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Abstract

This thesis presents new methods for exploring data using visualization techniques.
The first part of the thesis develops a procedure for visualizing the sampling

variability of a plot. The motivation behind this development is that reporting a
single plot of a sample of data without a description of its sampling variability can be
uninformative and misleading in the same way that reporting a sample mean without
a confidence interval can be.

Next, the thesis develops a method for simplifying large scatterplot matrices, using
similar techniques as the above procedure. The second part of the thesis introduces
a new diagnostic method for regression called backward selection search. Backward
selection search identifies a relevant feature set and a set of influential observations
with good accuracy, given the difficulty of the problem, and additionally provides
a description, in the form of a set of plots, of how the regression inferences would
be affected with other model choices, which are close to optimal. This description
is useful, because an observation, that one analyst identifies as an outlier, could
be identified as the most important observation in the data set by another analyst.
The key idea behind backward selection search has implications for methodology
improvements beyond the realm of visualization. This is described following the
presentation of backward selection search.

Real and simulated examples, provided throughout the thesis, demonstrate that
the methods developed in the first part of the thesis will improve the effectiveness
and validity of data visualization, while the methods developed in the second half of
the thesis will improve analysts' abilities to select robust models.

Thesis Supervisor: Roy E. Welsch
Title: Eastman Kodak Leaders for Global Operations Professor of Management
Professor of Statistics and Engineering Systems
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Chapter 1

Introduction

1.1 Overview

This thesis introduces new procedures for visualizing data and diagnosing regression

models. The advances in visualization will enable analysts to apply their own intuition

to the data analysis process more effectively. Meanwhile, the advances in diagnostic

methods will help analysts understand the extent to which small groups of variables

and observations affect the inferences they make in regression. This will allow them

to better select a final informative model, or a good set of models, depending on their

motives. In the rest of this chapter, we provide a brief motivation and description of

the specific methodology we develop in this thesis. We then outline the organization

of the rest of the thesis.

1.2 Research Motivation and Description

In this section, we begin by describing the motivation for data visualization in general.

We then describe the specific motivations and descriptions of the visualization and

regression diagnostic methods we develop in this thesis.



1.2.1 Data Visualization in General

Data visualization is widely known to be extremely useful for several reasons. Below

are a few of the several reasons why data visualization is an important part of data

analysis:

" The "garbage in, garbage out" principal holds in statistics. If the data are

erroneous, a statistician who analyzes the data and doesn't take this into ac-

count will report garbage, no matter how sophisticated his analysis techniques

are. Visualization is a great way to identify garbage and will often reveal a

surprising structure the analyst would have otherwise not taken into account.

" Data visualization can be a more intuitive summary of data than many statisti-

cal methods and can be much easier for the nonstatistician to analyze. This not

only makes it a useful tool for presentation and communication, but also makes

it a useful tool for combining domain knowledge and intuition with knowledge

emerging from data

" Data visualization can indicate which transformations one would need to under-

take in order to use a desired model and can often be used to indicate whether

any sort of model should be used in the first place.

Data visualization spans several fields of study and has an extensive literature

base. For a general overview of many of the successful visualization methods as well

as some of the state-of-the-art methods, see, for instance, [66].

1.2.2 Data Visualization Methods in this Thesis

As mentioned above, data visualization is widely known to be an important area for

development and extensive work has been conducted to create new methods and im-

prove existing ones. Nevertheless, there is still room for improvement. In particular:

1. Most current plotting methods merely plot the data as is, and do not take into

account the fact that the data itself is a "random" sample, and therefore encapsu-

lates some uncertainty, and 2. Methods for plotting data with many variables can be



improved; current methods for plotting multivariate data either lack interpretability

or force the interpreter to concentrate on many things simultaneously. These three

points are elaborated on below.

Describing the Sampling Variability of a Plot

The first area which needs to be further developed in visualization is the description

of the sampling variability of a plot.

The data sets that analysts study are typically random samples from larger pop-

ulations. Therefore, plots of these data sets depict the sample of data, but do not

necessarily depict the larger population. In fact, if the sample size is small enough,

the plot for the population could look completely different.

Figure 1-1, which shows four data sets drawn from the same population, illustrates

our point. An analyst would only be given one of these four data sets; yet, if he

were to rely only on the scatter plot of the data he was given to begin constructing

models and making inferences, he would conclude very different things, depending on

which one of the four data sets he had. In the case of the upper left scatter plot,

he may conclude positive correlation. In the upper right scatter plot, he may infer

nonlinearity. Meanwhile, in the bottom two scatter plots, he may respectively infer

a negative correlation and a positive correlation with some outliers.

This caveat exists for any report that arises from a data set and hence, confidence

intervals are typically reported for various summary statistics like the sample mean,

in order to describe their sampling variability. This thesis proposes a new method

to extend the idea and implementation of the confidence interval to describe a plot's

sampling variability. The method works by using bootstrap methods to generate

several plots, which could have arisen if the data had been sampled differently from

the population, and then conveying the information given in the collection of plots

by carefully selecting a few representative plots in the subset.
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Large Scatterplot Matrices

The other area, for which improvements would be helpful, is the visualization of high-

dimensional data. Many methods currently exist for visualizing high-dimensional data

(Chapter 3 mentions several of these), though each has its own limitation, whether

it's oversimplification in some sense, undersimplification, or lack of interpretability.

The scatterplot matrix is one effective method for displaying high-dimensional data.

This method creates a grid of scatter plots and at cell (i, J), plots variable i against

variable j. Nevertheless, even scatterplot matrices become too complicated after a

given number of variables. See, for instance, Figure 1-2 for a scatterplot matrix of a

the first 20 variables of a finance data set with 50 variables, which shows the daily

returns of a set of stocks.

In this thesis, we propose a method for simplifying large scatterplot matrices,



based on the observation that a few characteristic images often summarize all the

images seen in a scatterplot matrix. The method developed in this paper converts

a k x k scatterplot matrix into a smaller 1 x 1 scatterplot matrix where 1 < k, each

of the 1 labels represents a set of variables rather than a single variable, and each

cell exhibits a set of similar images rather than a single image. The idea behind the

method is that if it is the case that all images in the scatterplot matrix are small vari-

ations on a small set of characteristic images, then simplifying the scatterplot matrix

by exhibiting only those characteristic scatter plots wouldn't take away much infor-

mation from the display. Our method uses heirarchical clustering to merge variables

together and scatter plot distance measures to represent the diversity of variations

on a characteristic image for a given cell.

Our method certainly doesn't solve the difficult problem of visualizing multivariate

data by itself, and our method alone could very well miss important properties of a

data set. However, like most visualization methods, it can be used in conjunction

with other visualization methods.

1.2.3 Diagnostic Methods for Regression in this Thesis

Figures 1-3 and 1-4 provide a good motivation for both diagnostic methods in re-

gression. Figure 1-3, a data set known as Anscombe's Quartet [2], displays four very

different data sets which clearly should not be analyzed the same way. Figure 1-4,

however, shows that when linear regression is applied to each of the four data sets,

not only are the regression lines the same, but the detailed reports outputted by a

typical statistical package (which includes an ANOVA analysis, R2 , and coefficient

hypothesis tests) are completely identical!

The example these figures depict is naturally contrived, but clearly demonstrates

the need to look more carefully at the data we are analyzing. It is this need, which

diagnostic methods attempt to fulfill. Diagnostic methods provide reports that dis-

play the influence of data characteristics, such as influential observations, outliers,

and collinearity (variables that are excessively correlated), on regression inferences.

These reports, unlike the simple plots in the above figures, can generalize to cases
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with many explanatory variables. They are, however, difficult to produce for several

reasons.

One reason, for instance, is that the presence of each of the characteristics we wish

to measure influences our attempt to measure the others. We give a more thorough

account of this in Chapter 4, but the plot of X4 vs Y4 shows a glimpse of this

problem itself. The point in the upper right quadrant of the graph defines the entire

relationship and is the reason why X4 and Y4 are perceived to be related. Hence, it

would be valuable to discover and document this fact. However, if one ran a linear

regression on this data set, the residual of the point would be zero, and so it would

not be perceived to be an outlier. Here, the presence of an outlier actually influences

our attempt to diagnose it as an outlier.

Forward Search [6] is a recently developed state-of-the-art method, which runs an

algorithm through the data set of interest and plots certain measures as the algorithm

progresses. The output is a plot, which highlights the effect of individual data points

on the regression inference. By using bootstrap sampling, one can also figure out the

variability of this plot.

In this thesis, we will extend this method to address not only observation-related

diagnostics, but also feature-related diagnostics, by adding a feature selection com-

ponent to the algorithm.

Forward search, as is, starts with a certain set of points, labeled "clean" points

and at each step, increases the size of the set of "clean" points by one. Our algo-

rithm, which we call backward selection search, instead augments the design matrix

by appending an identity matrix to the right of the original design matrix, and per-

forms backward selection (greedy, one-at-a-time feature elimination). Eliminating a

feature of the original design matrix is equivalent to increasing the size of the set

of "irrelevant" features by one, and eliminating a feature of the appended matrix is

equivalent to increasing the size of the set of "clean" points by one. Hence, the result

of our algorithm is an extension of forward search to simultaneous feature selection

and outlier detection, as well as a new method for robust model selection.

The idea for our algorithm also opens the door for other developments. First of



all, we can easily incorporate prior knowledge and constraints into the algorithm. Ad-

ditionally, the idea behind the algorithm implies a general methodology for detecting

outliers in multivariate data (rather than merely regression data) via multivariate

linear model feature selection methods on an augmented matrix.

1.3 Organization of the Thesis

The rest of this thesis is organized as follows: Chapter 2 describes the method for

visualizing the sampling variability of plots, Chapter 3 describes the method for

simplifying scatterplot matrices, Chapter 4 describes backward selection search, and

finally, Chapter 5 concludes and discusses directions for future work.



Chapter 2

Visualizing the Sampling

Variability of Plots

In this chapter, we give a fuller account for the general method for providing a de-

scription of the sampling variability of a plot of data, which was sketched out in the

introduction.

As mentioned in the introduction, the data sets statisticians analyze are samples

from larger populations of interest in many cases. Therefore, when a plot is made

of a given data set, it must be understood that the plot could have looked entirely

different if the data had been a different sample from the population of interest. This

caveat exists for any report that arises from a data set, and hence confidence intervals

are typically reported for various summary statistics like the sample mean, in order to

describe their sampling variability. The goal of this chapter is to extend the idea and

implementation of the confidence interval to describe a plot's sampling variability.

In the frequentist realm, this makes plots more valid as inferential tools. Mean-

while, in the Bayesian realm where the data is fixed, the procedures for conveying

the information given in several plots through a few representative plots can help

verify models by indicating if the data are a reasonable draw from the posterior, and

indicating the way that the data differs if they are not a reasonable draw from the

posterior.

