
Virtual City Testbed

by

MASSAC
OF

At
Oleg I. Kozhushnyan Li

S.B. Electrical Engineering and Computer Science
S.B. Mathematics

Massachusetts Institute of Technology, 2009

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the
Massachusetts Institute of Technology

May, 2010

©2010 Massachusetts Institute~of Technology
All rights reserved.

HUSETT-S INSTITUTE
TECHNOLOGY

JG 2 42010
BRARIESS

kRCHIVES

Author
Department of Electri l Eineering and Computer Science

May 21, 2010

Certified by

Accepted by_

-' Eh;+±o Frazzoli

Associate Professor of Aeronautics and Astronautics
Thesis Supervisor

I Drkj hristopher J. Terman
Chairman, Department Commit ee on Graduate Theses

Virtual City Testbed
by

Oleg I. Kozhushnyan

Submitted to the
Department of Electrical Engineering and Computer Science

May 21, 2010

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

ABSTRACT

Traffic simulation is an important aspect of understanding how people move throughout various road
systems. It can provide insight into the design of city streets and how well they can handle certain traffic
patterns. There are various simulators available, ranging from free tools such as TRANSIMS to
commercial implementations such as TransCAD. The available tools provide complex, large scale and
very detailed simulation capabilities. The Virtual City Testbed addresses aspects that are not available in
these tools.

Primarily, the test bed provides the ability for interaction with the traffic system in real time. Instead of
basing the simulation solely on automated vehicle models, we allow for human participants to interact
with individual cars via a remote simulation client. Thus we are able to inject realistic human input into
our simulation.

A second feature provided by our simulation is the ability to disrupt a simulation in progress. A
disruption usually involves disabling access to a set of streets which forces the traffic to adapt as it moves
around the road system. This yields a way to study the way traffic motion changes within a road system
under the presence of unexpected events such as natural disasters or other real life disruptions.

Ultimately, we provide a test bed for studying traffic under varying environmental conditions.

Thesis Supervisor: Emilio Frazzoli
Title: C.S. Draper Professor of Aeronautics and Astronautics

Contents

1. Introduction... 6

2. Background... 8

3. Contributions... 10

4. System Design .. 12

4.1 Simulation ... 13

4.1.1 Car Simulation.. 14

4.2 Server Design.. 15

4.3 Client Design... 16

4.4 Design Patterns.. 17

5. Implem entation ... 19

5.1 Road System Specification.. 19

5.1.1 Coordinate System .. 20

5.1.2 Road N etwork Preparation .. 21

5.2 Testbed Server... 21

5.2.1 Traffic Simulator .. 22

5.3 Client ... 25

5.4 N etworking System ... 28

6. Validation.. 32

7. Conclusion .. 34

7.1 Future W ork .. 34

Bibliography ... 35

Table of Figures

Figure 1. High level system overview 12
Figure 2. Illustration of the closest car at intersection rule... 15
Figure 3. Structure of the OSM library... 20
Figure 4. Diagram of traffic simulator classes.. 22
Figure 6. Diagram of traffic client classes.. 26
Figure 7. GPS overlay... 28
Figure 8. Diagram of network system classes. ... 29

1. Introduction

A good understanding of the way traffic flows within a city is vital in the study of the behavior

of a modern city. The traffic patterns can reveal information about where people travel on a

daily basis. Furthermore, the flow can provide a large amount of information about the

effectiveness of the city design. Using the information about where people travel and how they

make decisions about how to get there we will be able to improve the future of city design.

Collecting and analyzing traffic data is a monumental task. The complexity comes not only from

the sheer amount of data, but also from the difficulty of gathering the data over large city sized

regions. Even then, the traffic information that can be collected is limited to day to day

activities. If we were to question what happens in the case of a natural disaster or some other

unexpected disruption, we would have an even more difficult time in obtaining this information.

As part of the project, we provide an easier method to collect the special case traffic information.

Natural disasters or disruptions rarely happen, but when they do, they have a great impact on

traffic behavior. As such, we will not be able to effectively collect this information through the

use of road sensors or other means in the real world. Thus we must turn to computer simulation

to reach our goal. By simulating a city traffic system, filled with both computer and human

controlled agents, we can build an approximation of the traffic patterns for any city. Thus we are

able to simulate natural disasters in the system and record the responses of all the agents.

