy.exp((m**2)/(sd**2))
g = numpy.exp(-0.5*(x**2 + y**2)/sd**2)
return g

#creates a GAUSSIAN Filter
class GAUSSIAN(ImageFilter.BuiltinFilter):

name = "Gaussian"
def init_(self, size=5, sd=1):

gg = gaussian grid(size,sd).flatten().tolist()
self.filterargs = (size,size), sum(gg), 0, tuple(gg)

#a codebook for every pixel
class codeBook:

def init_(self):
self.t=0
self.numEntries=0
self.codeElem=[]

def updatecodebook(self,pixelval,cbBounds=10):
self.t+=1
high=max(pixelval+cbBounds,255)
low=min(pixelval-cbBounds,0)
codeEntryFound=-l

#look in existing codeEntries
for i in range(self.numEntries):

if ((self.codeElem[i]['learnLow']<=pixelval) and
(pixelval<=self.codeElem[i]['learnHigh'])):

#found one, update
self.codeElem[i]['t_last_update']=self.t
self.codeElem[i]['maxim']=max(pixelval,self.codeElem[i]['maxim'])
self.codeElem[i]['minim']=min(pixelval,self.codeElem[i]['minim'])
codeEntryFound=i
break

#track stale entries
for element in self.codeElem:
negRun=self.t-element['t last-update']
element['stale']=max(negRun,element['stale'])

#create a new codeentry if nothing found
if codeEntryFound<O:
codeEntryFound=self.numEntries
codeelement={'learnHigh':high,

'learnLow':low,
'maxim':pixelval,
'minim':pixelval,
'tlastupdate':self.t,
'stale':0}

self.numEntries+=1
self.codeElem.append(code element)

#adjust boundaries:
if self.codeElem[codeEntryFound]['learnHigh']low:

self.codeElem[codeEntryFound]['learnLow']-=1
return codeEntryFound

def clearstaleentries(self):
staleThresh=self.t/2
numRemoved=0
for elements in self.codeElem[:]:

if elements['stale'] > staleThresh:
self.codeElem.remove(elements)
numRemoved+=1

self.numEntries-=numRemoved
return numRemoved

def predict(self,pixelval,maxMod,minMod): #0=background, 1=foreground
matchFound=1
for element in self.codeElem:

if (((element['minim']-minMod)<=pixelval) and
(pixelval<=(element['maxim']+maxMod))):

matchFound=0
break

return matchFound

class Imageobserver:
def init_(self, *args):

#DON'T TOUCH THESE (initialization variables)-----------------
self.reference=-1 #store reference image data here

(to compare with next frame)
self.framecheck=0 #stores if this is the frame we want to check
self.frame=O #stores the frame number (since movie started)
self.binary=-1 #stores the binary prediction mask
self.movement=0 #stores countdown to when movement can happen

self.waiting=O #stores the value
self.predicting=O
self.stale=0
#kernel for morphological operations
self.morphkernel=numpy.array([[1,1,1],[1,1,1],[1,1,1]])

#VARIABLE PARAMETERS! (modify to heart's content) -------------

#frame thresholds
self.framerate=1

self.framemove=1

#movement zones
self.xmovleft=60
self.xmovright=60
self.ymovtop=60
self.ymovbot=60
#thresholds
self.highthresh=15

self.lowthresh=15

self.codethresh=10

#time periods
self.learntime=90
self.staletime=100
self.updateinter=30

self.updatedur=10

#frequency of checking frames for movement
(1 checks every frame)
#number of frames to wait after a move command
is issued before another move command can be
issued

#pixels from left
#pixels from right
#pixels from top
#pixels from bottom

#threshold for noise tolerance when
converting to binary
#threshold for noise tolerance when
converting to binary
#threshold for extending codeentry or
creating new code entry