As will be further discussed in the literature review, attempts have been made



to do this for certain specific types of plots. These methods typically involve resam-

pling from the data (via bootstrap methodology) and then overlaying the bootstrap

samples on top of each other. The key limitation of previous literature is that the

methods don't apply to some of the plots which are most often used in practice such

as histograms, scatter plots, and scatterplot matrices. Indeed, many common plots

can not be sensibly drawn on top of each other. In this chapter, we aim to produce a

method which works even when it is not possible to overlay plots on top of each other

and where the bootstrap samples represented are chosen in a somewhat systematic

manner.

We create and represent the confidence interval in three steps, which we describe in

more detail in section 2.2. The first step involves taking k (a large number) bootstrap

samples from the data set and creating plots of each of these samples. The second

step involves computing distances between each scatter plot pair, and letting the

envelope consist of the (1 - a) x k plots which are most similar to a central plot,

where (1 - a) is an approximate confidence level between 0 and 1. Lastly, the final

step consists of representing the many plots in this envelope. In section 2.2, a few

informative methods for doing this are proposed.

The method includes the capacity to incorporate distributional assumptions and

can be implemented for a large variety of plots. We focus on the method as it relates

to the case of a scatter plot. However, we also present extensions to other types of

plots.

The rest of this chapter is organized as follows: Section 2.1 provides a literature

review. Section 2.2 describes our method more thoroughly. Section 2.3 provides a few

illustrations. Lastly, Section 2.4 concludes with a discussion about the contributions

of this paper and the directions for future research.

2.1 Literature Review

This section presents background material and related literature. The background

material discusses bootstrap procedures and the Earth Mover's Distance. Bootstrap



procedures are related to our method because we use them to complete the first step,

and because reasonably similar work has been done with them. The Earth Mover's

Distance is a distance measure between histograms. We cover this below because we

view scatter plots as bivariate histograms and use the Earth Mover's Distance to find

the distance between two scatter plots.

2.1.1 Background

Bootstrap Procedures

Bootstrap procedures were introduced in [14] and have been used extensively since

then to estimate standard errors, confidence intervals, and sampling distributions for

statistics of interest, in cases where analytical methods would be too cumbersome. A

thorough review of the bootstrap procedure is given in [15].

A brief description of the procedure is as follows:

1. Assume a distributional form for the population. In the nonparametric case,

the assumed distributional form would be that the population can only take

the n values that the data set takes, and it takes those n values with certain

probabilities.

2. Estimate the parameters for the assumed distributional form, usually by max-

imum likelihood. In the nonparametric case, one gets that the resulting esti-

mated population distribution is the empirical distribution, where the popula-

tion can only take the n values that the data set takes and it takes each of those

with probability I.

3. Draw a large number of samples from the estimated population distribution, and

for each of those samples, compute the statistic of interest. In the nonparametric

case, drawing samples from the estimated population distribution corresponds

to sampling the data with replacement.

The several values that the statistic of interest took in the bootstrap samples



are samples from its approximate sampling distribution and can be used to compute

standard errors, confidence intervals, and to visualize the sampling distribution.

Earth Mover's Distance

The Earth Mover's Distance, introduced in [50], measures the distance between two

histograms (or in the more general case, distributions). It is used frequently in the

field of content based image retrieval.

It is called the Earth Mover's Distance because if each histogram is viewed as a

pile of dirt, the Earth Mover's Distance between the histogram is the minimal cost of

turning one pile of dirt into the other, where the cost is assumed to be the amount

of dirt moved times the distance by which it is moved.

The optimization problem that needs to be solved is a transportation problem: in

particular, an uncapacitated minimum cost flow problem, whose computation time is

O(n 3log(n)), where n is the number of bins in the histogram [35]. There are, however,

approximate solutions whose computation time is linear in n such as in [60).

The Earth Mover's Distance satisfies the properties of a distance metric and has

additional properties, such as an equivalence to Mallow's Distance [39]. Additionally,

it has been shown to have very good empirical performance (in terms of agreeing with

measures of distinction based on the human eye) [58].

2.1.2 Related Literature

With the exception of Gelman (2004) [18], who makes a case for using plots as in-

ferential tools in Bayesian analysis, we are not aware of any literature suggesting the

inferential nature of basic plots. Additionally, we are not aware of any methods for

assessing the sampling variability of plots of the data in its raw form, which is the

focus of this paper. However, various attempts have been made to assess the vari-

ability of plots which evolve from functions of the data. In these cases, the general

procedure is to resample from the data, create several of the plot objects (usually

20-30) and then find a way of representing the plot objects, such that they can be
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Figure 2-1: The bootstrap sampling variability of a loess curve

layered on top of each other.

One well-known example of this is representation of the sampling variability of

the loess curve, a nonparamietric regression curve formed by the data(se[1an

[22] for more details). Figure 2-1 shows an example. Here, the original loesscuv

for the data are plotted in black and the bootstrapped curves were overlaid in red on

the same plot to show the sampling variability of the curves.

This procedure has also been used for the representation of the sampling variability

of classification and regression trees (see [64] for more details). In addition, it has

been used to describe the sampling variability of principal components plots (the

projection of the data onto a plane which describes much of the variation). In these

representations, the projections of various points emerging from different bootstrap

samples are overlayed on top of each other and ellipses are drawn for each observation,

which contain 95% of its realizations [11]). Kiers arid Groenen (2006) [31] note that

this represent ation lacks the ability to detect how different points depend on each

other, and hence created a movie through the representations instead.

Our methodology is related to the literature above, but distinguishes itself in



the types of plots, whose sampling variability it tries to assess. It also assesses and

represents sampling variability in a way, which doesn't force one to restructure the

representation of the plot object so that multiple plot objects can be overlayed on

top of each other, thereby allowing one to generalize to other classes of plots.

2.2 Methodology

In this section, we flesh out the details of the three steps which were outlined in the

introduction in the case of a scatter plot and discuss the incorporation of distributional

assumptions and prior knowledge.

2.2.1 Step 1

In step 1, we take k (a large number) bootstrap samples from our data set and form

a plot with each of these samples, so that k plots are produced. Where n is the

size of the data set, each bootstrap sample is a sample of size n from an estimated

distribution.

This estimated distribution is created by assuming a distributional form for the

data generating process and then estimating the parameters of the distributional

form, usually by maximum likelihood. In the nonparametric bootstrap, the assumed

distributional form is simply discrete with a probability pi that the sample observation

will take the value of observation i in the given data set, and the parameters are

P1,P2, ---, Pn. In the case of no prior knowledge, maximizing the likelihood for the

nonparametric case yields pi = Vi.

If prior knowledge exists, we merely modify our estimate of the distribution pa-

rameter and then proceed as before. The parameter estimate can be modified by

replacing the estimate, which doesn't incorporate prior knowledge, with the posterior

mean or the posterior mode.

As an example, if we were to make no parametric assumptions and impose the

prior knowledge that the mean of the first variable, X 1, is less than or equal to 0.01, we

could solve the following optimization problem in order to give us the posterior mode



when the prior is uniform: max Z>i log(pi) subject to the constraints: Z'l pi = 1,

pi > 0, Vi (in other words, the values pi are valid probabilities), and E_1 piXi < 0.01

(our prior knowledge is imposed), where x1i represents the realization i of variable

X1.

2.2.2 Step 2

In this step, we create a "distance metric", which describes the distance between two

plots. We use the created distance metric to create a k by k matrix of each plot's

distance from each of the other plots. Following this, we define a central plot as

the plot whose summed distances to other plots is minimized. Lastly, we collect the

(1 - a) x k plots which are closest to the central plot and let these be the plots in our

confidence envelope of interest. It is this envelope of plots which we seek to visualize

in the next step.

To find the distance metric between two scatter plots, we treat them as bivariate

histograms, where each point in a scatter plot represents a bar of height 1 in a

bivariate histogram (see Figure 2-2 for a picture of what such a bivariate histogram

with five points would look like). We then use the Earth Mover's Distance, which was

described in the literature review, between histograms to find the distance between

two scatter plots.

The Earth Mover's distance metric is suggested because it is intuitive and has

interesting properties as mentioned in the literature review. In addition, it doesn't

require us to specify what we will be looking at before we see the plot, and it can be

used for both parametric and nonparametric inference. The Earth Mover's distance

metric also has demonstrated good empirical performance in previous literature. We

demonstrate the types of plots the Earth Mover's Distance reports as similar using a

couple of examples in the appendix.

In our case, the Earth Mover's distance simplifies so that one can solve it using an

"Assignment Problem", a class of problems which can be solved very efficiently using,

for instance, the Hungarian Algorithm [36]. The name of the class of problems refers

to its applicability in the case where there are n agents, who need to be assigned to
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Figure 2-2: A bivariate histogram with five points.

n tasks in a way that minimizes the cost emerging from the assignments.

Even computing the Earth Mover's distance via an assignment problem can get

time consuming when n and/or k is large, since k2 computations need to be made.

One remedy to this is to instead view the scatter plot as a regular histogram over

the variable-space shown in the scatter plot, where each bin in the histogram is one

of the squares in a 10 x 10 grid, which partitions the space. In this case, one will

need to solve the usual Earth Mover's distance problem, but the problem size would

never exceed 100 even when there are more data points, because the Earth Mover's

distance's complexity is a function of the number of bins, rather than the number of

data points.

In order to find the distance between other types of plots in general, the distance

metric needs to be modified. However, the Earth Mover's distance itself generalizes

to several types of plots. As we mentioned, the Earth Mover's distance simplifies

to an "Assignment Problem" in the case of a scatter plot. In one dimension, where

we are finding the distance between histograms with equal bin length, it simplifies

even further to merely sorting two data sets and then finding the summed distance

between the quantiles.



The Earth Mover's distance can also be used to find the distance between plots of

multidimensional data. For parallel coordinate plots, we just compute an assignment

problem, like in the case of scatter plots. For scatterplot matrices, one can merely use

the summed distance between each pair of scatter plots in the matrix. Meanwhile,

for biplots, one can add the distance between the point representations on the two

plots and the distance between the variable representations.

Another interesting case where the Earth Mover's distance can be used is in the

case where certain observations are tagged. This could occur, for instance, in a case

where we would want to visualize two different groups of data and see how they

interact with each other. In this case, one could use the Earth Mover's distance in

exactly the same form as before, but merely change the point-wise distance to include

whether there is a change in whether a point is tagged.

In some cases, such as the box plot and the dendrogram, the Earth Mover's

Distance doesn't directly generalize. However, intuitive distance measures are not

too difficult to develop in those situations. For instance, in the case of a box plot,

an intuitive distance measure is the sum of the distances between the lower quartiles,

the upper quartiles, the lower whiskers, and the upper whiskers of two box plots.

Meanwhile, in the case of the dendrogram, an intuitive distance measure is the sum

of the absolute differences in the heights at which each pair of points is joined into

a cluster. We don't explore these specific plots in this chapter, but do give examples

beyond the case of a scatter plot.

