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Abstract
This thesis is motivated by the desire to estimate air traffic delays at airports under
a range of assumptions about the predictability of (a) inter-arrival times of demands
(arrivals and departures) and (b) service times of aircraft movements (landings and
takeoffs). It consists of two main parts.

In the first, a transient analysis of a D(¢)/M(t)/1 queuing system is presented.
The reason for focusing on such a system is that it may be useful in evaluating some
of the benefits of a future Air Traffic Management (ATM) system, such as the Next
Generation Air Transportation System (NGATS or NextGen) currently being devel-
oped in the United States. One of the main features of these future ATM systems will
be high predictability and regularity of the inter-arrival times of airport demands,
i.e., a nearly deterministic demand process. This will be achieved through significant
reductions in aircraft trajectory uncertainty, with the expectation that airport delays
will also decrease substantially as a result. We develop a novel, computationally-
efficient numerical approach for solving D(t)/M(t)/1 queuing systems with general,
dynamic demand and service rates. We also discuss the complexity of the approach
and some characteristics of the resulting solutions.

In the second part of the thesis, we use a set of models of dynamic queuing
systems, in addition to our D(¢)/M (t)/1 model to explore the range of values that
airport delays may assume under different sets of assumptions about the level of un-
certainty associated with demand inter-arrival times and with service times. We thus
compute airport delays under different queuing systems in a dynamic setting (where
demand and service rates are time-varying) to capture the entire range of uncer-
tainties expected during the deployment of various future ATM system technologies.
The specific additional models we consider are: a deterministic D(t)/D(t)/1 model in
which it is assumed that airport demands for landings and takeoffs occur at exactly as
scheduled; and a M (t)/Ex(t)/1 model which, because of the “richness” of the family
of Erlang distributions, Ej, can be used to approximate most M (t)/G(t)/1 models



that may arise in airport applications. It can be seen that these models, when used
together, provide bounds on estimated airport delays, with the D(¢)/D(t)/1 model
most likely to offer a lower bound and the M (t)/M(¢)/1 model (i.e., the special case
of M(t)/Ex(t)/1 with k = 1), an upper bound. We show through a set of examples
based on a few of the busiest airports in the United States that: the closeness of the
delay estimates provided by the different models depend on the level of congestion at
an airport and the relative shapes of the dynamic profiles of capacity and demand at
the airport; the difference (on a “percentage” basis) between the estimates provided
by the deterministic model and the stochastic ones is largest for uncongested airports
and decreases as the level of congestion increases; D(t)/M(t)/1 and M(t)/D(t)/1
produce estimates of the same order of magnitude, and reflect delays in the presence
of “moderate” uncertainty at an airport; and delays under a D(t)/M(t)/1 queuing
system are always higher than under a M (t)/D(t)/1 system.

Thesis Supervisor: Amedeo Odoni
Title: Professor of Aeronautics and Astronautics, Professor of Civil and Environ-
mental Engineering
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Chapter 1

Introduction

Currently, in the United States, there are significant resources being deployed in
the development of a future Air Traffic Management (ATM) system called the Next
Generation Air Transportation System (NGATS or NextGen). The expected key
benefits of this new ATM system are improvements in various aspects of aviation
encompassing ground/terminal operations, technological advancements in aircraft
monitoring, efficient coordination of various ATM tools and improved tracking of
actual flight paths. In particular, a major proposal of NGATS is improvements in
4DT trajectory uncertainty (4DT capability is defined as the ability to precisely fly
an assigned 3D trajectory while meeting specified timing constraints on arrival at
waypoints [5]). This would lead to enhanced predictability and control over the tra-
jectory of an aircraft with the resulting decrease in the delays in the system. Thus,
to quantify these benefits, it might be desirable to estimate air traffic delays at air-
ports under a range of assumptions about the predictability of (a) inter-arrival times
of demands (arrivals and departures) and (b) service times of aircraft movements
(landings and takeoffs). This thesis addresses exactly this issue. It consists of two
main parts:

In the first part, we present a transient analysis of a dynamically evolving
D(t)/M(t)/1 system where the demand and service may be strongly time-varying.
One of the main features of this future ATM system will be high predictability and
regularity of the inter-arrival times of airport demands, i.e., a nearly deterministic
demand process. Thus, the results from the D(t)/M(t)/1 system will help quan-
tify the resulting benefits. Our analysis is based on computing the probabilities of

the state of the system at various arrival time-points and using it to compute the



expected delays of each aircraft.

In the second part of the thesis, we use a set of models of dynamic queuing
systems, in addition to our D(t)/M(¢)/1 model to explore the range of values that
airport delays may assume under different sets of assumptions about the level of
uncertainty associated with demand inter-arrival times and with service times. The
specific additional models we consider are: a deterministic D(t)/D(t)/1 model in
which it is assumed that airport demands for landings and takeoffs occur at exactly
as scheduled; and a M(t)/Ex(t)/1 model which, because of the “richness” of the
family of Erlang distributions, Ej, can be used to approximate most M(t)/G(t)/1
models that may arise in airport applications. It can be seen that these models, when
used together, provide bounds on estimated airport delays, with the D(t)/D(t)/1
model most likely to offer a lower bound and the M (¢)/M (t)/1 model (i.e., the special
case of M(t)/Ey(t)/1 with k = 1) an upper bound. We thus compute airport delays
under different queuing systems in a dynamic setting (where demand and service
rates are time-varying) to capture the entire range of uncertainties expected during

the deployment of various future ATM system technologies.