#number of frames to learn background for initially
#frequency with which to clear stale entries
#frames between learning periods
(during which prediction happens)
#how long to relearn the background for (in frames)

def learn(self,img):
for i in range(img.shape[O]):

for j in range(img.shape[1]):
self.reference[i,j].updatecodebook(img[i,j],self.codethresh)

def clearstale(self):
for i in range(self.reference.shape[O]):

for j in range(self.reference.shape[1]):
self.reference[i,j].clearstaleentries()

def predict(self,img):
for i in range(img.shape[O]):

for j in range(img.shape[1]):
self.binary[i,j]=self.reference[i,j].predict(img[i,j],

self.highthresh,
self.lowthresh)

def observe(self,thearray):
#convert to grayscale/luma, enhance contrast, and then
convert to a float
blacknwhite=numpy.asarray(

ImageOps.autocontrast(Image.fromarray(thearray).convert("L")))/1.0

#learn

if self.frame<=self.learntime:
#first time running, so create a codebook for every pixel,
as well as a binary mask
if isinstance(self.reference,int):
self.reference=numpy.zeros([blacknwhite.shape[0],

blacknwhite.shape[1]],
dtype=numpy.object)

self.binary=numpy.zeros([blacknwhite.shape[0-],
blacknwhite.shape[1]])

for i in range(blacknwhite.shape[0]):
for j in range(blacknwhite.shape[1]):
self.reference[i,j]=codeBook()

#for every pixel, add an entry into its respective codebook
self.learn(blacknwhite)
#remove stale entries once done learning
if self.frame==self.learntime:
self.clearstale()

#predict and move
#check if this is the frame we want to check for movement
if self.frame>self.learntime and self.predicting==0:
#pdb.settrace()
if self.waiting==0:
self.waiting=self.updateinter
print 'Predicting now...'

self.waiting-=1
self.predict(blacknwhite)
#remove noise by first open (erode->dilate) then
close (dilate->erode)
binar=scipy.ndimage.binarydilation(
scipy.ndimage.binaryerosion(self.binary,self.morphkernel,

1,None,None,1),
self.morphkernel,1,None,None,O)

binar=scipy.ndimage.binaryerosion(
scipy.ndimage.binarydilation(binar,self.morphkernel,

1,None,None,O),
self.morphkernel,1,None,None,1)

#pdb.set_trace()

#everything left is movement, find its center of mass
com=scipy.ndimage.centerof mass(binar)
#pdb.settrace()
#make sure there is a center of mass
if not(numpy.isnan(com[0])) and not(numpy.isnan(com[1])):
xpos=round(com[1])
ypos=round(com[0])
print "location:"+str(xpos)+","+str(ypos)
#pdb.set_trace()
if ((xpos < self.xmovleft or

xpos > (blacknwhite.shape[1]-self.xmovright) or
ypos < self.ymovtop or
ypos > (blacknwhite.shape[0]-self.ymovbot))
and self.movement==0):

print "Moving Now!"
params=urllib.urlencode({'Width':'640',

'Height':'480',
'Title':'l',
'Language':'l',

'Direction':'Direct',
'PermitNo':'120481584',
'NewPosition.x':str(xpos),
'NewPosition.y':str(ypos)})

f=urllib.urlopen('http://ptz.csail.mit.edu/nphcontrolcamera',
params)

self.movement=self.framemove
self.waiting=0
self.predicting=0

#relearn
if self.frame>self.learntime and self.waiting==0:

if self.predicting==O:
self.predicting=self.updatedur
print 'Stop!'

self.predicting-=1
self.learn(blacknwhite)

#clear stale things:
if self.stale==0:
self.clearstale()
self.stale=self.staletime

#update frame stats
self.movement=max(self.movement-1,0)
self.frame+=1

create the reader object
mp=FFMpegReader()

open an audio video file
vf=sys.argv[1]
sys.stderr.write("opening...")
TSVIDEORGB24={ 'videol':(0, -1, {'pixel format':PixelFormats.RGB24})}
mp.open(vf,TSVIDEORGB24)
print "opened"
tracks=mp.get_tracks()

connect video and audio to their respective device
ld=ImageObserver()
tracks[O].setobserver(ld.observe)
print "duration=",mp.duration()

play the movie
mp.run()

