
A Regularization Framework For Active Learning

From Imbalanced Data

by

Hristo Spassimirov Paskov

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Masters of Engineering in Electrical Engineering and Computer
Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2010

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

AUG 2 4 2010

LIBRAR-iES

@ Massachusetts Institute of Technology 2010. All rights reserved.

ARCHIVES

A u th o r ..
Department of Electrical Engineering and Computer Science

A/Liy 25, 2010

Certified by..

Eugene McDermott

Certified by......

Tomaso A. Poggio
Professor in the Brain Sciences

Thesis Supervisor

Lorenzo A. Rosasco
IIT-MIT Visiting Faculty

Thesis Supervisor

Accepted by
Dr. 'Christopher J. Terman

Chairman, Department Committee on Graduate Theses

A Regularization Framework For Active Learning From

Imbalanced Data

by

Hristo Spassimirov Paskov

Submitted to the Department of Electrical Engineering and Computer Science
on May 25, 2010, in partial fulfillment of the

requirements for the degree of
Masters of Engineering in Electrical Engineering and Computer Science

Abstract

We consider the problem of building a viable multiclass classification system that
minimizes training data, is robust to noisy, imbalanced samples, and outputs con-
fidence scores along with its predications. These goals address critical steps along
the entire classification pipeline that pertain to collecting data, training, and classi-
fying. To this end, we investigate the merits of a classification framework that uses
a robust algorithm known as Regularized Least Squares (RLS) as its basic classifier.
We extend RLS to account for data imbalances, perform efficient active learning, and
output confidence scores. Each of these extensions is a new result that combines with
our other findings to give an altogether novel and effective classification system.

Our first set of results investigates various ways to handle multiclass data imbal-
ances and ultimately leads to a derivation of a weighted version of RLS with and
without an offset term. Weighting RLS provides an effective countermeasure to im-
balanced data and facilitates the automatic selection of a regularization parameter
through exact and efficient calculation of the Leave One Out error. Next, we present
two methods that estimate multiclass confidence from an asymptotic analysis of RLS
and another method that stems from a Bayesian interpretation of the classifier. We
show that while the third method incorporates more information in its estimate, the
asymptotic methods are more accurate and resilient to imperfect kernel and regular-
ization parameter choices. Finally, we present an active learning extension of RLS
(ARLS) that uses our weighting methods to overcome imbalanced data. ARLS is
particularly adept to this task because of its intelligent selection scheme.

Thesis Supervisor: Tomaso A. Poggio
Title: Eugene McDermott Professor in the Brain Sciences

Thesis Supervisor: Lorenzo A. Rosasco
Title: IIT-MIT Visiting Faculty

4

Acknowledgments

Special thanks to my amazing wife for her undying support and patience throughout

the making of this thesis. My work would still be in a Word document were it not

for your help with LTEX.

I would like to thank Professor Tomaso Poggio and Dr. Lorenzo Rosasco for all of

their help, instruction, and inspiration. I have learned more about Machine Learning

and Learning Theory from my discussions with you than I could ever have by myself.

I would like to thank Dr. David Brock for being my mentor throughout MIT. You

helped me find my passion for Machine Learning and have inspired so many ideas

along the way.

I would like to thank all of the members of CBCL for all of the entertaining,

relaxing, and thought inspiring discussions: Jim, Cheston, Andre, Nick, Gadi, Sharat,

Charlie, Joel, Ethan, and Huei-han.

I would like to thank my mom and dad and brothers Ivan and Alex for their

support and reassurance through my most difficult moments at MIT.

I would like to thank my friends Yue, Alex, Daniel, Phil, Francisco, Evan, Salil,

Saureen, Ammar, and Greg for all of the good times and distractions.

6

Contents

1 Introduction 13

1.1 Computer-Based Classification............. 13

1.2 Collecting Training Data.......... 14

1.3 Training in the Real World.................. 15

1.4 Tuning Performance . 16

1.5 Practical Classification...................... 16

1.6 Background. 18

1.6.1 Classification.............. 18

1.6.2 Classification Confidence............. 19

1.6.3 Active Learning . 20

1.7 Contributions. 21

1.8 T hesis O utline . 22

2 Preliminaries 23

2.1 M atrix Notation . 23

2.2 K ernels 24

2.3 Reproducing Kernel Hilbert Spaces 26

2.4 Classification, Tikhonov Regularization, and RLS..... 27

2.5 LOO Error and the Regularization Parameter........... ... 29

2.6 Multiclass Classification................ 30

3 Algorithms and Analysis 33

3.1 Strategies for Correcting Imbalanced Data........... 33

3.1.1 W eighted RLS . 39

3.2 Estimating Confidence........... 42

3.2.1 Asymptotic Methods........ 43

3.2.2 Bayesian M ethod . 44

3.3 A ctive R LS . 46

3.3.1 Algorithm 46

3.3.2 Active Learning with Imbalanced Data..... 48

3.3.3 Fast Estimation and Updates....... 49

4 Experiments 51

4.1 W eighted RLS . 51

4.2 Confidence.................... 55

4.3 Active Learning . 58

4.3.1 Balanced Data . 58

4.3.2 Imbalanced Data............... 59

5 Conclusion 65

A Appendix 67

A. 1 Equivalence of Reweighting and Point Duplication.. 67

A.2 Weighted RLS and Leave One Out Error Derivation...... 69

A.3 Weighted Offset RLS and Leave One Out Error Derivation 74

A.4 Active Learning Update Theorems 78

List of Figures

2-1 Without any restrictions, there are multiple ways to fit the positively

labeled points at -1 and 1. In particular, the label of 0 can be either

positive or negative.................... 27

4-1 Left: The Two Moons dataset with an imbalanced training set. Right:

Decision boundaries of weighted and unweighted RLS solutions ob-

tained from the training set and plotted against the test set. 52

4-2 Left: Examples of malformed LOO squared error curves from training

on the Caltech 101 dataset. Right: Sample LOO classification error

curves from the same dataset and trials. 53

4-3 A histogram of the logarithms of regularization parameters automati-

cally selected from the Caltech 101 dataset for each one vs. all classifier.

Blue corresponds to parameters selected from unweighted RLS while

red corresponds to weighted RLS........... 55

4-4 A histogram of accuracy as a function of the Bayes' confidence score.

The value of each bin is equal to the accuracy attained on all points

whose confidence falls in the bin............ 56

4-5 A histogram of accuracy as a function of the asymptotic confidence

score. The value of each bin is equal to the accuracy attained on all

points whose confidence falls in the bin. 57

4-6 The Spheres dataset . 58

4-7 Estimated risk and validation error of active and passive selection on

the Spheres dataset. Error bars indicate 1 standard deviation. 59

4-8 Estimated risk and validation error of active and passive selection on

the MAGIC dataset. Error bars indicate 1 standard deviation. 60

4-9 Top Left: The imbalanced Circles dataset. Top Right: The estimated

risk of unweighted ARLS and weighted random selection. Bottom: The

validation error of unweighted ARLS and weighted random selection.

The validation set has equal proportions of positive and negative samples. 61

4-10 The validation error of weighted, unbiased ARLS on the Circles dataset.

The validation set has equal proportions of positive and negative samples. 62

4-11 Left: The validation error of weighted, unbiased ARLS when trained

on an imbalanced MAGIC dataset. The validation set is balanced and

error bars denote 1 standard deviation. Right: The estimated risk on

the training set...................... 63

List of Tables

4.1 Accuracy and processing time of weighted RLS (WRLS) and unweighted

RLS on Caltech 101 using different regularization settings. 64

12

Chapter 1

Introduction

1.1 Computer-Based Classification

Classification is a fundamental learning problem in which a learner is tasked with

finding a rule to separate data that is consistent with a set of labeled examples. The

ultimate goal of this learning procedure is not to memorize the training data, but

rather to find an accurate way to predict the labels of new examples. As such, the

focus of classification is on prediction and a successful classifier is one that generalizes

well to unseen data.

It is particularly interesting to see how well we can replicate and automate such

intelligence with computer-based classifiers. Exploring and trying to implement the

facets of human intelligence is a fascinating endeavor in itself because it drives at the

fundamental questions of consciousness. On a more pragmatic level, classifiers are

invaluable analysis tools for exploring, understanding, and predicting data in science

and industry. To this end, the success of computer-based classification systems relies

on overcoming the full gamut of issues that occur when collecting data, training

classifiers, and using them.

1.2 Collecting Training Data

Building a viable classification system begins at the data collection phase, which

is closely related to the problem of experiment design. The most expensive part

of acquiring training data is often labeling it. Finding sample points can often be

automated, but labeling each of these points requires human intervention. A canonical

example of this effect is that it is easy to scan the internet for millions of images, but it

would require an intractable number of man hours to label the objects in them. Sadly,

traditional approaches to training classifiers are directly at odds with this requirement

because they rely on large data sets for good generalization performance.

Complimentary to the issue of minimizing the number of labeled examples is that

of choosing effective points to train on. Oftentimes all that is necessary to correctly

classify a cluster of points is a single labeled example. However, bias, correlations, or

bad luck in the sampling process used to generate training data may create a number

of points which give little information beyond the first sample. At the very least,

such spurious examples waste labels. In the worst case they mislead the classifier into

overemphasizing some aspect of the data and hurt generalization.

Active learning addresses these issues by making learning interactive so that the

learner may ask questions as it trains. In the context of classification, an active

learner is one which starts with an initially unlabelled or partly labeled data set and

is allowed to ask for the labels of any points it is interested in. The grand hope of

active learning is to reduce the cost of training a learner by having it ask for the labels

of only the relevant points it needs. A secondary effect of this. procedure is that the

active learner picks the most informative points and does not waste time training on

spurious ones. Taken together, these goals can be seen as addressing the problem of

experiment design. The learner is trying to perform as few experiments as possible,

each of which must be properly informative if it is to classify and generalize correctly.

1.3 Training in the Real World

The second part of an effective classification pipeline is training a robust algorithm in

an effective and timely manner. We stress robust because real world data is inevitably

noisy and unlikely to be perfectly separable by a simple rule. Any classifier that is

not built upon these assumptions is almost certain to generalize poorly because it

will spend its efforts modeling noise and over-fitting the data. Relying on noise for its

predictive qualities is a foolish endeavor because any "correlations" with the actual

classification of a point are usually due to pure chance.

Adding to the difficulties of noisy data is that the training data may be - heavily

- imbalanced. Imbalances occur when the relative proportions of some parts of the

training data are different than what we wish to train on. Broadly speaking, data

imbalance occurs largely as a result of:

1. Explicit and implicit faults in creating the training set that lead to a mismatch

between the distribution of points we train on and what the classifier is likely

to encounter when used.

2. The cost of mislabeling certain points is higher than the cost of erring on others.

A concrete example of both of these problems comes from training a classifier

to detect certain kinds of rare cosmic phenomena. It may be that there are many

thousands of times as many negative training examples as positive ones and that

mislabeling a positive occurrence costs a researcher years of waiting. Without any

knowledge of the imbalance, a reasonable classification rule is to label everything as

negative because it is certain to be correct the overwhelming majority of the time.

However, this defeats the entire purpose of using the classifier and is demonstrative

of how imbalances can ruin a classifier's performance.

A particularly important instance of data imbalance comes from adapting binary

classification algorithms to multiclass classification. While some of the most powerful

classification algorithms focus exclusively on binary labels, real world problems often

involve several if not many classes. Luckily, we can reuse these classifiers by trans-

forming the multiclass classification problem into a series of binary tasks. One of the

most intuitive and effective techniques creates a classifier for each possible label and

tasks it with classifying points as either belonging to the class or not.

This technique is useful in that it handles any number of classes easily, but it

also creates a large data imbalance when there are many classes. Each "one vs. all"

classifier obtains its positive examples from a single class and labels the rest of the

training data as negative. As such, the imbalance between positive and negative

samples increases with the number of classes. When there are one hundred classes,

only one percent of the points are positive and the classifier faces the same cosmic

confusion as our earlier example. It is clear that a classifier's success with the one vs.

all regime and generally imbalanced data is predicated on its compensatory abilities.

