
Implementation and Evaluation of an IVR

Rendering Platform for Data Collection in the

Developing World MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

by AUG 2 4 2010
Adam Lerer

LIBRARIES
Submitted to the Department of Electrical Engineering and Computer

Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2010 ARCHIVES

@2010 Adam Lerer. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and to
distribute publicly paper and electronic copies of this thesis document
in whole and in part in any medium now known or hereafter created.

Author
Department of Electrical Engineering and put Science

lv 6. 2010

Certified by..................................
Saman Amarasinghe

Professor
Thesis Supervisor

A ccepted by
Dr. Christop6iA J. Terman

Chairman, Department Committee on Graduate Theses

9

Implementation and Evaluation of an IVR Rendering

Platform for Data Collection in the Developing World

by

Adam Lerer

Submitted to the
Department of Electrical Engineering and Computer Science

July 6, 2010

in partial fulfillment of the requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Due to the rapid spread of mobile phones and coverage in the developing world, mobile
phones are being increasingly used as a technology platform for developing-world
applications. Data collection is one such application area, and a variety of software
has been written to enable data collection over mobile phones. However, reaching the
vast majority of mobile phone users without access to specialized software requires
a data collection strategy that operates over IVR or SMS. We have developed ODK
Voice, an IVR platform for delivering data collection protocols based on the XForms
standard and targeted at users in the developing world.

User testing of ODK Voice was performed both in controlled scenario experiments,
and in a real-world deployment in Uganda. In controlled experiments in the United
States, users were able to complete a complex survey with high accuracy. However,
in a real-world deployment with teachers in rural Uganda lacking training or IVR
experience, a number of significant interface modifications were required in order to
achieve high success rates. The task success rate increased from near 0% to over 75%
based on changes in interface design. Notably, most participants were not able to
use a touchtone or touchtone-voice hybrid interface without prior training. A set of
design recommendations is proposed based on the performance of users in Uganda on
several interface iterations.

Thesis Supervisor: Saman Amarasinghe
Title: Professor

4

Acknowledgments

I would like to thank Professor Saman Amarasinghe and Bill Thies for their mentor-

ship and guidance throughout the entirety of this project; Professor Gaetano Bor-

riello, Yaw Anokwa, Carl Hartung, Waylon Brunette, and the rest of the ODK team,

for their support and collaboration; Neil Lesh, for shaping the initial direction of

this project; Molly Ward and the Project WET team for helping to get ODK Voice

deployed in Uganda; as well as the JavaRosa team, Rob Miller, and Latif Alam.

6

Contents

1 Introduction 11

1.1 Mobile Data Collection in the Developing World 11

1.2 Data Collection Over Voice . 13

1.3 Challenges for Voice Interfaces for Resource-Poor Regions 15

1.3.1 Usability. 15

1.3.2 Language and Literacy . 16

1.3.3 Resources and Infrastructure 17

1.3.4 End User Programming . 18

1.4 Evaluation of ODK Voice in Uganda 19

1.5 Chapter Outline . 19

2 Related Work 21

2.1 Mobile Data Collection.. 21

2.2 Speech Interfaces . 22

2.3 Comparison of Voice to Other Interfaces... 24

3 Formative Experiments and Design 27

3.1 Wizard of Oz Experiment..... 27

3.2 Design Decisions . 32

4 ODK Voice System 37

4.1 Features 37

4.1.1 Control Types . 37

4.1.2 Other XForm Support

4.1.3 Form and Prompt Management

4.1.4 Multi-Lingual Support

4.1.5 Survey Resume

4.1.6 Outgoing Call Management

4.1.7 Integration with XForms Design,

form s

4.2 System Architecture

4.2.1 External Infrastructure

4.2.2 Internal Architecture

4.3 Form and Question Attributes

4.4 Adaptive String Widget

.........

Aggregation & Analysis Plat-

... 4 1

... 4 3

. 43

. 46

. 48

. 4 9

5 Project WET Deployment in Uganda

5.1 Background..... ..

5.2 Touchtone Interface .

5.3 Voice-Only Interface...... ..

6 Measuring Accuracy with a Scenario-Based Study

7 Conclusions

8 Future Work

8.1 Further HCI Research on Voice Data Collection Systems

8.2 Extending ODK Voice Technology.......

8.2.1 Incremental Extensions....

8.2.2 Adaptive Features .

A Sample XForm

B Scenario Experiment Instructions and Questionnaire

53

53

56

58

69

75

List of Figures

1-1 Community health workers collect data using paper forms that are

non-standardized, error-prone, and slow to process. 12

3-1 A screenshot of the 'control console' for VoiceSim, our Wizard of Oz

prototype of ODK Voice. The experimenter copies and pastes prompts

from a script which are played to the user via text-to-speech, and

user touchtone responses are displayed. This screenshot shows the

beginning of a survey call being delivered by an experimenter. 28

4-1 A screenshot of the ODK Voice web interface for prompt recording.

Prompts can be recorded over the phone, or by uploading WAV files.

When the administrator calls in, the prompt text to be recorded ap-

pears in the red box. 39

4-2 A screenshot of the ODK Voice web interface for scheduling outbound

calls. A list of phone numbers is scheduled either immediately or in

the future, and call status are displayed in a call queue. 42

4-3 A diagram of the hardware/software infrastructure that ODK Voice

depends on. ODK Voice uses VoiceXML to specify the audio dialogues

that are played by a VoiceXML engine and transmitted via a tele-

phone gateway to the cellular network. Collected data is sent to ODK

Aggregate for viewing. 45

4-4 Module dependency diagram for the basic components of the ODK

Voice Java web server. 47

4-5 A test UI for the adaptive string widget. 52

5-1 A Project WET teacher training in Uganda. 54

5-2 Project WET materials displayed in a school........ 54

5-3 Pie chart showing call outcomes for the first voice-only Project WET

interface.................. 60

5-4 Pie chart showing call outcomes for the final voice-only Project WET

interface. 62

5-5 Call success rate for Project WET survey by interface version. 65

5-6 Call success rate for Project WET survey by gender. 65

6-1 Measured averages of (a) response time, and (b) error rate for each

question type in the scenario experiment. 71

6-2 Reported user preferences on a Likert scale for the ODK Voice survey

compared to (a) a live operator, and (b) an online form. Most users

preferred both the live operator and the online form to the ODK Voice

system . 72

B-i The questionnaire completed by participants in the scenario experiment. 90

Chapter 1

Introduction

1.1 Mobile Data Collection in the Developing World

In the past several years, there has been a growing adoption of mobile phone technol-

ogy as a tool for solving a variety of challenges in international development, including

health delivery, disaster management, microbanking, sanitation, and education. This

new focus on technology is a result of the explosive growth of mobile phone usage

and coverage throughout the developing world. As of 2008, there were 4.1 billion

worldwide mobile phone subscribers, compared to just 1.5 billion internet users [35].

60% of these mobile phone users live in the developing world [341. Millions of people,

many of whom have never used a computer and earn only a couple dollars a day,

now own their own mobile phone; this trend is revolutionizing the communication

patterns of the poor, and enabling a wide range of potential technological solutions

that were not possible a decade ago.

One important use of mobile technology in the developing world - particularly

but not exclusively for health applications - is data collection. Collecting data in

the developing world presents a number of unique challenges: a diffuse rural popu-

lation, low literacy and education, and a lack of financial resources. Current data

collection practices are primarily paper-based. leading to inneficiencies such as slow

turn-around/aggregation time, non-standardized data, and lack of data security, val-

idation and integrity [4]. For example, in much of the rural developing world, the

first line of health services are provided by lightly trained, mobile 'community health

workers', or CHWs. CHWs travel to individual villages and homes, providing basic

health education, diagnosis, and triage. Data collection is performed using (often ad

hoc) paper forms, such as the one shown in Figure 1-1. It can take weeks for these

forms to reach a central location where the data can be aggregated or viewed by a

doctor, there is no data validation or standardization, and forms can be lost or dam-

aged. Mobile phones have the potential to be faster and less error-prone, and open

up a wide range of possibilities for more intelligent data protocols and integration as

well as the ability to collect audio, image, and barcode data [4].

While organizations have in

the past developed mobile soft-

ware to collect data for particular

applications, these projects were

unable to interoperate. Recently,

the OpenROSA consortium was

created to bring together a num-

ber of organizations in order

to promote open standards-based

data collection for public health

in the developing world [18].

OpenROSA has chosen XForms

as their form specification stan-

dard, augmented by additional Figure 1-1: Community health workers collect
data using paper forms that are non-standardized,
error-qrne, and slow to process.

community standards as neces-

sary. XForms is the W3C specification for next-generation forms, and includes sup-

port for a variety of data types and UI widgets as well as complex branching and

constraint logic. As a result of the OpenROSA effort, a number of applications have

been developed for rendering XForms on mobile devices, including JavaRosa, EpiSur-

veyor, and Open Data Kit, as well as for aggregating and analyzing collected XForms

data [4, 18]. A number of organizations (e.g. Dimagi, D-Tree, AMPATH) are now

using these applications to collect standardized patient data in the field, execute de-

cision protocols, and aggregate and analyze data in ways that were not possible using

paper-based methods.

ODK Voice is part of the Open Data Kit project, which is developing a suite of

OpenROSA-compliant tools for collecting and aggregating data over mobile phones.

ODK was originally designed specifically for community health workers, but has now

spread to use in a number of applications ranging from forest management to census

taking [16].

ODK Voice is an ODK-integrated platform for collecting data using automated

voice dialogues (IVR) over phone calls.

1.2 Data Collection Over Voice

Although the use of mobile phones as a platform has drastically lowered the bar for

automating data collection, existing solutions nevertheless require access to particular

mobile phones running particular software. Thus, data collection requires a health

worker to visit each patient and collect data; there is no way for patients to report

data for themselves on their mobile phone. The same principle applies for other

potential application areas, such as disaster reporting, environmental monitoring and

microfinance.

Expanding the reach of mobile data collection to all mobile phone users requires

the use of either voice or SMS channels, since these capabilities are available on

nearly all mobile phones. Of these, only voice is suitable for answering a series

of questions (although SMS could play an ancillary role in collection). Therefore,

an interactive voice response (IVR) platform for rendering XForms is the natural

choice for expanding the reach of XForms-based data collection beyond customized

smartphones and PDAs.

In addition to expanded reach, voice-based data collection has several additional

advantages:

1. Using voice-based communication circumvents the serious incentive problems in

more common, SMS-based ICTD programs (e.g. those using FrontlineSMS [1]).

Since sending SMS costs respondents money, there must be additional incentives

for them to respond; on the other hand, a phone call initiated by the survey

application does not incur a cost to the respondent. In fact, we were approached

by a partner organization specifically because their respondents were not willing

to pay SMS fees to respond to their SMS-based data collection program.

2. An audio interface is particularly suitable for illiterate and semi-literate users,

who are unable to use text-based (or SMS-based) interfaces [21].

3. There is preliminary evidence that data collected over voice in resource-poor

areas is significantly more accurate than data collected by either SMS or custom

mobile applications. One study in Gujarat found that voice entry using human

voice operators had 0.45% error rates, while SMS and mobile data entry had

error rates over 4% [25]. See Section 2.3.

4. A number of studies have shown that data collection through an automated

voice system is significantly more effective at obtaining sensitive information

than a live interviewer [22, 33]. This is extremely important in public health

applications, where organizations are collecting information such as HIV status

from respondents.

There are many potential applications for ODK Voice, including:

* An automated helpline run by a community health organization. Patients could

call in to receive health advice, hear instructions on taking their medication, or

report an illness. Health and medication information could be provided based

on built-in form decision logic.

" Automated check-in or reminders for regular medication adherence (e.g. direct

observation therapy).

* Collecting feedback on development initiatives undertaken in regions where data

cannot be collected in person (see Chapter 5).

* Disaster management applications such as family tracing and reunification (FTR),

if cellular networks are available.

" Mobile citizen reporting of crime, corruption, etc.

1.3 Challenges for Voice Interfaces for Resource-

Poor Regions

Creating a voice-based data collection platform for use in resource-poor regions poses

both technical and usability challenges. ODK Voice is both an attempt to address

some of these challenges and to evaluate the types of voice interfaces and interac-

tions that are effective in these particularly difficult conditions. This section briefly

describes some challenges and how we have addressed them.

1.3.1 Usability

The most serious challenge for any automated voice system in a developing world

setting is usability. Even in the best of circumstances, most voice interfaces present

usability challenges such as the conventions of spoken language, limitations of speech

recognition, limitations of human cognition and working memory, and differences

between users [32] These usability problems are exacerbated by a user population

who lacks experience using voice interfaces or even other automated interfaces, and

who often have a low level of education and literacy [21]. Several projects have

had success with voice interfaces in resource poor environments, but they have all

provided training to their users in one form or another. We believe that interfaces

that assume prior training or IVR experience are less scalable and inappropriate for

many of the exact situations for which IVR interfaces are particularly compelling:

namely, situations in which average citizens, rather than trained users, interact with

the system. Our goal is to maximize voice interface success with limited or no user

training.