Over the course of this thesis project, we developed an application that is capable of simulating

traffic in real time and a corresponding client application that allows for remote interactions with

the traffic system in a controlled manner. The role of the traffic simulator is to output the state of

any vehicles traversing the road network as a function of time given any road network and a

particular set of simulation parameters. The job of the client is to present a view of the traffic

simulation to the participants of the experiment as well as to provide them with controls over

their assigned vehicles.

The traffic simulator component acts as the server for the simulation and is intended to be run by

those staging the traffic experiment. It is configurable with various car behaviors, custom road

network and logging abilities to record experimental data for later analysis. It is an essential

component of the test bed as it is the one that handles the actual computation of the simulation.

When the simulator runs, it provides remote clients with the ability to connect and obtain control

of one of the cars in the simulation as well as receive updates over the overall state.

The client component is intended to be used by the participants in the traffic simulation. It

provides a visual representation of the road network and facilitates user input to alter the state of

the simulation. Together, the simulator and the client make up the test bed that is the subject of

this thesis.

The paper is structured as follows. Section 2 provides examples of other traffic simulators and

describes the similarities and differences with this test bed. Section 3 outlines the contributions

of this thesis and relates them to prior work. Section 4 discusses the design of the test bed system

and goes into the details of its architecture. Section 5 describes the implementation of the design

and discusses the details and limitations. Section 6 discusses a set of experiments and tests that

were performed to test the validity of the test bed. Section 7 concludes the discussion by

describing how the test bed can be extended and provides ideas for future work.

7

2. Background

The study of traffic systems and their effects has been important ever since vehicles became a

primary form of transportation. The bulk of the research has been important to organizations

such as the US Department of Transportation [1] as well as other governing bodies that

determine road planning. These organizations use previous traffic data and simulations to

improve on future designs of road networks.

Not all of the organizations have the need to develop their own traffic simulation systems. There

is a wide range of tools, currently available, that can be used to simulate traffic on scales ranging

from small towns to huge intercity regions. Some well known packages in the field are

TRANSIMS [2], MITSIMLab [4], and TransCAD [5].

TRANSIMS is an open source community project, whose goal is to predict possible traffic

conditions, congestion and pollution for city planning [3]. It is a multi level simulation

environment that takes into account the distribution of population, zoning, common activities and

micro simulation of traffic. The simulation is rooted in using statistical data to simulate the

decisions that people make while moving about in their daily lives. It does not only consider

vehicles as the only form of transportation but goes on to allow public forms of transportation as

well. Ultimately, TRANSIMS is a very robust, but sometimes overwhelming with respect to

usability [3], system for traffic simulation.

MITSIMLab is a project undertaken at MIT with a goal to simulate alternate methods of traffic

management [4]. The ability of MITSIMLab to perform traffic micro-simulation (simulating

traffic at the level of a single vehicle) is similar to TRANSIMS. The advantage of MITSIMLab

comes from its detailed system for simulating traffic control elements [4]. Furthermore, the

simulator comes with a simple graphical user interface which is more accessible than its

TRANSIMS counterpart.

TransCAD is a powerful commercial tool designed for traffic simulation and much more. As

part of the package it provides analysis tools to study traffic flow. Furthermore it provides

facilities to predict travel demand and public transportation usage to assist in city planning [5].

Unlike TRANSIMS and to a greater extent than MITSIMLab, TransCAD relies on a graphical

user interface for much of its functionality which increases its ease of use.

Every one of the three tools is capable of simulating a traffic system and predicting possible

future outcomes. They do this with two primary limitations. The first is that they do not support

the introduction of a disaster event in real time. An experimenter cannot decide when an event,

such as a road closing, should happen. This puts a limit on the ability to simulate unexpected

disruptions. The second limitation is that it is difficult to use these systems to observe actual

human behavior. There is no easy way to take human input and have it affect the simulation. In

the next section we discuss how our system contributes to the field and provides a new method

of simulation.

3. Contributions

This project makes multiple contributions in the area of traffic simulation software. These

contributions come from the implementation of the traffic simulator and client application with

features that are not present in currently available simulation software. Furthermore, our test bed

provides certain levels of customizability that go beyond certain available packages.

The first major contribution is related to the "dynamic" nature of the traffic simulator. By

"dynamic" we mean that the simulation happens in real time. Other simulators, such as the ones

mentioned in the previous section, rely on long term offline computation. For example, the

TRANSIMS simulator is made up of a large set of programs that run separately to perform

processing on input data. This means that before any output is available, the whole tool chain

must execute. Our test bed takes a different approach to traffic simulation. At the cost of

complexity and scale, our test bed performs the simulation in real time. This means that the

amount of simulation time that passes is directly related to the amount of real time that has

passed.