1.4 Tuning Performance

Beyond dealing with the vagaries of real world data, the usability of a classifier is also

heavily reliant on the ease and speed with which any manually adjusted parameters

can be tuned. As discussed in more detail in the Preliminaries section, the classifier

we use learns its decision rule by balancing its performance on the training data with

how likely it is to be over-fitting. It critically relies on a regularization parameter

that, roughly speaking, determines how cautious the classifier should be in fitting the

data. A value that is too high will not separate the data properly, while a value that

is too low will generalize poorly. As there is little intuition to be had about what a

value of 0.1 or 0.6 really means for a particular data set, it is imperative that there

be a fast and easy method to select the regularization parameter. In the ideal case,

such a parameter would be determined automatically by the system.

1.5 Practical Classification

The final criticality of a classification system is how informative its results actually

are. There is no guarantee that a classifier fits all of its training data perfectly and

there is even less of a guarantee that it will label every new point correctly. In fact, it

is safe to assume that the classifier will make some mistakes with certainty; the goal of

learning is best effort in that it minimizes the number of mistakes a classifier is likely

to make. It is therefore necessary to know the confidence of each prediction so that

the user may decide whether to trust the classifier or to resort to a more expensive

means of classifying a difficult example. This confidence must be applicable to both,

binary and multiclass classification.

An ideal classifier will know the conditional probability of each class given a point

so that a confidence score corresponds to the likelihood of its decision. In reality, the

confidence score must also take into account the classifier's imperfect knowledge of

these conditional class probabilities. It is important to realize that the accuracy of the

confidence score is therefore largely related to the quality of the classifier's probability

model. As such, the accuracy and speed with which this model can be queried are

vital; confidence is useful only if it provides a good estimate of the truthfulness of a

classification and can be found without adding substantial overhead.

All in all, building an effective classification system involves a number of difficul-

ties starting with the data collection phase and extending to the use of the resulting

classifier. Properly resolving of each of these problems is essential to the success of

the entire system and the usefulness of classification in general. To this end, we inves-

tigate the merits of a classification framework for binary and multiclass classification

that uses a robust algorithm known as Regularized Least Squares (RLS) as its basic

classifier. We tackle the problems associated with training and using our system by

demonstrating an effective countermeasure to imbalanced data and several methods

for estimating confidence. These findings motivate an active learning extension of

RLS (ARLS) that effectively completes our classification pipeline by addressing the

data collection phase.

1.6 Background

1.6.1 Classification

Some of the most successful algorithms for binary classification determine a simple

line that separates positive and negative examples in a Euclidean space 9P. The fore-

runner of modern linear separators appeared in 1950's as the Perceptron algorithm

[23] and remains influential some sixty years later. Today, Vapnik's Support Vector

Machine (SVM) [28] is one of the most ubiquitous classifiers. It extends the original

Perceptron by finding a linear separator with maximum margins between the decision

boundary and training data. The SVM effectively projects data into a higher dimen-

sional space and finds a linear separator there. Using kernels increases discriminative

power because it corresponds to considering higher order interactions of the data's

features that translate into finding a non-linear separator in the original space.

An alternative to the SVM is RLS, an algorithm initially designed for continuous

regression because it minimizes the mean squared error of its training data in a stable

manner [8]. As [21] discusses, RLS holds computational advantages over the SVM in

that its solution can be found by solving a system of linear equations. Moreover, it is

easy to tune the algorithm's regularization parameter because a classifier's exact LOO

error can be found quickly. RLS can be adapted to classification by using binary labels

for the function values it models. Indeed, recent work by [21] and [1] demonstrates

its efficacy as a binary classifier and in one vs. all multiclass classification. The usual

kernel tricks that the SVM exploits can also be applied to RLS, so it too can learn

non-linear separators.

An important connection between SVMs and RLS elucidates the key to their

generalization abilities. In particular, [8] show that the problem of learning is ill-

posed because it has multitudes of unstable solutions. They then demonstrates that

both, SVMs and RLS, overcome these issues through regularization. Indeed, both

algorithms are instances of Tikhonov regularization - a powerful method for enforcing

stability by choosing functions that have minimal training error and complexity. A

further study into learning theory by [3] provides the critical link between stability and

learning: a stable solution is likely to generalize well beyond training data. Taken

together, these studies provide a theoretical justification for the SVM and RLS as

robust classifiers.

1.6.2 Classification Confidence

The success of SVMs has engendered several studies into estimating the confidence

of these classifiers. It is worth noting that the SVM classifier relies on a subset of its

training data for classification, i.e. the support vectors, and therefore only models

the conditional class probabilities of these support vectors. All points that lie outside

of the range of the support vectors receive "probabilities" that are greater than 1 and

are not interpretable as meaningful measures of the likelihood of class membership.

Nonetheless, a variety of ad-hoc methods exist that try to convert the SVM's

predictions into probabilities by effectively squashing the output to be between 0 and

1. The most popular method due to [18] converts a linear transformation of the SVM

output into a probability by passing it into a sigmoid function. A summary of other

methods for confidence estimation are presented in [20]. The author demonstrates

that Platt's method is the best way to convert SVM outputs to confidences, but also

that estimating the class conditional probabilities directly gives significantly better

scores.

In contrast to the SVM, RLS uses all of its training data in the resulting classifier

and should therefore be able to give better confidence estimates. As [1] demonstrates,

the output of the RLS classifier directly converges to the probability of class mem-

bership as the training data increases. This property is desirable because it shows

that RLS estimates confidence in a principled manner. An interpretation of RLS

as a Gaussian process [19] presents an alternate way to estimate confidence through

normal distributions. This estimate takes into account the classifier's variance and

therefore uses more information in its score.

1.6.3 Active Learning

Active learning extends the traditional classification paradigm by making learning

interactive in the hopes of using less training data. Algorithms in this area can be

categorized as either pool based or streaming. The former assumes that all training

data is given at once as a partially - or completely - unlabeled pool of examples

while the latter operates on examples that arrive individually in a stream. It is worth

noting that purely streaming active learners operate in a more pessimistic framework

than pool based ones because a particular point may never come up again if it is not

queried. However, a pool of points can be approximated in the streaming scenario

by aggregating examples before training. Conversely, a stream is easily simulated by

selecting points from a given pool at random. This close connection between active

learning regimes gives credence to a discussion of algorithms from both realms.

One of the earliest active learning algorithms due to [26] queries a committee of

classifiers with every point it receives. The algorithm improves its estimate of the

correct hypothesis space, i.e. set of classifiers that fit the training data, by asking for

the label of any new point its classifiers disagree on. Interestingly, a later analysis

of the algorithm given in [9] shows its uses exponentially fewer training points than

passive algorithms under certain data distributions. The merits of active learning

are also explored by [10] who proves that an active filter can detect certain kinds of

sparse signals that a passive scheme has no hope of finding.

Since the original query by committee algorithm, [27] has extended the notion

of actively improving the hypothesis space to Transductive SVMs over a pool of

unlabelled data. This algorithm is significant in its use of the powerful SVM classifier.

A series of streaming active learning algorithms are given in [5] and [6] that can

also use this classifier. The first algorithm determines whether querying a point

will be useful through statistical complexity bounds applied to the "disagreement

coefficient" of its classifier. Roughly speaking, this coefficient estimates how much

classifier changes when the incoming point has different labels. The second algorithm

employs an importance weighting scheme that asks for a point's label based on an

estimated probability of its usefulness.

Finally, [29] presents an algorithm that select which points to query from an

initially unlabelled data pool by greedily minimizing a risk. The authors use an

unregularized algorithm that propagates known labels to all points in the data pool

via an estimate of underlying manifold of the data. We extend this algorithm by

replacing the underlying classifier with RLS and exploring its behavior on imbalanced

data sets.

1.7 Contributions

We consider the problem of building a viable multiclass classification system that

minimizes training data, is robust to noisy, imbalanced samples, and outputs confi-

dence scores along with its predications. These goals address critical steps along the

entire classification pipeline that pertain to collecting data, training, and classifying.

Our system uses RLS as its base classifier, which we extend to account for data imbal-

ances, perform efficient active learning, and output confidence scores. Each of these

extensions is a new result that combines with our other findings to give an altogether

novel and effective classification system.

Our first set of results investigates various ways to handle multiclass data imbal-

ances and ultimately leads to a derivation of a weighted version of RLS with and

without an offset term. Weighting RLS provides an effective countermeasure to im-

balanced data and facilitates the automatic selection of a regularization parameter

through exact and efficient calculation of the Leave One Out (LOO) error. These

derivations follow the reasoning in [21] and they present a unification of all relevant

and otherwise disparate results that pertain to weighting RLS.

Next, we present two methods that estimate multiclass confidence from an asymp-

totic analysis of RLS [1] and another method that stems from a Bayesian interpre-

tation of the classifier [19]. To the best of our knowledge, there has been no formal

study investigating the applicability of these views to multiclass confidence estimation

with RLS.

Our final contribution presents an active learning extension of RLS (ARLS) that

uses our weighting methods to overcome imbalanced data. ARLS builds on [29]

by replacing their harmonic classifier with RLS and showing how to attain a worst

case complexity that matches that of standard RLS. This study is significant in its

introduction of ARLS and its investigation of the algorithm in the face of imbalanced

data.

1.8 Thesis Outline

The remainder of this thesis is structured as follows. Section 2 discusses preliminary

material including our notation, relevant learning theory, and RLS for binary and

multiclass settings. Our contributions are presented in section 3 where we first focus

on the adapting RLS to imbalanced data and ultimately derive weighted RLS with

and without an offset term. Next, we discuss three methods to estimate multiclass

confidence with RLS and then use our results to derive an active learning extension

of RLS. We then present experiments with synthetic and real data sets for all of our

findings in section 4. Finally, we conclude in section 5 and discuss future directions.

Chapter 2

Preliminaries

In the spirit of keeping this thesis as self contained as possible, it is useful to go

over the major concepts and notation we will be using throughout the remainder

of the paper. The majority of the concepts presented in this paper require a good

understanding of linear algebra and basic familiarity with functional analysis. We

recommend [15] as a reference for the relevant functional analysis used in learning

theory.

Section 2.1 opens with a brief discussion of the matrix notation used throughout

this paper. We then introduce the kernel trick in Section 2.2 to motivate a quick

discussion of Reproducing Kernel Hilbert Spaces in Section 2.3. The heart of the

material is presented in Section 2.4 where we introduce the general theory behind

learning and apply it to derive RLS. Finally, Section 2.5 shows a fast way to find a good

regularization parameter and Section 2.6 extends binary classification to multiple

classes.

2.1 Matrix Notation

Our matrix notation follows the standards used throughout much of linear algebra

and we specify indices in a manner reminiscent of Matlab [12]. In particular, column

and row vectors as well as constants are denoted by lower case letters while matrices

will always be capitalized. The ith element of a vector x is given by x, and the

element of matrix M located at the ith row and 1 th column is simply Mij. The ith

row vector of M is given by Mi and the jth column vector is similarly Mj.

At times we extend the aforementioned notation by using an index vector to spec-

ify a subset of the elements in a vector or matrix. In the context of an n dimensional

vector x, and index vector I is a vector of integers between 1 and n such that if

z = x, then zi =X z, for i = 1,..., l11. We can also apply 1 to the rows or columns of

a matrix so that, for example, M, returns a submatrix of the n x n matrix M whose

rows are given by 1. Finally, the statement Z = Mik where I and k are appropriately

defined index vectors should be interpreted as a ll x |kI matrix with Zj = Misk, for

i,j E {1,...,|ll} x {1,...,Ikl}.

Our final piece of notation concerns the evaluation of functions on sets of points. In

particular, if f : Td -* 91 a real valued function over points in 9 jd, then f(X), where

each row of X is a point in d , returns a vector of values, y, such that y, = f(Xi). In

the case of a function with two arguments, k : gd x d- 91, k(X, -) denotes a vector

of single valued functions f where fi(z) = k(Xi, z). Here the - notation is used to

indicate an unspecified argument. Finally, the function call k(X, Z), where each row

of X and Z is a point in jd , returns a matrix M of values such that Mj = k(Xi, Z).