1.1 Background

An airport can be modeled as a queuing system where the aircraft can be interpreted
as the arriving customers requesting service to land/take-off from the runways. At
an airport, the demand is in general a strongly varying function of time as there are
very few aircraft arriving/departing during early morning and late night hours. This
time-varying demand profile is an essential characteristic at any airport. Moreover,
capacity during some time-periods may also change, as a result of weather distur-
bances. This, in turn, makes the “steady-state” queuing results a bad approximation
to the actual delays. This is because classical queuing theory deals with computing
delays in the long-run when the queuing system is allowed to operate under constant
demand and service rates for a very long period of time. In contrast, any appropri-
ate analysis of an airport modeled as a queuing system has to be carried out during
its transient phase and not in “steady-state”. Thus, to carry out an analysis of the
possible delays at an airport under different queuing systems, it is essential to have
a portfolio of tools that aid in their exact or reasonably approximate transient anal-
ysis. One of the contributions of this thesis is in assembling such a toolset. Next,

we review the various possible models of a queuing system and highlight the ones



we focus on in this thesis.

The most general setting for a dynamic queuing system is G(t)/G(t)/1, where
the two G(t)’s represent the arbitrary distribution of the inter-arrival time and the
service time respectively. In this thesis, we focus on the following four systems -
D(t)/D(t)/1, M(t)/D(t)/1, D(t)/M(t)/1 and M(t)/M(t)/1. The D(t)/D(t)/1 sys-
tem represents the completely deterministic setting where there is no uncertainty
in both the arrival and service process. M (t)/M(t)/1 represents the system at the
other end of the spectrum where the inter-arrival times and service times are Pois-
son (completely random). The other two systems (D(t)/M(t)/1 and M(t)/D(t)/1)
capture the “intermediate precision” cases, i.e., we study the delays resulting from
the assumptions that the arrival process (D(t)/M(t)/1) and the service process
(M(t)/D(t)/1) are deterministic respectively. Figure 2.1 depicts the hierarchy of
the four models that we study.

Deterministic

Intermediate Precision

Completely Stochastic

Figure 1.1: The four queuihg systems.

1.2 Related Literature

Much of the theoretical analysis presented in this thesis falls within the scope of
queuing theory. Although, there is a significant body of research dealing with steady-



state results (when the system is allowed to operate for a long time so as to reach
equilibrium), the literature related to the transient analysis of systems with strongly
time-varying demand and service has been rather sparse. Odoni, Roth [1] and Green,
Kolesar [7] point out the inadequacies of steady state results for approximating the
behaviour of transient and dynamic queuing systems. Most attempts to explicitly in-
corporate dynamic and transient behaviour model the service and arrival processes as
phase-type and attempt to solve the resulting forward Kolmogorov equations. In ap-
plications of this general type of approach to the dynamic analysis of airport queues,
Peterson, Bertsimas and Odoni [9] develop a model based on a Markov/semi-Markov
treatment of changes in the weather (to model the uncertainty in service), together
with a treatment of the arrival stream as time-varying but deterministic. Moreover,
they compute moments of queue length and waiting time via a recursive algorithm.
Next, we review the literature on the analysis of D(t)/M(t)/1 systems. Pack [8]
obtains closed-form expressions for the distributions and first two moments of three
random variables (namely, time until the nth departure, the number of departures
in an interval of length t and the time between the (n — 1)** and n'" departure)
associated with the nonequilibrium output of a D/M/1 queue. Moreover, he also
derives expressions for the equilibrium distributions and moments of these random
variables. Birger [4] presents the transient analysis of a static D/M/1 system. To the
best of our knowledge, we are not aware of any model (let alone a computationally
tractable one) to solve the dynamic D(t)/M(¢)/1 system. Our principal theoretical
contribution is the development of a transient analysis of D(t)/M(t)/1 system which
relies on computing the probabilities of the queue length at various aircraft arrival
epochs. Moreover, we propose a recursive way to compute the state probabilities to
make the procedure tractable. Finally, we propose the concept of an effective service
rate which is helpful in computing delays when the service rate varies strongly with

time.

1.3 Thesis Overview

This thesis is structured as follows: Chapter 2 presents the transient analysis of a
D(t)/M(t)/1 system under both a constant and a time-varying service rate. More-
over, it presents the complexity analysis (both time and space) of the proposed ap-
proach and a comparison of transient and steady-state delays with those of M/D/1

systems. Chapter 3 presents a brief description of the queuing systems used for the



estimation of delays at an airport in addition to D(t)/M(t)/1. It then reports ex-
tensive computational results of the delays obtained under the four queuing systems

on a set of US airports. Chapter 4 summarizes conclusions.



Chapter 2

Analysis of D(t) /M(t)/1 Queuing
System

In this chapter, we present our numerical method for the transient analysis of a
D(t)/M(t)/1 system under both constant and time-varying service rates. In addi-
tion, we analyze the complexity (both time and space) of our proposed approach;
compare the transient and steady state delays with those of the M(t)/D(t)/1 sys-
tem; and finally, conclude with a study of the effect of congestion and time-variation

of demand on the system delays.