2.2.3 Step 3

In this step, we attempt to represent the multitude of scatter plots in the confidence

envelope. Given that we have distances between each pair of plots, this can be done

in several different ways. In the illustrations given in this chapter, we merely report

the two plots which are farthest from one another for simplicity. This gives a sense

of the "border" of the set of (1 - a) x k plots in the confidence envelope.

Nevertheless, several other summaries exist. A representation of all the plots in

the envelope would. involve ordering them in such a way that the distance between



each plot and the adjacent plots is minimized. The problem of ordering the plots can

be formulated as a case of the traveling salesman problem, an optimization problem

which finds the tour through a given set of cities with the smallest distance (see [38]

for more details). Several heuristics exist, which effectively do this.

Other alternatives include clustering methods and the use of multidimensional

scaling. Clustering methods would cluster the plots based on their distance metric

and then report the plots that correspond the the cluster centers. Multidimensional

scaling, meanwhile, would start with a matrix of object to object dissimilarities (in

this case the objects are plots), and then would assign each object a location in

N-dimensional space. The resulting locations can be displayed graphically to un-

derstand the space of plots. More information about multidimensional scaling can be

found, for instance, in [91

2.3 Illustration

In this section, we apply methodology to four examples involving scatter plots and

two examples involving other types of plots.

2.3.1 Scatter Plot Examples

We apply the methodology on four scatter plot examples in this section in order to

demonstrate the output of the method. In our examples, we use In this example, we

use k = 1000 and a = 5%. Our first illustration uses a sample of 10 points in two

variables and exhibits no relationship. Figure 2-3 shows a scatter plot of the entire

population with the sample filled in.

In order to get a sense of the variability, the two bootstrap plots, in the confidence

envelope of (1 - a) x k plots, which are farthest apart from each other are shown in

Figure 2-4. As mentioned in the figure caption, in this and other plots in the chapter,

a jitter is added, so that one can see each individual point. One will notice that the

two plots appear quite different from each other and the original sample.

We contrast this with an illustration of a case where a scatter plot consists of 40
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Figure 2-3: A scatter plot of a population of 100 observations. A sample data set of
10 observations are filled in.
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Figure 2-4: The sample of 10 points (left) and the two bootstrap sample scatter plots
farthest from each other. A jitter is added, so that multiple points covering the same
space can be seen
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Figure 2-5: A scatter plot of a population of 100 observations. A sample data set of
40 observations are filled in. A jitter is added, so that multiple points covering the
same space can be seen

points and exhibits a clear relationship. Figure 2-5 shows the sample embedded in

the population and Figure 2-6 shows the two bootstrap plots in the envelope which

are farthest apart. In this case, the two scatter plots which are farthest apart still tell

a similar story to each other and to the original plot, in part because of the sample

size, and in part because the relationship is more clear.

In our third and fourth scatter plot example, we illustrate two interesting ways of

using our method for data analysis. Our third example uses the Hertzsprung-Russell

Star Data [57], which is discussed in more detail in Chapter 4. Its plot is shown in

Figure 4-1. The data set consists of four gross outliers that lie to the upper left of

the plot.

Figure 2-7 shows the two extreme plots outputted by our method on this data set.

There is mild variability in the relationship between log light and log temperature,

but the fact that there is a relationship is clear.

In contrast, had one tried to assess the variability of the relationship based on

the correlation coefficient, one would have obtained very different results. Figure 2-8
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Figure 2-6: The sample of 40 points (left) and the two bootstrap sample scatter plots
farthest from each other
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Figure 2-7: The two bootstrap plots farthest from each other.
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Figure 2-8: The bootstrapped sampling variability of correlation.

shows a histogram of the sampling variability of correlation. Note that the standard

error is huge and much of the bulk of the histogram lies below zero. The reason the

correlation behaves this way is that the four outliers to the upper left of the plot

reverse the sign of the correlation between the majority of the points.

In this specific case, an informed statistician could have successfully used robust

correlation to find the variability of the relationship. However, the point of this

illustration is to show that our method has the advantage that one need not specify a

possibly erroneous numeric quantity to understand the relationships in the data and

their variability.

Our fourth example illustrates an entirely different problem in data analysis which

our method enables one to address. Figure 2-9 shows the plot from our example,

which emerges from a microarray data set [12], consisting of 38 observations and

3,051 variables. The plot shows the expressions of two genes (the x and y axes) for

Leukemia patients (in white) and healthy patients (in black).

The plot seems to indicate that two genes very clearly distinguish patients with

Leukemia from healthy patients, but one could argue that a data set consisting of
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Figure 2-9: The expression levels of two genes (the x and y axes) for Leukemia patients
(in white) and healthy patients (in black)

random noise would always contain some pair of variables which exhibited an inter-

esting relationship, if the data set contained enough variables. This is an issue in data

analysis in general, because the plots given in papers are often the most interesting

plots of a group of different plots that were inspected.

In our case, there were 3,051 variables, which implies that about 4.5 million bi-

variate plots could have been considered before this plot was chosen. Hence, the

argument above certainly applies to our data set.

In this illustration, we use our method to inspect whether we should be concerned

about the fact that there were 3,051 variables in the data set.

For a set of 1000 iterations, we permuted the labels, which indicate whether or

not a patient had cancer (this creates a resampled data set that is, for our purposes,

random noise). In each iteration, we use forward selection to select the two variables

which will yield the most interesting plot (we use forward selection because that

was the heuristic which outputted the variables exhibited in the plot in Figure 2-9).

We then used steps 2 and 3 of our method to summarize the plots arising from the
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plot (right), among those in the confidence envelope for the set of plots arising from
the permutation iterations

iterations.

Figure 2-10 shows the output of our method. Indeed, any of the three plots in

the figure would seem to exhibit an interesting relationship if presented on its own.

Hence, it is clear that there is some optimism in Figure 2-9. However, the relationship

in 2-9 still stands out, despite the optimism. Our methodology therefore allows one

to search through several plots to find interesting plots to report while remaining

statistically sound.

It should be noted that our methodology for this illustration was slightly different

than that for the previous illustrations, though the underlying idea is the same.

We used permutation sampling instead of bootstrap sampling for this example and

the distance metric was modified. Since each scatter plot, among those created in

the iterations, represents a different pair of variables, the distance method we used

between two scatter plots first put the scatter plot on the same scale, then made

sure the signs were aligned properly, and then used the Assignment problem with the

constraint that a black point could not be assigned to a white point and visa versa.

2.3.2 Other Examples

In this section, we give two examples outside the realm of the usual scatter plot in

order to demonstrate the versatility of our methodology and to show that for some



plots, even the astute statistician who can eyeball the sampling variability of a typical

plot will struggle to assess the uncertainty of an image.

The data for the first example are simulated from the Barrow Wheel Benchmark

[40], which is a challenging synthetic data set, often used to evaluate robust covariance

estimation methods. It is described more fully in Section 4.5, and Figure 4-14 shows

a plot of the data set when it was generated with 2 variables and 50 observations.

Figure 2-11 shows four plots emerging from this data set, when it was generated

with 6 variables and 50 observations. The plot in the upper left shows the biplot

of the data set. A biplot essentially projects a data set onto the hyperplane defined

its first few principal components. The principal components are the eigenvectors of

the covariance matrix of the data, and the first few principal components define the

hyperplane which explains the most variability of the data. The biplot projects both

the observations and the variables onto this hyperplane and can be used to assess

the structure of the data, as well as the relationship between latent factors, which

characterize the resulting principal components.

We applied our methodology to the biplot, computing the distance only as a func-

tion of the points for simplicity. The upper right of Figure 2-11 shows the central

plot. Meanwhile, the two plots at the bottom show the two extremes. As is shown,

they look completely different from both the original plot and each other. The repre-

sentation of the variables, which would usually suggest their correlation to each other

and their relevance, is also entirely different.

The data in the second example contain 50 industries among the MSCI US Equity

Indices. Returns are daily, beginning 01/03/1995 and ending 02/07/2005. In our

example, we use the first 100 of these days to compute the portfolio weights that

maximize the Sharpe ratio and then apply these portfolio weights for the next 100 days

and plot the histogram of the returns on these days to judge the distribution of future

returns, given the investment strategy. The methodology used to find the portfolio

weights which maximize Sharpe ratio is the methodology proposed by Markowitz,

who initiated the mathematical framework for portfolio optimization [413.

Figure 2-12 demonstrates the sampling variability of such a histogram, due both
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Figure 2-12: The two extremes for return histograms with maximum Sharpe ratio

portfolios

to the sampling variability in the first 100 days used to determine the investment

strategy and the sampling variability of the next 100 dlays. The two histograms in

the figure show the two extreme histograms based on our procedure. Not only is the

variability of the distribution, as represented by the histogram, entirely different, but

the histogram in the right panel is skewed to the left. The analysis demonstrates.

that one must be careful when using the highly variable portfolio weights returned

by portfolio optimization to invest in assets.

2.4 Discussion

In this chapter, we developed a way to visualize the sampling variability of a plot,

which has the capacity to help all data analysts, from the novice analyst without

a statistical background, to the expert statistician who may be able to picture the

variability of a simple plot such as a scatter plot of data, but not the variability

in a more complicated plot such as a biplot. Additionally, although we have not

demonstrated this in the illustration section. our methodology allows an analyst to

make inferences in the reverse direction. If we were interested in a Bayesian paradigm,

we would assume that our data is fixed (and hence does not have sampling variability)

However, we would eventually produce a predictive distribution from the Bayesian



model. In order to test whether our data, which has a finite sample size n strongly

differs from that predictive distribution in some particular way, one would need to

understand what typical samples of size n would look like (the maximum likelihood

sample of size n would be n observations at the mode, which would produce a false

inference). Our methodology provides a way to do that.

This paper opens the door for many future research topics. Such topics include an

analysis of the extent to which incorporating prior knowledge is useful in the frequen-

tist nonparametric bootstrap and an empirical study of the extent to which plots in

the envelope are closer to the population plot than plots outside the envelope. In ad-

dition, there are many limitations and biases that bootstrap methods produce, which

have not been addressed in this paper. One, for instance, is that bias corrections can

produce better bootstrapped confidence intervals for many types of point estimates.

We would expect this to be the case for scatter plots as well.



Chapter 3

Simplifying Large Scatterplot

Matrices

As mentioned in the introduction and demonstrated in Figure 1-2, scatterplot matri-

ces can be notoriously difficult to interpret for high dimensional data, in part because

of the sheer size of the grid they produce, and in part because of the amount of

information they present.

The goal of this chapter is a method for simplifying scatterplot matrices, which

sacrifices some additional information, but in exchange, produces a much smaller

grid. Figure 3-1 depicts the objective of our method. We wish to convert a k x k

scatterplot matrix into a smaller 1 x 1 scatterplot matrix where 1 < k, each of the 1

labels represents a set of variables rather than a single variable, and each cell exhibits

a set of similar images rather than a single image.

The rest of this chapter is organized as follows: Section 3.1 provides a literature

review, Section 3.2 describes the methodology used to simplify the scatter plots,

Section 3.3 provides an illustration on a simulated data set, and Section 3.4 concludes.