The "dynamic" nature of the test bed has benefits over the more widely used offline approach in

certain situations. In particular the advantages show up when the course of the simulation is not

pre-defined but requires some random adjustments or modifications. Although this behavior can

be approximated by offline simulators through some sort of event or rule based system there can

be cases where this is not sufficient. For example, if the traffic conditions are unknown at any

particular time, it may be hard to automatically trigger an adjustment in the simulation. The

most likely option would be to run the simulation multiple times with various modifications.

10

Our system allows for real time observation of traffic conditions so at any given time the

simulation state is known and can be adjusted.

The second major contribution of this project is the ability of the traffic simulator to connect to a

remote client. The client, in our case, provides an interface for observing and altering the

simulation state. There are similar features in commercial simulators, such as TransCAD, which

provide a user interface to set up and observe a simulation and its results. The particular abilities

provided by our client are something that is not available in any simulation package known to us.

Our client allows for users to take control of a single vehicle in the simulation. The idea behind

this is that we are able to observe how a real driver can affect the traffic system. Furthermore,

we can observe how the driver will respond to unexpected circumstances. Essentially, we allow

for an easier way to perform complex traffic experiments on live subjects in real time scenarios.

No other traffic simulation system, known to us, allows for the alteration of the behavior of a

single vehicle.

4. System Design

The primary goals of the design of the test bed are to provide a flexible platform for testing

various route choice systems and to allow for real time interactions with the simulation. Because

of this, special care was given in implementing the traffic system so that it can be easily modified

and extended in the future. Furthermore, the system was designed with a game development-like

approach as there was need for real time interactions between participants of experiments and the

traffic simulation.

Test Bed Server

Simulation Results

Clients

Figure 1. High level system overview.

In figure 1 we can see a high level overview of the test bed. The test bed server is made up of a

traffic simulator that handles the control of all the vehicles in the environment. It also supports a

set of algorithms that are used to navigate the vehicles around the road network. The server is

also able to maintain connections to multiple clients that act as a view for the state of the system.

Finally, the server also records all important movements and events experienced by the vehicles

and provides the record for later analysis.

4.1 Simulation

The traffic simulation model used by the test bed revolves around a microscopic car model. We

simulate the cars at a low level and in a continuous environment to observe the traffic as an

emergent behavior. By continuous we mean that the cars can occupy locations with coordinates

limited by machine precision. This is unlike other simulators mentioned in the previous section

that rely on a discrete environment, with a predetermined grid, or a very high level approach to

traffic modeling. This tradeoff limits the scale of the simulation but in return allows for much

greater control.

The test bed is designed with low level simulation and a continuous environment in mind. These

aspects allow for it to quickly respond and adjust to input from the client. Also the low level

allows us to parameterize the behavior of the cars which makes them independent of the path

model that controls how they traverse the road network. This allows the simulated cars to be

driven by a wide variety of methods while keeping the underlying logic identical in all cases.

In order for the vehicles to be able to drive around the road network, they must have access to the

connectivity of all the roads. We achieve this by constructing a graph where the edges are roads

and the nodes are the intersections. This representation allows for arbitrary road networks to be

constructed. The intersections also support updates in order to allow them to act dynamically,

such as when representing traffic lights. Each edge has parameters that are associated with it.

Some example parameters are the length of the edge, the directionality of the edge and whether

13

the edge should be traversable by vehicles. The last parameter facilitates our ability to disturb

the simulation as we can dynamically toggle the ability for cars to traverse an edge on or off.

4.1.1 Car Simulation

For the purposes of simulation, each car is considered a separate entity. As each vehicle drives

around the road network, it follows a simple set of rules based on driving experience from real

life:

1. The vehicle must maintain a straight path between the beginning and an end of any single

road segment. This is vital for traffic to flow in a realistic manner.

2. The car can only belong to a single road at a time. This is important for correctness when

roads cross each other without an intersection such as in the case of tunnels and bridges.

3. A vehicle must maintain a buffer zone, proportional to its speed, between itself and the

vehicle ahead.