Notation.
Here, we summarize the notation used throughout this chapter:
e T : total number of time-periods,
e A : duration of each time-period,
e «; : total number of aircraft arrivals during time-period i € T,
e 4i; : service rate during time period i € T,
e Dy : delay experienced by the kt* aircraft,
e X} : service time of the k" aircraft,
o 7 : number of aircraft in front at the time of arrival of the kth aircraft,

e {1 : time-period in which the k" aircraft arrives,

9



® ¢ : inter-arrival time between k™ and (k 4+ 1)** aircraft,
o Cp=Y""l¢; : time of arrival of the k** aircraft,

e Af : number of arrivals in an interval of length ¢ in a Poisson process of rate

K,

N = Z;rzl o; : total number of aircraft arrivals,

e D= Zszl Dy, : total delay experienced across all aircraft.

2.1 Time-varying demand rate and constant service rate

Here, we analyze the D(t)/M(t)/1 system under the assumption that the demand
is time-varying but the service rate is constant (denoted by u).

Given Zj, the total time that the k** aircraft will spend in the system is the sum
of Z i.i.d exponentials plus its own service time. Hence, the delay experienced by
the k" aircraft is Erlang of order Zj (i.e., Dy|Z : Erlang of order Zy).

E[Dy|Zk) = Zi/p (2.1)
E[Dy| = E[E[Dy|Z]] (2.2)
= E[Zk]/u (2.3)

(2.4)

7 = [0, Zk—l]y ifX < Ck—1,
¢ Zr1+1, fX>cpg.

where X: service time of a random aircraft.
We model this system as a discrete-time Markov Chain with time-varying tran-

sition probabilities p,{-“j.

P = { ( ' (2.5)

0, otherwise.

10



For the case when j <i+1, pfj can be computed as follows:

P = P(Z = j|Zk-1 = 1) (2:6)
—P(AE =i+ 1—jlAE  <i+1) 2.7)
CP(AE =it 1 AAL <i+]) 28)
N P(AE | <i+1) ’
_ P(AL _, =i+1-7) (2.9)

P(AE,_ <i+1) '
—UCr_1 _ (i+1—j) . + 1— 1 |
— € Z(+/~ick: 1) /(7’ ~ J) (210)
Dilge FR1(pek-1)7/2!

>iE (uek-1)7/2!

It is important to note that the resulting state space might be large. Hence, to ease
the computations involved (with the factorials), we give a recursive definition of the
probabilities:
e 1T2—7 4
= —D 2.12
pz] (-1 pz,g—l ( )
Let gij = P(Z = j) denote the probability that the kth aircraft sees j aircraft
in the queue when it arrives. Based on the probabilities gy ;, the delay that it

experiences can be computed as follows:
X G any
ElDy] =) —™ (2.13)
=1 H

Next, we give a recursive definition for the computation of the probabilities gk ;:

Gk, = P(Zk = J) (2.14)
N
=" P(Z = jlZk—1 = i) - P(Zp-1 = i) (2.15)
1=0
N
= ol gk (2.16)
=0

Given the above recursive relation between g ; and gx—1,;, and the initial condition

that g1 0 = 1, all g ;’s and hence, all the delays can be computed.

11



2.2 Time-varying demand and service rate

In this section, we add the complication of time-varying service rates. In this case,
the service times of all the aircraft are no longer i.i.d, and they depend on the time-
interval in which an aircraft enters the queue because of time-varying service rates.
Since the arrival process is still deterministic, we know the exact time of arrival of
each aircraft, and hence we know the service rate with which every aircraft will get
processed if it arrived in an empty queue.

We introduce some added notation to aid our subsequent analysis:

Added Notation.

e [ij : service rate at the instant of arrival of the k" aircraft.

Note that p; still denotes the service rate during time-period i, but we need jix
to take into account the arrival times of various aircraft. Moreover, given the exact
time of arrival of aircraft k, fix can be mapped to a corresponding u; by mapping
the arrival time to the appropriate time-period.

An exact computation of pfj is as follows:

= P(Zy = j|Zp_1 = i) (2.17)
= PGS =i+ 1— Al <i+1) 219
_ P =i+ 1- A AT <it ) (2.19)

P(AG <i+1)
P Aﬂk)—l — 9 1 — 9
_ ( G =i+ 7) (2.20)
P(AG! <i+1)
_ ey e )T /(41— ) (2.21)
a Soihh e k=11 (fig_ycp1)? /2! |
(ﬁk_1ck—1)(i+l—j)/(i +1—3)!
_ = (2.22)

o (e—10K—1)7 /2!

Again, to ease the computation of the various probabilities, we give a recursive

definition for pi-“j as follows:

& 1+2—-7 4
ph = 1T270 K 2.23
TR (2.23)

12



Let gk ; = P(Z, = j) denote the probability that the kth aircraft sees j aircraft

in the queue when it arrives.

G,; = P(Zy = j) (2.24)
N
=Y P(Zk=ij|Zk1 =) P(Zk—1=1) (2.25)
=0
N
=Y Pl gk (2.26)
=0

A major difference in the analysis of this case is that, in computing the expected
delays for each aircraft, the time-varying service rates have to be taken into account,
that is, the queue in front of each arriving aircraft may be dissipated with different
service rates. Hence, to take this into account, we introduce the notion of an effective

service rate (uff) to process the queue.

Effective Service Rate.

