
Monitoring the Health of an Open Source Project:

A Case Study
by

Jessica T. McKellar
Submitted to the Department of Electrical Engineering and Computer

Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the MASSACHUSETTS INSTITUTE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY OFTECHNOLOGY

June 2010 AUG 2 4 2010

Copyright 2010 Jessica T. McKellar LIBRARIES

The author hereby grants to M.I.T. permission to reproduce and

distribute publicly paper and electronic copies of this thesis document
in whole or in part.

This work is licensed under the Creative Commons Attribution

License. To view a copy of this license, visit

http://creativecommons.org/licenses/by/ 3 .O/ or send a letter to

Creative Commons, 559 Nathan Abbott Way, Stanford, CA 94305.

Author -.--..-..--..-..--.

Department of Electriigl Engineering and Computer Science
A 17 X7-21, 2010

Certified by -.. ----

Eric Grimson
Professor

T 5upervisor

Accepted by----.----.............
Terry Orlando

Chairman, Department Committee on Graduate Theses

2

Monitoring the Health of an Open Source Project: A Case

Study

by

Jessica T. McKellar

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 2010, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This thesis describes MOSHPIT, an open source project health monitoring tool that

can be used to assess project health over time. The free and open source project

Twisted is used as a case study in analyzing project health using MOSHPIT. This

thesis also summarizes important metrics that are often observed informally or ir-

regularly in open source projects but have never been published, and introduces

novel metrics cultivated over the course of the author's experiences contributing to

Twisted.

Thesis Supervisor: Eric Grimson
Title: Professor

4

Acknowledgments

Professor Eric Grimson, thank you for supporting me during my unconventional path

through MIT and for supervising this thesis. Thank you Adam Fletcher, my best

friend, favorite pair programming buddy, proofreader, and constant victim of my de-

bugging questions. Thank you Keith Winstein and Waseem Daher for convincing me

to stick with it.

Thank you to the Twisted community for encouraging me as a new contributor,

forcing test-driven development on me, and making me a better software engineer

and team player because of it, with particular thanks to J.P. Calderone and Glyph

Lefkowitz.

Thank you to my family for the trust and freedom you have given me with my

academic career. 20 years after sitting on the corner in my 80s-style acid-wash jeans,

holding a lunch box and waiting for the bus to round the corner, I look back and

would not have changed anything. I love you all.

6

Contents

1 Introduction

1.1 Background

1.2 Open source challenges

1.3 Introducing MOSHPIT

1.4 Introducing Twisted

1.4.1 Life cycle of a Twisted ticket.

2 Metrics

2.1 User base

2.1.1 Distinct ticket openers

2.2 Project activity

2.2.1 Release rate

2.2.2 Ticket resolution rate

2.2.3 Packages for supported platfor

2.2.4 Number of open tickets

2.2.5 Help channels

2.2.6 Conferences and sprints . . .

2.3 Durability

2.3.1 Distinct ticket closers and disti

15

. 15

. 17

. 18

. 19

. 19

23

. 23

.. 24

.... 26

.... 26

... 26

m s 28

... 29

.. 30

.... 30

.. 31

.nct ticket reviewers 31

2.3.2 Out-of-review to into-review ratios per contributor

2.3.3 Distinct build slave maintainers

2.4 U sability .

2.4.1 Documentation coverage

2.5 Reliability

2.5.1 Code coverage

2.5.2 Open defect tickets

2.5.3 Open regressions

2.6 Responsiveness

2.6.1 Time until first comment

2.6.2 Open ticket ages

2.6.3 Time between ticket creation and

2.6.4 Time spent waiting in review . .

2.7 Fostering growth

2.8 Conclusions on key metrics

3 MOSHPIT

3.1 MOSHPIT input and output

3.2 T rac .

3.3 Other dependencies

3.4 Non-sensitive output

. . . . 37

. . . . 37

. . . . 38

. . . . 38

. 38

. 38

. 40

ticket resolution 41

. 42

. 42

. 45

49

. 49

. 50

. 50

... 51

4 Conclusions and future work

A Trac Schemata

A .1 ticket schem a .

A.2 ticket-change schema.........

53

55

55

56

List of Figures

1-1 Life cycle of a Twisted ticket

2-1

2-2

2-3

2-4

2-5

2-6

2-7

2-8

2-9

2-10

2-11

2-12

. . . 22

Distinct ticket openers over time . 2b

Tickets closed over time . 27

Number of open tickets over time . 29

Distinct ticket reviewers over time . 34

Distinct ticket closers over time . 35

Distinct ticket openers, reviewers, and closers over time 36

Ratios of times taken out of review to times put into review 37

Time until first comment . 40

Time until resolution . 43

Time spent in review . 46

Long tail contributors: time until first comment 47

Long tail contributors: time spent in review 48

3-1 MOSHPIT output .

10

List of Tables

2.1 Ticket priority percentages by ticket type for all tickets 30

2.2 Ticket priority percentages by ticket type for open tickets 30

2.3 Number of tickets that took N reviews until resolution as fixed, by

ticket type . 33

2.4 Average number of reviews before resolution as fixed, by ticket type . 33

2.5 Oldest open tickets by type . 41

2.6 Comparisons with long tail contributor statistics, in weeks 44

12

Chapter 1

Introduction

Open source is in its heyday. Free and open source software has influential advocates

[4], modern revision control software options make distributed contribution easy, and

open source project aggregator websites make finding projects easy. Free platforms

exist to manage and communicate about projects, for example the freenode IRC net-

work [5] or the SourceForge development platform [23].

However, open source project management has not had time to mature into the

art that commercial software management has, and academic research on how to

effectively structure, maintain, and assess the health of an open source project is

limited. This thesis strives to lay a data-driven foundation for open source project

management, with a focus on monitoring project health.

1.1 Background

An early exploration of the organization and success of open source projects was the

landmark essay The Cathedral and the Bazaar by Eric S. Raymond. Written in 1997,

Raymond compares the closed development or "cathedral" style of older open source

projects like GNU Emacs with a new, open, distributed, "bazaar" style facilitated

by the Internet and credited to Linus Torvalds and his management of the Linux

project. The essay convinced most existing projects to switch to the bazaar model

that is commonplace today. It also pushed Netscape Communications Corporation

to release the source code for Netscape Communicator, which would soon become

Mozilla [20].