4. When a car approaches an intersection, the next closest car to the intersection is

considered to be the closest car that is not on the same road. This rule makes sure that

cars will not turn onto roads that are already full and instead mimic the real behavior of

slowing down when approaching intersections. An example can be seen in figure 2.

By following these rules, the simulated cars exhibit real world behavior and allow for the traffic

effect to emerge.

Next closest car.

Figure 2. Illustration of the closest car at intersection rule.

In the real world, when a car makes a turn at an intersection it is never instantaneous. During the

process there are times when a car does belongs to neither the road where it started to make the

turn, nor the road on which it finished. This is not handled by our simulation as it adds

unnecessary complexity. Each intersection is considered a point so that it is impossible for a car

to be in between roads. These basic vehicle simulation principles are at the core of our test bed.

4.2 Server Design

The server application supports a variety of features that are needed to run experiments.

Primarily, it runs an instance of the simulation. Just like a game server, it updates the state of the

simulation even when no clients are present. The simulated vehicles controlled by the path

finding models keep recording their state updates regardless of any player participation.

When a client connects to the server, it should be assigned a random car for it to control. No one

else but the client should be aware that they are in control of this car. This prevents any

unwanted interruptions for other clients that already may be in control. This is vital to the

realism of the simulation as we cannot have cars appearing and disappearing when clients join

and leave.

Once a connection is established, the server should keep the client updated on all the aspects of

the simulation. This includes the state of disrupted roads as well as the positions of all the

vehicles. Throughout this whole time the server should listen to client commands as well. These

commands include direction changes and speed adjustments. Furthermore, it should keep

recording the vehicle states for future review.

Upon the termination, the clients should be given a chance to disconnect cleanly. This involves

the termination of the remote connection and the reassignment of the clients previously

controlled vehicle. After this, the vehicle will function using some prescribed path finding

model to traverse the road network. This also completes the requirement for giving the clients a

seamless experience.

4.3 Client Design

The client presents participants of the experiment with a view of the environment as well as a set

of controls for interaction with it. The presentation should be adequate for the experimental

subjects to be able to ascertain the state of the simulation around them. This means they must be

able to tell what are the possible route choices as well as what are the traffic conditions.

When a client connects to the server, they are presented with a view of their assigned vehicle

already in motion. They are also given a GPS like overlay to be able to navigate the road

network in a more efficient manner. Then the client is instructed to perform the actions that a

particular experiment requires. During this whole time the server is recording their input and

altering the simulation.

Over the course of the simulation, the client will be notified of the state of certain simulation

vehicles. It is necessary to perform some post processing on that data before presenting it to the

user. For example, since intersections are considered to be points, transitions between roads will

be unsightly. The car jumps from one road to the next after hitting the center of the intersection.

This effect is lessened by applying smoothing to the car position as it approaches the

intersection.

When the simulation is over, the client should simply be able to disconnect by either notifying

the server or just terminating the connection. In each case the server should substitute the proper

automated controller for the vehicle to keep the simulation running.

4.4 Design Patterns

Our design uses a series of well known software design patterns to make sure the test bed

remains modular. The patterns used are the Model-View-Controller pattern, the Visitor pattern

and the Observer pattern.

The Model-View-Controller pattern is a design pattern that breaks up an object into three distinct

components. The model component is the representation of the object that we want to model as

data. If we take a car as an example, the model would consist of things such as the position,

speed, direction, ID number and many other pieces of information. The view component can be

considered as the visual representation of the object. To continue the car example, this would be

the representation of the car as drawn by the 3D engine. The view may require access to some of

the elements in the model of the object. Finally, there is the controller component of the pattern.

The controller is the component that takes some sort of input, and applies changes to the

underlying model. It can be seen as the public interface to the Model-View-Controller triplet.

17

All interaction with the object happens through the Controller. For the car example, the

controller could be the remote client sending messages, or the local path finding algorithm.

The Visitor pattern is a design pattern that abstracts the notion of an operation that can be

performed on an object. This pattern allows for new operations to be added to an object without

changing any of the underlying code. The idea is that each operation that can be performed is

defined in terms of an object. Then, a new method is added to the class that is to support the new

operation. When the operation is needed to be performed, the new method is invoked with the

object representing the operation. Thus, no changes need to be made to the object other than a

few additions. This also guarantees that the old behavior will not be altered in any way by the

new operation.