Here, we give the formal definition of effective service rate. Let pi{(]f denote the
effective service rate of servicing j aircraft in the queue at the time of arrival of the
kth aircraft. The effective service rate takes into account the different service rates.
Let nfc denote the number of time-periods that it takes to service all the j aircraft
starting at the time of arrival of the k** aircraft.

j . Ck - )
ny, = argming ¢ m| (tx — K)Mt’“ + Z Wi > (2.27)
i=ty+1

Let N, ,z denote the number of aircraft that are serviced in all but the last time-

period among the ni time-periods, i.e.,

C nfc—l

j k

Ni=| (- _A—-)y’tk, + Z Wi (2.28)
1=t +1

13



Then, uzfjf can be computed as follows:

j Ch - i-Nj
L = (= ) + (] — 1 - 1) + (L2 (220)
s Fnf
ie, ulf = J — (2.30)
(b = F) + (nf — tx = 1) + (55%)

i
k
Figure 2.1 gives an example to elaborate on the concept of effective service rate.
There are three time-periods (7 = 3) and flight f; lands at the middle of the
first time-period. Moreover, the service rates during the entire time horizon are
#1 = 20, p2 = 40 and p3 = 30. Suppose, the queue consists of 65 aircraft at the time
of arrival of flight fi. Then, the first 10 aircraft will be serviced with a rate of 1,
next 40 by ug, and the last 15 by ug. For this example, nfc =3, N,Z =50, t =1
and C1 = A/2. Hence, uij;é can be computed as follows:
65 1 1
—FF=5tlts (2.31)
H165

off 65
ie., uif = - =375 (2.32)

Figure 2.1: Explanation of effective service rate (u®//).

2.3 Some Performance Characteristics

In this section, we characterize the time and space complexity of our proposed nu-
merical approach, and present a comparison of steady-state and transient delays of
this queuing system for different load factors with the M(t)/D(t)/1 system.

14



2.3.1 Complexity
Time Complexity.

Here, we characterize the time complexity of the analysis of a D(t)/M(t)/1 system
presented in the previous section. It should be evident that the main effort in the
analysis of this system lies in the probability computations (the effort within one
such computation and the number of such computations). By providing a recur-
sive way to compute successive probabilities, we are able to reduce drastically the
effort needed for each such individual probability computation. In fact, this is O(1)
because each probability is computed as a constant multiplied by the immediately
previous computed probability. Next, we analyze the number of such probability

computations involved. We introduce the following notation:

Notation.
e t; ;k: number of operations for computing the probability pfj,
e T}: number of operations to compute the expected delay for aircraft k,

e T(N): number of operations to compute the delay statistics of the D(t)/M (t)/1
system with N aircraft.

We note that k € [1, N]; and for a fixed k, ¢ € [0, k — 2]; and for a fixed ¢,
Jj €10, i+ 1]. As noted earlier, pfj is computed as a constant multiplied by pf’ -1
(Specifically, pfj = ﬁf-if—l%_%pf j_l) and hence, if one uses a “bottom-up” approach
(i.e., pfj is computed starting from j = 0 to larger values of j), then, t; jx = O(1).
But, it is important to point out that in the absence of the recursive definition of
the probabilities, ¢; ; x # O(1) as an explicit computation entails the knowledge of a
few factorials, which would worsen the overall time complexity of our approach. In
the remainder, we shall work with ¢; ;x = O(1) (assuming the use of the recursive

definition) as this forms an important element of our overall approach.

15



Next, we show that T} = O(k?):

k—2i+1
Ty = Z Z tijk (2.33)
i=0 j=0
k—2 i+1
=Y O o) (2.34)
i=0 j=0
k—2
= Z((i +2)0(1)) (2.35)
o
= 0(i) (2.36)
=0
= O(k?) (2.37)
Finally, we characterize T(N):
N
T(N)=> Tk (2.38)
k;l
=> 0(k?) (2.39)
k=1
= O(N?3) (2.40)

The analysis just presented shows that, the time complexity of our proposed
numerical method for transient analysis of D(t)/M(t)/1 system is polynomial in the
total number of aircraft arrivals (O(N3)). One surprising aspect of this analysis is
that the time complexity is independent of the load factor (ratio of demand rate and
service rate) across different time-periods, and only depends on the total number of
aircraft arrivals. This can be explained by noting that the number of non-zero pfj’s
is a function only of the total number of aircraft arrivals (N). This follows because
the k" aircraft can only have at most one more aircraft in the queue than those
seen by the (k — 1)** aircraft. Moreover, the k™" aircraft will only have 0,1....k — 1
number of aircraft in the queue when it arrives. Hence, the number of non-zero
pfj’s is a function only of the total number of aircraft arrivals and is independent
of the load factor across different time-periods. The load factors can potentially
alter the relative magnitude of the various probabilities, but they will not impact

the actual number of such non-zero values. Finally, we state that the method is still
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computationally tractable when the demand exceeds the capacity for some periods
during the day. This is a direct implication of the fact that the time complexity

depends only on the number of aircraft arrivals.

Space Complexity.

The space required for our numerical method is a function of the number of non-zero
p?j’s (transition probabilities in the discrete-time Markov Chain). As noted earlier,
the number of non-zero pfj’s is a function only of the total number of aircraft arrivals,
and it is O(N?) (as computed during the analysis of time complexity). Hence, the

space complexity of our approach is also O(N?).

2.3.2 Comparison of Steady State Statistics with M/Ej/1 System

Here, we compare the basic statistics of a queuing system in steady state (expected
number of customers in the queue - L and average waiting time - W) for a D/M/1
system with those of a M/D/1 system. We may use the Pollaczek-Khinchine (P-K)
formula to compute W in steady-state for a M/G/1 system (E[Z] and E[Z?] denote

the first and second moments of the service time):

— A\E[Z?]
= 2.41
W= i B2 (2:41)
Further, using Little’s law, L can be computed as follows:
- N E[Z2)
L= —— 1 2.42
2(1 - AE[Z)) (242)

Finally, we use our numerical method to compute W for a D/M/1 system in
steady-state (for this we extend the time length of analysis until the system reaches
steady-state). We use Little’s law to compute L, given the value of W.