Large, long-lived software projects like Mozilla and Apache have been analyzed in

an effort to understand how open source management principles from these projects

could be applied to commercial software management [13], although these projects

are not the common case because they are exceptionally large, centrally organized,

and well funded.

Attention has been given to analyzing how collaboration works in the extremely

distributed environment in which most open source projects are developed [29]. The

composition of open source projects and the motivation for contributors has been

explored in [10] and [3].

The FLOSSmole [8] project aggregates high-level open source project data from

free and open source directory websites like SourceForge and freshmeat [6]. However,

project-specific information at the level of individual commits or ticket changes is not

available and would require access to svn logs or the ticketing system database. There

would be privacy concerns regarding aggregating ticketing system data and hosting

it on the web for researchers through a project like FLOSSmole, as it often contains

sensitive contributor information like IP addresses and e-mail addresses.

Most of the work exploring open source projects is top-down and analyzes many

projects at once or focuses on high-level information about a project's organization.

This thesis uses a bottom-up approach. It focuses on a specific project and data

generated by contributors as they develop for it, extrapolating useful metrics from

observations as a real contributor that can be generalized to and used in other open

source projects in future work.

1.2 Open source challenges

One way to summarize the challenges faced by maintainers of and contributors to

open source projects is to contrast them with commercial software projects.

For example, most contributors to an open source project are volunteers. An

open source project might be sponsored by for-profit companies that use the software

and want to promote its continued existence or are giving money in exchange for

fast-tracking a particular enhancement request. An open source project might also

have funding through a not-for-profit organization dedicated to promoting a particu-

lar interest; for example, the Python Software Foundation [19] funds special software

projects that are implemented in Python. That said, making money is not typically

a goal for an open source project, and instead a large user base and active developer

community are the end goals. Meanwhile, employees at companies working on com-

mercial projects are paid, and the company has the goal of profiting from the project.

Most open source projects have a very flat organizational hierarchy that is not

well-expressed as a tree. Having power to complete a certain operation is often

colloquially termed as having "bits" on that operation. A contributor might have

bits to commit to the code repository, to edit the website, to run a build slave, or

to expense something on behalf of the project. There are no bits that are analogous

to being a manager at a commercial software company, and typically contributors

do not have defined roles within the project's community (an individual is far less

likely to be solely an open source project's "accountant" than a long-term developer

who finds bugs and creates and commits patches for them and who has stepped

into the role because nobody else is doing it). The implication is that rarely does

a contributor to an open source project have the well-defined role of supervisor or

health monitor. Conversely, managers exist at all levels of the organizational chart in

a traditional commercial software company with the purpose of maintaining a holistic

understanding of the health and success of their components and keeping them on

track to meet goals.

1.3 Introducing MOSHPIT

This thesis takes initial steps towards understanding how to maintain an open source

software project by focusing on how to monitor a project's health. Health is a broad

term related to a number of ideas, including activity, durability, reliability, and re-

sponsiveness, and is elaborated upon below. Health statistics can be gathered from

a variety of sources, including the ticketing system database, website traffic logs, and

repository logs. This thesis summarizes metrics from many sources but focuses its

software deliverable, MOSHPIT, exclusively on generating health statistics from the

ticketing database.

MOSHPIT (Monitoring Open Source Health and Project Involvement Trends) is

a tool that takes a dump of the ticketing system database used by an open source

project and generates a comprehensive health report for the project, with statistics

and plots grouped by health category. The report is generated as a series of HTML

pages linked from a central index, ready to be displayed on a project's website.

This thesis has three primary contributions: 1) A demonstration of the MOSHPIT

software on an active, long-lived open source project, 2) a summary of important

health metrics for open source projects that are often used informally by project

maintainers to assess health but which have not before been classified or aggregated

in a publication, and 3) a summary of novel metrics cultivated and observed by the

author while she contributed to the open source project Twisted over a nine month

period prior to the composition of this thesis.

1.4 Introducing Twisted

Twisted [27] is an event-driven networking engine written in Python. It has been

under development since 2001 and currently has just over 175,000 lines of code and

documentation kept under version control. The software is maintained for Linux,

Windows, and Mac OS X under a range of Python versions (currently 2.4 - 2.6) and

has a release cycle of 6-12 months. Twisted receives some non-recurring funding from

sponsors who are typically companies that use the software. It uses Trac [26] as

its project management and bug/issue tracking system and has a website containing

documentation and software downloads. Code and documentation are kept under

Subversion (svn) [25] and a Bazaar (bzr) mirror.

Twisted has a strict and well-documented test-driven development policy; all

patches are required to include tests for the code added or changed, and the full

test suite must pass on a set of Buildbot [2] instances covering the supported oper-

ating systems and Python versions before changes are committed to trunk. Tickets

must also be reviewed by someone other than the code author before the code can

be committed to trunk. The project also has strong coding and documentation stan-

dards, which are kept under version control and displayed on Twisted's website along

with the testing standards. Trac, svn, bzr, and Buildbot are all themselves free and

open source projects. Project contributors interact with each other and provide help

to users through Trac's ticketing system, mailing lists, and on IRC.

1.4.1 Life cycle of a Twisted ticket

Twisted's ticket life cycle, while possessing some unique properties like the use of the

"review" keyword described below, is fairly representative of the way an issue for an

open source project goes from reporting to resolution.

When a user or developer identifies a Twisted issue to be addressed, a Trac ticket

is opened with a summary of the issue. A ticket can be one of 4 types: defect, en-

hancement, task, or regression. Anyone can open a ticket. Along with the summary,

the reporter might include an attached "short, self-contained correct example" [24]

if the issue is a defect or regression, and may have assigned the ticket to a developer

who is typically responsible for the affected code.

A ticket can be closed at any point with a resolution of INVALID, WONTFIX, or

DUPLICATE, in which case code associated with the ticket is not applied to trunk.

The rest of this life cycle description is for a ticket that will eventually be closed as

FIXED with a patch being merged addressing the ticket issue.

Once a ticket is open, someone submits a patch for the ticket or makes an svn

branch containing the proposed patch. Anyone can submit a patch, which is a text

file with a unified diff against trunk that is simply attached to the ticket. Only

contributors with commit bits can create branches. Frequently, a contributor with

commit bits will apply a patch in a branch on behalf of a contributor without commit

bits. The person assigned to a ticket is typically the person who created a patch for it.