In order to make ODK Voice more learnable for new users, we traded efficiency

for learnability in a number of initial design decisions, such as detailed instructions,

explicit response confirmation, and a minimal number of options. More importantly,

an iterative design process involving a cycle of live user testing in Uganda and interface

redesign was undertaken to improve interface usability (see Chapter 5). This design

process improved task success rate from 5% (already after several iterations) to over

75%.

1.3.2 Language and Literacy

Issues of language and literacy create challenges for voice interface design, especially

in the developing world. Many developing countries have dozens of local languages

and dialects, almost none of which are supported by available text-to-speech (TTS)

and automatic speech recognition (ASR) packages. Even within a single region, differ-

ent participants may have widely varying abilities to understand and speak different

languages.

ODK Voice is designed to handle the language and literacy challenges present in

the developing world. ODK Voice is fully localizable and designed to be language-

agnostic. This requires us to rely on recorded prompts and keypad (DTMF) input

more heavily instead of TTS and ASR. We also enable the creation of multilingual

surveys and allow participants to switch languages/dialects within the survey. Fi-

nally, we attempt to make questions robust to language and literacy problems (e.g.

correcting spelling errors in string entry, requiring answer confirmation).

1.3.3 Resources and Infrastructure

An obvious constraint on any technology platform developed for resource-poor re-

gions is the lack of financial resources and technical infrastructure in these regions.

Most organizations operating in these regions have much tighter financial constraints

than equivalent organizations elsewhere, and the financial incentives for automation

are lessened since labor costs are much lower in these regions. Furthermore, partic-

ipants are less willing to use automated systems that may incur cell phone charges.

Automated systems are also hampered by infrastructural challenges such as power

and internet service outages, and cellular network unreliability.

ODK Voice attempts to minimize resource requirements for organizations and

respondents. ODK Voice is standards-based and can be configured on a completely

free and open source software stack (see Chapter 4). The only operating expenses for

an ODK Voice instance are (a) purchase and maintenance of a server, and (b) cellular

network usage charges. This can be significantly cheaper than a software-based data

collection methodology, which entails hiring data collectors and providing them with

mobile devices.

Even more importantly, ODK Voice can be hosted anywhere (e.g. in the cloud)

and can connect to regional cell networks through a voice-over-IP (VoIP) provider.

Therefore, organizations can conduct surveys with no on-the-ground technical exper-

tise, and they will not be affected by infrastructural outages.

To avoid cell phone charges for survey respondents, outgoing calls can be sched-

uled from the application to respondents, since cell subscribers are not charged for

incoming calls in most of the developing world. However, we learned that many

of the usability challenges of a voice interface are even more severe when the calls

are initiated by the application, so there is a tradeoff between incentivization and

usability.

1.3.4 End User Programming

Most of the automated voice applications in use today are designed by specialists in

voice interface design. Voice interfaces are well-studied, and there is a significant body

of literature devoted to the technical and usability issues of creating voice applications

[7, 23, 32]. However, ODK Voice is targeted at small, community-based organizations

who do not employ voice interface specialists and may not even employ dedicated

technology staff.

To facilitate end-user programming, ODK Voice is designed to require minimal

technical expertise. There are two components to deploying ODK Voice: (a) setting

up the server, and (b) creating and configuring surveys on the server. Setting up the

server requires installing various software and interfacing with a VoIP provider, but

this is a one-time operation and could be mostly packaged inside a virtual machine.

Surveys are specified as XForms, so the survey creation process is aided by a large

community of XForms designers and a number of XForms design tools, such as ODK

Build [2]. Once an XForm is uploaded, the only additional step required is prompt

recording, which can be done over the phone.

The issue of voice interface expertise is only partially solved by ODK Voice. The

system is designed so that the interfaces it creates from standard, non-voice-specific

XForms are as usable as possible; additional customization can be provided by voice-

specific rendering attributes added to the form, as well as by customization of the

software itself. However, there is no replacement for UI design expertise, and for large

organizations/deployments ODK Voice should be thought of as a piloting/prototyping

tool that could lead to a more comprehensively designed and tested system.

1.4 Evaluation of ODK Voice in Uganda

The ODK Voice interface was deployed in Uganda to collect feedback from teachers

on a water sanitation and hygiene training program delivered in July and August

2009. The conditions of this deployment were different than previous studies in that

not only was the deployment in rural Uganda and the teachers lacked previous IVR

experience, but the teachers received no training or assistance in using the interface

and were called at a random time outside of a controlled environment. We consider

these conditions to be more realistic for scalability of an end-user voice application.

The goal of this deployment was to determine the coniditions and types of interaction

that would be successful in collecting data under these conditions.

The survey interface underwent a number of iterations over a period of several

months, each of which was tested on real participants in Uganda. Success rates

improved dramatically between the initial and final versions of the interface, from 5%

to over 75% (see Chapter 5). A summary of design recommendations based on this

work is provided in Chapter 7.

1.5 Chapter Outline

Chapter 1 provides background and motivation for the problems being addressed and

a summary of the important features of ODK Voice. Chapter 2 describes recent work

related to data collection in the developing world, voice interfaces, and evaluation

of mobile interfaces in the developing world. Chapter 3 contains the methodology

and results of early-stage research that informed our development of ODK Voice.

Chapter 4 documents the features, software architecture, and novel technical aspects

of ODK Voice. Chapter 5 describes a deployment of ODK Voice in rural Uganda,

and the results of a number of iterations of the ODK Voice interface tested on users

in Uganda. Chapter 6 documents the results of preliminary work characterizing the

accuracy of ODK Voice. Chapter 7 contains a summary of the results of this work

and concluding remarks. Chapter 8 suggests extensions to ODK Voice and future

research on voice interfaces in the developing world.

Chapter 2

Related Work

2.1 Mobile Data Collection

The ODK project is part of a consortium of data collection organizations called Open-

Rosa that is promoting XForms as a standard for data collection in the developing

world. The goal of the OpenROSA community is to create interoperable, standards-

based data collection tools instead of the silo-ed, proprietary medical systems that

have plagued current medical practice [181. Other OpenROSA XForms-based data

collection tools, such as JavaRosa and EpiSurveyor, have shown initial promise in im-

proving the speed and accuracy of data collection by health workers, although there is

not yet quantitative data to support these claims [18, 4]. The Open Data Kit project

has worked with a number of community health organizations, including Grameen

AppLab and AMPATH, to improve the data collection and management process of

community health workers in Africa.

There have been a number of previous studies evaluating technology- assisted data

collection by rural health workers. Reported error rates on mobile phones and PDAs

range from less than 1% [10, 9] to 5% [25] after several hours of training. Accuracy

is highly training-dependent however: a study where users had only 2-3 minutes of

training reported an error rate of 14%. Several other studies [18, 4, 28, 8, 5] have

reported qualitative improvements but have not quantitative characterized speed or

accuracy improvements.

2.2 Speech Interfaces

There is a large body of work on speech interfaces in the developed world. Commercial

interfaces tend to focus on simple task completion, especially for call center operation.

Several authors have provided guidelines for creating usable voice interfaces (e.g.

[7, 23, 32]), with many ideas drawn from the field of computer-human interaction, such

as the iterative design process, rapid prototyping, and heuristic and user evaluation

techniques. Academic projects such as MIT's Jupiter weather information system

[11] and Carnegie Mellon's Communicator travel information interface [27], as well as

some modern commercial interfaces, allow for conversational, user-directed call flow,

accepting a wide range of user utterances. However, these systems target neither the

needs [30] nor the usability challenges of people in resource- and literacy-poor regions,

since these users are generally not considered economically valuable consumers of

commercial services.

A number of previous studies have designed and evaluated voice interfaces in

the developing world for applications such as health reference [29, 31], microbanking

[21], real-time information dissemination [15, 24, 26], citizen reporting [19], and data

collection [25]. Berkeley's Tamil Market project [26] was the first speech interface that

was rigorously evaluated with low-literacy users in the developing world. The Tamil

Market project provided a speech interface for daily crop prices and information, and

speech input was restricted to mostly yes or no answers. Developers performed user

studies and interviews, and recorded target users; recordings were used to tune the

acoustic models for each village. By limiting the vocabulary, an error rate of less

than 2% was achieved with a small training sample. The study suggests that there

are differences in task success between literate and illiterate users, but the sample

sizes were too small to be conclusive.

Several subsequent studies have compared touchtone and voice input modalities

for voice interfaces for illiterate or semi-literate users. Patel et al. designed Avaaj

Otalo, a phone-based angricultural information system in Gujarat [24]. Avaaj Otalo

consisted of an announcement board, an archive of agricultural radio programs, and

a question-answering service. Patel et al. used Avaaj Otalo to compare success rates

for touchtone and ASR input. Rather than using a trained language model, Patel

converted the Gujarati words to an English phoneme set. Patel found that subjects

with less than an eighth grade education performed significantly better using touch-

tone input than speech recognition. The OpenPhone team in South Africa developed

a health helpline and also found that 'most of the low literacy caregivers in the

study...preferred the touchtone system' [20].

Sherwani et al. have developed Healthline, a speech interface for low literacy

health workers in Pakistan [31]. Sherwani used a hybrid lexical/statistical speech

recognition system, using experts to encode Urdu pronounciations in terms of English

phonemes with wildcards, and sample utterances to fill in the wild cards with their

most accurate English pronounciations. A 'field kit' consisting of a mobile telephony

server was also developed to perform rapid testing and prototyping of voice interfaces

in the field. Sherwani found that task success in a speech interface was significantly

higher than a touchtone interface (86% versus 61%). This contradicts the results

of [24] and [20]. Literate participants had significantly higher task success rates

than low-literate participants, and proper training procedures were essential for task

success. Finally, this work emphasized the importance and difficulty of supporting

local languages and dialects, as many of their participants spoke rare regional dialects,

some of which did not even have a written form.

Finally, two notable example of systems being developed for end-user voice appli-

cation development in the developing world are Freedom Fone [15] and AudioWiki

[19]. Freedom Fone is an easy-to-use telephony platform primarily for information

access (voice menus). AudioWiki is a speech/touchtone message board or 'wiki' where

participants can listen to and contribute recorded audio information and moderate

user contributions. AudioWiki has been deployed in rural India for citizen reporting.

2.3 Comparison of Voice to Other Interfaces

A recent study involving health workers in Gujarat compared data collection accuracy

using three different mobile data collection methodologies: a mobile phone electronic

forms interface, an SMS data encoding scheme, and transcription via a live voice

operator [25]. Thirteen community health workers and hospital staff participated,

with education ranging from 10 years to a B.A. degree. Participants were trained for

1-8 hours until they could successfully enter numeric and multiple-choice patient data

using any of the three methodologies. Participants were then evaluated in a within-

subjects experiment collecting data on fake patients, and the accuracy of the different

collection methodologies were compared. The observed error rates for electronic forms

and SMS were 4.2% and 4.5%, respectively, while the error rate for a live voice

operator was 0.45%. The drastically lower error rate for voice operator transciption

suggests that either (a) data collection over voice is more accurate than through

a graphical interface, or (b) the dynamics of human interaction with an operator

improve data collection accuracy. Evaluation of an automated voice interface in a

similar experiment would be required to determine which of these factors plays a role

in increased data accuracy.

Indrani et al. performed a usability study on banking Uls for money transfer for

low-literate users in India [21]. The ability of users to complete transactions was

evaluated on a text UI, a 'rich' audiovisual UI, and a voice UI. Task completion rates

were 0% for the text UI, 100% for the rich UI, and 72% for the voice UI. However,

the voice UI took less than half the time, and the authors reported greater accuracy

with voice. Indrani reported that users were hesitant to press buttons on the phone

in the rich U! and preferred a conversational interaction (many of these users had

no or limited experience using mobile phones). Indrani also found that for subjects

without previous voice UI experience, women took significantly longer but had a

higher probability of completing the task; qualitatively, women were 'more patient,

attentive and slower when interacting with each of the functions in the voice-based

UI', although this observation was based on a sample size of only 6. These gender

differences are echoed in our results from Uganda, described in Chapter 5. Of the

participants without voice U! experience, the success rate was 55%. Participants

who were not successful reported being confused by the inflexible system responses:

'subjects would keep saying "What Sir"?, "Yes Sir", "Can't understand what you are

saying, Sir", thinking it was a real person' [21].