In the entire analysis, we use a service rate of 60 aircraft per hour, which implies
that the random variable governing the service time has a mean of 1 minute (i.e.,
%; = 1 minute). With this service rate, we alter the demand rate to capture the
various load factors (p). In particular, we use a demand rate of 6, 15, 30, 45, 48 and
54 aircraft per hour (leading to p — 0.10, 0.25, 0.50, 0.75, 0.80 and 0.90 respectively).
As a sanity check, we keep in mind that the average delays reported for a D/M/1

system must always be lower than those of a M/M/1 system.
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S.No. | Queuing System Load Factor (p)

0.10 [0.25 [ 0.50 | 0.75 | 0.80 | 0.90
1 D/M/1 0.100 [ 0.27 [ 0.69 | 1.78 | 2.29 | 4.80
2 M/D/1 0.055 | 0.16 | 0.50 | 1.50 | 2.00 | 4.50
3 M/M/1 0.110 [ 0.30 | 1.00 | 3.00 | 4.00 | 9.00

Table 2.1: Comparison of average waiting time (W) in steady-state under different

load factors (p).

S.No. | Queuing System Load Factor (p)
0.10 | 0.25 [ 0.50 | 0.75 | 0.80 | 0.90
1 D/M/1 0.010 | 0.068 | 0.34 | 1.340 | 1.83 | 4.32
M/D/1 0.005 | 0.040 | 0.25 | 1.125 | 1.60 | 4.05
3 M/M/1 0.011 | 0.080 | 0.50 | 2.250 | 3.20 | 8.10

Table 2.2: Comparison of expected number in the queue (L) in steady-state under
different load factors (p).
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Figure 2.2: Comparison of average delay (W) in steady-state with load factor.
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Comparison of expected number of customers in queue with load factor
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Figure 2.3: Comparison of average number of customer in queue (L) in steady-state
with load factor.

The numbers reported in Tables 2.1 and 2.2 indicate that in steady-state, both
L and W for a D/M/1 system lie between M/D/1 and M/M/1 respectively. Fig-
ures 2.2 and 2.3 plot the graph for the numbers reported in these tables. The key
takeaway from these plots is that, as the load factor (p) increases, the difference (in
“percentage” terms) between D/M/1 and M/D/1 decreases whereas the opposite
is true for the difference between D/M /1 values and M/M/1 values. Thus, as the
level of congestion in the system increases, the M/D/1 and D/M/1 systems ap-
proach closer to each other. (Similar conclusions will also be drawn from the results
reported for a set of US airports in Chapter 3 which reinforce these observations).
Another striking feature of these results stem from the observation that for a D/M/1

system, both L and W are consistently higher than for M/D/1 as p increases.

2.3.3 Comparison of Transient Delays with the M(t)/D(t)/1 System

In this section, we study the relationship between aggregate transient delays of a
D(t)/M(t)/1 and M(t)/D(t)/1 system as a function of level of congestion in the
system and variability of demand over time.
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Effect of level of congestion.

Here, we study the relationship between D/M/1 and M/D/1 delays as a function
of level of congestion in the system. We consider a test-case where we have a fixed
service capacity (60 ac/hr), but three scenarios for demand which vary with respect

to level of congestion:
e Scenario 1: demand rate is 6 ac/hr (weakly congested, p = 0.1).
e Scenario 2: demand rate is 30 ac/hr (mildly congested, p = 0.5).
e Scenario 3: demand rate is 54 ac/hr (strongly congested, p = 0.9).

Table 2.3 lists the delays for the D/M/1 and M/D/1 systems under Scenarios
1-3 as listed above. The numbers illustrate two key trends: i) the delays under both
systems increase as the level of congestion in the systems increases; and ii) the per-
centage increase in the D/M/1 delays by comparison to the M/D/1 delays decreases
with the increase in system congestion. This implies that the delays associated with
each of the two systems approach each other as the level of congestion increases.

S.No. | Demand Rate | Aggregate Delay (in min.) | % Increase in Delays
M/D/1 D/M/1 from M/D/1 to D/M/1
1 Scenario 1 4 7 75.00
2 Scenario 2 179 250 39.66
3 Scenario 3 2723 3130 14.94

Table 2.3: Effect of level of congestion.

Effect of demand variability over time.

Here, we study the effect of demand variability over time. We consider two different
test-cases across a period of 12 hours where we have a fixed capacity (60 ac/hr).
In each of these test-cases, we examine three scenarios for demand which are time-
varying. Finally, we set a utilization ratio of p = 0.5 in the first test-case, and p = 0.8

in the second test-case.
1. Test Case 1 (p =0.5)

o Scenario 4: demand rate is 30 ac/hr (not time-varying).
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e Scenario 5: demand rate is alternating between 20 and 40 ac/hr (weakly
time-varying).
e Scenario 6: demand rate is alternating between 10 and 50 ac/hr (strongly

time-varying).
2. Test Case 2 (p =0.8)

e Scenario 7: demand rate is 48 ac/hr (not time-varying).

e Scenario 8: demand rate is alternating between 32 and 64 ac/hr (weakly
time-varying).
e Scenario 9: demand rate is alternating between 16 and 80 ac/hr (strongly

time-varying).