2.2 Kernels

The general problem of classification is one of inductive learning in that a learner

must draw conclusions from a training set that can then be applied to new data. In

this context, it is reasonable to compare new data points with ones in the training

set, and kernels define a powerful way to do this. Given two points x, y E 9d, a kernel

k is a positive definite function k : gd x -* 91 that maps x and y to a real number

serving as a comparison between the two. The simplest example of a kernel is the

linear kernel which is the dot product of x and y:

ki(x, y) := x - y (2.1)

The linear kernel is weak in the sense that it only compares points along corresponding

dimensions. Oftentimes, it is desirable to consider higher order interactions by com-

paring corresponding sets of dimensions. For instance, the second order interactions

of x and y are given by finding

d d

k2(x, y) = E xixjYYj (2.2)
i=1 j=1

A careful reader will notice that k2 corresponds to taking a dot product in the feature

space 92d' where d' = d(d+1). Points are mapped to 93%' by multiplying all pairs of

dimensions in the original feature space. This approach is perfectly valid but it has

to compute quadratically many terms and quickly becomes intractable as we consider

even higher order interactions. The kernel trick remedies situation by noting that

k2 (x, y)= (x -y)(x -y) = k (x, y) (2.3)

In general, the nth-order interactions of two points are given by

k,(x, y) (x . y)"n (2.4)

and all possible interactions up to degree n can by computed via

k<(x, y) = (1 + x - y)' (2.5)

A particularly interesting kernel that corresponds to an infinite dimensional space of

all possible interactions is the RBF kernel.

kRBF(X, Y) e (2.6)

This kernel has an added width parameter o- that determines which degree of inter-

actions we pay more attention to; as o becomes large the RBF kernel behaves like

the linear kernel.

2.3 Reproducing Kernel Hilbert Spaces

Thus far, we have motivated the discussion of various kernels as computationally

efficient ways to compute dot products in arbitrarily high dimensional spaces. It

turns out that this interpretation can be formalized through the use of Reproducing

Kernel Hilbert Spaces (RKHS), leading to a powerful mathematical machinery with

which to reason about learning. While we defer a formal and in depth discussion of

RKHS to one of the suggested textbooks, we briefly discuss them to give a sense of

their usefulness in learning theory.

An RKHS W is a Hilbert space of real valued functions over a compact set X

such that for every x E X, every f C N is bounded by |f(x)| < MIlf||W where M is

nonnegative. Keeping with our running example of 9 j, X can be any compact set

within the Euclidean space. N would be any set of real valued functions that take an

element from X as input and satisfy the aforementioned boundedness requirements.

A consequence of this definition shows that there is a one to one correspondence

between kernels and RKHS so that a kernel k induces an RKHS Ilk when used over

a compact set X. The kernel plays an important role in Nk because the set of single

input functions {k(x, -)|x E X} obtained from using x E X as an argument to k form

a basis for Nk. As such, any function f E Nk is a (possibly infinite) linear combination

of kx where x C X' C X.

Another illuminative theorem due to Mercer shows that if k is continuous and

xy E X

k (x, y) =[o-iOi (x)@Vi (y) (2.7)
i=1

where o- and @i are the eigenvalues and eigenfunctions of k. This demonstrates that k

is a dot product in some feature space induced by V). For example, # maps gi _ 9d

by computing all second order interactions in our earlier example with k2. Taking

our property of induced RKHS with Mercer's theorem demonstrates that any function

in Nk is actually a weighted dot product with some subset of X in a feature space

induced by k. This last result foreshadows an important theorem that allows us to

0
0.5-

0-

-0.5

-1.5 -1 -0.5 0 0.5 1 1.5
Point

Figure 2-1: Without any restrictions, there are multiple ways to fit the positively
labeled points at -1 and 1. In particular, the label of 0 can be either positive or
negative.

compute a powerful set of classifiers.

2.4 Classification, Tikhonov Regularization, and

RLS

Suppose that we are given a set of n examples X = {x1, x 2,... ,xn} with correspond-

ing binary labels y = (y1, Y2, .. . , yn)T where each xi E 9 id and y E L. In the binary

case, L = {-1, 1}, whereas the more general multiclass setting of T possible classes is

obtained by letting L = {1, 2, .. ., T}. Unless explicitly stated, we assume that labels

are binary valued for simplicity.

Binary classification can be formalized as the problem of finding a function c

9 jd -+ { -1, 1} that will correctly classify unseen points given a training set X, y. The

classifier c is usually constructed by thresholding a real valued function f : 9i - 9

such that f(x) > 0 is considered a positive label and f(x) < 0 a negative one.

We will abuse terminology by calling f a classifier and distinguish between its value

and thresholded classification as the "soft" and "hard" classification, respectively.

Classification thus focuses on finding a real valued function that will lead to useful

predications when thresholded in a simple manner.

It turns out that it is impossible to find such a function without imposing some

kind of restrictions. To see why, consider using the set of all polynomials as possible

classifiers. As Figure 2-1 demonstrates, we can find two polynomials that perfectly

fit a training set, yet disagree on the label of another point. In the absence of other

information, how should we choose between classifiers?

The answer to this question comes from Occam's Razor and lies at the heart of

much learning theory: the simplest answer is usually the best one. A particularly

powerful approach to enforcing this requirement is neatly formulated in Tikhonov

regularization [8].The solution to Tikhonov regularization is a function that balances

minimizing a loss function on the training set with minimizing its norm in the RKHS:

f* arg min V(yi, f (xi)) + AI lf lf| (2.8)

Here V is a nonnegative and monotonic loss function that penalizes errors on the

training set while the second term penalizes complicated functions and therefore mit-

igates over-fitting. It is worth mentioning that using the hinge loss [28] leads to SVMs

while the squared loss results in RLS. Thus, the RLS objective is expressed as

f RLS
2

fRS-arg mmi Zy ~~) + AIIk (2.9)

While the functional formulation of RLS is a useful starting point because it gives

a good interpretation of regularization, it does not reveal an easy way to solve the

objective. Luckily, much of the heavy lifting in finding fRLS is done by the Represen-

ter Theorem which transforms the RLS problem into a simple optimization procedure

over gn. As hinted at in our discussion of RKHS, the solution to Tikhonov regulariza-

tion - and hence RLS - can be expressed as a linear combination of n kernel functions,

each taking an argument from the training set X. Formally, for some c* - gi

n

f RLS cik(xi, (2.10)
i=1

This representation reveals that the RLS objective is tantamount to finding an optimal

value of c*. In fact, the problem reduces to a convex quadratic optimization problem

by defining the kernel matrix K to be an n x n matrix with Kij = k(xi, xj):

c* arg min ||y - KcJ| 2 + AcTKc (2.11)

The minimizing value c* can be obtained through simple differentiation and is given

by

c* = G 1y (2.12)

where G = K + Al is the original kernel matrix with A added to its main diagonal.

Thus, the optimal RLS classifier for a specific choice of kernel and regularization

parameter can be found by simply solving a system of linear equations. We continue

our derivations to show that RLS' solution is particularly amenable to finding a good

A through LOO cross validation.

2.5 LOO Error and the Regularization Parameter

Once we fix the loss function, there are two parameters that remain unspecified in the

RLS objective. The first is implicitly stated as the kernel and it defines the manner

in which we compare points and the RKHS from which fRLS can be selected. As

mentioned earlier, selecting an appropriate kernel is an entire field of study onto itself

and is largely dependent on the kind of data that is being modeled. The second

parameter, A, appears explicitly in the formula and it forces us to select smoother

functions that are less prone to over-fitting as it increases. Luckily, an appropriate

regularization parameter can easily be found by considering the LOO error of fRLS

for different values of A.

Expressing the RLS solution as a matrix inversion neatly demonstrates the role

of A. Equation (2.12) shows that RLS is a kind of spectral filter that modifies the

eigenvalues of the original kernel matrix. In particular, c* is obtained by adding

A to every eigenvalue of the kernel matrix before inverting it. It follows that any

eigenvalues that are much smaller than A will be filtered out because the regularization

parameter mitigates their role in the final solution. An overbearing choice of A will

filter out too much of the information stored in the kernel matrix, while an overly

small value will lead the classifier to model noise.

The spectral interpretation of A's effect on the RLS solution demonstrates that it

is critical to select a good value based on the eigenvalues of the kernel matrix. It is

reasonable to assume that we will not want to filter beyond the extreme eigenvalues

of the kernel matrix so that an optimal A should occur within the range of its eigen-

values. To this end, an easy way to find this value is to search over a geometric series

that starts and ends at the smallest and largest eigenvalues, respectively. The best

regularization parameter is the one which minimizes either the LOO squared error

or LOO classification error - the choice of which error to use is merely a matter of

preference.

Computing the LOO error naively takes 0(n4) for each trial because we must

compute n different RLS solutions, each of which requires 0(n 3) calculations. It

turns out that we can reuse our efforts spent in solving a single solution to compute

the LOO error L' = yj - fsi(xi). Letting fsi be the RLS classifier trained on all

points but x

LE C
diag(G- 1)

where division is performed element-wise. We can further optimize our ability to

calculate LE by computing the eigenvalue decomposition of K. Since regularization

affects only the eigenvalues of K, we can compute the numerator and denominator of

LE in 0(n 2) steps. This trick allows for 0(n) candidate values of A to be tried while

maintaining the usual RLS runtime of 0(n3) calculations.

2.6 Multiclass Classification

Our discussion of classification has thus far been relegated to binary labels where a

single threshold is applied to RLS to obtain the class label. However, this reasoning

breaks down with multiple classes because using two or more threshold values enforces

an undesirable ordering over the classes. Consider a simple three class example in

which we threshold the classifier as

1 f(x) < 0

c(X) 2 0 < f(x) < 1 (2.14)

3 1 < f (x)

However, this choice of thresholds implies that class 1 is more to similar to class 2

than it is to 3. In general we have no reason to believe that this is the case, so the

implied ordering is undesirable and likely to be detrimental to performance.

This situation can be rectified by encoding each class as a series of binary labels.

While there are a number of ways to do this, we focus on the simple one vs. all

regime. Here a separate function fk is trained for each class by setting the labels of

all points belonging to k as positive and the labels of all other points as negative.

Thus, the encoded one vs. all labels for class k are given by

y = 1k(2.15)
-1 yj k

Each fk serves to distinguish its own class from all other classes. This scheme

leads to a simple maximum decision rule in that the label of a point is chosen as the

corresponding highest voting classifier. Note that a label is chosen even if all of the

classifiers evaluate to negative values.

32

Chapter 3

Algorithms and Analysis

The Algorithms and Analysis chapter presents the new contributions of this the-

sis. We investigate the merits of a classification framework that uses a RLS as its

base classifier. Our results address the various problems that arise when building a

multiclass classification system for use on real world data. Specifically, we focus on

the issues of minimizing training data, overcoming noisy, imbalanced samples, and

outputting accurate confidence scores.

This chapter's structure follows the various stages of the classification pipeline.

Section 3.1 tackles the issue of training and tuning RLS on imbalanced data and

ultimately ends with a derivation of weighted RLS. We then discuss three different

ways to estimate the confidence of multiclass predications in section 3.2. Finally,

section 3.3 focuses on minimizing training data by presenting an active extension of

RLS that we adapt to imbalanced data.

3.1 Strategies for Correcting Imbalanced Data

We begin our exploration of effective classification systems by examining various

ways to adapt RLS to account for imbalanced data. These techniques do not require

additional data collection and are initially motivated by considering the simple binary

case. We then explore their behavior in the context of a one vs. all multiclass regime

and show that the only simple and effective way to deal with imbalanced data is by

reweighting the squared loss.

Data imbalance occurs in binary classification when the relative proportion of

positive and negative training examples does not match the proportions we wish to

train our classifier on. Such disparities can be created by implicit or explicit faults

in the training set that misrepresent the actual distribution of positive and negative

examples. A second cause of imbalance is that the cost of mislabeling a positive

example may be different than the cost of erring on a negative one.

To formalize our discussion, suppose that we wish to train an RLS classifier on

a set of n binary labeled examples X, y. Let n+ and n_ be the number of positive

and negative training examples, respectively, so that n = n+ + n. Without loss of

generality, assume that a data imbalance exists because there are too few positive

training examples so that we wish to train as if there were an+ of them, where a > 1.