All evaluations of low-literate users have cited effective training as crucial for

task success with speech interfaces. The Healthline team found that human-guided

tutorials were most effective for training users to use their interface[29]. Patnaik et

al. trained CHWs for several hours until they could complete a survey successfully

before evaluating the system[25]. We are interested in exploring what success rate

and data quality can be achieved by users with little (in the case of CHW patients)

or no training (in the case of survey respondents), and with the distractions and call

quality of a realistic, rather than controlled environment. Evaluation under these

conditions is a central component of our work.

26

Chapter 3

Formative Experiments and Design

This chapter describes the initial design process that informed ODK Voice. Section

3.1 describes a prototyping tool that was built and used to test various early design

choices. Secion 3.2 explains some of the important design choices that were made in

ODK Voice as a result of this prototyping, as well as the literature and our own ideas.

3.1 Wizard of Oz Experiment

During the initial design phase of ODK Voice, a number of important design alterna-

tives needed to be quickly prototyped and tested with target users. To rapidly iterate

on these early designs, a simple application for creating 'Wizard of Oz' prototypes

was constructed. 'Wizard of Oz' prototypes are prototypes in which the backend

functionality is replaced by a human experimenter in such a way that the user does

not realize that he is not interacting with a real automated system. The Wizard of

Oz prototyping technique was actually first used to prototype a speech transcription

interface (a 'listening typewriter') in 1982 [121, although recently Wizard of Oz pro-

totyping has become a common technique in modern user interface design practice.

Existing Wizard of Oz prototyping tools, e.g. [17] are designed to replace the

speech recognition component of voice interfaces with a human operator. Since we

planned for ODK Voice to use touchtone input instead of speech recognition, the

Wizard of Oz prototype was designed to accept touchtone, rather than speech, input.

We also believed it was important that the participant conduct the survey on a mobile

phone, not a computer interface, and not be aware that there was a human operator

'behind the curtain', which would change user behavior.

[127007086702715:27:47 PM] User: --Connection opened 61721 --
[127007090750515:28:27 PM] System: Welcome to the MIT health monitoring suvey. You can press star at any
time to reach the main menu. Also, if you need to hang up, you can call back and contnue the survey where you left off
Press I to begin the survey, or press 9 at any time for help and other options.
[1270070916107|5:28:36 PM] User: 1
[127007092635015:28:46 PM] System: Question 1 Please enter your MIT ID number. Press the pound key when
you are finished
[127007093527815:28:55 PM] User: 9
1127007093593415:28:55 PM] User: 5
[127007093659015:28:56 PM] User: 3
[127007093818415:28:58 PML] User: 2
[127007093890215:28:58 PM] User: 6
[127007093959015:28:59 PM] User:
[127007094237115:29:02 PM] User:
[127007094427715:29:04 PMj User:f
[127007094693315:29:06 PM] User: 1
-[127007095174615:29:11 PM] User: #
[127007097036415:29:30 PM] System: You entered {9 5 3 2 6 1} Press 1 if that is correct, or 2 to try again.
[127007097895215:29:38 PM] User: --Connection closed: nul--

Prompt

Figure 3-1: A screenshot of the 'control console' for VoiceSim, our Wizard of Oz
prototype of ODK Voice. The experimenter copies and pastes prompts from a script
which are played to the user via text-to-speech, and user touchtone responses are
displayed. This screenshot shows the beginning of a survey call being delivered by an
experimenter.

Our Wizard of Oz prototyping tool, called VoiceSim, allows an experimenter to

convincingly simulate a touchtone voice interface for experiments. VoiceSim con-

sists of a web-based 'control console' for the experimenter that behaves similarly to

a chat window; the experimenter can enter (copy and paste) text from a script into

the chat window, which is played over the participant's mobile phone using text-

to-speech. The user touchtone input appears on the chat window in response. No

audio is exchanged between the participant and the experimenter, to mimic the con-

straints of a real touchtone-only audio interface. The control console from the middle

of a sample experiment is shown in Figure 3-1. VoiceSim was built using Tomcat

Java servlets generating VoiceXML, which was rendered using the Voxeo Prophecy

VoiceXML client. This architecture is very similar to that used for ODK Voice, as

described in Chaper 4.

We tested the Wizard of Oz prototypes with users in the MIT community. These

users were not the target users of the ODK Voice system, but they represented an

'upper bound' on the abilities of our target users; at this early stage, our interface

was far too poor to have any success with the target population. We initially planned

to use the Wizard of Oz interface with our target population, but we eventually felt

that it was too low-fidelity too be useful for testing on our target population. In

particular, the difficulty of understanding the text-to-speech prompts, and the long

delay between the user pressing buttons and hearing a response prompt (due to the

experimenter having to cut and paste text into the chat window), made it unsuitable

for a population with poor English literacy and a lack of understanding of IVR systems

1

The test survey we used for our VoiceSim experiments was an 'MIT Health Sur-

vey', in which we asked users a number of questions of different types about their

demographics and health:

1. Please enter your MIT ID number. [numeric]

2. Please enter your last name. [string]

3. How many hours per week do you spend watching TV? [single-select]

'Other types of Wizard of Oz voice interface prototyping can be used succesfully with low-literacy
users; see e.g. [25].

4. Which of the following activities to you take part in at least once a week?

[multi-select a]

5. Which of the following activities have you engaged in within the last month?

[multi-select b]

6. When did you or will you graduate from college? [date]

7. What did you eat at your last meal? [audio]

We recorded transcripts from these survey calls, and interviewed the participants

after the call.

We identified a number of design considerations and usability issues from our

VoiceSim experiment. Below is a list of some of our important observations. These

observations informed our design of ODK Voice.

" We tested two different methods for multi-select question types. In method 1,

the user is presented with a list of options with associated touchtone numbers,

and asked to press all numbers that apply. In method 2, the user is asked

to press 1 for yes and 2 for now for each of the options. In both methods,

the chosen options are repeated after the question is answered, and the user is

asked for confirmation. Users were both more successful and reported greater

satisfaction using method 2.

" We offered users the choice of answering the string entry question either in-

teractively over the phone call or via an out-of-band text message sent from

their phone. All users chose to answer the question interactively (although one

user reported that she would have chosen to answer it via text message if the

question had required a longer answer). Users' reasons for not answering via

text message included that they didn't want to pay for it, and that they didn't

know how to do voice and SMS simultaneously. Our interactive string entry

approach was similar to text message input: the user pressed a touchtone key

the appropriate number of times for the letter followed by the pound key. To

finish entry, the user pressed the pound key twice. As expected, this entry

method was very inaccurate, and users reported dissatisfaction using it. Even

though this technique might be appropriate for SMS, where the user receives

immediate feedback, it is very hard to use in an IVR context. This inspired us

to use a 1-digit-per-letter approach that required the system to infer the word

from the entered digits, as is performed on more modern phones. (see Section

4.4 for more details).

" Users reported a desire to know 'where they were' in the survey, i.e. what

question they were on and what the total number of questions was.

* The prototype had both immediate confirmation of answers and an option to go

back and correct answers. Users were annoyed by the confirmation dialogues,

but reported that they would be able to use them to correct their answers. On

the other hand, users reported that they did not know how to go back and

correct their answers, and probably wouldn't do so even if they made a mistake

and were able to. As a result, ODK Voice emphasized immediate confirmation

and retry instead of providing the ability to navigate a survey and correct earlier

answers.

" As expected, it was very important that the number of options be kept to a

minimum, and that their functionality be consistent throughout the survey.

Users were told that they could press the star key to reach a main menu, but

none of the users took advantage of this option and some said they were confused

about what this main menu would provide. Users were also very confused when

one of the questions used the pound key to continue, when all the other questions

had used the 1 button. Therefore, we made ODK Voice as directed as possible;

there were no universal options to navigate the survey or reach a main menu,

although the users could press the star key at any time to repeat the current

prompt.

3.2 Design Decisions

Our early design decisions for ODK Voice were based on both the results of our

Wizard of Oz simulation and recommendations and results from the literature.

Perhaps the most important design decision - and certainly the most quantitatively

studied in a developing-world context - is touchtone vs voice as an input modality.

As discussed in Chapter 2, the majority of previous literature suggests that at least

for trained developing-world users, touchtone input is more effective than voice input,

although some recent studies conclude the opposite. The studies where voice input

was effective, however, emphasized the importance of well-designed voice recognition

systems trained on local users [311. The goal of ODK Voice is to allow end-user

programming of voice interfaces without requiring voice experts and extensive training.

Furthermore, data collection - especially for input types such as numbers and dates -

poses a far more difficult speech recognition challenge than the simple 2- and 3-word

navigation grammars used in [31] and [24].

Feedback and input confirmation is one of the most important aspects of voice

interfaces, and it is mentioned prominently in the literature on voice interfaces 2. The

simpliest approach to input confirmation is to repeat each response and ask the user

whether it is correct (e.g. 'Press 1 if that is correct, or 2 to try again'). Alternatively,

the system can confirm responses implicitly; in this approach, the system repeats

the response, and moves forward without user confirmation. The system must then

provide a way for users to go back and change previous (incorrect) answers. This

could be accomplished, for example, by a navigation nenu within the data collection

interface. Finally, some types of input (e.g. boolean or recorded audio) may not need

confirmation whatsoever.

ODK Voice asks for explicit confirmation for each survey question. There were

2 More generally, effective error correction and the ability to 'undo' user actions is considered one
of the most important elements of user interface design.

several reasons for this decision. Since we intend ODK Voice to be used for medical

applications, data accuracy is very important. Explicit confirmation is most reliable,

and in fact respondents from the VoiceSim experiment said that they would not try

to go back and correct answers even if they realized they were incorrect. Explicit

confirmation is also considered more appropriate for users who may have a difficult

time using voice interfaces. Oberle writes,

Since explicit confirmation doesnt place high demands on the callers

ability to interact with the dialogue system, this kind of approach seems

to be particularly suitable for callers with a limited ability to interact

(e.g. elderly people, non-native speakers or children) or for those speech

applications that will not be used very often and where callers will not be

very familiar with comparable systems. [23]

Although some of the MIT VoiceSim participants found explicit confirmation to

be inefficient, it is better targeted to a population with low literacy and limited

interaction with voice systems. Finally, implicit confirmation (and navigation in

general) is difficult because for some question types (e.g. numeric input) all the

number keys are already being used, and developing-world mobile phone users often

do not know what pound and star keys are.

Finally, ODK Voice is designed to allow for greater control over rendering from

within an XForm, while providing default behavior that is suitable for 'average' de-

ployments. This is accomplished using 'attributes' or 'hints' attached to a form or a

specific question. A list of attributes is provided in Section 4.3.

Table 3.1 lists each of the XForms control types we chose to implement in ODK

Voice, and a brief description of the approach to rendering this control type in a voice

Ul.

This chapter described a Wizard of Oz voice interface prototype we built and

Control Type Rendering
<input typeint> Enter integer over DTMF.
<select1> "Select 1 for <iteml>, select 2 for <item2>, ... "If there

are more items than DTMF keys, we would need to split
the items between multiple dialogs, e.g. "Press 9 for
more options."; however, form designers should avoid
large <selectl>s.

<select> Multiple yes-no dialogues, e.g. "Which symptoms do you
have? Press 1 for yes, 2 for no. Fever (wait for response).
Chills (wait for response)..." is more effective than a sin-
gle dialogue, e.g. "Press the keys for all options that
apply:. . ."

<input type-string> Entering a string over multi-touch DTMF (i.e. 222 codes
'C') appears very difficult over IVR, because there is no
feedback. Furthermore, it does not support non-Latin
character sets. Instead, use single-touch DTMF (i.e. 733
codes 'RED') and use a dictionary to figure out what
word was typed. The design should be robust to spelling
mistakes, and should figure out over time which are the
most likely words for a particular question. Alternatively,
strings can be entered out-of-band over SMS.

<upload type=audio> Ask the question, return the response as a wmv file. This
is the only question type that uses an audio response from
the user.

<input type=date> Three separate dialogues: year, then month, then day.
However, this is not well suited to peoples memory (e.g.
it happened last Friday). We do not know of an audio
analogue of the graphical 'date chooser' widget.

<bind jr:preload=xxx> JavaRosa uses the preload tag to automatically fill in (or
set defaults for) fields in a form based on system-level
properties. We will require preloads for caller ID, session
ID, and start/end timestamps.

Table 3.1: Initial design decisions for rendering each of the XForms control types over
voice.

used to test early design decisions. This prototype helped select among alternatives

for multi-select and string entry widgets, pare down necessary UI actions, and test

different response confirmation strategies. In the initial design of ODK Voice, we

decided on primarily touchtone input, explicit confirmation, and a system of voice

rendering attributes which allowed for rendering customization.