A patch that contains both a solution for the issue and unit tests for the affected

code is submitted for review by the author. A ticket is put into review by adding

the "review" keyword to the ticket. Anyone who is not the author of the patch can

review a ticket. A reviewer is checking the patch for several properties:

9 Does the patch actually address or fix the reported issue?

e Does the patch conform to Twisted's coding standards? These standards in-

clude formatting and naming conventions.

o Does the patch conform to Twisted's documentation standards? These stan-

dards require module-, class-, and function-level document strings with param-

eter and return value markup.

e Does the patch conform to Twisted's testing standards?

e Does the full Twisted test suite pass with this patch?

A reviewer puts feedback on the patch in a comment on the Trac ticket and then

removes the "review" keyword to indicate that the ticket has been reviewed. If the

review feedback indicates that the patch needs more work to meet the properties

described above, the author will make changes and resubmit it for review. Otherwise,

it is ready to be merged to trunk. Merging can be done only by individuals with

commit bits. Once a ticket's changes have been merged, the ticket is resolved as

FIXED. The Twisted life cycle is summarized in Figure 1-1(a).

Who can make the change

Anyone

Anyone

Anyone can make a patch;
Contributors with commit bits
can make branches

Anyone

Anyone but the patch writer

Contributor with commit bits

Anyone; typically the
contributor who committed
the patch to trunk.

(a)

Figure 1-1: Life cycle of a Twisted ticket

Chapter 2

Metrics

This chapter summarizes key metrics for measuring and monitoring the health of an

open source project in 7 categories: user base, project activity, durability, usability,

reliability, responsiveness, and fostering growth. All graphs in this chapter come from

a real MOSHPIT report generated against Twisted's Trac database as described in

Chapter 3.

2.1 User base

An important class of health metrics is that concerning the user base. An open source

project wants to see growth in its user base and sustained use by other projects for a

number of reasons:

1. Users can convert to developers. This often starts with a user contributing a

ticket and/or patch for a defect that is affecting his or her software and grows

into general contributions. Additionally, if a project starts stagnating, compa-

nies that rely on the project may step in and contribute because they do not

want to have to rewrite their software to not use an unmaintained dependency.

2. Having many users increases the chance of defects being found and reported so

they can be fixed.

3. Companies that use the software may provide funding.

Measuring the number of users accurately is challenging. Unlike in a commercial

software project that has a subscription service or sells a product, there is no monthly

fee or one-time payment to use the software. Using a tool like Google Analytics [7] or

Site Meter [22], the number of unique website visitors and unique software downloads

can be tracked over time, but that information is not the same as knowing how many

projects use your software. An incomplete list of users can be garnered from lists of

sponsors and testimonials and by observing who answers questions on mailing lists

(individuals asking questions on behalf of a company often have the company in an

e-mail signature or volunteer that information while giving background information

about themselves).

Another resource to track voluntary acknowledgment of use of a project is through

a website like Ohloh, which is a free public directory of open source software projects

and their contributors [15]. Individuals with Ohloh accounts can share on their pro-

files what software projects they use, and that information is aggregated on a project's

Ohloh page.

Metrics that can be obtained from the Trac database that give further insight into

the growth of a project's user base include the following:

2.1.1 Distinct ticket openers

Ticket openers may be users reporting defects or requesting enhancements, or con-

tributors creating tickets to track tasks or reporting issues discovered while working

on existing tickets. While measurements on the number of distinct ticket openers do

not distinguish between strict users and contributors, the line is often fuzzy anyway,

and the metric is a good general indicator for how many people are using software in

a way that is serious enough to merit taking the time to open tickets.

The number of distinct ticket openers can be further broken down by type, into

distinct ticket openers of defect, enhancement, task, and regression tickets. See Fig-

ures 2-1(a), 2-1(b), 2-1(c), and 2-1(d) for these MOSHPIT metrics for Twisted.

Year Number

Figure 2-1: Distinct ticket openers over time

Twisted oscillates around 9 distinct ticket openers per week, 23 per month, and

140 per year with a very small positive slope, indicating that the number of distinct

ticket openers has changed little over the last 7 years.

Monitoring user base statistics is important because a drop in user base numbers

can be indicative of an image problem, not being active enough about promoting the

project and an awareness of the project as a solution to some set of problems in the

community, or having insufficient help channels. All of these issues are addressable

but can be severe enough to kill off an open source project if a downward trend is

persistent and nothing is done.

2.2 Project activity

Activity in this sense means community-visible changes to the project, including

commits to the repository, software releases, and activity in help channels. An open

source project usually needs steady activity because dependencies change and because

inactivity will scare away potential users who do not want to invest their time on un-

maintained software. Additionally, the platforms in demand to be supported by your

user base change over time. An example of a dependency change is the deprecation

and removal of APIs used in your software. Examples of platform changes include

Microsoft end-of-lifing Windows XP [28], and Python forking the 2.X release series

to create 3.X [18].

Key metrics in the project activity category include the following:

2.2.1 Release rate

Short, regular release cycles mean that defect fixes, regression fixes, and enhancements

get propagated to users quickly. They also suggest liveness and that the project is

well-maintained to potential users.

2.2.2 Ticket resolution rate

For most projects, there are always open tickets for defects or enhancement requests,

and if that is the case regular commits mean the developer community is making

regular efforts to improve the quality of the software by committing changes for and

then closing these tickets. Tracking particular types of tickets over time provides

insight into where resources are focused. Is this project only under maintenance and

thus dominated by resolution of defects, or is it in a period of expansion and closing

a lot of enhancement requests?

This metric can be broken down into distinct defect, enhancement, task, and re-

gression tickets. See Figures 2-2(a), 2-2(b), 2-2(c), and 2-2(d) for these MOSHPIT

metrics for Twisted.

Month Number

(c) (d)

Figure 2-2: Tickets closed over time

Twisted has seen a gradual decline in ticket closing rates starting around 4 years

ago. Figure 2-2(d) indicates that defect fixes dominated ticket closing in the first few

years of the project but now enhancements are closed at an almost equal pace. Tasks

started getting assigned and then closed 5 years ago, when a focus on a standardized

.
..................................

release process developed. Regressions started appearing with some regularity 2.5

years ago, which could be an indication that recently there has not been a through

enough review process such that regressions are more likely to develop, that more

regressions are getting caught, or simply that the regression ticket type was not used

regularly until then. Inspecting tickets in the Trac database that have the regression

ticket type or "regression" in comment bodies would clarify the root of this emergence.