There are a number of modifications we might make to the RLS objective to try to

correct this imbalance:

1. Duplicate positive examples to obtain an+ of them.

2. Weight the squared loss on positive examples as wi = a and w_ 1 - 1
an++nc n+-

for negative points. This strategy leads to a loss of the form

n

wi(yi - f (xi))2 (3.1)
i=1

3. Use a smaller regularization term on coefficients that correspond to positive

training samples. Letting X+ and X_ correspond to the sets of positive and

negative training examples, respectively, the RLS classifier can be expressed as

n

f(-) = ci k(., xi) = k(-, X+)c+ + k(-, X-)c_ = f+(-) + f(-) (3.2)
i=1

We can express its norm as two separate components so that ||f | = | +

(jf-||. Setting A- > A+ > 0, our last strategy leads to an RLS objective with

regularization term

A+||f+1 2 + A Ilf- -| 2 (3.3)

4. Increase the magnitude of the positive labels to some a> 1.

It turns out that the first three strategies are equivalent. To see this, modify the RLS

objective in equation (2.11) so that it has a weighted squared loss:

J(c) = (y - Kc)T A(y - Kc) + AcTKc (3.4)

Here A a diagonal weight matrix whose entries are appropriately wi or w-1. The

minimizer of this equation is given by taking derivatives and solving to obtain

(AK + AI)c = Ay (3.5)

- c = (AK + AI)- 1 Ay (3.6)

However, if we multiply the left side by A- 1 , we get

(K + AA- 1)c = y (3.7)

- c = (K + AA-1)- 1y = (AK + AI)- 1Ay (3.8)

This latter formulation corresponds to choosing A+ = 1- < A-1 = A As such,Wi W-1

strategies (2) and (3) are equivalent. Indeed all three are the same, although we

defer the proof of the equivalence of (1) and (2) to the appendix for brevity.

The equivalence of strategies (1) through (3) decreases the number ways we can

counter data imbalances; our options are either to weight the loss or to change the

relative magnitudes of labels. Both of these methods work well as long as RLS is

used strictly for binary data. However, the next subsection examines data imbalance

in multiclass classification and demonstrates that relabeling is completely ineffective

in this setting.

Data Imbalance in Multiclass Settings

Multiclass classification is strictly harder than binary classification from the perspec-

tive of imbalanced data because it is unavoidable in the former and may never occur

in the latter. In particular, one vs. all regimes force each classifier to train on signifi-

cantly fewer positive examples than negative ones. This data imbalance is warranted

because it correctly demonstrates that any individual class is unlikely in the face of

so many others. However, imperfect knowledge of the data's generative probability

distribution often leads the classifier to label everything as a negative and to give

undesirable LOO error curves that favor no regularization. Such strange behavior ul-

timately hurts classification accuracy and leads to suboptimal multiclass predictions.

We first consider using strategy (4) to overcome the data imbalance because it

can be accomplished with little effort. Indeed at first blush, changing the relative

magnitudes of positive and negative labels seems to be an effective technique for

correcting data imbalance. However, its efficacy in binary classification is misleading.

Relabeling fails with multiclass classification because of how the winning class is

chosen.

To show this, suppose that we are given n training examples in a matrix X with

labels between 1 and T specified in vector y. Assuming that there are exactly

examples from each class, using a one vs. all regime corresponds to training classifiers

fl, f 2 . T G Wk each on n = positive examples and n_ = T1n negative

examples.

We can save on processing time by using the same regularization parameter for

each class and finding G = (K + Al)-1 once. The coefficients of ft can easily be

found by c' = G-lyt, where y' is the one vs. all encoding of labels for class k. Our

balancing scheme is therefore tantamount to using labels a and -b, where a > b > 0,

for positive and negative examples, respectively. Let [k] be the index vector of all

elements that belong to class k. Then

n T T

c- = G; zG G1 t - (3.9)
j=1 k=1 k=1

By assumption, Yk = -b for all classes but t so that

T T

c = aG 1 1-b (? G- 1 1 = (a+b)G-i -b(G-i = (a+b)G-11-bG-ii (3110)
k=1,kj4-t k=1

It follows that when we classify a point, we take

n n

(x) ct(xi, x) k(xi, x)[(a + b)G-i - bG11] (3.11)
i=1 i=1

A one vs. all multiclass scheme chooses the best class as the one with the highest

scoring classifier f*. Put another way, the winning class is one for which f* (x) -

fi (x) > 0 for j =1, ... , T. Comparing the difference between any two classes s and

t,

n n

f (x) - fi(x) =(k(xi,x)[(a+b)G'1 - bG;-11] -(k(xi, x)[(a + b)Gj1 - bG;'1]
i=1 i=1

(3.12)
n

= (a + b) (k(xi, x)[G-' 1 - G-[1] (3.13)
i=1

It follows that as long as a, b > 0, changing their magnitudes will have no ef-

fect on the difference, only its magnitude. As such, the multiclass prediction will

stay the same and no correction for imbalance is actually performed. Hence, strat-

egy (4) is ineffective in the multiclass setting and should be avoided in binary RLS

implementations that might be used for multiclass classification.

We thus turn to reweighting the squared loss so as to equilibrate the number of

positive and negative training examples. This popular procedure does not require

special handling of the classifiers' outputs when using the maximum decision rule

because each classifier faces the same reapportionment of positive training examples.

Equilibrating the training data forces each classifier to spend as much effort min-

imizing loss on positive examples as on negative ones and therefore gives a clearer

estimate of the distribution of positive samples. Continuing with our earlier multiclass

problem, weights that fix the data imbalance are given by

miC (a1- - T 1 (3.14)
2n_ 2n_

W-1 = (3.15)
2n_

It turns out that equilibrating positive and negative training examples in this

manner can be justified through a multiclass objective. Suppose that we wish to

maximize the difference between the value of the correct classifier of each training

point and the T - 1 incorrect classifiers. The objective we wish to maximize can be

expressed as

n T

J(f 1 f2 fT) if YI (Xi) - f'(xi)] (3.16)
i=1 j=1,jfAyi

Sadly J is not well defined because we can select arbitrarily high values for fYi(xi).

However, we can make it well posed by forcing each fyi (xi) to be as close as possible

to 1, and conversely, each fi(xi) for j # yi to be as close as possible to -1. The new

objective that we wish to minimize is

n T

J'(f 1 , f 2,. fT) =E Y [V(fu"(i), 1) + V(fi(xi), -1)] (3.17)
i=1 j=1,jfyg

where V(., -) is a loss function such as the squared loss. This objective retains

our goal of maximizing the difference between correct and incorrect classifiers on the

training data. Multiplying the objective by 2n does not change the optimization

problem and we can rearrange terms to see that

1 1 (T - 1) V(f i(zi), 1) + V (fi (xi),-1
2n_ 2n_ = 2n_

I T

2n- E)(T -1)V(fi(x),- + V(f(xi), -1)

T n

W (V(f (xi), yf) (3.18)

j=1 .i=1 Y

Hence J' can be minimized by minimizing a weighted loss for each one vs. all classifier

separately. If we replace V with the squared loss, we recover the weighted RLS loss

for each one vs. all classifier. As such, using w1 and w_1 corresponds to minimizing

a multiclass loss whose empirical success we demonstrate with our experiments.

In conclusion, there are a number of reasonable strategies we might employ to

correct imbalanced data. It turns out that duplicating points and using different

regularization parameters for each class are equivalent to weighting the squared loss.

The two primary methods for dealing with imbalances in binary classification are

to weight the squared loss or to use different magnitudes for positive and negative

labels. The latter is risky since it does not translate to multiclass classification because

of the maximum decision rule. Since multiclass classification induces its own data

imbalances, we can only recommend weighting RLS' loss as an effective technique for

dealing with imbalance. We thus apply our findings to derive weighted versions of

RLS in the next two subsections.

3.1.1 Weighted RLS

The inefficacy of relabeling and the equivalence of our aforementioned balancing meth-

ods give impetus to the derivation of a weighted version of RLS. In particular, consider

generalizing the usual RLS objective to

J(f) = a (yi - f(Xi)) 2 + Al If I (3.19)
i=1

where ai > 0 and >> ai = 1. Appealing to the Representer Theorem and letting A

be a positive definite diagonal matrix with Aii = a, allows us to rewrite the objective

as

J(c) = (y - Kc)T A(Y - yc) + ACTKc (3.20)

It turns out that we can recover the usual RLS problem by defining W = A: and

Z = Wy (3.21)

M = WKW (3.22)

d = W-'c (3.23)

Note that M is symmetric and positive semidefinite, so it too is a valid kernel matrix.

These substitutions lead to

J(c) = J'(d) = (z - Md)T(z - Md) + AdTMd (3.24)

Following the standard definition of G = M + Al, we know the solution to J' is

d = (M + AI)-z = G- 1z

c = WG- 1z

(3.25)

(3.26)

Next, suppose that we wish to find the LOO error of weighted RLS quickly. We

achieve a similar result to equation (2.13) that allows us to calculate the LOO error

in O(n 2) time. In particular, the un-weighted LOO error L = yi - fsi(x) is derived

in the appendix and is given by

(3.27)
diag(AG-1)

We have hereby demonstrated a simple extension to RLS that overcomes data

imbalances by weighting the squared loss in RLS' objective. However, even this

classifier is unlikely to perform well because it lacks an offset term with which to

overcome limitations discussed in the next subsection. Thus, the next subsection

completes our RLS derivations by defining the offset RLS problem and showing how

to calculate all necessary parameters with a weighted loss.

Weighted Offset RLS

The need for an unpenalized offset in RLS is easily motivated by considering the RLS

solution obtained from using a linear or polynomial kernel. In particular, any linear

RLS classifier evaluates to zero when its input is zero and is thus constrained to go

through the origin. This constraint forces points on opposite sides of the origin, as

divided by the classifier's hyperplane, to have different labels. However, if all points

around the origin have the same label, RLS will always misclassify some of them.

This limitation can unnecessarily compromise performance and thereby invalidate any

attempts to correct data imbalances. We thus "complete" RLS' predictive abilities

by allowing it to use an unpenalized offset term.

In order to set the stage for our derivations, consider the usual binary classification

setting in which we are given a training set of n binary labeled examples X, y. Our

extension changes the RLS prediction to be of the form fRLS(x) = k(x, X)c + b. In

order to determine appropriate values for c and b, we modify the RLS objective to be

n

J(f, b) ai (yi - f (xi) - b) 2 + Afl f|| (3.28)
i=1

We again appeal to the Representer Theorem to write our objective as a quadratic

matrix problem

J(c, b) = (y - Kc - bi)T A(y - Kc - bl) + AcTKc (3.29)

Here 1 is the column vector all ones. Making the usual definitions W = A , z = Wy,

M = WKW, d = W-'c and letting w = diag(W), we get that

J'(d,b) = (z - Md - bw)T (z - Md - bw) + AdTMd

Relegating all further calculations to the appendix, the optimal values of c and b are

given by

c = W(M + A)- 1 (z - bw) = WG- 1(z - bw) (3.31)

b = (3.32)
wTr

where r = G-1 w. If we let R be the diagonal matrix such that Ri= r=, the corre-

sponding leave one out error for offset weighted RLS is

c
LE = (diag(AG-1) - ARr) (3.33)

The derivation of a weighted offset RLS concludes our study of imbalanced data

in the context of standard classification. It is clear that the RLS framework leads to

effective extensions for correcting data imbalances in the binary and multiclass set-

tings. Our weighted extensions retain the robust properties of RLS and afford simple

and fast solutions to calculating all necessary parameters and LOO errors. As such,

RLS demonstrates its merits as a base classifier in any effective classification system.

We now turn to several ways to estimate the confidence of the RLS classification.

3.2 Estimating Confidence

Once training data has been gathered and a classifier properly trained, it is useful to

have some measure of the confidence with which a point is classified. This information

can be used to determine whether to trust the classifier or to resort to some more

expensive and accurate method of classification. In order for a confidence estimate to

be useful in our classification pipeline, we require that it be accurate, easy to estimate,

and extendable to the multiclass setting. To this end, we present three methods of

(3.30)

confidence estimation that stem from asymptotic and Bayesian analyses of RLS.

3.2.1 Asymptotic Methods

Asymptotic methods for confidence estimation arise from the observation that the

Bayes decision rule for the squared loss results in a quantity that is proportional to

the probability of class membership. More formally, suppose that we wish to label

every point in some input space X with label a if it is a positive example and b

otherwise, where a, -b > 0. Let p(1|x) be the probability that x C X is a positive

example. We can minimize the expected squared loss

R(c) Jp(1 | x)(a - c(x))2 + (1 - p(I| | x))(b - c(x)) 2 dp(x) (3.34)

by minimizing R(c) on each point. Taking derivatives and solving, we see that

c(x) = (a - b)p(1 I x) + b (3.35)

It follows that RLS, endowed with a sufficiently rich kernel', will converge to this

optimal c as the amount of training data increases. Following our discussion of multi-

class RLS invariance to the magnitudes of a and b, we assume that a = 1 and b = -1.