3.1 Literature Review

As a review, a scatterplot matrix consists of a square grid of cells, where the cell with

row index i and column index j exhibits a scatter plot of variable i against variable



j. The scatterplot matrix only allows the analyst to view one and two-dimensional

relationships, thus sacrificing the ability to view higher order relationships between

variables. However, the benefit is a display which is much more interpretable than

displays which try to visualize all of the variables simultaneously.

As mentioned before, however, even visualizing a full scatterplot matrix itself

can be cumbersome if the dimensionality is high enough, sacrificing considerable

interpretability. A variety of different methods have been brought forth to address

this, each sacrificing some of the information of a full scatterplot matrix.

One popular methodology is to perform a scatterplot matrix of a few factors which

describe a large part of the variability of the original data. The factors are often

assumed to be the first few principal components of the data matrix (see [28], [34],

[37], [13], [47]). When the factors themselves are interpretable, this can be very useful.

However, in many cases, the principal components from the data set, or other factors

derived as a function of the data set, may not be easily interpretable. Additionally,

in many of these cases, the factors are restricted to be linear combinations of the

variables.

Another interesting methodology is scagnostics (scatterplot diagnostics), intro-

duced in [65] and further developed in [63]. Scagnostics considers a set of character-

istics of a scatter plot, such as whether it's monotonic, whether it's convex, whether

there are outlying points, and etc., and then outputs a scatterplot matrix where each

variable is one of the characteristics and each plot in the original scatterplot matrix

is a point in the scatterplot matrix of characteristics. This method involves the spec-

ification of characteristics and is quite useful when detecting the unusual graphs in a

collection of graphs.

Nevertheless, surprisingly few methods have been brought forth to simplify the

presentation of the scatter plots in the original variables, which is desirable because

the original variables are typically much more interpretable than functions involv-

ing several of them. The methods developed have generally dealt with choosing an

optimal ordering for the variables.

The methods most similar to the remedy suggested in this paper are [27], which
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Figure 3-1: The process of simplifying a scatterplot matrix

tries to order the variables so that the most interesting panels are placed in prominent

positions near the diagonal, and [1], which attempts to place similar variables close to

each other in related displays. These methods can simplify the display considerably

without sacrificing additional information, but in many cases, the sheer size of a

scatterplot matrix can still make these methods of limited use.

The idea behind the method is that if it is the case that all images in the scatterplot

matrix are small variations on a small set of characteristic images, then simplifying

the scatterplot matrix by exhibiting only those characteristic plots wouldn't take away

much information from the display. Our method includes the capacity to incorporate

some types of domain knowledge (such as which variables should and should not be

in the same cluster) and has the ability to display its own sampling variability.

3.2 Methodology

Let k be the number of variables in the data set and I < k be the desired length

and width of the grid in the simplified scatterplot matrix. The larger 1 is, the less

A



information is lost, but the more difficult the display is to interpret. Our method

first determines how exactly clusters of plots of the k x k scatterplot matrix should

be placed into the cells of the 1 x 1 grid, and then determines how the multitude

of plots in a single cell of the 1 x 1 grid should be expressed. Our method has the

capacity of incorporating certain types of domain knowledge as well as the capacity

to incorporate the sampling uncertainty of the data.

The first step of our method uses heirarchical clustering to cluster the variables

into 1 groups. Heirarchical clustering is a simple clustering algorithm which starts

with each observation as a separate cluster. At a given step, the two clusters which

are closest are merged until there is only one cluster. Various statistics are recorded

at each stage and are summarized into a diagram called a dendrogram. Heirarchical

clustering is chosen because the dendrogram allows the user to more intuitively choose

the parameter 1 and to understand whether there is enough clustering to merit the

use of the method in this paper to begin with.

Heirarchical clustering requires the specification of a distance measure between the

variables that we are clustering. In this case, the distance measure we use, between

a variable s and a variable t, is the sum of the distances between the plot of s vs

o and the plot of t vs v across all variables v. The distance measure between two

plots, meanwhile, first scales the variables in the plots, by subtracting the mean and

dividing by the standard deviation, and then outputs the Earth Mover's Distance

between the two scaled plots. This metric is chosen because it allows variables that

are unrelated to everything else to be clustered together.

Given 1 clusters, the next step is to figure out exactly what should be displayed

in cell i, j of the smaller 1 x 1 scatterplot matrix. Assuming that cluster i contains ki

variables and cluster j contains k3 variables, cell i, j will contain a visual summary of

ki x kj plots.

In order to construct possible visual summaries, we first find the distance between

each pair of plots. We again use the distance measure developed in the previous

chapter here. The variables in both plots are first scaled.

At this point, we have a few options for what to put in cell i, j. One is to present



the plot, among the ki x kj plots, whose summed distance to all other plots is minimal.

This could be considered the central plot. Another is to present the two plots, which

are farthest from each other. This gives a notion of the "border" of the set of plots. A

final possibility is to create an animation through the ki x kj plots. In order to make

the animation smooth, we need to order the frames in such a way that each frame is

as close as possible to its neighboring frames. As mentioned in the previous section,

the optimization problem which solves this permutation problem is the "Traveling

Salesman Problem", for which many reasonable heuristics exist [38].

This completes the description of the procedure, though it should be noted that

our method has the capacity of incorporating certain types of domain knowledge,

as well as sampling uncertainty. The domain knowledge that can be incorporated

includes claims on which variables are believed to be related and which variables are

of particular interest. If variables u and v are believed to be related, one can change

the clustering process by increasing the measure of similarity between variables u and

v. Meanwhile, if variables s and t are both of particular interest, we would prefer to

make them in separate clusters, so that their effect can be elucidated. This can be

achieved by decreasing their measure of similarity.

Meanwhile, sampling uncertainty can be added in a way similar to the previous

section. For variable clusters, i and j, bootstrap samples of individual pairs of vari-

ables can be added to the set of plots that needs to be summarized in cell ij of the

reduced scatterplot matrix.

3.3 Illustration

In this section, we provide an illustration of the procedure above on a simulated data

set. Figure 3-2 shows the data set. Although this data set is not overwhelmingly

large by itself, it is nevertheless difficult to digest immediately. Figure 3-3 shows the

plot with the variables optimally reordered by the methods of [27]. Reordering the

variables provides an improvement, though the scatterplot matrix still depicts a lot of

information. Figure 3-4 shows the output of scagnostics on the data set. Scagnostics



is an interesting method when there are a few plots which are dissimilar to many

of the others. However, our the plots for our data set don't have that property, so

the output of scagnostics on our data set is about equally difficult to interpret as the

original plot itself.

Figure 3-5 shows the dendrogram produced by the heirarchical clustering algo-

rithm. The heights at which clusters come together in the dendrogram represent

the distances of those clusters when they were merged in the algorithm. Hence, if

the dendrogram didn't present reasonably clear clusters, our method wouldn't be of

great help. In this case, the dendrogram indicates that if we wanted a 4 x 4 sim-

plified scatterplot matrix, we would cluster the variables into the following groups:

{(3, 6), (4, 9, 5), (1, 8), (2, 7)}.

Figure 3-6 shows the central simplified scatterplot matrix. This plot shows the

characteristic images found in the larger plot. Meanwhile, Figures 3-7 and 3-8 show

the two border scatterplot matrices. They demonstrate that the 4 by 4 scatterplot

matrix, in this case, doesn't completely replace the 8 by 8 original scatterplot matrix,

but also doesn't sacrifice an unacceptable amount of information. The exception to

this is the plot at the lower right, which represents the plot when one of the variables

{2, 7} is plotted against one of the variables {2, 7}. This occurs because variables 2

and 7 are random noise which exhibit no interesting relationship to any of the other

variables.

3.4 Discussion

We presented a method for simplifying large scatterplot matrices based on clustering

variables and summarizing groups of plots. Our methods will be helpful for data

whose scatter plot matrix consists of a smaller number of recurring images. Future

research on this topic could consider extensions of this methodology to other high

dimensional plots, such as parallel coordinates plots and star plots.
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Chapter 4

Backward Selection Search for

Diagnosing Regression Models and

its Extensions

At this point of the thesis, we switch gears to the specific case of diagnosing regression

models, which we partly motivated in the introduction. In this chapter, we present

backward selection search in more depth. As stated in the introduction, backward

selection search is a diagnostic method along the lines of forward search to simultane-

ously study the effect of individual observations and features on the inferences made

in linear regression.

The method operates by appending dummy variables to the data matrix and

performing backward selection on the augmented matrix. It outputs sequences of

feature-outlier combinations which can be evaluated by similar plots to those of for-

ward search and includes the capacity to incorporate prior knowledge, in order to

mitigate issues such as collinearity. It also allows for alternative ways to understand

the selection of the final model.

We organize the rest of the chapter as follows: Section 4.1 elaborates on the

motivation for diagnostic methods for regression, which was described briefly in the

introduction, Section 4.1.1 provides a brief literature review, discussing other ways

the problem of simultaneous feature selection and outlier detection has been tackled



and how diagnostic methods have evolved. Section 4.2 provides a review of forward

search. Section 4.3 discusses the method that we propose in this paper, which we

call backward selection search. Section 4.4 presents the output of our method on

five well-known data sets. Following this, a notable extension of the idea of backward

selection search, which enables outlier detection in multivariate data to be formulated

as a feature selection problem, is presented in Section 4.5. Lastly, conclusions are in

section 4.6.

4.1 Motivation

Outliers substantially complicate the already difficult task of model selection in linear

regression. The question of which features to select as well as how many of the chosen

features to select can both be grossly influenced by outliers, and to make things even

tougher, the features that are selected in a model will influence which observations

are considered outliers.

Robust model selection, however, brings complications even beyond its statistical

framework. For instance, one complication of outlier detection is that a point that

statistical methods deem an outlier could in fact be the most important observation

in the data set depending on the application and the cause for the outlier. Forward

search is one remedy for this in that it identifies outlying points of various magnitudes

and creates plots that highlight the effect of each observation on various inferences

made in linear regression. It thereby provides several possible good models and gives

the analyst a way to visualize these. The goal of this paper is to extend these ideas

to the case of simultaneous feature selection and outlier detection, which has arisen

more recently in the literature.

4.1.1 Literature Review

In the sections below, we provide a literature review for robust model selection and

diagnostic methods for outlier detection. We then discuss how our method fits in

with the existing literature.



Diagnostic Methods for Outlier Detection

Diagnostic methods for outlier detection aim to separate observations into a "clean"

set and a set of possible outliers [19], [20], as well as to highlight the effects of

these possible outliers. Some of the earliest diagnostic methods include leave-one-

out deletion techniques, which study the effect of each individual observation on the

inference [8] by removing one of the data points and calculating the statistics of

interest with and without this point to see if there is a large difference. However,

this tends to fail when outliers come in groups. In general, the phenomena of outliers

going undetected because of the presence of another set of outliers (Masking) and

"good" observations being misidentified as outliers because of the presence of a set of

outliers (Swamping) [19], [20), [41, [17], make the aim of diagnostic methods difficult

to accomplish.