2.2.3 Packages for supported platforms

Having access to a source code repository or release tarball on an open source project's

website is reasonable for some users. Howeyer, for some Linux users, in particular

companies, the only reasonable method of acquisition is through the officially sup-

ported software repository for a particular distribution (the analogous situation for

OS X or Windows is being a default package in the system). Being in a supported

repository means the software package has been vetted by a package maintainer asso-

ciated with the distribution and that the package maintainer will keep the package up

to date, in particular with regard to security updates. (For Ubuntu, this is "main

Another practical location would be "universe", which is less restrictive about what

open source projects are included in the repository but also does not come with a

maintenance guarantee).

Getting an open source project release into the major Linux distributions requires

substantial effort. Someone must package the software, and for each target distribu-

tion someone with the appropriate bits must be convinced to include the package in a

supported repository. Sometimes there just are not people in the community with the

technical background to handle packaging, or authority within a distribution to get a

project included. Thus, getting into an official repository does not happen for some

projects, or the packages lag behind the releases available on the project website.

2.2.4 Number of open tickets

A project might have the number of open tickets trending up, trending down, or

staying roughly the same over time. If the trend is down or horizontal, that sug-

gests that there are enough contributors to handle the ticket load generated by users.

If the trend is up, the project may need to focus on getting more regular contributors.

See Figures 2-3(a) for Twisted's open tickets over time, broken down by ticket

type.

Open Tickets, By Ticket Type
1400

- total

- defects
1200 - enhancements

-- tasks

o1000 - regressions

a) 800
0~

600-

E 400

z
200

10 20 30 40 50 60 70 80 90
Month Number

(a)

Figure 2-3: Number of open tickets over time

Twisted sees a change in slope for defect and enhancement tickets at the 30 month

mark, which is interestingly at the same time that task tickets start appearing. The

regression line is almost at the x axis, indicating that regressions do not stay open.

Looking at the 26 regressions that have been opened in Twisted to date, the most

common priority is "highest", and 96% of all regressions have a priority greater than

or equal to "normal". No "highest" or "high" priority regressions remain open. See

Tables 2.1 and 2.2 for priority breakdowns for all ticket types.

.............. ...

Table 2.1: Ticket priority percentages by ticket type for all tickets

Highest High Normal Low Lowest Total opened

defects 17.7 36.8 39.3 4.8 1.4 2351
enhancements 11.6 4.2 63.1 18.6 2.5 1733
tasks 19.6 8.1 66.2 5.1 .9 234
regressions 38.5 23.1 34.6 3.8 0.0 26

Table 2.2: Ticket priority percentages by ticket type for open tickets

Highest High Normal Low Lowest Total opened

defects 2.6 15.0 69.2 11.2 2.0 500
enhancements 2.1 4.2 70.0 21.1 2.9 662
tasks 2.4 6.0 84.5 6.0 .2 84
regressions 0.0 0.0 1.0 0.0 0.0 2

2.2.5 Help channels

Qualitative information about project health can be garnered by monitoring a project's

help channels. Does the mailing list have engaging discussions between users and con-

tributors about how to implement ideas, or does a help request go unanswered? Are

developers routinely in active discussion about possible enhancement APIs on IRC?

An excellent way to prove to users who use IRC as a help channel that a project

is active is to give them a glimpse of project progress without making them do any

extra work. For example, Twisted has an IRC bot send a message to the Twisted IRC

channel on branch creation, commits, ticket creation or closing, and when a ticket is

reviewed.

2.2.6 Conferences and sprints

Another qualitative source of information more pertinent to contributors and po-

tential contributors is project involvement in conferences and "sprints", which are

regional gatherings of contributors to work on a particular set of project issues. For

example, Twisted contributors give talks at local Python meetups and at PyCon [16],

and sprints have been held all over the world where there is some developer density,

including Spain and Australia. (The project began in Cambridge, MA). Conferences

and sprints not only promote visibility to potential users, but to potential developers

who get an opportunity to learn the technology alongside other new people and with

the assistance of veteran developers.

2.3 Durability

Commercial software projects usually die when they do not have enough customers

to turn a profit. Open source projects die when they do not have enough developers

to adequately maintain the software. It is unwise for an open source project hoping

for longevity to rest all its proverbial eggs in one basket by relying on a small number

of regular contributors to do all of the work. People get busy, lose interest, or may

change jobs, making the project no longer relevant to their work, and a project should

not die due to the disinterest of a single contributor. A large and diverse number of

contributors means durability for a project, and maintaining project durability is

critical to keeping up the probability of a project's long-term success.

Durability means more than just having many contributors who close defects. It

means having many people willing to work on enhancement requests, run build slaves,

run a website, maintain documentation, secure funding, answer user questions on help

channels, and handle build and release management.

2.3.1 Distinct ticket closers and distinct ticket reviewers

These metrics indicate how many people are putting energy into the system to get

tickets resolved. A project wants these numbers to be large and growing as they

indicate that the responsibility for seeing tickets through to resolution is distributed

amongst the community.

See Figures 2-4(a), 2-4(b), and 2-4(c) for Twisted's distinct ticket reviewers over

time and Figure 2-4(d) for a reviewer breakdown by ticket type. Twisted indicates

that a ticket is ready for review by adding the "review" keyword to the ticket. This

keyword is removed once the ticket has been reviewed. This keyword is what enables

MOSHPIT to track reviews over time, but it was not used until 30 months into the

projects, hence the complete inactivity until that time in the graphs.

Patches for tickets often require multiple reviews before being considered ready

to commit to trunk and close the ticket. Statistics on the number of reviews until

resolution are broken down by ticket type in Tables 2.3 and 2.4. As shown in Table

2.3, the number of reviews a Twisted ticket has gone through before resolution ranges

from 1 to 14, although task and regression tickets have never required more than 5

reviews, and only 1 enhancement took 14 reviews. Regardless of ticket type, it is

most common for a ticket to have 1 review. As shown in Table 2.4, enhancement

tickets have a higher review average than other ticket types, intuitively because en-

hancements often require substantial new code and the other ticket types frequently

do not.