Given an RLS solution f, our estimate that a point x should have a positive label is

(1 x) = f(x) - (3.36)
2

We can easily extend this reasoning to the multiclass setting by letting y(1 I x) be

the confidence estimate obtained from the ith one vs. all classifier. This probability

estimate corresponds to the likelihood that x belongs to class i and no others. As

such, our first confidence estimation technique directly uses the soft classification of

each one vs. all classifier to determine the certainty of the classification.

The next method improves upon our initial estimate by directly focusing on mul-

ticlass classification. In particular, one vs. all schemes employ the maximum decision

'The RBF kernel has this property.

rule so that the winning classifier, f , is more clearly identified as the difference

between it and the second highest scoring classifier, f/3, increases. This intuition

defines our second confidence estimation technique, which we aptly name the "gap"

confidence, as

, (1X) - |(I x) (3.37)

3.2.2 Bayesian Method

While asymptotic methods ultimately converge to the probability of class member-

ship, there is no guarantee that this estimate is a real probability between 0 and 1

when obtained from a finite data set. Such a normalized probability estimate can be

achieved by treating RLS as a Gaussian process. In order to define this view, consider

the usual binary classification setting in which we are given a labeled dataset X, y as

well as regularization parameter A and kernel k that we use to train an RLS classifier

fRLS. Furthermore, suppose that we wish to predict the label of a new point x E W.

Before training, we can interpret the joint distribution of the labels of X and x as a

multivariate Gaussian with zero mean and covariance matrix

k(X, X) + AI k(X,x) 1
L k(x,X) k(x,x)

Hence, Y is drawn from AN(0, E) training is tantamount to asking for the
yX

distribution of yX I X, y, x, once we are given the labels of the training set. Standard

results for the conditional distribution of a multivariate Gaussian [19] lead to y |

X, y, x NA(p, o-) where

AX = fRLS() (3.39)

- = K(x, x) + A - K(x, X)(k(X, X) + AI)-K(X, x) (3.40)

Since a Gaussian distribution's mean is also its mode, using the RLS solution is

equivalent to taking the maximum a posteriori estimate of yx. We can apply these

results to classification by noting that x is classified as positive if yx > 0 so that an

estimate of the likelihood that x belongs to the positive class is given by

P(Yx ;> 0 1 X, y, x) = (yx I X, y, x)dyX = 1 - <D (3.41)
0

Here <D is the cumulative density function of the normal distribution which we used by

normalizing our threshold of zero with the mean and variance of yx. These probability

estimates can be extended to the multiclass setting with T classes by realizing that

the totality of outputs from every one vs. all classifier defines its own multivariate

Gaussian distribution with mean and covariance

fI(X) (o1)2 0 0mX [: EX = 0 . 0 (3.42)
T(X) 0 0 (o7T) 2

The diagonal variances (ox) 2 are differentiated for each class because they may differ

if a weighting scheme is employed. Noting that Ex is diagonal, the likelihood that

classifier i is the highest scoring is given by

00 T YX

p(y' > yi, Vj # i | X, y, x) = p(y X,y, x) (fp(y | X, y, x)dy) dy'

(3.43)

Thus, equation (3.43) defines our Bayesian estimate of the multiclass confidence.

We conclude our study of multiclass classification confidence by noting that the

asymptotic confidence estimation methods rely solely on the output of each classifier

and therefore have the same complexity as prediction, namely O(ndT). However,

the Bayesian method's reliance on a variance estimate requires the calculation of o

which takes O(ndT + n2T) time for all classes. Furthermore, the calculation of the

Bayesian confidence is nontrivial because it requires numerical integration. We now

turn to an active learning extension of RLS that incorporates our asymptotic confi-

dence estimates and weighting results. This final result completes the classification

pipeline by addressing the need to minimize labeled data.

3.3 Active RLS

Thus far, we have concentrated on the training and classification stages of our classi-

fication pipeline by adapting RLS to overcome imbalanced data and to output confi-

dence scores. Our final result caters to the data collection phase of our classification

system by presenting an active learning extension of RLS that minimizes the number

of training samples we need to label. We motivate the algorithm as a greedy risk

minimization procedure in the first section and then show how to adapt this risk to

imbalanced data with weights. Our last section focuses on an efficient implementation

of ARLS that uses the Matrix Inversion Lemma.

3.3.1 Algorithm

Consider a variant of the usual classification problem in which we are given a pool

of n unlabeled training points X with each xi C id for i = 1,. . . , n. Instead of

corresponding labels, we are given access to a labeler L : X - {-1, 1} that returns the

label of any point in our pool. Our goal is to train a classifier with good generalization

performance using as .few calls to L as possible. This pool-based active learning

problem complicates the usual classification paradigm in that we must choose which

points to select and have to decide when to stop asking for labels.

We address the active learning problem by greedily minimizing a risk as presented

in [29]. Our discussion of this risk is identical to the original paper, except that

we replace their classification scheme with RLS. The Active RLS (ARLS) algorithm

builds upon the authors' work by using a regularized classifier that should give good

generalization properties. At each iteration t, ARLS partitions X into disjoint sets

XU and XL of unlabelled and labeled points, respectively. It starts with XU = X and

ends after a sufficiently low risk has been attained or, in the worst case, after every

point has been queried so that XL = X. To set the stage for our risk, let fL be the

classifier we obtain from training RLS on XL with labels given by YL. Furthermore,

define fL+(x,y) to be the resulting classifier after training on XL U {x} when x E Xu

has label y E {I1}. The empirical Bayes classification risk of fL+(x,y) is given by

9j(f L+(x,y)) = 1 3 p(l z)3(l, sjgn[fL+(x,y) (Z)]) (3.44)
zCX lE{-1,1}

where 6(a, b) = 0 if a = b and 1 otherwise. In an ideal world, ARLS would select the

next point to query at each step as the minimizer of the expected risk

* = min EY[9 (f L+(x,y)
x E Xu

= min p(1 X)9(f L+(xl)) +vp(l X)9j(fL+(x,-1)) (3.45)
XEXu

However, since we do not have access to p(y x x), we must rely on the probability

estimates given by fL. In particular, we use the asymptotic estimate

fL (I X) fL(X) (3.46)
2

as the probability estimate. The estimated Bayes classification risk is thus given by

njyft+(x,y)) L+(x,y) ([fL+(x,y) 47)]

zEX lE{-1,1}

and

Ey [9(f L+(xy))1 - pL(I X)9i(fL±(xl)) pL(_ I X)9j(fL±(X,-l)) (3.48)

It is worthwhile to note that we use the asymptotic estimate over the Bayesian one

even though pL may not be a true probability. This preference stems from our expe-

rience with the algorithm. With a correct kernel and regularization parameter, the

performance difference between both methods is negligible. However, the Bayesian

method is significantly more sensitive to imperfect kernel and regularization param-

eter choices. When faced with such a scenario, its performance quickly degrades to

requiring labels from every point in X. Moreover, PL tends to remain between 0 and

1 even though it is not constrained to do so.

Another key observation comes from the fact that replacing p with its estimate

fL leads to a selection scheme that changes its focus as fL increases in accuracy. In

particular, when ARLS has too few data points to accurately guess the distribution of

labels, it resorts to selecting points that give maximal information about the clusters

of X. These clusters are initially chosen at random, but as pL improves, ARLS

directly chooses points that improve its classification accuracy. This selection scheme

makes sense because in the absence of any information, ARLS does not worry about

the particular labels of any points and it simply chooses ones that will many other

points. However, once it has some idea of the division of classes, it focuses on refining

its estimate of the decision boundary.

It turns out that ARLS can also be adapted to imbalanced data, although special

care must be taken in estimating our risk. To this end, the next section extends our

risk estimate to be compatible with the bias introduced from weighting RLS.

3.3.2 Active Learning with Imbalanced Data

In keeping with our goal of building a classification system that can handle the va-

garies of real world data, it is necessary to consider ARLS under imbalanced data.

Experimental evidence suggests that the risk estimate that guides our classifier's se-

lection of data points is inherently resilient to such imbalances. However, the risk is

sensitive to weighting schemes in that using probability estimates from fL when the

kernel matrix is weighted biases ARLS to make worse choices than if it had chosen

points randomly. To make matters worse, weighting is unavoidable in certain heavily

imbalanced datasets, irrespective of how points are selected.

We can reconcile the use of weights with our risk estimate by inversely weighting

each component of 91. In particular, suppose that we are training the ARLS classifier

using weights wy. Removing bias from our risk corresponds to calculating

9 jw (f L+(x~y)) p L+(x~y) (1 Z)c(sirifL(x~y)(Z)1) (.9
zEX jE{ 1,11

IEw[9w(f"L+(xy)) - (fL±(xf+)) (y) L+X) w(fL+(x,-1)) (3.50)
Wi W-1

These modified risk estimates allow us to use weighted RLS as the classifier in

ARLS. Moreover, the new risk estimates successfully mitigate the effects of weighting

and thereby allow ARLS to be used as an effective component in our classification

pipeline. The next section discusses how to implement ARLS in an efficient manner

that allows for online updates and fast minimization of Ey ['jW(fL+(x,y))]

3.3.3 Fast Estimation and Updates

Our implementation of ARLS combines careful bookkeeping with the Matrix Inversion

Lemma to demonstrate a computationally tractable algorithm that has the same worst

case complexity as RLS. While a naive approach to estimating 9w and updating fL

requires computing 0(n 2) RLS solutions, we can reuse our work done in finding fL

to achieve a quadratic speedup.

To this end, suppose that we are using ARLS with kernel k, regularization param-

eter A, and weight wy for positive and negative classes. Here Wy be used to weight

the kernel matrix, although we prefer to divide A because it leads to a more elegant

solution. Let WL be the diagonal matrix with wy 1 on its main diagonal for every

labeled point. We require an initial computation of the kernel matrix K = k(X, X),

maintenance of a covariance matrix

VL = k(X, XL)(k(XL, XL) + AWL) - 1k(XL, X) = K T(KLL + AWL)- 1 KL (3.51)

and the latest predicted values of X given by

ML fL(X) = KLT (KLL + AWL) lyL (3.52)

In order to update mL to mL+(j,y) quickly, we appeal to Theorem A.4.1 from the

appendix to get that

L
mL+(xi,y) = mL + i ~i (i WL - K)T (3.53)

Kij + w-| -ii

Furthermore, an application of Corollary A.4.1 shows that the coefficients of fL are

given by

-L

cL = (WL)lL - L (3.54)

Equation (3.53) can be used to update mL and to estimate E'[9i(fL(x,y)

time. It remains to show how VL can be updated to VL+(i,yi) once we include xi in

our labeled set. Theorem A.4.1 applies to each column of V1 leading to

L+(,,y~)L _7 1 -KjV L+(xi,y- _ K i - (VL - K,)T (3.55)'1i ''Ki+hw- - VLt

It is clear that finding the minimizer of Ey"[ntw(fL+(x,y))] requires only 0(n 2) compu-

tations. Furthermore, once we select the next point to query and train on, the brunt

of the calculation is spent in updating VL which takes O(n 2). The overall runtime

of ARLS is thus given by 0(tn2), which can be significantly less than that of RLS if

a fraction of X is used to achieve reliable predictions. Even in the worst case when

active learning is of no use, our runtime collapses to 0(n'), which is identical to that

of computing the RLS solution over X.

Chapter 4

Experiments

The Experiments chapter presents synthetic and real data experiments with our find-

ings from the Algorithms and Analysis chapter. Each set of experiments begins with

synthetic data that provides a controlled environment with which to demonstrate im-

portant properties. We then subject our methods to real world data so as to establish

their validity in the "wild".

The organization of this chapter follows that of the previous one in that section 4.1

demonstrates the positive effects of weighting RLS on imbalanced data set. Section

4.2 extends the real world experiments of the previous section to show the performance

of our three confidence estimation schemes. Finally, section 4.3 provides an in depth

discussion of the behavior of ARLS on balanced and imbalanced data sets.

4.1 Weighted RLS

Our first set of experiments demonstrates the effects of weighting on RLS with syn-

thetic and real data. In particular, Figure 4-1(a) shows an imbalanced training set

from the "Two Moons" dataset when there are 10 times fewer positive training ex-

amples than negative ones. The classifiers we obtain from using no weights and

equilibrating the two classes are plotted against a test set which contains equal num-

bers of examples from both classes in Figure 4-1(b). We use a Gaussian kernel with

width parameter 2 and automatically select the regularization parameter from the

0.5I
+ + + Positive + +

0.6 0 Negative 0 + + + e

0.40

0,-+ 0 0 000 0.2- + + +
++ + 020 0 0 0

0 -0 + +

-0.2- 0 + 0. + + 00S.