The Observer pattern allows for structured management of an event based hierarchy. The

hierarchy can be made up of multiple objects where some of them are registered as observers of

the other. When an event happens, each object notifies every other object that is registered as its

observer. For a clear example, consider the situation where we may want to know when a car

crosses an intersection from one road to another. One solution is to continuously poll the

position of the car and compare it to all of the intersections. It is easy to see that this is an

inefficient solution. Using the observer pattern, we can register as an observer of the car and

have the car notify us when it crosses an intersection. This pattern eliminates any inefficiency in

code that may be heavily event based.

5. Implementation

Over the course of the year we developed two implementations of the test bed. The first was

developed in C++ with the use of the C4 engine [7] while the second used Java and the

jMonkeyEngine [9]. The second revision is essentially a translation of the first in another

language. It is slightly reworked to improve extensibility as well as support for the Apple OS X.

The functionality of the server is also extended in the final version as we will discuss in the

following sub sections. Thus we limit our discussion to the second and more robust

implementation.

5.1 Road System Specification

One aspect of the simulator that has not changed over the course of the thesis is the decision to

use the OpenStreetMap [6] format for specifying the simulation road network. The format is

very robust and contains a lot of information in addition to road connectivity. Furthermore, it is

freely available for anyone to use.

The format is based on XML and as such it is easy to read. In both versions of the simulator the

road system is loaded from such a file. In addition to connectivity and geographic location

information, the loaders attempt to extract speed limits, directionality of the road and the number

of lanes when available. This data is made accessible to the simulator through a graph interface.

OsmFile

Intersection --------- Road

Figure 3. Structure of the OSM library.

The graph interface is made up of a list of nodes, the intersections, and the edges, the roads.

Each node is assigned a unique ID by the file format. The roads, on the other hand, require some

processing to extract their ID. The file format assigns a single ID to a road, which could be

made up of more than one segment. This makes it impossible to reference the sub segments of

the road, which is vital for the simulator. Thus, we assign custom ID numbers to the road

segments in the order in which they are read from the file. This guarantees the same ID numbers

as long as the file is read in the same order. As can be seen in the figure 3, the OsmFile stores

the graph by having lists of intersections and roads. The intersections and roads also have

references to each other to make it easier to convert from one graph element to another.

The simulator is able to extract the connectivity by extracting the endpoint intersections from the

roads and then looking at the other roads that the intersections belong to. Other information,

such as length and number of lanes, can be extracted from the roads as well.

5.1.1 Coordinate System

The coordinate system used by the simulator is based directly off the geographic locations

extracted from the file format. The file format specifies all positions using their latitude and

longitude. Since we are dealing with a much smaller scale of simulation, it does not make sense

to remain in that coordinate system. We provide a GeographicLocation class that handles

20

longitude and latitude as well as UTM coordinates. It also allows us to convert all latitude and

longitude coordinates into a more localized UTM coordinate system. This removes any issues

due to the curvature of the earth and allows us to use a more accessible unit for length

measurement, the meter.

5.1.2 Road Network Preparation

There are multiple ways of importing a road network into our simulation. The first method

involves manually constructing an OsmFile object and the corresponding Road and Intersection

objects. This is used primarily for testing in order to construct simple test networks that can be

easily understood. The second and more robust method involves obtaining an actual OSM file

and using it to establish the network.

The process begins with an OSM (OpenStreetMap) file containing the road network. These files

can be easily obtained on the OpenStreetMap site where they provide an export interface. Their

full data set is also available for download. It is then processed by a simple converter

application. This application parses the file line by line and converts all latitude and longitude

into UTM coordinates. We do this to prevent any issues that different coordinate converters may

have so that their output locations are guaranteed to match up. Then the server and client are

able to import the OSM file directly in order to construct the internal graph representation for

simulation.

5.2 Testbed Server

The test bed server mimics closely the design established for it in the previous section. It is

made up of a traffic simulation engine, a set of controllers, and a communication subsystem for

interacting with the clients.

5.2.1 Traffic Simulator

The traffic simulator server was implemented with the intention of also acting as a persistent

entity that could run continuously throughout the experiment. The following is a block diagram

of the important modules of the simulator.

Lane
GeographicLocation

Intersection Road

I ServerInterface I RoadSste SimulatedEntity

EnZine - GameWorld ------ Car

Loizgyer CarController CarEventListener

HumanPlaverController LocalLeamin2Controller _

Figure 4. Diagram of traffic simulator classes.