See Figures 2-5(a), 2-5(b), and 2-5(c) for Twisted's distinct ticket closers over

time and Figure 2-5(d) for a closer breakdown by type.

Note that with Twisted one needs commit bits to commit to trunk before closing a

ticket. Thus, if the primary patch contributor for a ticket is someone without commit

bits, a regular contributor who does have bits is doing the committing. Because

getting commit bits is a barrier to closing tickets, unlike for opening or reviewing

tickets, the number of distinct closers is substantially smaller. Distinct ticket openers,

reviewers, and closers are compared in Figure 2-6(a).

2.3.2 Out-of-review to into-review ratios per contributor

Writing up patches for defects is a necessary first step towards removing defects from

software, but someone has to review those patches before they can be committed to

trunk. The out-of-review to into-review ratio is an indicator of which contributors

Table 2.3: Number of tickets that took N reviews until resolution as fixed, by ticket

type

Table 2.4: Average number of reviews before resolution as fixed, by ticket type

Defect Enhancement Task Regression
1.9 2.3 1.7 1.7

Number of reviews Defect Enhancement Task Regression
14 0 1 0 0
13 1 1 0 0
12 1 0 0 0
11 1 1 0 0
10 1 2 0 0
9 2 3 0 0
8 1 4 0 0
7 4 7 0 0
6 8 4 0 0
5 14 15 1 1
4 37 28 6 0
3 63 51 8 1
2 139 113 15 9
1 358 172 48 10

Distinct Ticket Reviewers Per Month

~o 10 20 30 40 50 bO
M10 20 30 ot sb
Month Number

Year Number

Figure 2-4: Distinct ticket reviewers over time

take review energy out of the system and which contributors put energy in. A con-

tributor who only ever puts tickets into review is an energy sink and has a ratio less

than 1, while a contributor who reviews more tickets than he or she puts into review is

an energy source and has a ratio greater than 1. In an ideal world, every contributor

would put in as much energy as he or she takes out and have a ratio of 1.

As seen in Figures 2-7(a) and 2-7(b), Twisted is rather far away from this ideal

situation. Figure 2-7(a) shows out-of-review to into-review ratios for the contributors

with the greatest numbers of review changes. The greatest contributor, with over

2000 review changes, is at 1.06, but no one else in the top 10 has a ratio above 1.

M, j

...
.. 1 11 ___

70 so 90

(a) (b)

Month Number

(c) (d)

Figure 2-5: Distinct ticket closers over time

Figure 2-7(b) orders the contributors by ratio, and from this plot we see that a) only

10 contributors have ratios at or above 1, and b) most of those contributors are not

regular contributors at all.

2.3.3 Distinct build slave maintainers

Distributing build slave responsibility reduces the likelihood that a developer be-

coming inactive hamstrings a project's ability to test its code. It also increases the

likelihood that the servers are geographically diverse and thus not all susceptible to

the same network problems while people are trying to run tests.

Month Number

(a)

Figure 2-6: Distinct ticket openers, reviewers, and closers over time

Similar durability metrics can be garnered informally for the number of people

able to administer the website or handle finances for the project.

2.4 Usability

An open source project is not doing much good if it has no users, and users are only

going to use software if it has good usability properties. These include qualitative

observations like "are the tutorials helpful" and "is the website easy to navigate".

Usability can also be monitored more formally.

2.4.1 Documentation coverage

What percentage of classes and functions have API documentation? Twisted's end

users are developers themselves, so API documentation is the primary way users will

understand how to use the system besides the tutorials. Forcing users to source-dive

does not encourage them to use your software. Twisted ensures that documentation

coverage always goes up by enforcing its coding standard: all new code must be accom-

panied by module-, class-, and function-level documentation, including Javadoc-like

API markup. Additionally, existing code being modified as part of a patch that did

not previously have documentation strings is generally required to get documentation

Ratio of Times Taken Out of Review to Times Put Into Review,
Ordered By Contributor, For Top 15 Reviewers

- put into review
M taken out of review

0

0

0 000

0
0 2 4 6 8 10 12 14 16

Contributor

(a)

Ratio of Times Taken Out of Review to Times Put Into Review,
Ordered By Ratio

200

150
00

0
CL C 100

E-
50

M put into review

M taken out of review

0

0

0

7.02 0 4 6 10 .0 1.0 0 14 1
Coi4 6 b r16
Contributor

Figure 2-7: Ratios of times taken out of review to times put into review

as part of that patch.

2.5 Reliability

Projects aspire to be featureful and defect-free; they want to grow without sacrificing

reliability. Efforts put into reducing known defects by fixing them, reducing the

likelihood of future defects by having unit tests, and metrics on how often defects

and regressions are discovered are all related to reliability.

2.5.1 Code coverage

Code coverage tools exist in most popular programming languages. They will run a

test suite and generate statistics on what percentage of a project is exercised by unit

tests. A sign of project health is a high percentage of code coverage, or a percentage

that continues to go up over time. Twisted ensures that code coverage always goes up

by enforcing its test-driven development policy: all new code must be accompanied

by unit tests. Additionally, existing code being modified as part of a patch that did

not previously have unit tests is generally required to get unit tests as part of that

patch.

200

150
04o00

0
C. C 100

50

. ! _ ..

2.5.2 Open defect tickets

Does the project have many known defects that remain unresolved? As seen in Figure

2-3(a) and Tables 2.1 and 2.2, defects make up over half of the tickets created for

Twisted, and 500 are still open, including a number of "high" and "highest" priority

tickets.

2.5.3 Open regressions

Does the project encounter many regressions? This might be a sign that more rigor-

ous auditing needs to be done during code reviews. Regressions are more of a problem

for users wedded to packaged versions of a project, who might have to work around

regressions until the next release where they are hopefully fixed, than users willing to

pull fixes from the source code repository.

As seen in Figure 2-3(a) and Tables 2.1 and 2.2, regressions have been quite rare

over Twisted's history, making up just .6% of tickets. Only 2 are still open, both with

a priority of "normal".

2.6 Responsiveness

Responsiveness in the ticketing system is important both to users and developers.