Over time, however, progress has been made and a popular recent algorithm,

proposed by Atkinson and Riani [6] called forward search does a good job of detecting

outliers and highlighting the influence of these outliers on various regression statistics.

The forward search starts with a small subset of q "good" points, where q is the

number of parameters (generally q = p + 1 where p is the number of features).

Iteratively, the points which adhere most to the pattern that the good points follow

are added to the set of "good" points, until all points are in the set of "good" points.

The output is a sequence of sets of points of sizes q, q + 1, ..., and n along with the

statistics of interest for these sets. Plots are then made where the y-axis is a statistic

of interest and the x-axis is the size of the subset. Details are given in section 2.

Robust Model Selection

Some of the earliest papers in simultaneous outlier detection and feature selection fo-

cus on developing criteria for an optimal robust model: Ronchetti [53] and Ronchetti

and Staudte [55] proposed robust versions of the selection criteria AIC and C, re-

spectively. Meanwhile, Ronchetti, Field, and Blanchard [54] proposed robust model

selection by cross-validation.



More recent papers have explored the additional issue of selecting a sequence of

relevant features in a robust manner: Khan, Van Aelst and Zamar [29] proposed a way

of replacing various statistics with their robust counterparts in the LARS algorithm

to perform robust LARS; Morgenthaler, Welsch, and Zenide [46] formulated outlier

detection as a variable selection problem on an augmented matrix. McCann [43],

McCann and Welsch [45), and Kim, Park, and Krzanowski [331 have built extensions

on this using LARS and best subsets respectively to perform the variable selection.

McCann and Welsch [44] also used the idea of feature selection on an augmented

matrix to propose an alternative way to select sequences of points for forward search.

In addition, Atkinson and Riani [5] enhanced their idea of monitoring variable co-

efficients and significance in the forward search through an added variable t-test for

variable selection in the context of regression.

Our Approach

We seek to combine the two objectives of diagnosing outliers and selecting features

into one method which simultaneously selects one parameter for both feature set size

and observation set size, and produces a sequence of reasonable feature-observation

models, which can be combined with prior knowledge and visualized for further in-

spection. Our method is most similar to [46] and its extensions, while our analysis

mechanism tries to replicate that of forward search and [44].

4.2 A Description of Forward Search

Forward search is a diagnostic method that produces plots which help identify outliers,

their structure, and their effect on various statistics of interest. As mentioned before,

it starts with a small subset of q "clean" points, where q is the number of parameters

(generally q = p + 1 where p is the number of features). Iteratively, the points which

adhere most to the pattern that the "clean" points follow are added to the set of

"clean" points, until all points (including outliers) are in the set of "clean" points.

The output is a sequence of sets of points of sizes q, q + 1, ... , and n along with the



statistics of interest for these sets. Plots are then made where the y-axis is a statistic

of interest and the x-axis is the size of the subset. The following is the procedure in

detail:

1. Start by identifying an initial subset of q "clean" points using a high breakdown

robust method. Atkinson and Riani suggest using Least Median of Squares in

order to find an initial fit and then selecting the q points with the smallest

squared residuals with respect to the initial fit to be the q "clean" points. Least

Trimmed Squares is a reasonable alternative to Least Median of Squares, but

both methods have been found to pick good initial subsets.

2. In a typical iteration, where the "clean" subset contains m points: conduct

ordinary least squares using those m observations. Then compute all statistics

of interest, say 6m. Find the squared residuals for all points (not just the ones

in the good set) and let the updated "clean" subset contain only the m + 1

points with the smallest squared residuals to this fit. It should be noted that

these sequences of points are not necessarily nested.

3. Repeat step 2 until all the points are added, so that we are left with a vector

o = {0q+1, 0
q+2, ..., 0,'. The output of this procedure is typically a plot of Om

as a function of m.

The purpose of the plot is to study how various outliers affect the statistics of

interest. As a simple example, Figure 4-1 shows a plot of the Hertzsprung-Russell

Star data set, that will be discussed further in section 4. It is an example where

leave-one-out deletion techniques fail. Figures 4-2 and 4-3 illustrate the visual output

that forward search provides for this data set. Figure 4-2 shows a plot of subset size

vs R2 and indicates a sharp decline around subset size 43. This suggests that there

are about four outliers since there are 47 observations in total. Looking at Figure

4-3, which is a plot of subset size vs scaled residuals we see that the outliers mask

each other since their scaled residuals move together throughout the search.

In addition to standardized residuals, Atkinson and Riani also suggest other pos-

sible statistics to consider, such as coefficient size, coefficient t-statistics, squared
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standardized residuals, Cook's distance, the maximum studentized residual, the min-

imum deletion residual, and leverage, all of which can be transferred over to our

method.

4.3 Backward Selection Search

Our method is based on the well-known principles underlying the mean-shift outlier

model [8], which state that an equivalent alternative to excluding j points from a

regression model is to append j extra columns to our design matrix, with each column

a dummy variable that has value 1 at the index of the outlier it represents, and 0

elsewhere. We begin this section by reviewing the details of this result and then

proceed to the description of our procedure. Following this, we discuss computational

tricks to make our procedure more efficient, and then we illustrate our procedure on

a data set to demonstrate the conclusions one can draw from its output.



4.3.1 Mean-Shift Outlier Model

To give a more precise description of the statement above, we will use the notation

below:

Let X denote the n by p matrix of realizations of the p explanatory variables, y

denote the n by 1 vector of realizations of the response variable, I denote the n by n

identity matrix, and J denote a set of indices. Furthermore, let "I" denote horizontal

matrix concatenation.

We denote submatrices and subvectors as follows. Where K and L are sets of

indices, * is the set which contains every index, A is a given matrix, and b is a given

vector, we let A[K,L] denote the submatrix of A containing the rows with indices in

K and the columns with indices in L. On the other hand, we let A(K,L) be the

submatrix of A which contains all rows and columns of A except rows with indices in

K and columns with indices in L respectively. A[K,L) and A(K,L] are defined similarly.

Similarly, let b[K) denote the elements of b with indices in K and let b(K) denote

the elements of b whose indices are not in K. Lastly, we use the shorthand of a' to

denote row i of matrix A and bj to denote element j of vector b. Hence, based on

our notation, a/ = A[i, *] and bj = b[j]. Meanwhile, A(i, *] would denote all rows of

A except a'.

The proposition below is a well-known result (see for instance [6]), but we provide

a simple proof in order for this thesis to be self-containted.

Proposition: The estimated OLS coefficient for each of the p explanatory variables

in the regression of y onto [XII[*,J]] equals the corresponding estimated OLS coefficient

in the regression of y(J) onto X(j,*.

Proof:

Let ) denote the OLS vector of explanatory variable coefficients for the regres-

sion of y onto [XIJ[*,J]] (Note that ) does not include the coefficients for dummy

variables). Then, where # and a are vectors of decision variables that correspond to

the coefficients to be chosen for the explanatory variables and the coefficients to be

chosen for the dummy variables respectively:



3 =argmin[min(y - X - IJa)'(y- X - I*,ja)]

= arg min(E (yi - x'10 - 0)2 + minE (y - ' ai)2)
i~j iEJ

= arg min (yi -

= arg min (y(J) - X(j,*)13)'(y(J) - X(J,*10)
'3

The first equality follows from the equation for a subvector of the estimated co-

efficient vector under OLS. Here, the full estimated coefficient vector would be the

concatenation of # and &, and the subvector would be 3.

The third equality follows from noting that (y, - x'1 - a,) 2 > 0 and equals 0

when a is set to y, - x'Op. This completes the proof, since the last equation is the

optimization problem for OLS regression of y(J) onto X(J,*].

Corollary:

The t-statistics for the features in the two regression models above are the same.

Proof:

In both regression models, 3 = (X'j X(J,*J) 'X(J,*]y(J). Additionally, in both

models, y(J) has the same distribution. It follows that the estimate, expected value,

and variance are the same in both cases. Hence, the coefficient t-statistics are the

same.

4.3.2 Procedure

Producing a Sequence of Models

Based on the results above, we can perform a procedure similar to forward search,

but using the backward selection algorithm. In particular, assume we have a matrix

Ed [ei 1, ei 2 , ... , ei] where ey is a column vector with jth element 1 and all other

elements 0, and where {ii, ... ,id} is some subset of {1, ...,n}. As a result of the

principles above, comparing a regression of y upon [XIEd] and y upon [XIEdleid+1]



is equivalent to comparing a regression of y upon X with clean set {i+1, ---,in }

(meaning that the other observations are excluded from the model) and a regression

of y upon X with clean set {id+2, ... , in} respectively. Hence, if we preselect good

points {in-q-1, . ..,in} and apply backward selection to [X|En-4-2], we have a method

which is very similar to forward search. One advantageous difference here, however, is

that we can remove a variable of X in backward selection as well as a dummy variable.

This procedure hence can perform simultaneous feature selection and outlier detection

and has a reasonable way of comparing the actions of adding an extra observation

and removing an extra feature.

Our procedure is thus as follows:

1. Start by identifying an initial subset of q + 1 "good" points. The procedure to

do so can be the same as in forward search. We then append dummy variables

for all other points to the X matrix to form a matrix Z = [XIEn-q_1].

2. Perform backward selection on the matrix Z with respect to y, keeping track of

the statistics along the way at each iteration, say O for iteration i. This means

that at each step, we iteratively delete the least relevant variable. We choose

the variable to delete as that which has the coefficient with the lowest absolute

t-statistic, and we add the constraint that the intercept should not be deleted.

It should be noted that the need to calculate this t-statistic is why we need the

initial q + 1 points in the first step.

3. We are left with a vector 0 which gives values of the statistic of interest for

different models.

Although it may not be necessary to specify one specific model at the end of the

analysis, the model selection problem with respect to the output of this algorithm

would be to select an iteration at which to stop. Given a specified stopping point

(and hence model), the model would deem all variables that were deleted before the

stopping point irrelevant, and all points whose corresponding dummy variable was

not deleted before the stopping point to be outliers.



Incorporating Prior Knowledge

An additional advantage of our model is that we can relatively easily incorporate prior

knowledge via mixed estimation [62]. This technique uses the prior information by

augmenting the data directly instead of using a prior distribution as in the Bayesian

Model. Denote our current model as y = Zv+E = X03+Eda +e. In mixed estimation

we assume that we can write a set of restrictions on the coefficients v of the form

a = Dv + 6 where 6 is multivariate normal with E[6] = 0 and var(6) = V, D is a

matrix of known constants and a is a vector of random variables. We can treat these

equations as new data and solve for the significance of the coefficients of v via the

methods of generalized least squares. As our algorithm only requires the computation

of the significance of coefficients, this fits into the framework of our model.