-0.4 0 0 -00. 0 0001 -0.4- 0o
0

+boo 00 oo(,& o

0 00 -06 0

U 0 0 00 %o.0V0 0-0.6 -0
- . 80 +

0.*. # + +--- W igte

-2 -1.5 -1 -0.5 0 0.5 1 15 2 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2

(a) Training Set (b) Test Set

Figure 4-1: Left: The Two Moons dataset with an imbalanced training set. Right:
Decision boundaries of weighted and unweighted RLS solutions obtained from the
training set and plotted against the test set.

LOO classification error.

While the training set suggests a separable boundary, the class imbalance leads

unweighted RLS to shrink its estimate of the volume of the positive class. Indeed the

data imbalance is severe enough that the decision boundary does not even classify

the training set correctly. Weighting successfully corrects this situation and decreases

the unweighted classifier's error from 7.5% to 0.5% on the test set. That the weighted

classifier does not completely separate the test set is due to the paucity of positive

examples from which to refine its decision boundary.

Next, we apply our multiclass weighting scheme to the Caltech 101 data set using

features extracted from the CBCL hierarchical model as described in [25] [173 [16].

We use 30 training examples per category for a total of 3060 training examples in a

one vs. all multiclass regime. It is important to note that the CBCL model outputs

8075 features per training vector so that it is easy to over-fit the training data. It

is essential to use a heavily regularized linear kernel - anything more powerful will

immediately fit the data and generalize poorly.

Our one. vs. all scheme creates a large data imbalance in which less than 1% of

the training examples are positive. Figure 4-2 demonstrates the LOO squared and

classification error for various regularization parameters on our training set. While

Classifier 1 Classifier 2
0.038 - Classifier 6 - 10.5 - - - Classifier 3

0.036 10

0.034 - - - - 9.5

0.032 9

0.03 - 8.5

0.028- 8

0.026- 7.5-

0.024- 7-

0.022- 6.5-

0.02 6
0 200 400 600 800 1000 0 200 400 600 800 1000

1/11

(a) LOO Squared Error (b) LOO Classification Error

Figure 4-2: Left: Examples of malformed LOO squared error curves from training
on the Caltech 101 dataset. Right: Sample LOO classification error curves from the
same dataset and trials.

these plots are taken from specific classes, they actually represent the overwhelming

majority of LOO error curves obtained from each of our 102 classifiers. It is clear

that the data imbalance makes it impossible to use either error estimate to determine

a proper regularization value. In the case of squared error, the error is either a

bottomless curve that suggests no regularization or has a minimum that recommends

a regularization parameter that surely over-fits. The classification error curves are also

bottomless and in some cases are completely flat so that no amount of regularization

will help performance. This latter situation is particularly troublesome because it

indicates that the classifier will always ignore its positive examples.

Our results demonstrate the phenomenon that heavily imbalanced training data

favors over-fitting. The classifier is heavily biased towards classifying everything as

negative so that less regularization increases its chances of labeling an example as

positive because of over-fitting. However, such improvements should be taken with

caution because they are unlikely to generalize well. The classifier is faced with

a hard situation in which any amount of regularization forces it to mislabel most

positive examples. Conversely, a lack of regularization allows it to fit its training

data correctly, but is unlikely to lead to a good decision boundary because there are

too few positive examples.

Leave One Out Squared Error X 10' Leave One Out Classification Error

Next, we demonstrate the effects of equilibrating the loss of positive and negative

examples in Figure 4-3. We present a histogram of the logarithm of the automati-

cally selected regularization parameter for each one vs. all classifier, with and without

reweighting, from the Caltech training set. The "optimal" regularization parameter

is selected as the largest parameter that minimizes either the LOO squared or classifi-

cation error. It is clear that the unweighted case selects hopelessly low regularization

values - we were forced to use a logarithmic scale because these regularization pa-

rameters are always counted as zero otherwise. However, weighting shows preference

towards some regularization and picks values between 0.4 and 0.01.

Finally, we present accuracy and training time results of three different trials on

the Caltech 101 using a test set of over 6000 points in Table ??. Each trial uses

both, weighted and unweighted RLS, with regularization parameters selected by our

automatic LOO error method. We also use a seemingly optimal regularization value

of 0.4 which is obtained by selecting the highest regularization value automatically

selected among any of the 102 classifiers. The weighted RLS solutions are computed

using the Cholesky decomposition of the weighted kernel matrix for each one vs.

all classifier while the unweighted trials perform a single eigenvalue decomposition.

These results are compared against the performance of a tuned SVM which is trained

using LibSVM.

Our results indicate that the automatic methods tend to select overly low reg-

ularization parameters. Indeed training all of the classifiers with A = 0.4 gives a

significant performance boost that exceeds the performance of the SVM. The per-

formance of automatically regularized unweighted RLS is even worse because it opts

for effectively no regularization. It interesting to see that unweighted RLS performs

comparatively well when used with our optimal regularization value. Nonetheless,

weighting gives an improvement across all three trials and, more importantly, it saves

our automatic A selection method. Finally, it is worth noting that training the RLS

classifier is over 70 times faster than training the SVM. If we are willing to forego

weighting, we can get away with computing a single eigenvalue decomposition that

is reused across all one vs. all classifiers, even if they differ in their regularization

., . I III

- Unweighted
SWeighted

-3 -20

Figure 4-3: A histogram of the logarithms of regularization parameters automatically
selected from the Caltech 101 dataset for each one vs. all classifier. Blue corresponds
to parameters selected from unweighted RLS while red corresponds to weighted RLS.

parameter. These increases in performance and training speed give credence to using

RLS in a classification setting.

All in all, weighting is an effective countermeasure to imbalanced data that it

is easy to implement and works reliably. This corrective strategy not only enhance

a classifier's performance on misrepresentative training sets, but it also saves our

automatic parameter tuning. The only caveat of this method is that it requires

separate processing of each kernel matrix when used for one vs. all classification.

4.2 Confidence

We continue our experiments with the Caltech 101 dataset to compare our methods for

estimating confidence. All confidence estimates are derived from weighted RLS with

A = .4. In an ideal setting, confidence would range between 0 and 1 and correspond

exactly to the probability of success. At the bare minimum, we require that accuracy

be a monotonically increasing function of confidence which we can then transform

Histogram of Selected X
40 I

I 1111IN
-9 -8 -7 -6 -5 -4

Log Optimal X

I

Confidence from Bayesian Method

0.9

0.8

0.7

0.6

0.5

0.4

0.3-

0.2

0.1
.0

3.95 4 4.05 4.1 4.15 4.2 4.25
Confidence X 10

Figure 4-4: A histogram of accuracy as a function of the Bayes' confidence score. The
value of each bin is equal to the accuracy attained on all points whose confidence falls
in the bin.

into a probability. Indeed, this is the approach taken to estimate confidence from

SVM's [20].

Figure 4-4 shows a histogram of the accuracy attained on all test samples that fall

within a specific confidence bin using our Bayesian method. Sadly, the accuracy of

the confidence estimates fluctuates wildly and is therefore unusable. This fluctuation

is likely due to sensitivity to kernel choice and regularization parameter. Indeed, we

discounted using the Bayesian probability estimate for ARLS partly because it was

not resilient to imperfect parameter choices. A second contributor to this method's

poor performance is that even a minor imperfection in the probability estimate is

magnified 100 fold because of the large number of classes. All in all, the Bayesian

method's poor performance and hefty processing requirements make it a poor choice

for confidence estimation.

We thus turn to our asymptotic methods for more reliable confidence estimates,

which are given in Figure 4-5. The histogram bins are obtained using the three

Caltech 101 trials discussed in our weighted RLS experiments. It is worthwhile to

note that data gaps as in bin 1.2 in the gap method on trial 1 occur because no

points attain that confidence, not because of poor accuracy. Both methods achieve

our desired monotonicity, although the gap method does not suffer from the soft

classification's decrease in accuracy on trial 2. It is clear that the asymptotic methods

are desirable over our Bayesian method because they achieve better monotonicity and

use quadratically less processing time.

Confidence from Soft Predition Confidence from Soft Prediction

0.8 0.8

0.4
0.4

0.2 _0, 2

0 0
0.2 0.4 0.6 0.8 1 12 1.4 1.6 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1 8

Confidence Confidence
Confidence from Gap Method Confidence from Gap Method
1 1

0.8- 0.8

0.6- 0.6-
0.4- 0.4-
0.2- 0.2

0 0
0 0.2 0.4 0.6 0.8 1 1.2 14 0 0.5 1 1.5

Confidence Confdence

(a) Confidence Trial 1 (b) Confidence Trial 2

Confidence from Soft Prediction
1

0.8-

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Confidence
Confidence from Gap Method

1

0.8

04

0.2

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4

Confidence

(c) Confidence Trial 3

Figure 4-5: A histogram of accuracy as a function of the asymptotic confidence score.
The value of each bin is equal to the accuracy attained on all points whose confidence
falls in the bin.

We conclude our confidence experiments with the observation that using more

information and processing power as in the case of our Bayesian confidence estimate

is not necessarily better. While one would expect this method to be superior over our

simple asymptotic methods, it turns out to be overly sensitive to RLS' probability

model. Thus, using the soft RLS classification directly or taking the gap difference

works well because it is computationally trivial and accurate.

20-

-10+ +

-20

-25 -20 -15 10 5 0 5 10 15 20 25

Figure 4-6: The Spheres dataset

4.3 Active Learning

Our final set of experiments investigates the performance of ARLS on balanced and

imbalanced data sets. Active learning tests RLS' classification and confidence estima-

tion performance by using the latter to inform point selection and improve the former.

We compare ARLS against an online version of RLS that selects points at random.

This passive selection scheme matches the usual paradigm of data collection for clas-

sification in that points are not distinguished a priori so that good generalization

relies on a sizeable training set.

4.3.1 Balanced Data

Figure 4-6 shows the "Spheres" dataset which consists of 1200 points that are gener-

ated by selecting 20 points from each of 60 uniformly distributed and equally spaced

spheres. The corresponding Figure 4-7 plots the estimated risk and validation error

on a validation set of 1200 similarly distributed points as a function of the number of

queried points. We compare the performance of active selection to randomly selecting

points using a Gaussian kernel with width 1.7 and regularization parameter 0.5. The

error bars around the random method's error indicate one standard deviation; ARLS

always selects the same points so it has no variation. Our active learning scheme

achieves 100% accuracy on the validation set after querying exactly 60 points. It

turns out that ARLS correctly clusters the points into their respective spheres and

__W

Rado Random

Active 550
Active

500-

0.5
450-

0.4 400

0.3 350

300-
0.2

0.1 200

0 150
0 100 200 300 400 500 0 100 200 300 400 500

Number of Points Queried Number of Points Queried

(a) Validation Error (b) Estimated Risk

Figure 4-7: Estimated risk and validation error of active and passive selection on the
Spheres dataset. Error bars indicate 1 standard deviation.

queries the center of each cluster once. This example depicts the behavior of ARLS'

risk estimate well. The active selection scheme chooses the center of each sphere be-

cause it minimizes a global risk over all points - this is different than always selecting

the most uncertain point. Once ARLS knows the label of the center of a sphere,

it temporarily assumes that the label applies to all nearby points and moves on to

discover the label of a different cluster.

Next, we investigate ARLS' performance on a real data set by tasking it with

distinguishing high energy gamma particles from background noise in the MAGIC

Gamma Telescope dataset. Each of 10 trials uses 1% of the 19,000 10-dimensional

training vectors in the training set and estimates error on a separate validation set

consisting of 2000 vectors. We use a Gaussian kernel with width 3 and regularization

parameter 0.2.

4.3.2 Imbalanced Data

Similarly to Figure 4-7, Figure 4-8 shows the estimated risk and validation set error

as a function of the number of points queried. Error bars around the error and

risk indicate one standard deviation. We see that ARLS consistently achieves better

performance than random selection. On average, it takes ARLS approximately 350

0.5 700
Random -- Randm

0.45 Active -- -Active

600

0.4

500
0.35

0.3 4004-

0.25 -

0.2
300
3001

021

0.15 -~ -- -- --.-- - -

0.1 100
0 200 400 600 800 1000 0 200 400 600 800 1000

Number of Points Queried Number of Points Queried

(a) Validation Error (b) Estimated Risk

Figure 4-8: Estimated risk and validation error of active and passive selection on the
MAGIC dataset. Error bars indicate 1 standard deviation.

points to achieve the accuracy RLS gets with 1000 points. Thus, ARLS achieves its

objective of using fewer training points than passive selection would allow. However,

its risk estimate does not convey the marginal returns of using more than 350 points.