Users who report defects or enhancement requests feel ignored when tickets go un-

touched for weeks, discouraging them from continuing to submit bug reports and

patches that would benefit the project. Developers are similarly disincentivized from

contributing if their branches are never reviewed or tickets to which they have applied

energy stall on the path to resolution.

2.6.1 Time until first comment

The first response to a ticket might be the contribution of a unit test, confirmation

that a defect exists, review feedback, API suggestions, or any number of other com-

ments. Regardless of the content, the first response is an ACK from the project that

lets the user or developer know that he or she is being heard.

See Figures 2-8(a), 2-8(b), and 2-8(c) for MOSHPIT figures for Twisted's time

until first comment.

The nearly perfectly outlined triangle in Figure 2-8(a) may seem implausible

at first but is explained by the line creating the hypotenuse. This line was drawn

between points (time of first ticket creation, time between first ticket

creation and present time) and (present time, 0). The time between ticket

creation and first comment is bounded by the time between ticket creation and present

time; thus, as you travel to the right along the x-axis, the possible time until first

comment shrinks to 0.

Note the decreasing plot density as y increases in Figure 2-8(a). Points near the

x-axis received comments almost immediately upon ticket creation, while points with

high y values, near the hypotenuse, did not receive first comments until nearly present

time. The greater the density decrease as y increases, the faster tickets are receiving

comments.

Figure 2-8(b) gives another view into how far below the maximum time most

tickets have received comments. It plots the average time until first comment and

the same hypotenuse from Figure 2-8(a); because the average line is well under the

hypotenuse, most tickets are receiving comments well under the maximum time. How-

ever, the box and whisker plot in Figure 2-8(c) shows a long tail beyond the upper

quartile; time until first comment has a median of only .26 weeks but a mean of 14.49

weeks dragged upwards by this long tail.

Month Number

(a) (b)

Box and Whisker Plot For Time Until First Comment

4) 300

C
- 250

E 200
E
0

U-
150

= 100

E 50
E

mean - 14.49
median - 0.26
min- 0.00
max 348.28
std dev - 35.71

I
(c)

Figure 2-8: Time until first comment

2.6.2 Open ticket ages

Having ancient tickets open suggests that:

1. There are some thorny tickets that are valid but no developers are willing to

attempt to close because they are not a high enough priority.

2. The ticketing system is not routinely flushed of tickets that should really be

INVALID, WONTFIX, or DUPLICATE instead of remaining open.

3. There are not enough developers to handle the ticket load, and old tickets go by

the wayside. The number of open tickets over time (Section 2.2.4) also informs

this problem.

..

Table 2.5: Oldest open tickets by type

Ticket number Ticket creation date

Defect 78 July 15ti, 2003
Enhancement 50 July 12th, 2003
Task 278 September 24th, 2003
Regression 3998 September 3rd, 2009

See Table 2.5 for Twisted's oldest open tickets by type. The oldest open ticket,

an enhancement, is almost 7 years old; note that Twisted has existed for roughly 10

years. The oldest regression is only 6 months old.

Old tickets make a good sprint focus. A sprint goal addressing ticket age could

be to close every ticket below some threshold number.

2.6.3 Time between ticket creation and ticket resolution

Tickets can languish at many steps along the path to resolution, including initial

patch submission, the addition of unit tests, review, and responding to review feed-

back. Time between ticket creation and ticket resolution summarizes the ticket life

cycle.

See Figures 2-9(a), 2-9(b), and 2-9(c) for MOSHPIT figures for Twisted's times

between ticket creation and resolution.

Perhaps even more implausible than the near-perfect triangle in Figure 2-8(a) is

the near-perfect trapezoid in 2-9(a). The top line is the same as that forming the

hypotenuse in 2-8(a). Determining the equation for the bottom line required investi-

gating the tickets with creation times before the first point on the x axis as well as

a little Twisted history. As it turns out, at one point Twisted imported its tickets

into Trac from Launchpad [11]. Trac inherited all of the Launchpad ticket properties,

including creation time, ticket status, and resolution, but not the individual changes

that resulted in a ticket becoming closed. Thus, the only tickets that can get a point

in Figure 2-9(a) by becoming resolved are those created after that import, and the

lower line bounding the trapezoid is the line between (time of first ticket creation,

time of first ticket creation after the import - first ticket creation) and (time of first

ticket creation after the import, 0).

As with the time until first comment metrics in Section 2.6.1, Figure 2-9(b) shows

how far below the maximum time most tickets have been resolved. This curve is

much closer to the hypotenuse than the first comment line, implying that a lot of the

time elapsing before resolution is after the first comment has happened. The box and

whisker plot in Figure 2-9(c) again shows a long tail beyond the upper quartile, with

a median of 6.15 weeks and a mean of a whopping 41.53 weeks.

2.6.4 Time spent waiting in review

For projects with more developers taking energy out of the system than putting en-

ergy in by submitting tickets for review but never reviewing other peoples' tickets,

review can be a major roadblock for a ticket getting resolved.

Figures 2-10(a), 2-10(b), and 2-10(c) show positive review statistics for Twisted.

With a median time in review of just 1.40 days and a mean time of 5.84, this part of

the ticket life cyle is much shorter than the average time until first comment discussed

in Section 2.6.1.

2.7 Fostering growth

A particular subset of the developer population for a project deserves special atten-

tion related to responsiveness: these are the irregular contributors, those that are in

the long tail outside the 95% of ticket changes caused by the most active contrib-

utors. Because they represent an opportunity to convert to regular contributors, it

may make sense for a project to make particular efforts to shorten the ticket cycle for

Time in Epoch Seconds

(a) (b)

300

C 250

e
0

200

0
V 150

C 100

20)
1=

Box and Whisker Plot For Time Until Resolution

0.

(c)

Figure 2-9: Time until resolution

them with prompt commentary on open tickets and rapid review cycles. Inattentive-

ness may drive them to a project with better responsiveness.

How the long tail is handled is summarized by adopting the time until first com-

ment metrics from Section 2.6.1 and the time waiting in review metrics from Section

2.6.4. These metrics only include data points from contributors with the smallest

number of ticket changes whose changes together make up 5% of all changes. See

Figures 2-11(a), 2-11(b), and 2-11(c) for Twisted's time until first comment statistics

for its long tail contributors, and Figures 2-12(a), 2-12(b), and 2-12(c) for Twisted's

time spent in review statistics for its long tail contributors.

mean - 41.53
median - 6.15
min 0.00
max 348.28
std dex - 63.68

...........