A typical case of adding prior knowledge occurs when we add prior knowledge

that the coefficients have an independent normal distribution around zero. Where

Dv = VO + Wa, this would correspond to either making V, W, or D equal to the

identity matrix times some constant VX chosen by the user. This prior, combined

with our model, can mitigate problems such as collinearity and cases where p > n.

Selecting a Final Model

Given the trace our method produces there are several possible ways to select the

final model. First, one could use any one of the statistics produced in the early work

of simultaneous feature selection and outlier detection (cited in the literature review)

and compute the statistics for each model produced in the trace.

Second, one could look for drastic changes in the diagnostic plots produced to

explore a variety of possible models. To assist in identifying drastic changes for

forward search, Riani and Atkinson [51] produce and plot confidence bounds for

their statistic of interest by running forward search on many bootstrap samples. In

each bootstrap sample, X is generated as an n by p matrix of standard normal

realizations and y is generated as an n by 1 vector of standard normal realizations.

Riani, Atkinson, and Cerioli [52] also develop a hypothesis test for the number of



outliers based on these plots. We use similar plots on the data sets tested, running

backward selection search on 1000 bootstrap samples.

In this paper we also study a third way of understanding what the final model

should be. These ideas are based on the developments in [61], which propose to stop

a feature selection process by augmenting the data matrix with an artificial random

feature and stopping the process once that random feature is selected. Since our

method is a special case of a feature selection process, we attempt to apply this

procedure to the data sets in section 4, simulating 1000 routines and we track where

in the trace a random additional feature is eliminated.

4.3.3 Computational Tricks

In the previous sections, we described backward selection search as performing back-

ward selection on an augmented design matrix. However, if we don't add prior knowl-

edge, the algebra ends up simplifying, so that we do not need to actually append the

identity matrix when computing the output, thus reducing computation times. We

state the details of this below, and then discuss how the computational efficiency of

our method compares to that of forward search.

Computing t-statistics

We first describe how to compute the t-statistics without actually appending the

identity matrix. Since this is all we need to do at each step in order to determine the

sequence of models, we can conclude that, in the case of no prior knowledge, we need

not carry around the identity matrix in the computation.

Suppose at a given iteration, J is the set of observations which have not been

added. Let D be the current design matrix (without the identity matrix appended)

containing only those features which still remain in the model. Then, by the corollary

to the proposition earlier in this section, the t-statistics of the features in the current

model are merely the t-statistics of the features of the regression of y(J) onto D(j,,].

Meanwhile, to compute the t-statistics for a dummy variable corresponding to an



observation in J, we first note that the corollary implies that the regression of y onto

[DI[*,JI] gives the same t-value for dummy variable i as the regression of Y(K) onto

[D(K,*]II[*,i]], where K is the set of all observations in J except i. [6] shows that this

ends up simplifying to (yj - d'))/(s/l + d'i(D'J D(JA) 1 di).

Although this is all that is necessary for the sequencing of the models, similar

arguments show that we can use the added t-statistic formula derived in [6] to compute

the t-statistics for variables which have already been eliminated and observations not

in J.

Computational Differences to Forward Search

In the case of no prior knowledge, the bulk of the computation in our algorithm that

one needs to do at every step is the computation of (D'JA D(J,*) 1 . However, in order

to compute the various diagnostics of forward search, one requires these computations

as well. It follows that the only computational differences of our algorithm to that

of forward search are the p extra steps our algorithm takes. This extra complexity

is in part alleviated by tricks to update an inverse of a matrix when one column is

deleted, based on block matrix formulas [30].

In order to give an idea of how long these extra steps would take in practice, we

provide the extra computation times for a few different problem sizes in table 4.1. In

each cell, the first number is the amount of time in seconds that the p extra steps

took when all observations were present (this will be longer than the amount of time

the p steps will take in general). The second number, meanwhile, is the amount of

time forward search took. All computations were done using R version 2.9.0 on a

Mac Book with 4GB RAM. The differences in computation times are not large, as is

expected.

When prior knowledge is added, an upper bound on the computation time is the

computation time of backward selection for a generalized linear model on an n x n

design matrix. However, if the artificial data points, whose form the prior knowledge

takes, have a special form such as independence, which is ordinarily the case, we can

use the same computational tricks as above.



Table 4.1: Computation times in seconds for different problem sizes. The first number
is the time for p extra steps and the second number is the time for forward search.

n = 100 n = 200 n = 500
p = 10 0.01, 0.42 0.02, 1.30 0.08, 7.22
p = 30 0.03, 0.76 0.07, 1.98 0.35, 9.69
p = 50 0.08, 1.48 0.16, 3.15 0.66, 13.55
p = 70 0.14, 2.55 0.30, 4.65 1.07, 19.90
p = 90 0.25, 4.17 0.45, 6.69 1.51, 22.71

4.3.4 Illustration of the Procedure

In order to demonstrate the utility of our method and its differences to forward

search, we add three features to the Hertzsprung-Russell Star data set displayed in

the previous section. In the augmented data set, the first feature is the first feature of

the original data set, which is the log of temperature. The second feature is simulated

from a standard normal distribution and hence should be considered irrelevant in the

evaluation. The third feature takes value 1 at observations 7 and 9, and takes value

0 elsewhere. It would be expected that with this feature in the data set, observations

7 and 9 wouldn't be considered as outliers. Finally, the fourth feature is set to be

0.999X 1 + 0.001Z, where Z is a standard normal random variable and X1 is the first

variable. It is designed to be collinear to the first variable.

Figures 4-4 and 4-5 show two plots in the output of the R function fwdlm [49],

which conducts forward search. Figure 4-4 suggests what appear to be four masked

outliers. This makes sense, since observations 7 and 9 are not expected to be outliers

given the presence of the third variable. Figure 4-5, which plots t-statistics, interest-

ingly suggests that even well before observations 11, 20, 30, and 34 are taken out,

variable 1 is irrelevant. Although this inference is false, it is not surprising that this

inference was mistakenly made, as this is one of the well known effects of collinearity.

Figures 4-6 and 4-7 show the corresponding plots for backward selection search.

Meanwhile, Table 4.2 shows the last 12 steps that the algorithm takes. Here, Xj

represents the jt' feature among the original variables, while yj represents the ith
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Figure 4-4: Hertzsprung-Russell Star data set with three additional features: Forward
plot for standardized residuals based on forward search
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Figure 4-5: Hertzsprung-Russell Star data set with three additional features: Forward
plot for coefficient t-statistics based on forward search
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Figure 4-6: Hertzsprung-Russell Star data set with three additional features: Forward
plot for scaled residuals based on backward selection search. The plot for observations
7 and 9 are highlighted in black

observation. Hence, after feature 4 is deleted, observations 14, 3, 40, 5, and 18 are

added. Then, feature 3 is deleted, observation 11 is added, feature 1 is deleted,

and finally observations 20, 30, and 34 are added. This means, for instance, that in a

model where observation 20 is not considered an outlier, feature 1 is deemed irrelevant

(since feature 1 will be deleted in a model which stops the trace after observation 20

is added). However, the claim that feature 1 is relevant is stronger than the claim

that observations 7 and 9 are outliers. If we stopped at the sixth from last step,

observations 11, 20, 30, and 34 would be considered outliers, and observations 2 and

4 would be considered irrelevant, which is what we would expect based on the way

we simulated these features.

Figure 4-6 highlights observations 7 and 9 and shows a sharp increase in their

scaled residuals when feature 3 is deleted. This implies that the presence of feature

3 makes observations 7 and 9 appear nonoutlying. Mveanwhile, figure 4-7 shows a

dramatic increase in the t-statistic for the first feature when the fourth feature is
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Figure 4-7: Hertzsprung-Russell Star data set with three additional features: Forward
plot for coefficient t-statistics based on backward selection search

Table 4.2: Last twelve steps of backward selection search in the modification of the
Hertzsprung-Russell Star data

Data Last Twelve Steps
Hertzsprung-Russell step 40 41 42 43 44 45 46 47 48 49 50 51
Star Data add - Y14 Y3 Y40 Y5 Y18 - Yii - Y20 Y30 Y34
Modification drop X 4 - - - - - Y3 - X 1 -

- - variable 1
-- - variable 2

-
variable 3

- - - - variable 4



eliminated from the data set. This implies that features 1 and 4 are collinear, in that

whether one is present will have a large effect on the inferences about the other one.

It should be noted that this is not a criticism of forward search, as forward search

still does the job it intended to do on this data set. Instead, it is an example of where

it may be informative to extend. the job that forward search intends to do. It should

also be noted that we constructed this data set for the purpose of illustration, so we

will save the validation, as well as a more in depth analysis of the sequencing and

model selection capabilities of backward selection search, for the next section.

4.3.5 Limitations of the Procedure

The procedure has a similar limitation to forward search in that it requires a set of

"clean" starting points. However, while forward search can sometimes recover from a

poor set of starting points, backward selection search can't necessarily recover since

the sets of clean points are nested. We thereby also implemented a modification of the

algorithm which deletes the least significant feature, adds the most significant feature

based on added variable t-tests, and then deletes the least significant feature from this

modified subset in a typical iteration. This modified algorithm recovered from more

starting points than backward selection search, but still failed in some cases where

forward search also failed. Since backward selection search has a structure which is

more intuitive and easier to analyze, and since it works well given that we can indeed

come up with a clean set of starting points, we focus on the case where we have a

clean set of starting points in the paper. It should also be pointed out that several

quick heuristics with relatively good performance are now available. For instance,

Nguyen and Welsch [48] use semidefinite programming, and Kim and Krzanowski

[32] use clustering to identify potential outliers in linear regression.



4.4 Output on Data Sets

4.4.1 Description of Data Sets

We used the following five data sets to evaluate our method: Stackloss data [10],

Scottish Hill Racing data [3], Modified Wood Gravity data [56], Modified Hertzsprung

Russell Star data, and Modified Belgian Phone data [57]. The first three of these are

the data sets that are used by Hoeting et al. [25] and Kim et al. [33] to evaluate their

respective methods. The last two data sets are based on two simple one-dimensional

data sets discussed by Rousseeuw and Leroy [57], but modified to contain additional

irrelevant features. The original data sets have become standard benchmark data sets

for robust methods in regression.

The Stackloss data [10] have been studied by several authors in the context of

identifying outliers. The data set contains three variables and 21 observations and

the general consensus is that the third predictor variable should be dropped and that

observations 1, 3, 4, and 21 are potential outliers if the data are analyzed on the

original scale. On the other hand, if the data are analyzed on the square root scale,

only observations 4 and 21 are potential outliers [6].

The Modified Wood Gravity data are based on real data but are modified by

Rousseeuw [56] to contain outliers at cases 4, 6, 8, and 19. The data set has five

variables and 20 observations. The two best subset models are (X 1, X2 , X 3 ) and (X 1 ,

X2, X3, X5) based on C, and adjusted R 2 respectively, while the best subset model

with outliers (4,6,8,19) removed is (X1, X3, X4, X5). Therefore, this is a data set

where the optimal subset of features depends on the outliers.