36

Chapter 4

ODK Voice System

ODK Voice is a platform for rendering XForms through automated telephone calls.

XForms is a W3C form specification standard; a sample XForm is provided in Ap-

pendix A. This chapter contains a description of ODK Voice features, a breakdown

of the system architecture and infrastructure, and provides additional details about

voice-specific rendering attributes and about string entry over voice.

4.1 Features

4.1.1 Control Types

ODK Voice provides support for most of the XForni control (question) types provided

by JavaRosa, including multiple choice, numeric, date, string, and audio recording

questions (see Table 3.1). There is also a read-only (no input) control type to provide

information during surveys, especially for branching decision protocol applications.

4.1.2 Other XForm Support

ODK Voice is powered by the JavaRosa XForms engine, and inherits much of the

XForms feature support present in JavaRosa[14). ODK Voice supports the following

XForms features:

Constraints Constraints on input data can be specified in an XForm and enforced

by ODK Voice. A wide variety of constraints can be encoded in XForms, such

as:

" Marking a question as 'required'; the survey cannot continue until this

question is answered.

" Enforcing valid ranges for numeric input.

" Regular expression matching of input.

" Enforcing complex relationships between the responses to different ques-

tions (e.g. answering 'male' in one question and 'pregnant' in another is

disallowed).

Branching A form can include branching logic based on answers to questions (or

more complex expressions). This allows different questions to be asked based

on previous answers. Forms can make extensive use of XForms branching logic

to provide entire decision support protocols, such as asking questions about

patient symptoms to arrive at a diagnosis.

Repeats In some cases, a group of questions needs to be asked multiple times; for

example, if a question asks 'How many children do you have?' and the response

is '3', a repeat can be used to ask a group of questions 3 times (once about each

child). Repeats provide this functionality.

See [2] for sample XForms utilizing these features.

4.1.3 Form and Prompt Management

ODK Voice provides a web interface for uploading forms and recording form prompts.

The form management interface is basic, allows for multiple forms, and provides

JavaRosa validation of forms on upload.

The prompt management interface allows administrators to easily record form

prompts without experience or expensive software or hardware. ODK Voice scans

uploaded forms and automatically identifies the set of audio prompts that will be

needed to render them. The administrator can then record these prompts using

either a mobile phone or recording software/hardware on their computer.

To record prompts over the phone, the administrator calls the ODK Voice phone

number while viewing the prompt recording web page. By entering a touchtone code,

the administrator can enter the prompt recording mode on the phone. When it is

time for the administrator to record a prompt, that prompt appears in a box on the

web page (see Figure 4-1), and the administrator speaks that prompt over the phone.

The administrator may also upload recorded audio in WAV format instead of

recording over the phone. This is helpful for higher-quality audio as well as inserting

sound effects or 'earcons'.

ODK Voice Prompt Recorder

E I
Recorded prompts:

Prompt Audio Delete Upload way file

Please enter the last name of the doctor you would like to schedule an ist D

Goodbye Lsten e Brows Upload

Press I if ta is correct, 2 for more options. 3 to try again, and 4 to continue isten Delete 8Bowse Upload

Welcome back to the Tuberculosis Checkup Survey. You currendy have an
uncompleted survey in progress. If you would lke to continue with that survey Listen [eee Ia . Upload
ess 1. If you'd like to start over press 2

P soL 1iste Delete 2 Upoad

IPlease hold. Lise eeeB~s..IUla

Figure 4-1: A screenshot of the ODK Voice web interface for prompt
Prompts can be recorded over the phone, or by uploading WAV files.
administrator calls in, the prompt text to be recorded appears in the red

recording.
When the

box.

4.1.4 Multi-Lingual Support

In many regions of the developing world, several distinct regional languages or dialects

may be spoken in addition to national languages. Sherwani et al. reported that less

than half of users of the Tamil Market project spoke Urdu (the national language);

others spoke dialects of regional languages [31]. Therefore, ODK Voice allows form

designers to write and record survey prompts in multiple languages (following the

XForms specification) and allows users to select from available languages from within

the voice interface.

There are a couple cases where multi-lingual support is not possible because the

range of possible prompts is too large to record. Specifically, playing back integer

responses requires text-to-speech (one cannot record every integer), and playing back

string responses for large dictionaries (more than a few thousand words) is generally

infeasible without text-to-speech. Other datatypes are fully multilingual.

4.1.5 Survey Resume

ODK Voice allows users to hang up in the middle of a survey and call back and

resume it later. This is accomplished via a session manager with sessions indexed by

caller ID. Users have the option of either continuing the survey where they left off or

starting the survey from the beginning.

4.1.6 Outgoing Call Management

ODK Voice supports both inbound and outbound calling. A web interface is provided

to manage bulk outbound calling and to provide a basic scheduling system so that (a)

calls can be scheduled in advance and delivered during appropriate hours and when

the system has free phone lines, and (b) failed calls can be automatically retried under

certain specified conditions.

The web interface for managing outbound calls is shown in Figure 4-2. The

administrator copies a list of phone numbers into the web form, and can choose to

either deliver them immediately, or schedule them for a time period in the future. If

a call fails', it can be retried after a specified time interval. A call queue provides

status and delivery information about scheduled calls, which allows administrators

to differentiate between pending calls, in-progress calls, completed surveys, partially

completed surveys, calls sent to voicemail, and failed calls.

For the Project WET deployment (see Chapter 5), calls were scheduled to be

delivered between 10AM and 6PM local time, with retries every two hours. This

proved most successful, because participants were usually able to pick up at some

time during the work day, and they were not disrupted at late hours.

4.1.7 Integration with XForms Design, Aggregation & Anal-

ysis Platforms

The Open Data Kit project is envisioned as a collection of modular tools for XForm

design, rendering, aggregation and analysis that can be easily integrated and inter-

changed. ODK Voice is an XForm rendering tool, and as such must integrate with

XForm design tools on one end and aggregation and analysis tools on the other.

ODK Voice stores all survey data locally, but is also designed to send it via HTTP

to an aggregation server such as ODK Aggregate [2], which may be physically colo-

cated with ODK Voice or remote. ODK Voice implements a robust upload scheduler

with exponential backoff retransmission to ensure that all submissions are successfully

uploaded to the aggregation server.

Using ODK Aggregate as a data backend, results can be viewed on the web and

exported to CSV, KML, or integrated with Google Spreadsheets. ODK Aggregate

1An uncompleted survey does not trigger a retry, as this would not be ethical towards the par-
ticipants. Only unanswered calls are retried.

ODK Voice Outbound Call Control
Enter the phone numbers, one per line:

Send now K
or Schedule calls between
If calls fait retry every

Schedule

and
hours.

hours from now.

Call Queue

Phone Number Status Retry Delete Time Added Delivery Information

5/24/10 COMPLETE after 2

+6C Te 3:58 attempts between+256775(COMNPLETE FDf
PM 5/25/10 3:28 AM and
EDT 5/25/10 12:28 PM

NOTCOMPLETED Delete

5/24/10
3:58
PM

NOTCOMPLETED
after 1 attempts
between 5/25/10 3:28
AM and 5/25110
12:28 PM

Figure 4-2: A screenshot of the ODK Voice web interface for scheduling outbound
calls. A list of phone numbers is scheduled either immediately or in the future, and
call status are displayed in a call queue.

+256774

can also be used as a common backend to receive results from the same XForms

rendered on both ODK Voice and on mobile phone or PDA software such as ODK

Collect or JavaRosa. Finally, XForms can also be submitted to other backends, such

as an XForms OpenMRS module currently in development.

4.2 System Architecture

4.2.1 External Infrastructure

ODK Voice consists of a Java web server that processes Xforms using the JavaRosa

core, and renders them as IVR dialogues using VoiceXML markup. The VoiceXML

markup is interpreted by an external VoiceXML client 2, which can either be running

on the same server as ODK Voice (ideal) or located remotely. The ODK Voice

application also includes HTML servlets for administrative interface such as form,

prompt, and outbound call management.

We chose to encode voice dialogues as VoiceXML instead of interfacing directly

with a particular platform such as Asterisk because it is in line with the ODK/JavaRosa

mission of supporting open standards, and because it provided flexibility for ODK

Voice to run on a variety of hosted or standalone platforms 3. However, we have found

a number of limitations of VoiceXML that would be important to consider for those

planning to use VoiceXML for UI research in the future. First, although VoiceXML

is supported by a number of platforms, these platforms are almost all proprietary,

and the open source offerings (such as VoiceGlue) provide very limited functionality.

Although the proprietary providers offer free versions and licenses and a surprising

level of free support, one is ultimately at the mercy of these providers for resolving

2Sometimes also called a VoiceXML 'interpreter' or 'browser'.
3Voxeo and TellMe both provide proprietary hosted and standalone VoiceXML clients. VoiceGlue

is an open source VoiceXML plugin for Asterisk, and VXI* is a VoiceXML plugin for Asterisk from
i6Net. In our work, we used the Voxeo platform, which is provided for free for up to 2 ports per
instance. See http: //www.voxeo. com.

problems and supporting one's feature needs. Second, we found that a dialogue-level

language such as VoiceXML lacked the flexibility to accomodate lower-level changes

and features that we found interesting from a research standpoint. For example, it

was not possible to control exactly what the system considers silence vs. input, or

keep track of user input while continuing to play a prompt, or respond adaptively to

a user's pauses during an audio recording. VoiceXML follows a model similar to the

web, in which the client 'browses' VoiceXML documents following links and sending

requests to the server. The server can only respond to requests and never receives

the actual audio stream to interpret arbitrarily.

The VoiceXML client must connect to the POTS/mobile network via a gateway.

One inexpensive gateway option is a GSM modem, which can cost less than $100USD

(more advanced GSM gateway hardware can also be used). The advantage of a GSM

modem is that it can be very cost-efficient when used in-country, since mobile minutes

are very cheap. The disadvantage is that the server must be set up in-country, where

it may require maintenance and suffer from power and service outages.

Alternatively, the VoiceXML client can connect to a SIP gateway. There are

many SIP providers that can provide inbound and/or outbound dialing to telephone

networks worldwide at relatively low rates. The advantage of using a SIP gateway

is that it doesn't require any dedicated hardware, and doesn't require setting up a

physical server in-country. For example, we delivered surveys to Uganda for Project

WET (see Chapter 5) from a server located in Boston. The disadvantage is that the

(long distance) cost per minute is significantly higher than using a GSM modem for

many countries.

ODK Voice sends completed survey data to ODK Aggregate via HTTP POST, as

described in Section 4.1.7.

Figure 4-3 illustrates the ODK Voice infrastructure and interfaces described in

this section

I
Telephone Gateway

(VoIP provider, GSM modem)

VoiceXML Engine
(Prophecy, VXI, Voiceglue)

ODK Voice
(Tomcat web server)

F 00K Aggregate
(Google app engine)

Figure 4-3: A diagram of the hardware/software infrastructure that ODK Voice de-
pends on. ODK Voice uses VoiceXML to specify the audio dialogues that are played

by a VoiceXML engine and transmitted via a telephone gateway to the cellular net-

work. Collected data is sent to ODK Aggregate for viewing.

4.2.2 Internal Architecture

Figure 4-4 shows the dependency relationships between the ODK Voice classes.

FormVxmlRenderer is the top-level class for rendering VoiceXML dialogues. When

a new IVR session is started, the server creates a new FormHandler object that

contains a data model for the Xform, keeps track of the user's position in the form,

and stores completed data from the session. The server stores the FormHandler in a

VoiceSessionManager, and the session token is sent in each VoiceXML dialogue so

that this session state can be maintained on the server. Most of the Xform parsing will

be delegated to the JavaRosa core; translation of individual controls (i.e. questions)

to VoiceXML will be handled with a subclass of Widget specific to the particular

question type.

Each question is rendered as its own VoiceXML document; moving to a new

question requires querying the VoiceXML server for the new question (along with

submitting the data, if any, for the previous question). This allows the VoiceXML

server to respond dynamically to submitted data; this is necessary in order to support

features such as data constraints, branching, and repeats. Completed surveys are

saved and forwarded to an XForms data aggregation backend, such as ODK Aggregate

[2].

Each widget class keeps track of the prompts necessary for questions of that type,

so ODK Voice can determine the prompts needed for recording by iterating through

the survey and requesting a prompt list from each Widget.

The OutboundCallScheduler and UploadScheduler are daemon threads that

handle sending outbound calls and uploading completed surveys, respectively.

Data persistence of forms, prompts, survey data, and outbound calls is accom-

plished with a mySQL database. Each VoiceXML HTTP request is also stored in the

database so 'research' queries such as "How long did question X take on average" can

be answered retrospectively.