Table 2.6: Comparisons with long tail contributor statistics, in weeks

Time until first comment Time spent in review
Mean Median Mean Median

Long tail 11.00 .09 8.02 1.54
Main 15.23 .32 5.81 1.40
All 14.49 .26 5.84 1.40

Twisted has had 755 distinct contributors since it started using a ticketing system.

95% of ticket change are concentrated in the top 194 contributors, leaving 561 con-

tributors, or 74.3% of all Twisted contributors, in the long tail who are represented

in these figures.

Interestingly, time until first comment statistics are better for the long tail, but

statistics on the time spent in review are worse. These statistics are summarized and

compared against "main" (not long-tail) contributors and all contributors in Table

2.6. Long tail contributors wait a median .09 weeks (15 hours) for a first comment

while main contributors wait .32 weeks (over 2 days). Tickets wait a median 1.54

weeks in review for long tail contributors, one day more than the median of 1.40

weeks for main contributors.

The longer review times could be because new contributors are less familiar with

the review policies and have thus require more feedback which takes more time to

generate. Another reason could be that people are more hesistant to review work

from contributors who do not have a demonstrated history of high-quality patches,

because that places more of a burden for catching correctness issues and evaluating

design decision choices on the reviewer.

2.8 Conclusions on key metrics

An analysis of the metrics presented above for an open source project provides a good

overview of the project's health over time. These metrics can be used to pinpoint

problem areas in the ticket life cycle, allocate human resources more effectively to

address the problems, and then to monitor improvements in the metrics based on the

changes made.

If particular types of tickets are problem areas for a project, the metrics above can

be customized for these areas. An example would be documentation tickets. These

can be tagged with the "documentation" keyword so that statistics on distinct re-

viewers (Section 2.3.1) and time until first comment (Section 2.6.1) for documentation

tickets can be compared against the all-ticket averages. If the statistics are in fact

worse for documentation tickets and documentation is a project priority, resources

can be re-allocated to focus on them.

Time When Ticket Was Put Into Review, 1*8
In Epoch Seconds

Average Time Spent in Review By Month

30 4 M 50 60 70

Month Number

140
to

120

100

980

80 90

Box and Whisker Plot For Time Spent in Review

Figure 2-10: Time spent in review

44

1A 30

25

> 20

E41

CL

(3 10
E
(U

CU

1z CL

mean - 5.84
- median - 1.40

min - 0.00
max - 150.87

. std dev - 11.84

-I

.

Time Until First Comment By Month

Box and Whisker Plot For Time Until First Comment

4) mean - 1.0median = 0.09

m x -234.14
C std dev - 30.09

E 150
E
0U I

Z)50

E
1=

(c)

Figure 2-11: Long tail contributors: time until first comment

in

0 300

250

E 200
E
0
U

150

=100-

...

Time Spent in Review, By Review

1.18 1.20 122 1.24 1.26 1.28
Time When icket Was Put Into Review, 109

In Epoch Seconds

(a)

Average Time Spent in Review By Month

35

30

25

20

10

5-

50 55 60 65 70 75 80 85 90
Month Number

Box and Whisker Plot For Time Spent in Review
90

mean - 02
median -1.54
min - 0.00
max 87.22

70std dev - 18.08

Figure 2-12: Long tail contributors: time spent in review

f56
%a ~ ..

..............

Chapter 3

MOSHPIT

MOSHPIT is a health report generator written in Python. All figures in this thesis

came from a MOSHPIT report generated from the Twisted Trac database.

3.1 MOSHPIT input and output

MOSHPIT takes as input the name of a Postgres database backup file for a Trac in-

stance. A backup can be generated with the pg-dump command, which writes to a file

all of the database operations necessary to reconstruct a database. The database is re-

stored from this backup file, and then a series of scripts run database queries and plot

the results. MOSHPIT queries a restored backup file instead of a live Trac database

so MOSHPIT queries do not degrade database performance for a project's Trac users.

After generating the content of the health report, MOSHPIT assembles the report

itself by creating a directory and populating it with an HTML file for each of the 7

metric classes described in Chapter 2: user base, project activity, durability, usability,

reliability, responsiveness, and fostering growth. Each file has the graphs, statistics,

and annotations analyzed for Twisted in Chapter 2 for its metric class. These class

files are linked from an index.html file and ready to be served as web content. See

Figures 3-1(a) and 3-1(b) for an example index and responsiveness page.

3.2 Trac

MOSHPIT expects particular schemata which are compatible with Trac versions 0.7

through its latest release, 0.11.7 at the time of this writing.

Only two tables in the Trac database are used to produce the health report:

ticket and ticket-change. ticket has a one-to-one relationship between tickets

and ticket properties and summarizes the current state of the ticket, including re-

porter, time of creation, status, and resolution. ticket-change has a one-to-many

relationship between tickets and changes and records all modifications made to the

ticket over time, including ownership changes, comments, and keyword changes. See

Appendix A for the full schemata.

While MOSHPIT currently expects a set of field names for these tables that is

particular to Trac, Bugzilla [1], RT [21], and JIRA [9], three other popular ticket

and bug tracking systems, have analogous ticket and ticket-change tables with

the fields used in MOSHPIT's SQL queries. Thus, dumps from any of these other

systems could be trivially converted to the expected namespace so MOSHPIT could

generate health reports from them.

3.3 Other dependencies

MOSHPIT is written in Python and is compatible with Python version greater than

2.4 in the 2.X branch. It uses the DB-API 2-compliant pyPgSQL PostgreSQL Python

bindings [17] to query the database reconstructed from a pg-dump. Graphs are gener-

ated using the matplotlib Python plotting library [12], and some of the statistics are

generated using the NumPy scientific computing package [14].

3.4 Non-sensitive output

While it would be possible to produce contributor-specific statistics with attribution

from the Trac schemata, for example rankings for who closes the most tickets or

whose ticket contributions lead to regressions, the focus of MOSHPIT is not individual

contributors but rather a holistic view of the community. An advantage of this focus

is that no personal information is revealed in a health report, so the report can be

placed on a project's website without causing discomfort for contributors.