The Scottish Hill Racing data [3] contain the record-winning times for 35 hill races

in Scotland. The data set contains two independent variables, distance and climb,

with the dependent variable, time and has 35 observations. Observation 33 is known

to be an error in the data and when a linear model is applied, there is consensus that

observations 7 and 18 are outlying. Both variables are significant.

The Hertzsprung-Russell Star data set is an example of a data set used to make

a scatter plot of a star's luminosity against its temperature on a log scale. In the
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Figure 4-8: Plot of Belgian Phone data with superimposed regression line based on
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original data set, there are 47 observations and one explanatory variable. Figure

4-1 shows a plot of the data set with the OLS fit. Observations 11, 20, 30, and 34

are gross outliers and observations 7 and 9 are moderate outliers. We modify these

data by simulating five additional variables from a standard normal distribution and

appending them to the original data.

Finally, the Belgian Phone data are a record of the number of international phone

calls from Belgium, taken from the Belgian Statistical Survey. The response is the

number of phone calls, and the explanatory variable is the year. Figure 4-8 shows

a plot of the data with the OLS fit. Observations 15-20 are known errors in the

data and observations 14 and 21 may be considered outliers. We modify these data

by simulating three additional variables from a standard normal distribution and

appending them to the original data.

4.4.2 Performance

All computations and plots were constructed in R with randomization seed 2.



Table 4.3 shows the last 10 features eliminated in each of the data sets. Here

again, Xj represents the jth feature among the original variables, while yj represents

the ith observation. For example, in the case of the Hertzsprung-Russell Star data

set, the table indicates that if we stopped at the seventh from last step, then our

model would say that variable 1 is relevant, the five other simulated variables are

irrelevant, and that observations 7, 9, 11, 20, 30, and 34 are outliers. Based on the

data description, this is the model we would want to select.

The table reads the same way for the other data sets and we see that our method

very successfully sequences the variables and outliers, since for each data set, the

optimal sequence occurs at one of the possible stopping times.

In addition to testing the sequencing of our method in data with known properties,

we also tested the case where we add prior information for the Modified Wood Gravity

data. The last two rows of Table 4.3 show the sequencing of the models when we add

the prior information that vT ai+ ei = 0 for all i, where aj is the coefficient of the jth

dummy variable and c is the error term, for A = 1, 2. This corresponds to increasing

degrees in belief that we should focus more on feature selection at the expense of

outlier detection. The table shows the last ten features picked in each of these cases

and we get that (X 1 , X 2 , X 3 ) and (X 1 , X 2 , X 3 , X 5) show up as the relevant features,

which is what we expected based on the description of the data provided.

Next, we investigated the actual question of model selection itself. As mentioned

before, there are several ways of doing this, including computing robust model selec-

tion statistics such as C, for each of the models in the trace. Here, we focus on three

plots which assist us in the process. Figure 4-9 shows, for each data set, a plot of

the iteration of the algorithm we are at versus the absolute value of the t-value of

the coefficient of the feature being eliminated at that step. The gray lines in the plot

show the 1, 2, and 3 standard deviation bands for this t-statistic based on the para-

metric bootstrap procedure described earlier. Figure 4-10 is a generic forward plot of

the iteration we are at in the algorithm versus the model's R 2 . Lastly, we performed

1000 simulations for each data set, where we appended a random feature to the data

matrix, ran backward selection search, and observed where in the sequence the ran-



Table 4.3: Last ten steps of backward selection search in each data set

Data Last Ten Steps

Hertzsprung-Russell step 44 45 46 47 48 49 50 51 52 53
Star Data add y4o Y5 Yis y9 y7  Y11 - Y20 Y30 Y34

drop - - - - - - X1 - - -

Belgian Phone Data step 19 20 21 22 23 24 25 26 27 28
add - Y14 Y21 - Y15 Y16 Y17 Y18 Y19 Y20

drop X 3  - - X 1  - - - - - -

Stackloss Data step 15 16 17 18 19 20 21 22 23 24
Original Scale add Y14 Y13 Y20 Y2 - Y1 Y3 Y4 Y21 -

drop - - - - X 2  - - - - X 1

Stackloss Data step 15 16 17 18 19 20 21 22 23 24
Square Root Scale add Y16 Y3 Y14 Y13 Y20 Y2 - Y4 Y21 -

drop - - - - - - X 2  
- - X 1

Scottish Hill Racing step 28 29 30 31 32 33 34 35 36 37
Data add Y35 Y30 Y14 Y6 Y19 Y33 Y7 Y18 - -

drop - - - - - - - - X 2 X 1

Modified Wood step 16 17 18 19 20 21 22 23 24 25
Gravity Data add y9 y1s - - - - Y4 Y6 Y8 Y19

drop - - X 4 X 5 X 1 X 3  - - - -

Modified Wood step 16 17 18 19 20 21 22 23 24 25
Gravity Data add y7 - Y5 Y19 Y1 Y14 Y12 - - -

A =1 drop - X 5  - - - - - X 3 X 1 X2

Modified Wood step 16 17 18 19 20 21 22 23 24 25
Gravity Data add Y1 Y7 Y5 Y19 Y14 Y12 - - - -

A = 2 drop - - - - - - X X 3 X 1 X2
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value of the t-statistic of the exiting feature

dom feature was eliminated. Figure 4-11 shows the empirical cumulative distribution

function of the stopping times (the time the random feature was eliminated) for each

data set.

Figure 4-9 is the most effective of the rules on the data sets we considered. One

would infer a stopping point from Figure 4-9 by observing the points at which the

forward plot crosses its envelopes and choosing a reasonable point among these. As

shown in the plots, this method agrees with previous literature in selecting a model, in

all cases, except the Stackloss data. However, the square root transformation resolves

this problem.

Figure 4-11 is also an informative plot. One would infer a stopping point from

Belgian Phone Data
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Figure 4-11 by either observing sharp increases or pattern changes in the cdf, or by

setting some sort of a threshold, a, and deciding that the correct model will be that

for which the cdf equals a. This would imply that the probability that an irrelevant

feature would be deemed relevant should be at most 1 - a. In each data set, the cdf

flattens around the stopping time that previous literature agrees on. However, the

appropriate cut-offs tend to vary across data sets, so while this method produces a

useful, informative depiction of the model selection process, it is not as strong as the

previous method as a stand-alone model selection method.

Lastly, Figure 4-10, which indicates a potential model by a sharp movement in the

plot, is the least informative among the three plots, but demonstrates the application

of forward search plots in our method.

While we had, for each of these data sets, a high breakdown method for selecting

an initial set of data points, it would be informative to see what would happen if the

initial set were perturbed. We study this by considering the non-outlying observations

in each of the data sets we tested (based on our knowledge of the data sets), and then

letting the initial set be a random sample of the non-outlying observations. For each

step, Table 4.4 shows the number of times, out of 100, that the chosen points and

features matched those chosen when a high breakdown method was used to select the

initial observations.

The resulting stability of our method varies across data sets from excellent to less

than optimal, depending on the characteristics of the data set. However, since our

method is greedy and won't recover if an outlier is placed in the initial subset, there

is certainly room for improvement in future work.



Table 4.4: Sensitivity to the starting set, measured by the number of random starts

(out of 100) that result in the same model as the model with an optimized start. As

described in the paper, outliers are excluded from the random sampling.

Data Sensitivity by Step

Hertzsprung-Russell step 44 45 46 47 48 49 50 51 52 53
Star Data sensitivity 1 6 42 53 65 79 79 81 83 88

Belgian Phone Data step 19 20 21 22 23 24 25 26 27 28
sensitivity 61 92 100 100 100 100 100 100 100 100

Stackloss Data step 15 16 17 18 19 20 21 22 23 24
Original Scale sensitivity 7 9 26 27 70 87 87 91 94 97

Scottish Hill Racing step 28 29 30 31 32 33 34 35 36 37
Data sensitivity 14 32 39 44 54 56 72 79 79 98

Modified Wood step 16 17 18 19 20 21 22 23 24 25
Gravity Data sensitivity 16 22 83 83 84 95 95 95 95 95

4.5 An Extension: Outlier Detection for Covari-

ance Estimation via Feature Selection Algo-

rithms

The idea of modeling an observation as an artificial feature, as presented in the

previous sections and used by ([46], [43]), has established a connection between outlier

detection in linear regression and feature selection on an augmented design matrix.

It turns out that this connection carries over to the case of multivariate data, where

we are interested in the estimation of a robust covariance matrix.

Robust covariance estimation is a central problem in robust statistics and has an

extensive literature base (see for instance [42]). Finding an algorithm with desirable

properties that works in every situation has proven to be very difficult, but several

good algorithms which are useful in practice exist (for example [26]). The extension

that we speak of in this section also does not attempt to work in every situation, but

establishes the connection between robust covariance estimation and the mean-shift

outlier model, thereby opening the door for more robust covariance algorithms to be

developed. In particular, the connection makes it possible to use feature selection

and dimension reduction algorithms of multivariate linear models in order to detect



and control for outliers in multivariate data.

As this is not directly related to the central topic of the thesis, we do not delve

fully into the implications of this. We do, however, briefly explore the procedure with

backward selection used as one example of a feature selection algorithm and discuss

the preliminary results we obtained. Our procedure, in this case, performs surprisingly

well on some difficult data sets and resembles forward search for multivariate data with

a simpler starting algorithm. In the rest of this section, we provide our methodology

and a discussion of results on a selection of interesting and challenging data sets.

4.5.1 Methodology

We pose the robust covariance estimation problem as a feature selection problem

as follows: We set our data matrix to be Y, construct X to be a column of 1's

with an identity matrix appended to the right, and perform feature selection in the

multivariate linear model of Y onto X, where Y is considered to be the matrix of

realizations of the response variables, and X is the design matrix. The estimate of

the covariance matrix of the error term for the regression is the algorithm's estimate

of a robust covariance matrix of the original data.

The justification for our algorithm lies in the following two key relationships:

1. The estimated classical covariance matrix for multivariate data is the same as the

estimated conditional covariance matrix of the multivariate linear model of Y onto X,

where Y is the data matrix, and X is a column of 1's. 2. The mean-shift outlier model

establishes that performing a regression with deleted observations yields the same

results (estimated coefficient vector and estimated conditional covariance matrix) as

performing a regression onto an augmented X matrix, where the augmented columns

are dummy columns corresponding to the observations deleted in the first model (The

proof of this is similar to the proof earlier in this chapter for the univariate case and

is provided in the appendix).

One could, in principal, use this methodology to apply any feature selection al-

gorithm to estimate a robust covariance matrix, though in this section, we explore

backwards elimination as the feature selection algorithm of choice. In particular, we



scale the data (Y matrix) by subtracting the column medians and dividing by the col-

umn mads, and then iteratively eliminate the least relevant feature of the X matrix,

producing a ranked list of outliers.