Tables 2.4 and 2.5 report the delays for the D/M/1 and M/D/1 systems under the
two test-cases (p — 0.5 and 0.8) respectively. The reported numbers suggest that
the delays under both system increase as the degree of variability in the demand
increases. Moreover, the percentage increase in the D/M/1 delays over the M/D/1

delays increase with increases in the degree of demand variability.

S.No. | Demand Rate | Aggregate Delay (in min.) | % Increase in Delays
M/D/1 | D/M/1 from M/D/1 to D/M/1
1 Scenario 4 179 250 39.66
2 Scenario 5 207 329 58.93
3 Scenario 6 302 592 96.02

Table 2.4: Effect of demand variability over time (Test Case 1: p = 0.5).

S.No. | Demand Rate | Aggregate Delay (in min.) | % Increase in Delays
M/D/1 | D/M/1 from M/D/1 to D/M/1
1 Scenario 7 1134 1343 18.43
2 Scenario 8 1662 2525 51.92
3 Scenario 9 3102 6021 94.10

Table 2.5: Effect of demand variability over time (Test Case 2: p = 0.8).

An important conclusion from the results reported in Subsections 2.3.2 and 2.3.3

is that M/D/1 and D/M/1 give increasingly close results (percent-wise) as the system
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utilization increases (whether with constant or time-varying demand and capacity
profiles); and, for a given system utilization, the percent-wise difference increases as

variability with time increases.

2.4 Summary

In this chapter, we develop a numerical method for the transient analysis of a
D(t)/M(t)/1 system for both constant and time-varying service rates. The anal-
ysis relies on computing the probabilities of the queue length at various aircraft
arrival epochs. Moreover, we propose a recursive way to compute the state probabil-
ities to make the procedure tractable and propose the concept of an effective service
rate to process the queue. We conclude by presenting an analysis of the complexity
(time and space) of our approach; a comparison of the steady-state and transient
delays of this queuing system with the M(t)/D(t)/1 system; and the effect of level
of congestion and time variation of demand on system delays.
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Chapter 3

Comparing Airport Delay
Estimates from Various Queuing

Systems

In this chapter, we use a set of models of dynamic queuing systems, in addition to our
D(t)/M(t)/1 model, to compute airport delays under the different queuing systems
in a dynamic setting. Specifically, we focus on a set of six major US airports for
which we have data on the actual demand and capacity profiles. Section 3.1 presents
a brief description of the queuing models (in addition to the D(t)/M(t)/1 model)
used in our comparison. Section 3.2 reports the empirical results from the various
queuing models on the six airports. Section 3.3 presents some additional comparisons

on the reported results.

3.1 Other Queuing Systems

In this section, we present a brief description of the additional queuing systems
(M(t)/Ex(t)/1 and D(t)/D(t)/1) and the associated computing tools that can be
used to obtain approximate numerical solutions (namely, DELAYS, Micro and Macro

models). These solutions will be used to compare airport delays.

3.1.1 The M(t)/Ex(t)/1 System

The M (t)/Ex(t)/1 system in queuing theory denotes a model with a non-stationary

Poisson arrival process, time-dependent kth-order Erlang service-time distribution,
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a single-server, and infinite waiting room. In the context of this thesis, this system
can be used to compute statistics for M/D/1 for k large and M/M/1 for k = 1.
These two systems comprise a subset of the four queuing systems that we envisioned
in the Introduction to characterize the different levels of uncertainty modeling.

Given a demand rate A(t) and a service rate u(t), a set of first-order differential
equations (often referred to as the “Chapman-Kolmogorov equations”) describe the
evolution over time of the M(t)/Ey(t)/1 queuing system, when the queue capacity
is equal to N customers. The typical steady-state diagram of this queuing system
consists of kN +1 “stages”. In order to approximate an infinite-capacity system, the
queue capacity, IV, of the system must be sufficiently large so that the probability
that the system is full at any time is very small. Unfortunately, for M(t)/Ey(t)/1
systems, the number of equations to be solved can become very large quickly (for
large k, i.e., when the service times have a small coefficient of variation or, in practical
terms, are nearly constant), and so the numerical solution of the system is time-
consuming.

For this reason, we use a tool developed by Kivestu (1976) at MIT (called DE-
LAYS) that provides an approximate approach to the M(t)/Ey(t)/1 system based
on solving a set of N +1 difference equations (independent of k), instead of a system
of kN + 1 equations. The Chapman-Kolmogorov (C-K) first-order differential equa-
tions that describe the evolution over time of a M (t)/Ex(t)/1 queuing system with

a capacity of N customers (i.e., queuing space for N — 1 customers) are as follows:

Po(t) = —A()Po(t) + ku(t) Pr (1), (3.1)
Bi(t) = —(A(t) + kp(®) Pi(t) + ku(t) Pya (t), 1<i <k —1, (3.2)
Bi(t) = M) Pei(t) — (\(t) + ku(0)Pi(t) + ku()) P (8), k <i < (N — 1)k,

(3.3)
Bi(t) = M) Piei(t) + ku(t)(Pisa () — Pi(t)), (N -1k <i<Nk—1, (3.4)
Pri(t) = —ka(t) P(t) + M) Py yi(t): (3.5)

where A(t) is the demand rate, p(t) is the service rate, i is the current state of the
queuing system, and P;(t) is the probability of being in state i at time t.