MOSHPIT Summary for Twisted
This report was generated on Sm May 2 175:52 EDT 2010

" User Bas
" Protect Actvy
" Durabilt
" Usabilit
" Reliabilit

" Fostering Growth

OM

Figure 3-1: MOSHPIT output

Chapter 4

Conclusions and future work

This thesis summarizes key health metrics in the categories of user base, project activ-

ity, durability, usability, reliability, responsiveness, and fostering growth. Real-world

applicability of these metrics is demonstrated by using the MOSHPIT health report

generated on an actual open source project, Twisted, and discussing the results.

The goal of MOSHPIT is to provide project maintainers with enough health in-

formation to be able to identify problem areas in a project's workflow, select metrics

to target for improvement, and watch how community changes or procedural changes

impact that metric. Thus, a follow-up to this project would be to identify a problem

area in Twisted using MOSHPIT, select metrics related to that problem to optimize,

initiate changes that are believed to affect the metrics, and monitor the metrics over

a period of 6 to 12 months. An example problem area for Twisted is cultivating new

contributors. Metrics to optimize while addressing this problem could include time

until first comment and time spent waiting for review as described in Sections 2.6.1

and 2.6.4.

The key take-home message for project maintainers is that the more information

you log in your ticketing system, the better you can track health and problem areas

over time. For example, tracking out-of-review to into-review ratios per contributor

(Section 2.3.2) or time spent waiting on review (Section 2.6.4) would not be possi-

ble if the "review" keyword were not a part of the Twisted workflow. If Windows

tickets or documentation tickets are ongoing problem areas for a project, they should

have "windows" and "documentation" keywords applied consistently so the number

of people taking on those tickets and where they spend languishing in the ticket life

cycle can be measured and improved.

MOSHPIT is a first step in describing and demonstrating how open source health

can be measured. Open source projects have the ability to produce much more than

just ticketing data for analysis, however. Website traffic, the version control system,

and financial records are other rich sources of user and contributor information that

help paint a picture of project health and could be analyzed with similar rigor.

Future goals for MOSHPIT include:

* Hosting the source code online so others can use it and contribute to it.

e Generalizing the software so it can create useful reports for projects with work-

flows that are substantially different from that of Twisted.

o Writing converters that will take database dumps from RT, Jira, and other

popular ticketing system and convert relevant tables to schema compatible with

MOSHPIT.

o running MOSHPIT against a variety of project databases that have different

workflows and analyzing the results to help assess which kinds of workflows

produce and maintain healthy projects.

Appendix A

Trac Schemata

A.1 ticket schema

Table "public.ticket"

Column I Type I Modifiers

-------- +---

id I integer | not null default nextval('ticket-id-seq'::regclass)

type I text I

time I integer I

changetime I integer I

component I text I

severity I text I

priority | text |

owner I text I

reporter I text I

cc | text |

version | text |

milestone | text |

status | text I

resolution | text |

summary | text |

description | text |

keywords | text |

Indexes:

"ticket-pkey" PRIMARY KEY, btree (id)

"ticketstatusidx" btree (status)

"tickettimeidx" btree ("time")

A.2 ticket change schema

Table "public.ticket-change"

Column I Type I Modifiers

-kiet--------n-----------------

ticket Iinteger Inot null

time | integer | not null

author | text I

field | text | not null

oldvalue | text |

newvalue | text |

Indexes:

"ticketchange-pk" PRIMARY KEY, btree (ticket, "time", field)

"ticketchange-ticketidx" btree (ticket)

"ticketchange-time-idx" btree ("time")

Bibliography

[1] Bugzilla. http://www.bugzilla.org/.

[2] Buildbot. http: //buildbot. net/.

[3] Scott Christley and Greg Madey. Analysis of activity in the open source soft-
ware development community. In The 40th Hawaii International Conference on
Systems Science, Hawaii, January 2007.

[4] Free software foundation. http: //www. f sf .org/.

[5] freenode. http: //f reenode .net/.

[6] freshmeat.net. http://freshmeat. net/.

[7] Google analytics. http://www.google. com/analytics/.

[8] J. Howison, M. Conklin, and K. Crowston. Flossmole: A collaborative reposi-
tory for floss research data and analyses. International Journal of Information
Technology and Web Engineering, 1(3), 2006.

[9] Bug, issue and project tracking for software development - jira. http://www.
atlassian.com/software/jira/.

[10] Sandeep Krishnamurthy. Cave or community?: An empirical examination of 100
mature open source projects. SSRN eLibrary.

[11] Launchpad. http: //launchpad. net/.

[12] matplotlib: python plotting. http: //matplotlib. sourcef orge.net/.

[13] Audris Mockus, Roy T. Fielding, and James D. Herbsleb. Two case studies of
open source software development: Apache and mozilla. ACM Trans. Softw.
Eng. Methodol., 11(3):309-346, 2002.

[14] Scientific computing tools for python: Numpy. http: //numpy. scipy. org/.

[15] Ohloh, the open source network. http: //www. ohloh.net/.

[16] Pycon: Connecting the python community. http: //www. pycon. org/.

[17] pypgsql. http: //pypgsql. sourceforge. net/.

55

[18] Python 3.0 release. http: //python. org/download/releases/3.0/.

[19] Python software foundation. http: //www. python. org/psf /.

[20] Eric S. Raymond. The Cathedral and the Bazaar. O'Reilly & Associates, Inc.,

Sebastopol, CA, USA, 1999.

[21] Rt: Request tracker. http: //bestpractical. com/rt/.

[22] Sitemeter - counter and statistics tracker. http: I/s itemeter. com/.

[23] Sourceforge.net: Find and develop open source software. http: //sourcef orge.
net/.

[24] The short self-contained correct example. http: //sscce. org/.

[25] Apache subversion. http: //subversion. apache. org/.

[26] The trac project. http://trac.edgewall.org/.

[27] Twisted. http: //twistedmatrix. com/.

[28] Windows life-cycle policy. http: //www. mi crosof t. com/windows/lif e cycle/

default .mspx.

[29] Yutaka Yamauchi, Makoto Yokozawa, Takeshi Shinohara, and Toru Ishida. Col-

laboration with lean media: how open-source software succeeds. In CSCW '00:
Proceedings of the 2000 ACM conference on Computer supported cooperative

work, pages 329-338, New York, NY, USA, 2000. ACM.