The traffic simulator component of the server also closely follows the design in the previous

section. The system is also abstracted in such a way that it is very easy to implement a custom

type of car and have it be controlled in different ways.

The central component of the simulation system is the GameWorld class. This class maintains a

list of all the vehicles in the simulation, a reference to the currently used road system, and a

reference to the Logger object. This structure can be considered as the state of the simulation. It

is also a signal handler for various simulation and network events. For example, when a player

joins the server, this object is responsible for assigning and revoking its vehicles. The class also

maintains a reference to a ServerInterface which is part of the networking subsystem. This

interface allows the simulator to send updates about its current state to all remote clients.

A simulated vehicle is represented by a Car class that inherits from an interface known as

SimulatedEntity. The interface requires any of its implementations to create a method called

update. This method handles the logic behind driving the car. Particularly, it checks for any

nearby vehicles and then adjusts the acceleration of the car accordingly. If a car is within the

buffer zone, which is adjustable through a parameter, the update method "applies the brakes" and

sets a negative acceleration, otherwise it keeps accelerating until it reaches the speed limit.

Turning is handled by setting a "next road" parameter for the car which it transitions to during

the call to update on the next intersection. It is very easy to add a custom type of vehicle to the

simulation. In order to do this, one must extend the Car class and override the update method.

This will allow for any behavior of the vehicle to be changed.

In order to control vehicles through the Car class, we apply the model and controller components

of the standard model-view-controller pattern. Each car is assigned a controller that sets up its

next road and acceleration parameters. In our implementation, we have two controllers, one that

listens for input from the remote clients and another that would follow a predetermined path.

The HumanPlayerController and LocalLearningController are the two methods we have of

taking control over the vehicles. The HumanPlayerController converts the network messages

and converts them into the next road that the vehicle should take. Using this controller, a remote

client can control any vehicle. The LocalLearningController is more advanced and is beyond the

scope of this thesis. For a detailed description of the Local learning controller, refer to [8],

which is another thesis based on this traffic simulator. The controller allows for cars to follow

and adapt paths between an origin and destination.

Another feature of the Car class is the use of the observer pattern. This is implemented through

the CarEventListener interface. Each car has listener associated with it. The listener is notified

every time the car changes roads. The listener has three main applications; the first is to record

road changes undertaken by each car so the data can be analyzed later and the second is to

generate an update message to be sent to the client and the third is to update any learning

information for path finding as described in [81. Using a listener provides significant

improvement to the event based nature of road changes which otherwise would consume a large

fraction of simulation time.

The Car class is the essence of the simulation. An instance of the test bed has an instance of the

Car class for each vehicle participating in the simulation. Each car may have one of the two

possible controllers over the course of the simulation as well. The cars also interact with one

another by communicating through the road network graph represented by the RoadSystem

object.

The RoadSystem object is the simulations representation of the road network and its geography.

Notice that it looks very similar to the OsmFile class in the OSM library. In fact, the

RoadSystem uses the OSM library to load an existing network file.

The RoadSystem object maintains a list of Intersection and Road objects. The Intersection is

nearly identical to that in the OSM library and its sole purpose is to provide connectivity

information to the nearby roads. The main difference is that this Intersection object also

provides methods to query the closest cars. This functionality is used by the Car class to make

sure it does not speed into a full intersection and thus make the simulation unrealistic.

The Road object is very different from its counterpart in the OSM library. The major difference

is that it is now contains several internal Lane objects. A Lane represents a single lane of traffic.

Thus, for roads with multiple lanes, there would be more than one Lane object. There are two

sets of lanes, ones that go from start to end and the other in reverse. They are also numbered

with lane zero being closest to the median. When a car enters a road system, it registers itself in

a particular lane which is then used by other cars to find nearest neighbors on the road. The Lane

object is mainly an acceleration structure that maintains a linked list of all the cars in the order

that they are driving in the lane. It allows for cars to find neighbors quickly by looking at the

previous or next element in the list.

This implementation is extensible in many ways. The Car object can be extended to provide

different behaviors for different vehicles. Different CarEventListeners can be developed to

perform different tasks on car events. New CarController implementations can provide other

methods for guiding the vehicles around the network. Overall the implementation of the test bed

server is a very extensible and robust system.

5.3 Client

The test bed client is an application that is used to visualize the output from the server in real

time. Using a 3D engine, it renders the current state of the simulation as it receives updates from

the server. It also provides facilities for commands to be sent back to the server. The important

modules of the client are displayed in the following block diagram.