Localization is accomplished using Java ResourceBundles associated with XForms

language identifiers.

Figure 4-4: Module dependency diagram for the basic components of the ODK Voice
Java web server.

4.3 Form and Question Attributes

Form designers who want greater control over ODK Voice's rendering can annotate

their form with rendering attributes or 'hints' at either the question or form scope.

Rendering hints are used to provide greater rendering flexibility while preserving

cross-compatibility with standard XForms. Rendering hints are also a simple way for

future developers to add new rendering functionality to ODK Voice while maintaining

compatability, by adding functionality that is activated by particular rendering hints.

This functionality can then be pushed back into the ODK Voice core without changing

default behavior.

Table 4.3 contains a list of attributes currently implemented in ODK Voice.

Attribute Scope Function
digits Q For numeric question, play back the response as digits

(e.g. two five) instead of a number (e.g. twenty-five).
skipInstructions Q/F Skip generic question instructions (custom instructions

should be included in the question prompt).
skipQuestionCount Q/F Skip saying 'Question 1 of 3' at the beginning of a ques-

tion.
repeatQuestionOption Q/F Remind the user that they can press star to repeat the

current question.
skipConfirmation Q/F Skip the confirmation step for a question.
customIntroPrompts F Replace the generic form intro prompts with custom

prompts.

resumeDisabled F Disable the ability to call back and resume a form (see
4.1.5).

maxTime Q For audio question, set the maximum record time.
stringCorpus Q For string question, specify the corpus (see 4.4).
forceQuiet Q/F Prompt the user to stop talking if they interrupt the in-

structions, and offer to call back if the connection remains
noisy.

Table 4.1: List of XForm attributes that specify custom rendering options in ODK
Voice. Q is question-scope, and F is form-scope.

Unfortunately, JavaRosa does not currently expose custom XML attributes, al-

though this feature under discussion. Therefore, as a temporary solution, <hint>

tags are used to store rendering attributes.

4.4 Adaptive String Widget

String input is particularly challenging to achieve in an audio interface such as ODK

Voice. On the one hand, mobile phones accomplish string entry (e.g. for text mes-

saging) using touchtone input, but this is heavily dependent on immediate feedback

from the phone's graphical UI. On the other hand, existing voice Uls rarely require

string input, and usually have a small custom vocabulary (e.g. cities) when they do.

String input is probably a poor choice for ODK Voice's low-literacy target pop-

ulation. Nevertheless, if only from a compatibility standpoint, it would be ideal for

ODK Voice to be able to achieve string input, since existing JavaRosa XForms make

use of string input, and there are certain types of data that are hard to enter except

as strings. However, our initial usability tests (see Chapter 3) suggested that string

entry is extremely difficult even for experienced users, and users did not want to enter

strings through a separate text message.

In order to create a usable string widget, string entry was restricted to words (or

sets of words) from a predefined corpus. This corpus can be generic (e.g. a dictionary)

or specific to the question (e.g. a list of cities or patient names). This restriction had

two advantages: first, the user can press one key per letter (e.g. 733 for 'RED')

and the system can infer the word; second, the system can correct spelling errors by

looking for a 'closest match' (this is especially important in low-literacy populations).

Of course, even without spelling mistakes there is a possibility of collisions (since

more than one word can have the same key code); we disambiguate between these

choices by asking the user for confirmation for each of the most likely words in order

of likelihood.

The likelihood of word Wi being the intended word, given an observed key sequence

0 is, by Bayes rule:

P(WIO) =_P IO W (4.1)P(O)

P(O|Wi), or the probability of observing a key sequence 0 for a given intended

word Wi, is calculated using the 'edit distance' or 'Levenshtein distance' between the

expected and observed key sequences. Edit distance is a generalization of Hamming

distance that allows for insertions and deletions in addition to substitutions; the

edit distance between s and t is the minimum number of insertions, deletions, or

substitutions required to get from s to t.

Edit distance can be calculated using the Wagner-Fisher algorithm in O(mn)

time, where m and n are the lengths of the two strings s and t being compared [13].

Essentially, an m x n matrix is constructed, with each entry Mij corresponding to

the edit distance between s1i... and si The first row and column of the matrix are

initialized with M1 ,= Mi, = i, and the rest of the matrix can be calculated with

the following rule:

Mi, { Mi- 1 ,- 1 if si = t (4.2)
min(Mi_1 _1, Mi_1,, Mi,ii) + 1 otherwise

P(O|Wi) is then computed as rd, where d is the edit distance with the word and

r is the estimated probability of a single error (assuming independent errors).

P(W) is the prior probability for a word in the corpus. Since we don't know

P(Wi), a prior estimate P'(Wi) is used. We start with uniform priors, Vi, P'(Wi) = c,

and adjust the priors in response to user behavior: a word's prior increases additively

each time it is chosen by any user. As the number of responses becomes large (i.e.

P'(Wi) >> c), these dynamic priors will approach the relative frequency of the word

being chosen, i.e. P'(W) ~ P(W). In effect, words that have been chosen more often

in the past are suggested before less frequently chosen alternatives. An upshot of this

approach is that as long as there are enough users, the form designer does not need a

custom corpus; the form designer can simply use a superset corpus (e.g. a dictionary)

and the system will learn to only suggest words from the 'true' underlying corpus.

P(O) is a normalizing factor and is independent of W, so it can be ignored.

In summary, when a key sequence is entered, ODK Voice calculates P(WiJO) for

each word in the corpus, and returns a list of the most likely words. The user hears

each of these words sequentially and chooses the correct one. Finally, the chosen

word's prior is increased based on the user's choice. The runtime of this algorithm of

O(n2d), where n is word length and d is dictionary size.

A graphical interface for the string entry functionality was built to evaluate its

success with users; this interface is shown in Figure 4-5. The functionality was then

incorporated in the audio interface.

String entry was evaluated as part of a scenario study in the United States (see

Section 6), and had a 92% success rate when entering names from a 25,000 word

English dictionary.

2 3
ABC DEF

4 5 6
GHI JKL MNO

7 8 9
PQRS TUV WXYZ

* 0 #

Corpus: English Dictionary

Which word did you choose?

Adam (3.0)

beam (1.0)
bean (1.0)
Adams (0.1)
Aden (0.1)
ado (0.1)
afar (0.1)
afro (0.1)
alan (0.1)
Abo (0.1)
None of the above

Figure 4-5: A test UI for the adaptive string widget.

Chapter 5

Project WET Deployment in

Uganda

This chapter describes a pilot study of ODK Voice in rural northern Uganda under-

taken in collaboration with the Project WET organization. Feedback was collected

from rural Ugandan teachers about a training conducted by Project WET. The sur-

vey interface was created through an interative design process involving testing on

Project WET employees, volunteers in Uganda, and teachers from the target pop-

ulation. Success rates and qualitative observations of different interface designs are

presented, along with lessons learned from the iterative design process.

5.1 Background

Project WET is a non-profit organization whose mission is to "reach children, parents,

educators, and communities of the world with water education." [3]. Project WET

conducted a teacher training program throughout rural Northern Uganda in July and

August 2009. Teachers were trained and given materials to teach students proper

sanitation and personal hygiene practices.

The Project WET organizers were interested in obtaining feedback from par-

Figure 5-1: A Project WET teacher training in Uganda.

Figure 5-2: Project WET materials displayed in a school.

ticipating teachers about if and how they had used the Project WET materials in

their communities. The teachers were located throughout rural Uganda, but approxi-

mately 250 of the 524 teachers provided mobile phone numbers at which they could be

reached. Project WET originally planned to collect feedback with an SMS campaign.

However, teachers were not willing to pay for SMS usage to provide feedback. Calling

teachers with an automated voice survey circumvented this problem because mobile

phone users are not charged for received calls in Uganda (and most other countries).

Furthermore, a voice survey is capable of collecting more detailed information than

could be sent in a 160-character SMS message.

Text messages were sent to teachers 24 hours in advance advising them that they

would receive a survey call. The text of the message was:

Hello! This is Project WET in the USA. Please expect a recorded
survey call on Saturday. Help us by answering the questions. Thank you!

All survey calls were recorded and the audio transcripts were reviewed to improve

the survey design.

Calls were scheduled by ODK Voice to be sent between the hours of 10:30 AM and

7:30 PM local time. If calls failed or were not answered, they were rescheduled up to

4 additional times at 2 hour intervals. Calls that were answered but not completed

were not retried.

The study was conducted as an iterative design and evaluation process. Early

versions of the interface were tested with members of the ODK and Project WET

teams. Next, volunteers in rural Uganda tested the survey and spoke with us in

interviews. Finally, several iterations were performed with the actual survey cohort.

At each iteration, transcriptions of survey calls were observed in order to inform

the next iteration of the interface. Task success rates were not calculated for early

iterations because they were so unsuccessful that we chose not to test on a large

sample size. In later iterations, calls were qualitatively characterized (see Table 5.1)

and task success rates calculated.

5.2 Touchtone Interface

The first version of the survey contained audio, boolean (single select), and numeric

questions. The first question recorded the teacher's name and school. The second

question asked whether the teacher had used the materials. If the teacher selected yes,

the survey asked what results the teacher had seen (audio) and how many children

had been reached (integer). If the teacher selected no, the survey asked why the

materials had not been used (audio) and whether the teacher planned to use them in

the future (boolean). Each question required explicit confirmation to continue, and

the participant could press the star key at any time to repeat the current question.

One thing that became clear from the initial testing was the importance of the

text message 'warning'. Each of the Ugandans interviewed cited the importance of

the text message to 'prepare' them for the call. Participants who were sent a call

without receiving a text message warning were confused and would hang up after a

few seconds of failed attempts to start a conversation with the recorded voice.

Although having an IVR system call participants - rather than having participants

initiate the call - is financially advantageous, we found that it introduced additional

usability problems, which were only partially offset by the use of text message warn-

ings. First, participants were often in an environment not conducive to a successful

IVR interaction. These environmental factors included loud background noise, exter-

nal distractions such as conversations with third parties, and intermittent call quality.

As a result, participants often missed parts of the instructions and needed them to

be repeated.

In most cases, participants also did not immediately realize the nature of the

IVR calls; we found that no matter how we began the survey dialogue, participants

repeatedly said "Hello, hello? Who is this?", trying to establish a conversation, and

thus missing the instructions. To overcome this problem, a 2-3 second 'chime' sound

was placed at the beginning of the survey, followed by the instructions "This is a

recorded survey call from Project WET. You are not talking to a person". Hearing

the chime sound followed caused most participants to stop talking and listen for long

enough that they heard the initial instructions.

The most serious usability problems with the initial Project WET survey involved

understanding how and when to use the touchtone keys. In our initial interviews with

participants in Uganda, we received feedback such as "It was very good, but the keys

were very hard. It would be better if you could get rid of the keys", and "Pressing the

buttons did not work for me." Many participants did not press any keys or did so only

with significant prompting, and most participants who did press keys made a number

of mistakes throughout the interaction. This observation is in line with Indrani et

al., who found that subjects responded well to an ASR-based voice UI prototype

but "required significant prompting and encouragement [from the experimenter] to

press any key" in a graphical mobile interface [21]. Combining touchtone and audio

input made matters even worse: once participants learned that they were supposed

to enter information on the keypad, they often did not say anything during audio

input questions. We speculate that difficulties with hearing and/or comprehending

the touchtone instructions, the added difficulty of moving the phone from one's ear

and finding a button to press (possibly missing further instructions), unfamiliarity

with using the keypad during a phone call, and confusing the system with a live

speaker, all may have contributed to the failure of a touchtone interface.

Several features were added to improve use of the touchtone keys. The instructions

were elaborated to say "Some questions will have you press the number buttons on

the phone. Other questions will have you say your answers.", and each prompt

explicitly said either "Please press the X button on your phone" or "Please SAY your

answer after the beep." Prompts were also repeated again when users did not respond

appropriately. Finally, the number of touchtone inputs was successively reduced in

each iteration.

Despite these improvements, only 1 of the 20 participants receiving a touchtone

survey completed it successfully, with another 3 achieving success on some of the

questions 1. 55% of the participants receiving a touchtone survey did not even succeed

in pressing the 1 button to begin the survey, even when they were told to "Please

press the 1 button on your phone to begin the survey." Instead, they said "Yes" or "1"

or "Yes, I am ready" or simply hung up after hearing the instructions. In the cases

where calls were at least carried out to completion (successfully or unsuccessfully),

they usually took 6-8 minutes for 4 questions because participants had to repeat

questions multiple times until they could answer them correctly. This may have

been a useful learning experience for participants, but was almost certainly also a

frustrating one. Finally, considering the low success rate, one must question the

validity of the touchtone responses, even though these responses were confirmed by

users in a follow-up dialogue.