Instead, the risk decreases even more sharply after this "optimal" point. This effect

is undesirable because it suggests that the estimated risk is not a good indicator of

when to stop querying.

We begin our exploration of ARLS' performance on imbalanced data with a syn-

thetic benchmark that shows the resilience of our risk to data imbalances. The "Cir-

cles" dataset, shown in Figure 4-9(a) simulates a heavy data imbalance in which there

are 100 times more negative examples than positive ones. Performance is measured

on a separate validation set with equal numbers of positive and negative examples so

that a completely nave classifier will never attain good performance. We use a Gaus-

sian kernel with a width of 1.7 and regularization parameter of 0.2. The validation

error of unweighted ARLS is compared against randomly selection with equilibrating

weights in Figure 4-9. We see that ARLS' point selection scheme is impervious to

the imbalance because it achieves perfect classification after querying approximately

50 data points. However, its error rate increases after 270 data points because its

training set becomes saturated with negative examples. This effect demonstrates the

paradoxical result that, in the absence of weights, ARLS can train on too much data

(a) Circles Dataset (b) Estimated Risk

400 600
Number of Points Queried

(c) Validation Error

Figure 4-9: Top Left: The imbalanced Circles dataset. Top Right: The estimated
risk of unweighted ARLS and weighted random selection. Bottom: The validation
error of unweighted ARLS and weighted random selection. The validation set has
equal proportions of positive and negative samples.

1000

....

0.5 1 1
-- Random]

0.45 - Active

0.4

0.35

0.3

L 0.25

0.2-

0.15 -

0.1

0.05

01
0 200 400 600 800 1000

Number of Points Queried

Figure 4-10: The validation error of weighted, unbiased ARLS on the Circles dataset.
The validation set has equal proportions of positive and negative samples.

so that early stopping is essential. In the limit where ARLS uses the entire training

set, it is identical to unweighted RLS and therefore is expected to misclassify positive

test samples.

Weighted ARLS using a bias corrected risk allows us to combine the intelligence

of ARLS with the corrective weighting scheme of the random method so as to find

relevant points quickly and then remain at a low error. The validation error of

this method on the Circles dataset is shown in Figure 4-10. It reaches near perfect

performance after 50 queries and maintains a zero error rate thereafter. It is worth

noting that this corrected method prefers tighter parameters in that we use a Gaussian

with width 1 and regularization parameter 0.1.

Finally, we apply weighted, bias corrected ARLS to the MAGIC data set when

we use 10 times more examples of background noise than gamma signals and a to-

tal of 1300 training points. Similarly to our synthetic trials, the imbalanced data

favors tighter parameters so that we use a Gaussian width of 1.5 and regularization

parameter of 0.1. We conduct 10 trials that estimate error on a separate validation

set with the original proportions of examples. As usual, Figure 4-11 demonstrates

the estimated risk and validation error as a function of points queried. Error bars on

the active and random selection curves denote one standard deviation.

Active selection outperforms random selection by an even wider margin than in

400-
0.35

2 300- -

0.3

U'j 200-

0.25 -1
100-

0.2 - - - -- 0

-100~0 200 400 600 800 1000 0 200 400 600 800 1000
Number of Points Queried Number of Points Queried

(a) Validation Error (b) Estimated Risk

Figure 4-11: Left: The validation error of weighted, unbiased ARLS when trained on
an imbalanced MAGIC dataset. The validation set is balanced and error bars denote
1 standard deviation. Right: The estimated risk on the training set.

the balanced case. The former manages to reach near optimal performance after

approximately 200 queries, which the latter attains only after querying nearly all of

the training data. It is also interesting to note that the estimated risk reaches a

minimum at around 600 queries. While the risk still overestimates the number of

points that should be queried, it does not mislead the user into querying all of them

as in the balanced case. Moreover, the minimum of the risk curve approximately

corresponds to the number of queries where the error stops improving even marginally.

In conclusion, ARLS is useful in reducing the number of labeled points needed

to train a classifier. The algorithm can be adapted to use weights and is therefore

applicable to imbalanced data. Its selection scheme gives it a significant advantage

over random selection under such adverse conditions, making it particularly applicable

to one vs. all multiclass regimes. Sadly, the algorithm's risk estimate does not appear

to be a reliable indicator of when to stop querying, so alternative methods should be

used to decide this.

Trial 1 Trial 2 Trial 3

Accuray Training Accuracy Training Accuracy Training
Time Time Time

WRLS
A 0.4 64.73 0:01:59 63.05 0:02:00 63.59 0:01:58

RLS
A0.4 62.46 0:00:22 61.84 0:00:20 62.26 0:00:20

SVM 62.67 2:27:48 61.75 2:35:50 62.45 2:34:20
WRLS

A Auto 60.75 - 59.45 - 59.20 -

RLS
A Auto 54.41 - 52.28 - 52.08

Table 4.1: Accuracy and processing time of weighted RLS (WRLS) and unweighted
RLS on Caltech 101 using different regularization settings.

Chapter 5

Conclusion

We conclude by summarizing our findings and relating them to the three stages of

the classification pipeline:

1. An effective classification system should work to minimize the amount of la-

beled training data it needs. We address this requirement by deriving an active

learning extension of RLS that queries the user for the labels of particularly rel-

evant points. The algorithm greedily minimizes a risk estimate of its unlabelled

training data and incorporates new labels in an efficient, online fashion. We

demonstrate that our algorithm is particularly adept to handling imbalanced

data because of its intelligent selection scheme.

2. Real world data is multiclass and inherently noisy and imbalanced. A viable

classifier must handle these issues but also be fast and easy to train. We derive a

weighted version of RLS that successfully counters imbalanced data and affords

a fast way to estimate the LOO error. This result allows for automatic tuning

of the classifier's regularization parameter. Weighted RLS' performance and

training time in a one vs. all multiclass regime on the Caltech 101 dataset

makes it an excellent candidate for our classification system.

3. Finally, it is necessary to estimate an accurate confidence score along with a

classifier's prediction. We demonstrate two fast methods for doing this that

work well in multiclass regimes. Indeed, RLS' soft predications ultimately con-

verge to the probability of class membership and are good confidence scores by

themselves.

Appendix A

Appendix

A.1 Equivalence of Reweighting and Point Dupli-

cation

We assume the usual RLS setting in which we are given a training set consisting

of n points and their corresponding labels X, y. Suppose that we try to fix a data

imbalance by double counting some points in the RLS solution, so that we deal with

neff > n points. The RLS objective becomes

1 nfeff

min n (f Xi) - yi)2 + ||f|112(A.1)
fEWK Zneff =

The Representer Theorem allows us to express the RLS solution as a linear combina-

tion of kernels that reuse any duplicated points from the training set:

neff

f() = cik(xi,.) (A.2)
i=1

In addition, the RKHS norm is given by

neff neff

|f|I = cic k(i, xj) (A.3)
i=1 j1 i

Note that the above indicates that if xi = zy, i f ,then ci = cj. To see this, fix

some point xj for which we have t > 1 copies with indices H = {i = z}. The

Representer theorem allows us to represent f as

neff neff

f(-) = ck(xi, -) + E cik(xj,.) - = E cik(xi, -) + k(xj,-) ci
i=1,iVH iEH i=1,ivH iEH

(A.4)

Treating H as an index vector, we see that for any cH C 'Rf such that EEHci = d,

f remains the same function. However, the norm of f depends quadratically on cH

so it follows that the optimal f has all of the components of CH equal to each other.

Using this property, our norm collapses to

n n

||If I |= >3 nicinxck(zi,) = (Nc)TK(Nc)
i=1 j=1

(A.5)

where N is a diagonal matriz and Nii E Z+ is the number of copies of x we wish to

use. Our loss becomes

neff

f () - y)2
nff neneff 2

n n 2

i=1 j=1

(KNc - y)T N(KNc - y) = (KNc - Y)T (NKNc - Ny)

SCT NKNKNc - cTNKNy - yTNKNc + yTNy (A.6)

Thus, the objective we wish to minimize is

1A
J(c) = (cT NKNKNc - cT NKNy -- yTNKNc + yTNy) = -cT NKNc (A.7)

2neff 2

Taking derivatives and setting equal to 0, we find

8J 1- =--(NKNKNc - NKNy) + ANKNc
ac neff

- (KNc - y) + neff Ac = 0

- (KN + neff Al)c = (K + nff AN 1)Nc

-+ c = N-1(K + neff AN- 1) - 1y N-1 (AK + Al)- 1Ay

where Aii = . Next, note that
nef f

neff

f(x) Zcik(xi,x)
i=1i

n

(nicik(xi, x) k(x, X)Nc

(A.9)

This last form matches our results from 3.1.1.2, and hence reweighting and duplicating

points are equivalent.

A.2 Weighted RLS and Leave One Out Error Deriva-

tion

Suppose that we wish to solve a weighted version of the RLS problem:

(A.10)

where ai > 0 and j_ ai = 1. The Representer Theorem allows us to express the

minimizer of the above a

(A.11)f (.) = Z cj k(xj, -)

So that our minimization problem can be written as

(A.8)

k(x, X)(AK + AI)-Ay

n

J(f) = a (yj - f(xA)) 2 +-Aflflf
i=1

J(c) = (y - Kc)TA(y - Kc) + ACTKc

where A is a positive definite diagonal matrix. Let W

z = Wy

M = WKW

d = W-'c

A so that we can define

(A.13)

(A.14)

(A. 15)

Our minimization problem becomes

J(c) = (y - Kc)TWTW(y - Kc) + AcTW- WKWW- 1c

= (z - Md)T(z - Md) + AdTMd

J(d) = (z - Md)T(z - Md) + AdT Md

(A.16)

(A.17)

Noting that M must be symmetric and positive semidefinite, it is a valid kernel matrix

and we can use the standard results for the RLS solution to obtain that

- d = (M + AI)-1z = G-1z (A. 18)

G = M + AI

c = WG- 1z

(A.19)

(A.20)

Next, we find a convenient and fast method to find the leave one out crossvalidation

error. A few definitions will be useful. Let fst be the classifier we get from training

on all points except x, and let c' be its associated parameters. Furthermore, define

(A.12)

y = (A.21)

I si (xi) i

z = Wyi (A.22)

As [21] demonstrates, it turns out that fsi is the same as the function we would get

by training on all input points using y' for labels. To see why, let fR be the classifier

we get by training on all points using labels

Yj Yj(A.23)

so that fR(xi) - Yj = 0. Assuming A > 0, Corollary A.4.1 shows that the coefficients

of fR are given by

CR=A Y-fR(X) (A.24)
A

It follows that c= 0 so that xi does not play a role in either the squared loss or

the regularization term. As such, training fR is equivalent to training over all points

but x, and we know the minimizer of this problem to be fsi. Hence, fR - fsi and

fR(X,) = yi.

We can use the close resemblance between our original problem and that of finding

fsi to save on computation. Note that

fs(xi) = (Kc) = (KWG-z)i = (MG 1z)j (A.25)
Wi

So that the difference between our original and leave one out classifier is

fsi(xi) - fs(xi) = Y(MG-1)jj(z - zj)
Wt j=1

= (MG-l)ii(y' - yi)

fse(zi)(1 - (MG- 1)jj) = fs(xi) - (MG- 1)jjyj

fsi(x) =fs(xi) - (MG ')jjyj
1 - (MG-1)ii

The unweighted leave one out error is given by

yi - fsi (Xi)
fs(xi) - (MG- 1)iiyi

= - 1 - (MG-1 ii

yi - (MG-')iiyi - fs(xi) + (MG-1)jjyj
1 - (MG-1);i

yi - fs(xi)
1 - (MG-1)i

At this point a simple lemma will help simplify our calculations.