The criterion for feature relevance is the determinant (product of eigenvalues) of

the conditional covariance matrix when the feature is eliminated (the justification for

this criterion is the likelihood ratio test). When there are ties, we use instead the

product of the nonzero eigenvalues (this equals the determinant when all eigenvalues

are nonzero). When there are still ties, we use the Li norm of the coefficient matrix.

As ties occur for the first few features eliminated, this specification is important.

4.5.2 Performance on Data Sets

We evaluate backward elimination on four real data sets - The Hertzsprung-Russell

Star Data [57], Biochemical Data [59], Wine Data [24], and Swiss Heads Data [16] -

as well as two realizations of the synthetic Barrow Wheel Benchmark [40].

The Hertzsprung-Russell Star Data set was described earlier in the chapter. The

data set is typically used as a regression example, but we treat the response and

explanatory data together as multivariate data in this paper, because it is nonetheless

a good demonstration of influential, masked outliers, which can easily be visualized.

The Biochemical data set consists of two variables which are measurements of

phosphate and chloride in the urine of 12 men with similar weights. Figure 4-13

contains a plot of the data. The data set is explored in [42]. Observation 3 (marked

12 in the plot) is considered to be an outlier.

The wine data is also explored in [42]. It contains, for each of 59 wines grown in

the same region in Italy, the quantities of 13 constituents. There are known to be

at least 7 masked outliers in this data set, the corresponding observation numbers

being: {20, 22,47,40, 44,46, 42}.

The swiss heads data is analyzed in [7] and contains six readings on the dimen-

sions of heads of 200 twenty year old Swiss soldiers. The analysis suggests that 198

observations are clean and two observations: 104 and 111 are outliers.

Lastly, the barrow wheel benchmark is simulated from a multivariate distribution,
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which has been proposed as a benchmark to evaluate robust multivariate methodolo-

gies. It is a mixture of a flat normal distribution, contaminated with a portion C = i/p

of gross errors concentrated near a one-dimensional subspace, where p is the specified

dimensionality. The entire data set is rotated in a way, such that except in the case

where p = 2, bivariate plots would not reveal the structure of the data. We tested

the barrow wheel data set with n = 50, p = 2 and n = 500, p = 6. In the barrow

wheel data set, the outliers are the last n/p observations generated.

For each of the four real data sets and for the barrow wheel data set, the outliers

specified above were among the last features eliminated in our algorithm, indicating

that our algorithm correctly identified them as the most outlying points. Taking a

closer look, Figures 4-12 and 4-13 show the plots of the Hertzsprung-Russell Star Data

and the Biochemical with the number of the point representing when in the algorithm

the dummy variable corresponding to the point was eliminated (hence, the highest

number is the most outlying point, as deemed by the algorithm). Meanwhile, Figure

4-14 shows a similar plot for the barrow wheel benchmark, when p = 2. These figures

demonstrate that our algorithm does well from the start (when the entire identity

matrix is appended).

It should also be noted that although our algorithm identified the seven prominent

masked outliers in the wine data, the description of the wine data indicated the pres-

ence of some other minor outliers, some of which the backwards selection algorithm

eliminated early in its search. Hence, our algorithm is not perfect, but we tested

it in the harder case with the assistance of no prior knowledge or heuristic. When

we provided our algorithm with a hint by appending an extra row corresponding to

adding prior knowledge that the data should be centered near the coordinate-wise

median, the algorithm worked satisfactorily for the data set.

Based on the results, the extension we document needs more extensive thought in

order to compete with premier outlier detection algorithms, but produces noteworthy

results on its own and implies other procedures based on other feature selection

algorithms, which may prove to be even better.
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4.6 Discussion

We have proposed a diagnostic method for simultaneous feature selection and out-

lier detection, which performs quite promisingly on the data sets we have used. Our

method, like forward search, allows one to assess the effect of outliers on linear regres-

sion inferences. However, it also allows us to assess feature diagnostics, and allows us

to visualize a sequence of models of interest. We can use any of the methods discussed

in this paper to decide when to stop the sequencing. In addition, we can easily incor-

porate prior knowledge and hence control for issues arising because of rank-deficient

matrices.

We have also described an interesting extension of the ideas of forward search,

which poses outlier detection in multivariate data as a feature selection problem for

a multivariate linear model. We hope that it will inspire the development of other

effective methods for detecting outliers in multivariate data.

Our method still has the weakness that it is difficult to find a computationally

efficient way to choose a good initial subset. This will be the direction of future work.



Chapter 5

Contributions and Future Work

In this thesis, we made contributions in data visualization and regression diagnostics.

In data visualization, we presented an alternative way to understand plots. The

methodology we created highlights the notion that several common plots that are

frequently used in every day life are in fact subject to sampling variability. We

proposed a simple method for representing this sampling variability. This method

will help make plots more valid inferential tools, in the same way that a confidence

interval makes the sample mean a more valid inferential tool.

Additionally, our method can be generalized to several types of plots, including

some, for which some methods for representing sampling variability have been de-

veloped. In these cases, our method provides an alternative representation, which is

also simple and effective. Lastly, our method can be used to help verify distributional

assumptions and models in Bayesian analysis.

Our alternative way to understand plots also brought forth a way to simplify

large scatterplot matrices, when most of the cells in the scatterplot matrix contain

small variations on one of a few key plots. Our contribution here will lead to simpler

representations of scatterplot matrices and hence more tools for the visualization of

multivariate data.

In regression diagnostics, we proposed a method for producing a sequence of valid

selections of observations and features, in order to assist an analyst in robust model

selection. Our method executes simultaneous feature selection and outlier detection,



and creates plots which elucidate the effect of each individual observation and feature

on the analysis. This is important, since a point that one analyst may consider to be

an outlier, could be the most important point in the data set to another analyst. This

contribution will allow for analysts to better select relevant variables in the presence

of outliers. Additionally, the idea behind this contribution provides a new way of

thinking about outlier detection in multivariate data, by formulating it as a feature

selection problem.

In each of the methods that we have created in this thesis, several directions for

future work have been created. Our visualization methodology probably extends to

more plots than we have described in the corresponding chapters. Additionally, im-

provements for selecting the 95 % confidence intervals are likely possible. Meanwhile,

researchers are still looking for an efficient way to select an initial subset, with which

to start the forward search algorithm. Additionally, feature selection algorithms other

than backward selection, for the problem of selecting features in a multivariate linear

model, may yield improved computation time and better accuracy.



Appendix A

A More General Mean-Shift

Outlier Model

We state, here, the elaboration and proof for the mean-shift outlier model, explained

in Section 4.3.1, for a more general case. The results can be applied to justify the

methodology developed in Section 4.5. As mentioned in the literature review, this

equivalence has been proved in cases beyond linear regression (see for instance [23]).

Let our notation be defined as follows:

Y is a given n by r matrix of realizations for the response variable; X is a given n by

p matrix of realizations for the predictor variables; U is a set of indices with cardinality

t; J = U' is the set of indices complementary to U; # is a matrix of decision variables

corresponding to the p by r matrix of the coefficients of the predictor variables; a is

a matrix of decision variables corresponding to the t by r matrix of the coefficients of

artificial variables which will be added in the result below; Li is a loss function which

maps two vectors onto a real number for each i; I is the identity matrix.

Furthermore, we let "I" denote horizontal matrix concatenation and we denote

submatrices and row vectors as we did in Section 4.3.1. That is: where K and L are

sets of indices, * is the set which contains every index, A is a given matrix, and b

is a given vector, we let A[K,L} denote the submatrix of A containing the rows with

indices in K and the columns with indices in L. On the other hand, we let A(K,L)

be the submatrix of A which contains all rows and columns of A except rows with



indices in K and columns with indices in L respectively. A(K,L) and A(K,L] are defined

similarly. Similarly, let b[Kj denote the elements of b with indices in K and let b(K)

denote the elements of b whose indices are not in K. Lastly, we use the shorthand of

a' to denote row i of matrix A and bj to denote element j of vector b. Hence, based

on our notation, a' = A[i, *] and bj = b[j]. Meanwhile, A(i, *] would denote all rows

of A except a'.

The following result then holds:

Claim: If Vi, we have that -ci E R' with B, = limb,, Li(yi, b) < L(yi, z)Vz, then

the following condition holds:

n

arg min inf Li(y[, 4/3 + I[i, U]a) = arg min E Li (y7, /O#)

Proof:

n

arg min inf E Li(yfI, TO3 + Ii, U]a)
Sai=1

= arg min(inf E Li(yT, XTO) + inf E Li(y[, X7O + ai))
iE J iEU

- arg min(E Li(yT, 4/3) + E inf Li(y[, /O# + ai))
iEJ iEU e 2

- argmin(ELj(yf,xf/T) + E Bi)
iEJ iEU

- argmin(YLi(y[, zfO))
iEJ

The second equality follows by plugging in the actual values of zi. Notice that if

Bi = OVi, we also have that the minimums are the same.

The multivariate linear model (linear regression with multiple responses) is a spe-

cial case of the above setup, where Li(yi, u) = (yI - U[)E- 1 (yi - u,) with E the

conditional covariance of the response variables. Here, ci = y, s ai =y -TXofT, and

Bi = 0. It follows that deleting observations and adding dummy columns gives the

same estimate of / in the case of multiple output linear regression. In addition, the



minimums of the losses over the unknown coefficient vectors, which we will denote by

S(E) are the same in the two cases as well since Bi = 0.

The estimate of the covariance of the residual terms is generally estimated by

E = arg minr(S(E))/(n - p). Although the number of observations and variables

differ in the case of deleting observations and the case of adding dummy columns,

the number of observations minus the number of variables, n - p, is the same in both

cases, so the estimate of t is also the same in both cases.

It should be noted, however, that the result stated in this section is a reasonably

general result and hence, the idea of modeling observations as features can extend to

several other types of models, such as logistic regression models.



Appendix B

Demonstration of Earth Mover's

Distance

In order to demonstrate the Earth Mover's Distance's conception of distance, we show

four sets of plots in this appendix. For the first two cases, we work with the data in

Figure 2-3.

The first set of plots is Figure B-1. In this sequence of plots, we took the 950 boot-

strapped plots of the data in Figure 2-3 which are closest to the central bootstrapped

plot and then ordered them, so that they are as close to each other as possible, in

terms of Earth Mover's Distance, using a heuristic to the traveling salesman problem.

The sequence of plots show the first 25 of these plots.

For the sake of contrast, Figure B-2, the second set of plots, shows a random 25

bootstrapped plots. As one can see from this example, the Earth Mover's Distance

tends to agree with our perception of distance.

To consider a second example, we consider the histogram example with the return

data, shown in Figure 2-12. Figure B-3 shows the first 25 histograms, ordered so

that they are as close to each other as possible, in terms of Earth Mover's Distance.

Meanwhile, Figure B-4 shows 25 random bootstrapped histograms.
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Figure B-1: The first 25 bootstrapped plots, when they are ordered by applying a
heuristic to the travelling salesman problem with the Earth Mover's Distance metric
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