These results suggest that without at least some initial training, a touchtone

interface is infeasible for this target population.

5.3 Voice-Only Interface

Based on the results of the touchtone survey evaluation, the survey was completely

redesigned to require no touchtone input. The voice-only survey had three questions

with recorded audio responses. The initial instructions were:

[Intro Music] This is a recorded call from Project WET. During this
call you will not be talking to a person. You are receiving this call because
you were part of a Project WET training in July and August 2009. We

'Call classification was based on listening to recorded transcripts of the calls

want to learn how you have used the Project WET materials since this
training. The call will take about 5 minutes. Although you are not talking
to a person, this survey will record you SAYING your answers. When it
is your turn to say your answer, you will hear a beep that sounds like this:
[beep] Wait until you hear this sound and then slowly and clearly say your
answer. When you stop talking, the survey will continue. Let's begin.

The survey question prompts were:

1. After you hear the beep, please say your name and the name of the school where
you work. When you stop talking, the survey will continue.

2. In a moment, you will hear another beep. After the beep, please say 'yes' if you
have used the Project WET materials since the training, and 'no' if you have
not used the materials. When you stop talking, the survey will continue.

3. In a moment, you will hear another beep. After this beep, please explain how
you have used the Project WET materials, or why you haven't used them.

After each question, a beep was played, and the user response was recorded. The

recording period ended after a certain period of silence. If the user did not say

anything during the recording period, the question was played again; otherwise, the

next question was asked. The timeout period had to be carefully tuned: too short

a timeout caused the system to stop recording while the user was still responding;

too long a timeout caused users to get confused and start talking again. A 3 second

timeout was found to be optimal. Absolute timeouts for each question were also

included to prevent user rambling or background noise to cause the recording to

continue indefinitely.

Of 70 participants who received this version of the survey, 13 completed the survey

successfully, 8 achieved partial success (some questions answered successfully), 19

could not complete the survey successfully, 22 hung up in the initial instruction period

2 6 could not complete the survey because of environmental factors 3, and 2 calls were

answered by the wrong person4 . The overall complete and partial success rates are
2 Jt is not clear why the users hung up in these cases, but many were likely unavailable to take

the call, since calls were delivered during working hours.
3 This category consisted of cases in which the participant said 'Please call me back another time'

or in which there was very loud noise which made it impossible to hear.
4 An additional 17 (excluded) participants did not pick up the phone when called, or had incorrect

phone numbers.

19% and 11% (30% total). If we exclude the calls that failed due to factors external

to the interface (hang-ups, environmental factors, wrong person), the complete and

partial success rates are 33% and 20% (52% total). This success rate is several times

higher than that of the touchtone interface. Figure 5-3 shows a breakdown of the call

outcomes. Average time to complete the survey was 2 minutes, 55 seconds.

Call Outcomes for First Voice-Only Interface

U Success
0 Partial

Success
O User Failure
* Quick Hangup
* Environmental

Factors
I] Wrong Person

27%

Figure 5-3: Pie chart showing call outcomes for the first voice-only Project WET
interface.

One common characteristic of many of the failed calls was that participants did not

stay quiet and hear the instructions, either because (a) they did not realize the prompt

was automated and were trying to establish a conversation, (b) they were engaged

in a conversation with a third party, or (c) there was too much background noise or

poor connection quality. The interface was modified to 'force' the user to be quiet

during the instructions. During the instructions, if talking above a certain threshold

was detected, a prompt would be played asking the user to be quiet and listen to the

instructions, which would then be repeated. If talking (or loud background noise)

continued, the user would be informed that it was too loud and that he/she would

be called back later.

Based on a small set of test calls, this 'force quiet' feature actually reduced the

usability of the interface. We later realized from directly observing Ugandans using

mobile phones that they often say "Hello?" or "Okay" habitually during calls to check

the connection; asking users to stop talking did not always stop them from making

these remarks, and users were 'scolded' for making these affirmatory comments during

the instructions. Even more problematic was the fact that once users were 'scolded'

once or twice for talking out of turn, they were very hesitant to talk even when

prompted; in most cases where the interface did force the user to be quiet, the user

remained silent for the rest of the interaction.

In the final version of the survey, the initial instructions and question prompts were

further shortened, simplified, and made more conversational. Instead of forcing users

to understand our metaphor of 'talk after the beep', the dialogue was constructed

to emulate natural turn-taking behavior. Additionally, we received feedback from

participants that the American accent was difficult to understand, so this version was

recorded by a native Ugandan speaking slowly and deliberately in a Ugandan accent.

[Intro Music] This is a recorded call from Project WET. You are not
talking to a real person. This call will record your answers to three ques-
tions about your Project WET training. After each question, you will
hear this sound: [beep]. After this sound, say your answer. When you are
finished, stop talking and wait for the next question.

The survey question prompts were:

1. Question 1: What is your name?

2. Question 2: How have you used the Project WET materials since the training?

3. Question 3: What results or changes in student behavior have you noticed after
using the Project WET materials?

Of 49 participants who received this version of the survey, 31 completed the survey

successfully, 9 achieved partial success, 4 hung up in the initial instruction period, 3

could not complete the survey because of environmental factors, and 2 calls were an-

swered by the wrong person5 . None of the participants fell into the 'failure' category;

excluding the categories above, every participant was able to answer at least two of

the three survey questions. The overall complete and partial success rates are 63%

and 18% (82% total). If we exclude the calls that failed due to factors external to

the interface, the complete and partial success rates are 78% and 23% (100% total).

This success rate is much higher than that of the previous voice interface. Figure 5-4

shows a breakdown of the call outcomes. Average time to complete the survey was 3

minutes, 5 seconds.

Call Outcomes for First Voice-Only Interface

4%

M Success
* Partial

Success
B User Failure
M Quick Hangup
0 Environmental

Factors
Dl Wrong Person

Figure 5-4: Pie chart showing call outcomes for the final voice-only Project WET
interface.

The success of this interface suggests that leveraging conversational and turn-

taking conventions of normal conversation are much more successful than detailed

instructings in elicting desired user behavior. In the first version of the voice survey,

questions were asked as statements (e.g. 'Please say your name and the name of the

school where you work') and instructions were repeated during the question prompts.

In the final version, we asked questions as questions and relied on turn-taking to

5An additional 23 (excluded) participants did not pick up the phone when called, or had incorrect
phone numbers.

signal when the user was supposed to speak. This turned out to be dramatically

more successful. The use of a native Ugandan speaker with a Ugandan accent and

speaking style also appeared to improve understanding to a large degree.

Interestingly, the responses to this version of the survey were more concise, and

more slowly and clearly enunciated than in previous versions. The literature reports

that people tend to emulate the speaking style of their conversational partner in a

voice dialogue[23]. Therefore, since the question prompts were more concise, the

responses were also more concise. Since the prompts were recorded more slowly and

in a more understandable accent, the responses were also spoken more slowly and

clearly.

On a similar note, we found that in both versions of the interface the question

'timeout' (i.e. the amount of silence before the recording terminates) had a great

influence on response length. When open-ended questions are asked, such as 'How

did you use the materials?', participants often start with a concise answer, take a

short pause, and continue to elaborate with longer and longer pauses until they are

interrupted. Interestingly, participants did not usually seem frustrated when they

were interrupted during their response (unless they failed to provide even the basic

information requested) - they seemed to assume that the speaker was interrupting

them once their answer was sufficiently detailed.

Call quality (both intermittent connection and background noise) continued to be

a challenge, but unlike previous versions, participants were usually able to answer

the questions even if they did not hear or understand the instructions completely,

because the desired behavior was implicit in the conversational nature of the survey.

If the speaker said 'What is your name?', the participant usually responded with their

name and then waited for a response, even if they hadn't heard the instructions.

Unfortunately, one recurring problem was that in calls with very loud background

noise, the response recording would not terminate automatically (until the hard cutoff

time was reached). We considered detecting background noise and instructing users

in those calls that they could terminate the recording by pressing a touchtone key;

however, we decided against this because participants tended to stay on the line

even when the recording didn't timeout, which was a better outcome than what we

experienced when we introduced touchtone input.

Touchtone Voice 1 Voice Final
Success 1 13 31
Partial Success 3 8 9
User Failure 9 19 0
Early Hangup 4 22 4
Call Quality 1 6 3
Wrong Person 0 2 2
Total 20 70 49
Text Failed 19 17
Call Failed 1 17 23

Table 5.1: Call outcomes for Project WET survey by interface.

Women had greater success using this interface than men. In the first interface,

men were at least partially successive 45% of the time; Women were at least partially

successful 85% of the time. The gender discrepancy in success rate in a Fisher's

exact test (p = 0.06 one-tailed; p = 0.09 two-tailed) did not meet the standard

significance criterion (p < 0.05). Results are shown in Figure 5-6 and Table 5.2. A

similar observation of the second voice interface would not be meaningful, since there

were no examples of user failure. The gender discrepencies observed support the

findings of Indrani et al. that women had a higher probability of success than men

[21]. Qualitatively, women generally listened more quietly to the instructions and

answered more slowly and clearly, whereas men tended to talk during instructions

(e.g. 'Hello? Hello?') and speak at the wrong time.

Every teacher surveyed responded that they had made use of the Project WET

materials, and extremely positive results were reported from practically all of the

respondents. Most participants reported that the materials had been 'rolled out'

100.00%

90.00%

80.00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%
Voice 1 Voice Final

Figure 5-5: Call success rate for Project WET survey by interface version.

Success / Partial Success User Failure
Male 14 18
Female 5 1

Table 5.2: Call success rate for Project WET survey by gender.

9000%

80-00%

70.00%

60.00%

50.00%

40.00%

30.00%

20.00%

10.00%

0.00%
Male

N Partial
Success

* Success

Female

Gender

Figure 5-6: Call success rate for Project WET survey by gender.

* Partial
Success

U Success

Touchtone

to students and other teachers, and that students had begun to wash their hands

properly, clean water containers, etc. We make no claims on the external validity of

the survey methodology. Since Project WET was providing training, materials, and

funding to the participating teachers, they almost certainly felt that it was in their

interest to report positive results, particularly since the survey was not anonymous.

In the most extreme cases, teachers may have interpreted the survey call as a test

of their competence with the materials; for example, one teacher responded "I've

realized many changes, since the Project WET has 7 topics, 7 activities: healthy

habits, [etc.]", proceeding to list each of the Project WET topics. Much greater care

would have to be taken in formulating the instructions and questions6 if one hoped

to draw meaningful quantitative conclusions from such a survey.

On the other hand, initial cross-validation of the survey data supports its accuracy.

Approximately 50 of the surveyed schools were visited by Project WET employees;

written feedback from teachers was elicited and direct observations of Project WET

implementation and results was performed. While it would be difficult to rigorously

cross-validate the responses - there is no real ground-truth data, and elicited responses

may be different in different contexts; see Chapter 6 - cross-validation supports the

general conclusions reached by the phone survey. All but one of the schools had

been using the Project WET materials, and major changes were observed in student

behavior such as handwashing, etc.

The results of this study do not ipso facto suggest that ASR-based interfaces would

outperform touchtone interfaces; ASR was not used at any point in this work, and we

make no claim about users' abilities to operate successfully under the constraints of

limited vocabulary and recognition accuracy. This work does however highlight the

importance of interfaces that leverage the conversational and turn-taking behaviors

6For example: making the survey anonymous; instructing participants that the quality of the ma-
terials was being evaluated, not their performance; rigorously cross-validating a subset of responses
with live classroom observation.

already in use during natural conversation.

The iterative design process, including interviews with volunteers and observation

of transcribed phone calls, dramatically improved the task success rate for the ODK

Voice interface for this survey. The results of this process suggest a number of general

principles for voice UI design for similar user demographics. See Chapter 7 for a

summary of these user interface design principles.

68

Chapter 6

Measuring Accuracy with a

Scenario-Based Study

A scenario-based study was conducted to measure the accuracy of data collection us-

ing ODK Voice. For this study, a form was built to implement a patient appointment

scheduling protocol in ODK Voice. Brief written instructions told participants to

read a scenario, call ODK Voice and make an appointment, then fill out an attached

questionnaire. The scenario provided fictional information such as patient medical

history and doctor, which were needed to make the appointment. A randomized,

artificial scenario was used because ground truth data was needed to determine re-

sponse accuracy. See Appendix B for instructions, scenario, and questionnaire given

to participants. The voice survey questions were:

1. Please enter the phone number of the phone you are calling from. If you don't

know the number, press 0. [numeric]

2. Please enter the last name of the doctor you would like to schedule an appoint-

ment with. [string]

3. For what day would you like to schedule the appointment? [date]

4. What is the reason for your appointment? [single select]

5. Do you suffer from any of the following chronic conditions that your doctor

should be aware of? [multi-select]

6. Would you like to record a message for your doctor to provide additional infor-

mation? [branching yes/no]

7. Please record a message for your doctor after the beep. [audio]

The original purpose of this experimental setup was to compare automated voice

interface accuracy to a mobile software interface and a live operator in India, to extend

the work of [25]. However, we have not yet found participants for this study. There-

fore, the experiment described above was conducted in the United States designed to

mimic the Project WET conditions (i.e. no participant training), to measure perfor-

mance by US participants compared to that observed in the Project WET study. We

hope to carry out the original accuracy evaluation in the future (see Section 8.1).