Lemma A.2.1

L - MG'1L = AG- 1L

Proof

MG 1 = M(M + Al)- 1 (M + Al - AI)(M + AI)- 1

= I - AG--

L - MG-L = (I - MG- 1)L = AG-L

Using our lemma,

yi - fs~i) =- - (MG-1 z)j _ (z - MG-1 z)j _ A(G- 1 z)j

Wi Wi Wi

1 - (MG- 1)ii = (I - MG-1)ii = A(G-1)ij

(A.26)

(A.27)

(A.28)

(A.29)

(A.30)

di

wi
(A.31)

(A.32)

Our unweighted leave one error for all points is thus given by

d C
LE Wdiag(G- 1) W 2diag(G-1)

Where division is performed element-wise and diag(G-1) is a

diagonal elements of G- 1 .

In the way of error statistics we may wish to calculate:

1. The weighted leave one out squared error is given by

LS = LT ALE

column vector of the

(A.34)

2. The misclassification error requires the leave one out values, which can be com-

puted by

Ly = y - LE (A.35)

3. The weighted empirical squared error is given by

RSQ = (y - Kc)TA(y - Kc)

z - Md = z - MG-1z = AGz

RSQ - A 2 dTd - A2 CT A- 1c

(z - Md)T(z - Md) (A.36)

(A.37)

(A.38)

4. Finally, the empirical misclassification error requires calculating

Kc = y - y + Kc = y - W- 1(z - MG- 1z) = y - AW- 1d

= y - AA- 1 c

(A.33)

(A.39)

A.3 Weighted Offset RLS and Leave One Out Er-

ror Derivation

Suppose that in addition to weighting we also use an unpenalized offset parameter b.

In this case our optimization problem minimizes

n

J(f, b) a (yi - f (xi) - b)2 +A||f||12
i=1

(A.40)

The Representer Theorem again allows us to express J as a quadratic matrix problem

J(c, b) = (y - Kc - b)TA

Making the usual definitions of W = A2, z

(y - Kc - bi) + ACTKc (A.41)

Wy, M = WKW, d = W'1c we get

J(d, b) =(z - Md - biv)T(z - Md - bw) + AdTMd

=zz z - bzTw - dTMz + dTMMd

+ bdTMw - bwTz + bwT Md + b2 wTw + AdTMd

=z z + dTMMd + b2 wTw - 2dTMz

- 2bwTz + 2bdTMw + AdTMd

Next, we take derivatives and set equal to 0 to solve for b and d

1 DJ(d, b)
0 -2 ad = MMd - Mz + bMw + AMd

- MMd+ AMd = Mz -bMw

-+ (M + AI)d = z - bw

The optimal d is thus given by

d = (M + Al)-'(z -- bw) = G-'(z - bw)

(A.42)

(A.43)

(A.44)

We can also differentiate to solve for b.

1 J(d, b) bwTw -wz + dTMw2 b

= bwTw - wTz + wTMG-1(z - bw)

b(wTw -wTMG-1w) = wz -wTMG-z (A.45)

Defining r = G- 1w, the solution to b is

wT(I - AG- 1)z _ zT G-lw zTr

wT(I - MG- 1)w wTG-1w wTr

We can use our earlier reasoning to quickly calculate the leave one out error. Again,

let fsi be the classifier we get from training on all training points except Xj, and let

ci and bi be its associated parameters. Furthermore, define

y (= x2 (A.47)
fsi (Xi) I=

z = Wyi (A.48)

Note that this time our definition of fs is complicated by the addition of b. However,

our proof that fsi is equivalent to training over all points using labels yi remains the

same. Writing out fsi explicitly, we get

fs(xi) (Kc)i + b - (Md)i + b (MG- (z - bw))+
Wi Wi

(MG-z)~ b
_A z + -(wi - (MG- 1w)) (A.49)

Wi Wi

We can use Lemma A.2.1 to simplify the above:

wi - (MG-1w)i = (w - MG--w)i = Ar

-4 fs(xi) = + -- ri
Wi Wi

Taking the difference of values on xi we get

fsi (Xi) - fs(Xi) = (
M 1(M

which can be simplified by noting that

-(M
Wi

zT r (Zi - z)Tr

wTr wTr

G- 1)j(wifsi(x) - z)

(wifs(X) -z r A.53)
wTr

A 2

Wi W r

= ((MG-)ii + (fs (Xi) - yi)

Solving for fsi(xi), we get

fsi(xi) (I - (MG-)i -
AF>2
wTr) fs(xi) - ((MG-l)i

fs (x) =

Next, the leave one out error affords further simplifications:

(A.50)

(A.51)

1 () - b
)i Z - zj) + -r (b' - b) (A.52)

bi b z Tr

wTr

Hence,

fsi(Xi) - fs(Xi)

(A.54)

+ 2)
+

fs(xi) - ((MG-1)i, + Ar2) yj
r2

1 - (MG-1)jj -r
w~r

(A.55)

yi - fsi (xi) = yi -

fs(xi) - ((MG-1) +)

1r
2

1 (MG- 1)..

y - ((MG-1)i + yr) yi - fs(xi) + ((MG-1)ii + yi

1 - (MG-1)ii - WTr

yi - fs(xi)
Ar'

1 - (MG- 1)ii - _

The numerator can be simplified by

yi - fs(xi) =
(MG- 1z)j

yi - _ _ _ _

Ab-- r
Wi Wi

z- (MG-1 z)j - Abri

Wi

zi - (MG- z)i - Abri = ((I - MG- 1)z - Abr)i A(G- z - bG-1 w)i Adi (A.58)

Combining our results,

yi - fsd(xi) '"nkt (A .59)

so that the unweighted leave one out error for all points is

(A.60)
W (diag(G 1) -r*r W 2 (diag(G-1) - _)

where division and * are performed element-wise.

Finally, we consider the 4 kinds of error statistics we may wish to estimate:

1. The weighted leave one out squared error is given by

LS = L TALE (A.61)

2. The leave one out misclassification error requires the leave one out values, which

are

LV = y - LE (A.62)

(A.56)

(A.57)

3. The weighted empirical squared can be calculated via

RSQ = (y - Kc - b)T A(y - Kc - b)

= (z - Md - bw) T (z - Md - bw)

z - Md - bw = z - MG- 1 (z - bw) - bw

= z - MG- 1z - b(w - MG-1'w)

= AG-1z - AbG--w = Ad = AW-1c

RSQ - 2CT A-'c

(A.63)

(A.64)

(A.65)

4. Finally, the empirical misclassification error requires calculation of Kc + b:

Kc+ b= y - y +Kc+ b= y - (y - Kc - b) = y - AA- 1c (A.66)

A.4 Active Learning Update Theorems

Let X be a pool of points and L an index set such that XL C X is a subset

for which we know extra information, encoded in a |LI dimensional column vector

aL. Furthermore, suppose that we are given a kernel k, regularization parameter

A, and diagonal weight matrix WL which we use to form an approximate inverse

GL1 = (k(XL, XL) + AWL)-1. We can propagate our knowledge of aL to all of X via

bL = k(X,XL)G-laL (A.67)

Consider updating bL to bL+{i so that it includes new information, aj, about some

xi (XL which is in our original pool. Rather than computing G-' we would like

to reuse our work done in calculating bL. Theorem A.4.1 shows how to perform this

update with minimal computation.

Theorem A.4.1 Suppose we are in a scenario as described above. Then

bL+{i L -L - K(xi, X))T

VL = K(X, XL)GLZK(XL, X)

m = K(x , xi) + AW -i

Proof Let z = G7LK(XL, xi), then by the Matrix Inversion Lemma,

) K(X,xi)

G
K(X, xi) I

SK(X, XL)GLi aL +

bL i - ai(VL - K(X, Xi))T

G-1 + zzL m
ZT

z i aL
m1 ai

m L

iaL + -L(zT aL - ai)

ZTaL -ai

(A-71)

(A.72)

(A.73)

We also derive a corollary from Lemma A.2.1 that is useful for online and active

learning.

Corollary A.4.2 Suppose that we wish to compute some vector c = GL(p - qL) and

we are given d = K(X, XL)GL1 (p - q) + qL. Then

dL = K(XL, XL)GL1 (p - qL)

= p - q - AWLGil(p - qL) + qL = p - AWLC

c = (WL) p dL
AN

(A.74)

(A.75)

(A.68)

(A.69)

(A.70)

bL+{I - [K(X, XL

[K(X, XL)

(K(X, XL)Z - K(X, x)) zTaL- ai)

80

Bibliography

[1] Baldassarre, Rosasco, Barla, and Verri. Multi-output learning via spectral filter-

ing. Preprint, 2010.

[2] Alina Beygelzimer, Sanjoy Dasgupta, and John Langford. Importance weighted

active learning. Proceedings of the International Conference on Machine Learning
(ICML), pages 49-56, 2009.

[3] Olivier Bousquet and Andr6 Elisseeff. Stability and generalization. Journal of
Machine Learning Research, pages 499-526, 2002.

[4] Cucker and Smale. On the mathematical foundations of learning. Bulletin of the
American Mathematical Society, 2002.

[5] Sanjoy Dasgupta, Daniel Hsu, and Claire Monteleoni. A general agnostic active

learning algorithm. Advances in Neural Information Processing Systems (NIPS),
20, 2007.

[6] Sanjoy Dasgupta, Adam Tauman Kalai, and Claire Monteleoni. Analysis of

perceptron-based active learning. Journal of Machine Learning Research, 2009.

[7] Luc Devroye, L~zl6 Gy6rfi, and Gibor Lugosi. A Probabilistic Theory of Pattern
Recognition, volume 31 of Applications of Mathematics. Springer, New York,
1996.

[8] Theodoros Evgeniou, Massimiliano Pontil, and Tomaso Poggio. Regularization

networks and support vector machines. Advances in Computational Mathematics,
1999.

[9] Yoav Freund, H. Sebastian Seung, Eli Shamir, and Naftali Tishby. Selective
sampling using the query by committee algorithm. Machine Learning, 28:7138-
168, 1997.

[10] J. Haupt, R. Castro, and R. Nowak. Distilled sensing: Adaptive sensing for

sparse detection and estimation. submitted, 2010.

[11] Jarvis Haupt, Rui Castro, and Robert Nowak. Distilled sensing: Adaptive sam-

pling for sparse detection and estimation. Al and Statistics (AISTATS), 2009.

[12] The MathWorks Inc. Matlab, 2010.

[13] Donald E. Knuth. Seminumerical Algorithms. Addison-Wesley, 1981.

[14] Daphne Koller and Nir Friedman. Probabilistic Graphical Models. The MIT
Press, Cambridge, Massachusetts, 2009.

[15] A. N. Kolmogorov and S. V. Fomin. Elements of the Theory of Functions and
Functional Analysis. Addison-Dover Publications, Inc., Mineola, New York,
1957.

[16] Jim Mutch, Ulf Knoblich, and Tomaso Poggio. Cns: a gpu-based framework for
simulating cortically-organized networks. MIT-CSA IL- TR-2010-013, CBCL-286,
2010.

[17] Jim Mutch and David G. Lowe. Object class recognition and localization using
sparse features with limited receptive fields. International Journal of Computer
Vision (IJCV), 80:45-57, 2008.

[18] John Platt. Advances in Large Margin Classifiers. MIT Press, 1999.

[19] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for
Machine Learning. The MIT Press, Cambridge, Massachusett, 2006.

[20] Stefan Rniping. A simple method for estimating conditional probabilities for
svms, 2004.

[21] Rifkin. Everything old is new again: A fresh look at historical approaches in
machine learning. PhD thesis, Massachusetts Institute of Technology, 2002.

[22] R. Rifkin and R. A. Lippert. Notes on regularized least-squares. AI Technical
Report, 268, 2002.

[23] Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 1958.

[24] Bernhard Sch6lkopf and Alexander J. Smola. Learning with Kernels. The MIT
Press, Cambridge, Massachusetts, 2002.

[25] Thomas Serre, Lior Wolf, Stanley Bileschi, Maximilian Riesenhuber, and Tomaso
Poggio. Robust object recognition with cortex-like mechanisms. IEEE Transac-
tions on Pattern Analysis and Machine, 29, 2007.

[26] H. S. Seung, M. Opper, and H. Sompolinksy. Query by committee. Proceedings
of the fifth annual workshop on Computational Learning Theory, 1992.

[27] Simon Tong and Daphne Koller. Support vector machine active learning with
applications to text classification. Journal of Machine Learning Research, pages
45-66, 2001.

[28] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.

[29] Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. Combining active learn-
ing and semi-supervised learning using gaussian fields and harmonic functions.
Proceedings of the International Conference on Machine Learning (ICML), 2003.