In airport applications, DELAYS uses the number of landing and/or takeoff
demands to set the demand rate, A(t), and the airport’s capacity profile to set the
service rate, u(t). DELAYS then starts at time ¢ = 0 (when the airport can be
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said to be “at rest”) with Py(0) = 1 and P;(0) = 0 for all ¢ > 0. The system is
assumed initially to be empty (this matches well with the NAS) and has negligible
probability of returning to an idle state throughout the analysis period. The model
then proceeds to solve the C-K equations iteratively by computing P;(At) = 0 for
all system states (0 < ¢« < Nk) and for an appropriately small time increment, At,
and continues by computing P;(2At), P,(3At) etc., for all system states 7, until it
has “stepped” in this way through a 24-hour period. Having thus computed all the
state probabilities for the entire 24-hour period, it then provides estimates for the
average waiting times, average number of aircraft in the queue for using the runway
system, etc., as specified by the user.

Because DELAYS is an approximation of a queuing system with infinite queuing
space, the number of states for which the C-K equations are solved is set to a large
number from the outset. Moreover, at the end of every iteration, DELAYS checks
the probability of having a full queuing system. If that probability exceeds 1076,
then DELAYS adds k more states to the already existing ones. In this way, the
system always has sufficient queuing space to accommodate all incoming demands.
With the time parameter At set small enough, any potential state space violation
can be remedied before it affects the evolution of the system.

During Fall 2007, this author rewrote the code in Java. It runs very efficiently
on any typical PC (less than 1 sec for a 24-hour period at the busiest airports).
Moreover, this author has also proposed a variant of DELAYS (called DELAYS-
EFF and described later in this chapter), which uses the concept of effective service
rate instead of instantaneous service rate to process the queue and rectify the rare
cases where DELAYS overestimates/underestimates the actual delays due to service

rates that vary drastically over time.

3.1.2 Two Versions of a D(t)/D(t)/1 System

The delays in a completely deterministic setting are computed using two models,
Micro and Macro, that were developed at the University of California, Berkeley.
The Micro model uses as its demand input the scheduled times of arrivals and/or
departures at an airport, while the Macro model is based on aggregate flight demands
in discrete time periods. Below, we provide a brief description of these two models

(please refer to [10] for detailed descriptions).
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Micro model.

The Micro model uses individual flight data in order to calculate delays for a de-
terministic queuing analysis. Specifically, the scheduled times of flights (arrivals or
departures) are used as the time when deterministic demands to the system occur.
Further, the capacity information during each discrete time-period (referred to as a
bin henceforth) is used to compute the minimum headway requirement between two
consecutive arrivals. For a particular flight, an expected time of service is assigned,
given the information on its scheduled arrival time and the minimum separation
required from the immediately previous serviced flight. This is done in a recursive
way, simply by noting the expected service time of the just serviced flight and the
headway required during the current bin. Finally, the delay for each flight is calcu-
lated as the difference between the expected time of service and the scheduled arrival

time.

Macro model.

In contrast to the Micro model, the Macro model uses aggregate flight data to
determine arrival demand. The capacity for each bin is estimated in a way similar
to the method used by the Micro model. Therefore, the difference between the
Micro and Macro model lies in the way demand is handled. Given the demand and
capacity data for each bin, a cumulative demand curve and throughput curve are
created which capture the aggregate number of demands and the aggregate number
of serviced aircraft, respectively, at the end of a bin. The delays (for a particular
bin) are then computed as the product of the length of the bin and the difference in
the cumulative demand and throughput at the end of this bin.

This discussion of the two deterministic models indicates that the Macro model
does not capture the unevenness of the true schedule (in contrast to Micro), and

hence, is expected to predict lower delays than Micro.

3.2 Delays Under Different Queuing Systems

In this section, we report extensive computational results for a set of US airports
for the purpose of comparing the delay estimates provided by four different queuing

systems.
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Experimental Setup.

We consider six major airports of the US - Atlanta Hartsfield International (ATL),
Boston Logan International (BOS), New York LaGuardia (LGA), Miami Interna-
tional (MIA), Chicago O’Hare (ORD) and San Francisco International (SFO) — over
a 17-hour period. For each airport, we have access to the demand and capacity pro-
file over the 17-hour time horizon. Specifically, the entire time horizon is typically
divided into time-bins (called bin henceforth) of either 15 minutes or 60 minutes
and, demand is specified as the number of aircraft arrivals demanding service in
each of these bins. The demand profiles were provided by Michel Santos from In-
telligent Automation Inc (IAI). The demand schedules are obtained through runs of
the Airspace Concept Evaluation System (ACES) - a high-fidelity simulation model
of the National Airspace System (NAS). The schedules are based on simulation runs
for four peak and four off-peak days in 2007, a total of eight demand scenarios. The
output from each of these simulations includes landing/wheels-down day and time
in UTC time zone, arrival day and time in UTC time-zone and arrival airport code.
From this data set, demand at any airport can be extracted since the simulation
is performed for the entire NAS. Moreover, the capacity of individual airports is
based on airport acceptance rate (AAR) values obtained from the Airspace System
Performance Metric (ASPM) data base maintained by the Federal Aviation Admin-
istration (FAA). ASPM provides quarter-hour AAR values for every day beginning
on January 1, 2000. The capacity profiles from this information were prepared by
Prof. Hansen and his research team at Berkeley. For this, a statistical analysis of
capacities available during the 365 days of 2007 was carried out, and five “clusters”
of representative profiles were filtered. For instance, one cluster might represent a
day when weather was good throughout the day, another a day when the weather
deteriorated during the day, so it was good in the morning and poor later on, etc.
Each cluster is assigned a weight, based on the frequency with which the associated
conditions occur.