13 of 14 participants answered the survey to completion. These participants were

all located in the United States and considered themselves fluent in English. Ages

ranged from 18 to 76 years, and all participants had used a voice interface at least

"several times" in the past. Education ranged from high school to PhD.

The error rate across all question types was 6.1%, and the average response time

per question was 38 seconds. A breakdown of error rate and response time is shown

in Figure 6-1. Too much weight should not be placed on the response times, since

the majority of this time was spent listening to the question prompts; therefore, the

response time is more dependent on the particular question and the prompt speed than

the question type1 . There were 2 participants over the age of 70 and 2 participants

for whom English was not their first language. For these groups, the error rate was

27% and 17% respectively; for all other participants, the error rate was 0%.

1In this study the prompts were read very slowly and clearly. Contrary to our initial impressions,
we found later that increasing prompt speed to a normal conversational pace did not decrease

comprehension (and of course improved response time and satisfaction).

Response Time by Question Type

Numeric String Date Mult-Select Single Select

Question Type

Error Rate by Question Type
20%

15%

10%

5%

0%
Numeric String Date Multi-Select Single Select

Question Type

Figure 6-1: Measured averages of (a) response time, and (b) error rate for each

question type in the scenario experiment.

Audio

Audio

Participants were asked to compare their satisfaction with ODK Voice to (a) a

live operator, and (b) an online form, using Likert scales. As shown in Figure 6-2,

most users preferred both a live operator or an online form to ODK Voice. This is

not surprising, as voice interfaces are notoriously difficult to use, and ODK Voice is

designed to improve accuracy over the satisfaction and efficiency of experienced users,

especially in the configuration tested.

User Preferences: ODK Voice vs Live Operator
t 5 eao

Prefer Operator 1 3 4 6 Prefer Phone

User Preferences: ODK Voice vs Online Form

6I.......4

Prefer Online 1 2 6 Prefer Phone

Figure 6-2: Reported user preferences on a Likert scale for the ODK Voice survey
compared to (a) a live operator, and (b) an online form. Most users preferred both
the live operator and the online form to the ODK Voice system.

The qualitative feedback received suggests that participants found the interface

easy to use and trusted its accuracy, but were frustrated with the amount of time

required to enter a small amount of data. Some participants appreciated the re-

sponse confirmations, but several remarked that they were applied too broadly; not

every question required explicit confirmation. One participant found the pace so slow

that she barged in, and then answered incorrectly because she had not heard all the

instructions.

The results of this study suggest that the usability problems experienced by teach-

ers in rural Uganda (see Chapter 5) are not replicated in literate, technically experi-

enced users in the United States. This suggests that language and technical compe-

tence, literacy, and environmental factors (noise, call quality) are responsible for the

usability problems faced in Uganda.

74

Chapter 7

Conclusions

This work describes two main contributions: ODK Voice, a platform for rendering

data collection protocols (written in the XForms form specification language) over au-

tomated voice/touchtone dialogues; and a set of design guidelines for building voice

interfaces for untrained users in the developing world based on evaluation and itera-

tion in a real-world survey deployment in rural Uganda.

ODK Voice was successfully implemented and supports the majority of JavaRosa

features, including a variety of question and data types, multi-language support,

branching, and constraints. In addition to incoming call support, outgoing calls can

be scheduled through a web interface. ODK Voice supports recorded prompts as

well as text-to-speech, and provides a simple over-the-phone mechanism for recording

prompts. ODK Voice is implemented as a Java Tomcat web server, and the voice

dialogues are produced using the W3C VoiceXML specification, relying primarily on

touchtone input. ODK Voice interoperates with the ecosystem of XForms-based data

collection applications being developed by the OpenRosa consortium; in particular, it

integrates with an XForms aggregation and analysis backend such as ODK Aggregate.

A 4-question survey including audio, multi-select, and numeric questions was de-

veloped in collaboration with the Project WET organization. This survey was de-

signed to collect feedback from teachers in rural Uganda about a recent training. The

initial survey design had a very low success rate among the target population, but

after several iterations of testing and redesign, 82% of participants completed the

survey successfully and 100% completed at least 2 of the 3 questions (not including

calls that failed for other reasons; see Chapter 5). Based on the results of the scenario

experiment described in Chapter 6, even a significantly more complex survey could

be completed with high accuracy by participants in the United States with previous

IVR experience; this suggests that the usability problems encountered in the Project

WET survey were a result of the characteristics of the target population. Based

on this work, we provide below a summary list of design recommendations for voice

interfaces targeted at similar populations.

Design Recommendations

" If users are being called by an IVR system, they must be warned in advance
that they are going to receive an automated call. Text messages sent 24 hours
in advance are an effective way to provide advance notice.

" Avoid use of the touchtone keys whenever possible; untrained users experience
difficulty pressing keys during a voice dialogue. Particularly avoid switching
between touchtone and voice input in a single interface, as users have difficulty
distinguishing when they should be providing touchtone versus voice input.

" If users are not aware that the call is automated, they must be forced to stop
talking at the beginning of the interaction and informed that the call is auto-
mated. Beginning the call with a sound effect such as a chime, followed by 'This
is a recorded call. You are not talking to a real person' is a successful strategy
for accomplishing this goal.

" Users are more easily able to understand prompts recorded by a speaker in
their native accent. Similarly, prompts should be designed with members of
the target population to ensure that the vocabulary is suitable to the target
population.

* Instead of depending on detailed instructions, interfaces should leverage the
implicit conventions and turn-taking behavior of interpersonal conversation.
For example, the prompt 'Please say your name after the beep. [beep]' would
not be as successful as 'What is your name? [beep]'. In addition to being
more natural, this strategy allows users to succeed even if they cannot hear or
understand the instructions.

e Responses tend to mimic question prompts in form, length, speed, and clarity.
Question prompts should therefore imitate the type of response desired.

78

Chapter 8

Future Work

There are a number of opportunities for continuation of the work described. First,

there are a number of ways that ODK Voice could be extended that might improve

learnability or data quality. Second, there is much more work to be done to character-

ize the types of human-computer interaction that are successful when using automated

voice interfaces for data collection on populations with low income, low language and

literacy skills, and a lack of technical experience.

8.1 Further HCI Research on Voice Data Collec-

tion Systems

As mentioned in Section 2.3, Patnaik et al. found that live operator data collection

over voice outperformed graphical and SMS interfaces by an order of magnitude [25].

However, it is unclear from this work whether the improvements in data quality result

from the voice modality or from the presence of a live operator. In order to answer

this question, the accuracy of automated voice interfaces in these environments must

be evaluated. The experimental procedure for such an evaluation was performed with

participants from the United States (see Chapter 6), but we must carry out such an

experiment on cohorts similar to [25]1 , using one or more of mobile software, SMS,

and live operator interfaces as controls, to determine how automated voice interfaces

compare to these other data collection approaches.

Another interesting research question is how much 'bang' you can get for a limited

amount of training. Each of the data collection projects described in Chapter 2 have

provided participants with training, usually consisting of hours to days of classroom

time in which the technology is demonstrated and practiced by the participants. This

training makes sense in the context of some applications, such as health worker use.

The Project WET deployment described in Chapter 5 provides a data point at the

opposite extreme: no training whatsoever (besides a text message warning) and un-

predictable call quality, noise and distractions since the participants are receiving the

survey calls. Between these two extremes there is the possibility of limited training.

For example, a CHW could visit a patient, teach them how to use a voice interface

in 5-10 minutes, and have them call to report problems or monitor medication adher-

ence. It is not currently known precisely how user performance varies with training

time. Acceptable performance after 5-10 minutes of training would enable a number

of interesting applications in patient self-reporting/self-help and mobile banking.

A related technical question is whether a voice interface can actually train a user

as it is being used. For example, suppose a voice interface only recognizes 'yes' and

'no' speech input. The interface can start by saying "Say yes to continue" 2. Likely

incorrect responses include (a) the user saying nothing, (b) the user saying the wrong

thing, (c) the user rambling. In each of these scenarios, the interface can provide

help and give the user another opportunity to try to enter "yes". This process could

mimic the interactive training that would occur in a live training session. It is not

clear whether this approach could succeed, since users are often so confused by the

iSuch an experiment could also be performed using a cohort of untrained patients instead of
trained health workers.

2The interface should not ask an actual question at the beginning, because the user is likely to
answer incorrectly.

format of automated dialogue that they don't listen to or understand what they are

being told over the phone.

A final possibility for further research is an operator-assisted interface. In this

approach, an automated voice interface is supplemented by a live operator on the

line when a user first uses the interface, or when the user encounters problems using

the interface. Operator assistance is standard in most IVR systems in the developed

world, usually in response to a user request or repeated user failure with the interface.

However, there are other ways that operator assistance could be used to actually

train users on the interface. In one setup, the user could be initially connected to an

operator, who would prepare the user and then transfer to the automated system.

Or the operator could be present 'on the line' as the user uses the interface for the

first time, providing help over the phone as necessary; this is again a voice analogue

of what would occur in live training sessions, without being physically colocated with

the users.

8.2 Extending ODK Voice Technology

ODK Voice is still in development, and there are opportunities to both improve the

general usefulness of the software, and to experiment with novel features.

8.2.1 Incremental Extensions

There would be a great benefit to creating and hosting a central 'cloud' ODK Voice

instance so that organizations can start using ODK Voice just by signing up for

VoJP and creating a form, instead of having to set up their own server. Having a

prepackaged virtual machine running ODK Voice out of the box would also reduce

the technical barriers to setting up an ODK instance.

Scheduled SMS delivery should be implemented to accompany the scheduled out-

bound dialer. Based on the results of the Project WET study, it will be necessary

for organizations to send SMS messages to participants before calling them, so this

process should be integrated with the outbound call scheduler.

The adaptive string widget can be improved by moving beyond simple adaptive

priors for words to consider common misspellings. Adaptive priors are useful for

inferring the letters associated with keys, but is not ideal for identifying misspellings.

To illustrate, suppose that the word blue is a very common answer to a question, but

many users type it as bloo instead. First, it will take a large number of entries for

the prior of blue to be large enough to outweigh words such as blow and blot. Second,

this prior will also cause the entry blur to be recognized as blue. The underlying

problem is that adaptive priors don't take into account that certain misspellings are

more common than others. A better approach for misspellings is to assign weights to

'misspelling' pairs (0, A), where 0 is the observed key sequence and A is the actual

word desired. If an observed key sequence 0' was associated with any misspelling

pairs (0, A), the likelihood of A would be increased.

One major problem we identified in the Project WET study was variable call

quality. When recording audio answers, the speech was often not understandable

either because the user was not talking clearly enough or because the connection

was simply too poor. It would be useful for ODK Voice to automatically be able to

recognize if one of these situations is occuring and either ask the user to slow down

or call the user back later.

Finally, speech recognition (ASR) capabilities could be added to ODK Voice. The

results described in Chapter 5 suggest that users are more comfortable with voice

responses, although we are not claiming that the responses we received would be

amenable to ASR. As mentioned previously, ASR is only available in certain lan-

guages, but an approach similar [31] or [24] could overcome this problem.

8.2.2 Adaptive Features

Adding adaptive features to ODK Voice has the potential to greatly improve usability.

An "adaptive" feature or interface is one that changes based on statistical properties of

previous interactions within a particular session, across multiple sessions by the same

user, and/or across multiple users in the population. The string widget described in

Section 4.4 is one example of an adaptive feature. Adaptive features are well-suited

to this problem for two reasons: first, the user population is heterogeneous, with

different languages and levels of technical expertise; second, the form designers are

not UI experts, so ODK Voice could improve the interface based on collected data.

Listed below are some adaptive features that could be implemented in ODK Voice:

" Adaptive algorithms could determine which questions require confirmation based

on error rate, improving both speed and accuracy. This adaptation could be

across questions (i.e. determining which questions are error-prone) or users (i.e.

determining which users are error-prone).

* The ordering of choices in a dialogue can be presented in order of popularity

based on the user and/or population history.