CarMesh

r --- ~-- --- 1L ClientMessaaeListenerL ______________.. - - CarM anaizer
- -- -- - --- -- -- City

MessageClient
GameRunningState - arUI

TrafficClient - GameState
MainMenuState

Figure 5. Diagram of traffic client classes.

The main class that is the entry point into the client application is the TrafficClient. It ties down

the whole system by linking the various states with the networking subsystem. It also handles

the set up of the keyboard and a logging system for use in the rest of the client. The main class

maintains a reference to the MessageClient which is part of the networking system and will be

described in the next section. The next component of the main class is the association with the

GameState interface. This interface allows the client to seamlessly change its state depending on

conditions. The benefit of this will shortly become clear.

The GameState interface provides an abstraction to multiple client states. It requires methods

such as initialization, rendering, cleanup and the support for state transitions. Through this

interface, the client can take on one of the currently available states. The use of this abstraction

separates logically different states of the client. For example, the state in which the client

renders the simulation is very different from a main menu state which does none of those things.

The two available game states are the MainMenuState and the GameRunningState. The main

menu state is included to present some sort of information to the user of the client before

jumping into the simulation. This can be in the form of basic instructions or can be neglected all

together.

The important part of the client processing happens in the state defined by the

GameRunningState class. It is responsible for the whole presentation of the simulation. The

first thing that it does is set up the presentation of the simulation. This includes loading and

generating all the graphics needed to draw the road network and the vehicles on the screen. Then

it handles the rendering of all the elements at every frame. Another responsibility of this state is

to update all the client objects. This entails listening to the keyboard in order to alter the user

interface, such as the GPS overview, or to prepare commands to be sent to the server.

The GameRunningState utilizes the City, CarUI and RoadMesh classes to render a representation

of the simulation on the screen. The City class represents all the buildings that line the sides of

the streets. The way it functions is essentially by taking all the roads in the road network and

generating simple cubic buildings to line the sides of all the streets. It is a very simple and

effective, but not very good looking solution. The CarUI class represents the GPS overlay that

shows extra information about the road network. The following is a screenshot of the GPS

overlay.

Figure 6. GPS overlay.

The purpose of the overlay is to present the user with the road network information in their

vicinity. Additional information can also be displayed. In this example, the numerical values

represent the scaled lengths of the road segments. Finally, the RoadMesh class handles the

generation of the road network. As an input, it takes a list of roads from an OsmFile object and

converts it into a useable mesh. The mesh is used to render the streets for the primary simulation

as well as for the simplified display as seen in the GPS overlay above.

The final component that the game state uses for rendering is the CarManager class. The

GameState notifies the CarManager of any updates that it receives from the server. In return, the

manager instantiates graphical representations of those updates through the CarMesh object.

The car manager is capable of adding new vehicles when they arrive, deleting them when they

are removed and updating their positions when they move about, all in response to network

messages.

5.4 Networking System

The networking system is the vital link between the test bed server and the client. Its various

components are used by both elements in order to communicate their state to the others. The

module diagram of the networking subsystem is as follows.

MessaaeClient H

SeervInterface

FMessaizeServer---

ClientMessageListener

PlayerInut

RemotePlaverEventListener

AssignCarMessg

CarStateMessa2ge]

pRemoveCarMessage

PlaverInoutMessage

Figure 7. Diagram of network system classes.

The networking system revolves around the MessageServer and MessageClient classes. These

two classes communicate to one another over channels established through the networking

component of the jMonkeyEngine [9]. These two classes instantiate their own threads that run in

parallel with the rest of the application. In these threads they listen to messages and generate

notifications for the rest of the system. This is advantageous in that the networking subsystem

has no observable impact on the performance of the rest of the test bed.

The MessageServer is the server component that resides in the test bed server. It accepts

communication from the test bed servers GameWorld object through the use of the

ServerInterface. The interface allows information about Car objects to be sent to the clients.

The MessageServer also provides feedback to the GameWorld through the use of the

29

RemotePlayerEventListener interface. This interface allows the test bed to be notified about

incoming connections, disconnections and input updates sent from the clients. The input that

arrives at the server is translated and then passed on through the use of the PlayerInput interface.

The interface abstracts the details and only presents the vital input information. In our

implementation, the only necessary information is the desired vector of travel with respect to the

current vector of travel. Using this information the server can direct the vehicle properly at the

next intersection. With the effective abstraction of the server networking system we are able to

extend it without altering any of the test bed code.

The MessageClient is the corresponding communications component that resides in the client. It

communicates with the GameRunningState through the use of the ClientMessageListener

interface. This interface notifies the client of the car assignment events, the car position updates

and the car removal events. These three pieces of information are sufficient to communicate the

simulation state over the network.

Both of the messaging systems depend on the four network message classes currently used by

the simulation. The four messages convey the actions that are then converted into event listener

method calls as stated above. If in the future more messages are needed, they can be easily

added by extending the Message class. Out of the current messages, the AssignCarMessage is

sent when a player initially connects to the server. The server picks a car for them and sends its

ID number in the message. This tells the client which car they have control over. The

CarStateMessage is sent with the position and ID of each car in the simulation to all clients.

Using this information the client can extrapolate the current state of the simulation with very

little error. The RemoveCarMessage is intended for simulations that require that cars be created

in removed. Normally an experiment would maintain a constant number of cars over its course,

but in some cases, such as modeling flow, the removal of cars is necessary. Finally the

PlayerlnputMessage contains the input information sent from the client to the server to be acted

upon. Together, these four messages make up the test bed communications protocol.

6. Validation

The validation of the test bed accuracy was a complicated process. Due to the generic nature of

the simulation it is very difficult to make sure that it is realistic in all possible scenarios. The

smaller scale of the simulation also makes things harder as most related traffic information is not

available at its scale. Thus we were relegated to observing the simulation and making sure that it

behaves in a believable manner when observed by someone with driving experience.

One particular experiment gives us confidence that the simulation is adequate. Consider a traffic

jam where cars are dormant for most of the time with short periods of movement. When

observed from a distance, the movement appears to be moving backwards through the traffic.

Cars that are able to move use up their available space and are forced to stop but in the process

create space for the cars behind them to do the same. Now consider if the cars were on a closed

circular road. The wave of free space would be moving in reverse through the traffic. This is the

condition we attempted to simulate.

We constructed a road network and deterministically drove all the cars into a single loop section.

As the section began to fill up, a traffic jam began to form until the whole loop was almost

completely full. At that point we could observe the wave of free space for cars to move

travelling in the opposite direction of the traffic. Thus our simulation was able to successfully

represent a realistic traffic event.

Further validation of the simulation was undertaken by Amrik Kochhar in his thesis "Simulation

and Verification of Autonomous Route Planning Behavior." His thesis concentrated on

extending the simulator with a complex car controller that allowed for adaptive paths [8]. He

32

then measured the distribution of cars on the road network as a function of time. The results of

his simulation provided us with more confidence that our test bed is a good approximation for

real traffic systems.

Overall the system must be continuously verified in the future as it is used for further

experimentation with traffic simulation.

7. Conclusion

In this thesis we described the design and implementation of a new test bed for dynamic traffic

simulation. We developed a distinct server and client component that communicated with one

another over a network. Furthermore we performed initial verification of the system and

concluded that it is accurate enough to be used for traffic simulation. We hope that this test bed

system will be useful in accomplishing the goal of real time traffic simulation with both

simulated and real drivers.

7.1 Future Work

The extensible nature of the test bed leaves it open to future enhancements. Some possible

extensions to the server would be to introduce new path finding and car simulation models. On

the client side, an improvement to the graphical representation of the simulation would be a very

helpful addition. One of the principles behind this project was to make a test bed that is easy to

extend in the future.

Bibliography

[1] Turner-Fairbank Highway Research Center, http://www.tfhrc.gov/

[2] The Transportation Analysis and Simulation System (TRANSIMS), http://transims-

opensource.net

[3] TRANSIMS Overview, http://tmip.fhwa.dot.gov/resources/clearinghouse/docs/transimsfundamentals/chI.pdf

[4] MITSIMLab, http://mit.edu/its/mitsimlab.html

[5] TransCAD, http://www.caliper.com/tcovu.htm

[6] OpenStreetMap, http://www.openstreetmap.org/

[7] C4 Game Engine Overview, http://www.terathon.com/c4engine/

[8] Kochhar, Amrik, "Simulation and Verification of Autonomous Route Planning Behavior,"

M.Eng thesis, Massachusetts Institute of Technology, Cambridge, MA, 2010.

[9]jMonkeyEngine, http://www.jmonkeyengine.com/home/