" An intelligent interface can respond to a user's linguistic background in sev-

eral ways, such as automatically switching to the user's language or dialect, or

modifying the system prompts to match the users 'speed of speech, dialect, and

sociolect' [23]. It is also possible to respond to linguistic emotional cues, such as

escalation/de-escalation strategies when anger or frustration are detected [23].

" Chen et al. have used adaptive algorithms to identify multidimensional outliers

in collected data and re-ask relevant questions [6], and have seen improvements

in data accuracy. For example, after collecting hundreds of surveys, the appli-

cation may notice that users rarely enter 'male' and 'pregnant', and re-ask this

question if this combination of answers is given.

Project Information

ODK Voice is being developed as part of the Open Data Kit project. Informa-

tion on the Open Data Kit project can be found at http://code.google.com/p/

opendatakit. Source code and binaries developed in connection with this work are

available under the Apache license and can be downloaded from the same location.

Appendix A

Sample XForm

The document shown below is a sample XForm that can be used with ODK Voice.

This XForm is similar to the one used for the scenario experiment described in Chapter

6.

<?xml version="1.0"?>
<h:html xmlns="http://www.w3.org/2002/xforms"

xmlns:h="http://www.w3.org/1999/xhtml"

xmlns :ev="http: //www. w3. org/2001/xml-events"
xmlns :xsd="http: //www . w3. org/2001/XMLSchema"
xmlns :jr="http: //openrosa. org/javarosa">

<h:head>
<h:title>Automated Patient Check-In</h:title>
<model>

<instance xmlns="accuracy-eval-2">
<health>
<phonenumber/>
<userphone/>
<doctor/>
<appointment/>
<conditions/>

<reason/>

<details-option/>

<details/>

<complete>false</complete>

</health>
</instance>

<bind nodeset="/health/phonenumber" type="string"
jr:preload="property"
jr:preloadParams="phonenumber"/>

<bind nodeset="/health/userphone" type="string"/>

<bind nodeset="/health/doctor" type="string"/>

<bind nodeset="/health/appointment" type="date"/>

<bind nodeset="/health/conditions" type="select"/>

<bind nodeset="/health/reason" type="select1"/>

<bind nodeset="/health/details-opt" type="select1"/>
<bind nodeset="/health/details" type="binary"

relevant="selected(/health/details-option, 'y')"/>

<bind nodeset="/health/complete" type="string"
jr:preload="complete"/>

</model>
</h:head>

<h:body>

<input ref="/health/userphone">

<label>Please enter the phone number of the phone you are calling from.

If you don't know the number, press 0.</label>

<hint>digits=true</hint>

</input>

<input ref="/health/doctor">

<label>Please enter the last name of the doctor you would like to

schedule an appointment with.</label>

</input>

<input ref="/health/appointment">

<label>For what day would you like to schedule the appointment? </label>

</input>

<select1 ref="/health/reason">

<label>What is the reason for your appointment?</label>

<item>

<label>Routine Checkup</label>

<value>routine</value>

</item>

<item>
<label>Illness</label>

<value>illness</value>

</item>
<item>

<label>Immunization</label>
<value>immunization</value>

</item>
<item>

<label>None of the above</label>

<value>none</value>

</item>
</selectl>

<select ref="/health/conditions">

<label>Do you suffer from any of the following chronic conditions

that your doctor should be aware of?</label>

<item>
<label>Heart problems</label>

<value>heart</value>
</item>

<item>
<label>Asthma</label>

<value>asthma</value>
</item>
<item>

<label>Diabetes</label>
<value>diabetes</value>

</item>
<item>

<label>Allergies to medication</label>

<value>allergies</value>
</item>

</select>

<select1 ref="/health/details-option">
<label>Would you like to record a message for your doctor

to provide additional information? </label>
<hint>skipConfirmation=true</hint>

<item>
<label>Yes</label>
<value>y</value>

</item>
<item>

<label>No</labe l>
<value>n</value>

</item>

</select 1>

<upload ref="/health/details" mediatype="audio/*">

<label>Please record a message for your doctor after the beep. </label>

</upload>

</h: body>

</h:html>

Appendix B

Scenario Experiment Instructions

and Questionnaire

The following two paragraphs are the written instructions and scenario given to par-

ticipants in the scenario experiment described in Section 6. The paragraph in italics

was randomized for each participant.

The following paragraph contains a fictional scenario in which you will
be using an automated phone service for scheduling appointments at your
doctor's office. Please read the paragraph, and when you are ready, call
(857) 244-xxxx to schedule your appointment. Your call will be recorded
for system evaluation. Feel free to refer to this page while you are on the
phone. When you are finished using the phone service, please fill out the
questionnaire on the opposite side of this page.

You will be calling an automated service for making doctor's appoint-
ments over the phone. You would like to make an appointment with Dr.
Goldberg on 04/07/2010 because you would like advice on healthy eating.
You suffer from asthma and you are allergic to Penicillin. You aren't able
to miss work in the afternoon, so you need to let the doctor know that you
will need a morning appointment.

Figure B-1 contains a copy of the questionnaire completed by participants after

completing the scenario experiment.

Automated Patient Check-In User Study Questionnaire

Name: Age:

Gender: M F Phone Number:

Highest level of education:

Languages Spuken-

Fluency in English: None 1 2 3 4 5 Fluent

How often have you used an automated system over the phone?

Never Once Several Times Less than Once A Month Once a Month Once a Week Daily

How much would you prefer to use this automated phone system compared to a live phone operator?

Greatly prefer operator 1 2 3 4 5 Greatly prefer automated phone

How much would you prefer to use this system compared to checking in online?

Greatly prefer online 1 2 3 4 5 Greatly prefer automated phone

Please describe your experience using the automated check-in, including any times that you were
confused or made a mistake. We'd like to know what worked well and what you found difficult or
confusing.

Figure B-1: The questionnaire completed by participants in the scenario experiment.

Bibliography

[1] FrontlineSMS. http: //www. frontlinesms .com/, April 2010.

[2] Open Data Kit. http: //code.google. com/p/opendatakit/, April 2010.

[3] Project WET. http://www.projectwet.org/, April 2010.

[4] Yaw Anokwa, Carl Hartung, Waylon Brunette, Adam Lerer, and Gaetano Bor-
riello. Open source data collection in the developing world. IEEE Computer,
pages 97-99, 10 2009.

[5] Yaw Anokwa, Carl Hartung, Adam Lerer, and Gaetano Borriello. Deploying
a mobile data collection tool in rural uganda. Unpublished. http: //web. mit.
edu/alerer/www/surveyor-uganda.pdf.

[6] Kuang Chen, Harr Chen, Neil Conway, Joseph M. Hellerstein, and Tapan S.
Parikhhes. USHER: Improving data quality with dynamic forms. In Proceedings
of the International Conference on Data Engineering, 2010.

[7] Michael H. Cohen, James P. Giangola, and Jennifer Balogh. Voice User Interface
Design. Addison-Wesley, Boston, Massachusetts, first edition, 2004.

[8] B. DeRenzi, N. Lesh, T. Parikh, C. Sims, W. Maokla, M. Chemba, Y. Hamisi,
D. S. Hellenberg, M. Mitchell, and G. Borriello. E-IMCI: Improving pediatric
health care in low-income countries. In CHI, 2008.

[9] D. Forster, R. H. Behrens, H. Campbell, and P. Byass. Evaluation of a comput-
erized field data collection. In Bulletin of the World Health Organization, volume
69(1), pages 107-11, 1991.

[10] D. Forster, R. H. Behrens, H. Campbell, and P. Byass. Development, implemen-
tation and preliminary study of a PDA-based bacteriology collection system. In
AMIA Annual Symposium Proceedings, pages 41-45, 2006.

[11] J. R. Glass, T. J. Hazen, and I. Lee Hetherington. Real-time telephone-based
speech recognition in the JUPITER domain. In ICASSP, IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 61-64, 1999.

[12] John D. Gould, John Conti, and Todd Hovanyecz. Composing letters with a

simulated listening typewriter. In CHI '82: Proceedings of the 1982 conference

on Human factors in computing systems, pages 367-370, New York, NY, USA,
1982. ACM.

[13] Dan Gusfield. Algorithms on strings, trees, and sequences: computer science

and computational biology. Cambridge University Press, Cambridge, UK, first

edition, 2004.

[14] JavaRosa. Home page. http://code. javarosa.org, April 2010.

[15] Kabutana Trust of Zimbabwe. Freedomfone. http: //www. f reedomf one. org/,
April 2010.

[16] Open Data Kit. List of featured deployments. http://code.google.com/p/
opendatakit/wiki/FeaturedDeployments, April 2010.

[17] Scott R. Klemmer, Anoop K. Sinha, Jack Chen, James A. Landay, James A. L,
Nadeem Aboobaker, and Annie Wang. SUEDE: A wizard of oz prototyping tool

for speech user interfaces. In Proceedings of the 13th annual ACM symposium

on User interface software and technology, pages 1-10, 2000.

[18] Jorn Klungsoyr, Peter Wakholi, Bruce MacLeod, Alberto Escudero-Pascual, and

Neal Lesh. OpenROSA, JavaROSA, GloballyMobile - collaborations around open

standards for mobile applications. In Proceedings of The 1st International Con-

ference on M4D Mobile Communication Technology for Development, pages 45-

48, 2008.

[19] P. Kotkar, W. Thies, and S. Amarasinghe. An audio wiki for publishing user-

generated content in the developing world. In HCI for Community and Interna-

tional Development (CHI Workshop), 2008.

[20] C. Kuun. OpenPhone project piloted in Botswana. http: //www. csir. co. za/
enews/2008_ju1y/ic_05.html, April 2010.

[21] Indrani Medhi, S. N. Nagasena Gautama, and Kentaro Toyama. A comparison

of mobile money-transfer Uls for non-literate and semi-literate users. In CHI,
2009.

[22] RW Millard and JR Carver. Cross-sectional comparison of live and interactive

voice recognition administration of the SF-12 health status survey. IEEE Com-

puter, 2(5):153-159, 1999.

[23] Frank Oberle. Who, Why and How Often? Key Elements for the Design of a

Successful Speech Application Taking Account of the Target Groups. Springer,
Berlin Heidelberg, 2008.

[24] Neil Patel, Sheetal Agarwal, Nitendra Rajput, Amit Nanavati, Paresh Dave, and
Tapan S. Parikh. A comparative study of speech and dialed input voice interfaces
in rural india. In Proc. ACM Conference on Computer Human Interaction, 2009.

[25] Somani Patnaik, Emmal Brunskil, and William Thies. Evaluating the accuracy
of data collection on mobile phones: A study of forms, SMS, and voice. In Proc.
International Conference on Information and Communications Technologies and
Development, pages 74-84, 2009.

[26] M. Plauche, U. Nallasamy, J. Pal, C. Wooters, and D. Ramachandran. Speech
recognition for illiterate access to information and technology. In Proc. Interna-
tional Conference on Information and Communications Technologies and Devel-
opment, 2006.

[27] Roni Rosenfeld, Xiaojin Zhu, Arthur Toth, Stefanie Shriver, Kevin Lenzo, and
Alan W Black. Towards a universal speech interface. In Proceedings of the
International Conference on Spoken Language Processing, 2000.

[28] J. Selanikio and R. Donna. DataDyne brief. http: //www. datadyne .org/f iles/
DataDyne-brief.pdf, April 2010.

[29] J. Sherwani, N. Ali, S. Mirza, A. Fatma, Y. Memon, M. Karim, R. Tongia,
and R. Rosenfeld. HealthLine: Speech-based access to health information by
low-literate users. In Proc. International Conference on Information and Com-
munications Technologies and Development, 2007.

[30] J. Sherwani and Roni Rosenfeld. The case for speech technology for developing
regions. In HCI, 2008.

[31] Jahanzeb Sherwani, Sooraj Palijo, Sarwat Mirza, Tanveer Ahmed, Nosheen Ali,
and Roni Rosenfeld. Speech vs. touch-tone: Telephony interfaces for information
access by low literate users. In Proc. International Conference on Information
and Communications Technologies and Development, pages 447-457, 2009.

[32] Bernhard Suhm. IVR Usability Engineering Using Guidelines And Analyses Of
End-to-End Calls. Springer, US, 2008.

[33] Roger Tourangeau, Mick P. Couper, and Darby M. Steiger. Humanizing self-
administered surveys: experiments on social presence in web and IVR surveys.
Computers in Human Behavior, 19(1):1 - 24, 2003.

[34] UNCTAD. Information economy report 2007-2008: Science and technology for
development - the new paradigm of ICT. In United Nations Conference on Trade
and Development, 2008.

[35] International Telecommunication Union. ICT statistics. http: //itu. int/
ITU-D/ict/statistics, April 2010.