Given these demand and capacity datasets, the delays arising from deterministic
settings are computed using the Berkeley Micro and Macro models. Next, we com-
pute delays resulting from adding stochasticities in the arrival and service process.
DELAYS makes possible the computation of delays in a M/E}/1 system, where k is
the Erlang parameter for the order k Erlang service time distribution (which is a sum

of k i.i.d exponential random variables). We report results for £ = 100000, 10 and 1
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which correspond to M/D/1, M/E)o/1 and M/M/1 systems respectively. Finally,
we use the analysis presented in Chapter 2 to compute delays in a D/M/1 system.
We run our experiments on a laptop with 2 GB RAM and Linux Ubuntu OS. DE-
LAYS runs very efficiently taking less than 1 sec at the busiest airports, whereas, the
code for D/M /1 system typically takes less than 10 minutes for the most congested
airports.

Next, we report the delays experienced at all the airports (except LGA) men-
tioned above under the four dynamic queuing systems. Tables 3.1-3.5 report the
delays for these airports under the different capacity scenarios. Figures 3.1-3.6 plot
the capacity profiles used for computing delays at these airports.

Table 3.6 lists the delays for the D/M/1 and M/D/1 systems (averaged over
the different capacity profiles). As is evident from the results, the delays under a
D/M/1 system are higher than those for the M/D/1 system in all cases. But, the
percentage increase in the average delays of a D/M/1 system compared to a M/D/1
system decreases as the system becomes more congested. In fact, for the two most

congested airports (ATL and SFO), the average delays are practically the same.

S.No. Queuing Capacity Scenario

System ATLI1 | ATL2 | ATL3 | ATL4 | ATL5
1 D/D/1 (Macro) | 3577 | 2104 | 8385 | 11773 | 30714
2 D/D/1 (Micro) | 4861 | 3336 | 9166 | 12412 | 31257
3 M/D/1 6525 | 4279 | 12460 | 14550 | 35475
4 D/M/1 6878 | 4620 | 12815 | 14901 | 35954
5 M/Eip/1 6805 | 4469 | 12836 | 14897 | 35982
6 M/M/1 9092 | 6099 | 15938 | 17795 | 40154

Table 3.1: Comparison of aggregate delays for a 17-hour period (in min) under
different queuing systems - ATL.

Interpretation and takeaways from computations.

Next, we draw some inferences from the results tabulated in Tables 3.1-3.6:

Range of delay values.

The results indicate that the delays resulting from the queuing systems can be
broadly divided into three distinct bands. The delays from M/D/1, D/M/1 and
M/E/1 systems lie close to each other within a narrow band. The, D/D/1 and
M/M/1 systems hold the other two end-points on opposite sides of this band. The
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S.No. Queuing Capacity Scenario
System BOS1 [ BOS2 | BOS3 | BOS4 | BOS5

1 | D/D/1 (Macro) | 2006 | 66 | 241 | 642 [ 1640
2 | D/D/1 (Micro) | 3029 | 372 | 793 | 1473 | 2234
3 M/D/1 6173 | 454 | 1133 | 2730 | 4046
4 D/M/1 6428 | 594 | 1327 | 2956 | 4295
5 M/Eqo/1 6476 | 492 | 1219 | 2913 | 4242
6 M/M/1 8949 | 829 | 1945 | 4434 | 5823

Table 3.2: Comparison of aggregate delays for a 17-hour period (in min) under
different queuing systems - BOS.

S.No. Queuing Capacity Scenario
System MIA1 l MIA2 | MIA3 | MIA4
1 D/D/1 (Macro) | 49 29 98 65
2 D/D/1 (Micro) 174 145 281 283
3 M/D/1 274 239 424 478
4 D/M/1 383 340 557 617
5 M/Eqo/1 208 | 261 | 458 | 516
6 M/M/1 509 450 753 843

Table 3.3: Comparison of aggregate delays for a 17-hour period (in min) under
different queuing systems - MIA.

S.No. Queuing Capacity Scenario

System ORD1 | ORD2 | ORD3 | ORD4 | ORD5
1 D/D/1 (Macro) 33 113 50 367 116
2 D/D/1 (Micro) 431 639 616 1144 623
3 M/D/1 445 | 705 | 686 | 1381 | 744
4 D/M/1 504 | 900 | 867 | 1640 | 951
5 M/Eq0/1 485 764 744 1479 804
6 M/M/1 833 1265 1235 2312 1322

Table 3.4: Comparison of aggregate delays for a 17-hour period (in min) under
different queuing systems - ORD.
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S.No. Queuing Capacity Scenario

System SFO1 | SFO2 | SFO3 | SFO4 | SFO5
1 D/D/1 (Macro) | 3182 17 8058 92 367
2 D/D/1 (Micro) | 3823 | 220 | 9200 | 362 800
3 M/D/1 5281 355 | 14547 | 610 1269
4 D/M/1 5305 | 468 | 14764 | 758 | 1446
5] M/Eyo/1 5422 387 | 14991 | 659 1349
6 M/M/1 6624 | 658 | 18205 | 1079 | 2045

Table 3.5: Comparison of aggregate delays for a 17-hour

different queuing systems - SFO.

period (in min) under

S.No. | Airport Average Delay (in minutes) % Increase in
Aggregate Per flight Delays from
M/D/1 [ D/M/1 | M/D/1 | D/M/1 | M/D/1 to D/M/1
1 ATL | 14657.8 | 15033.6 | 12.57 12.89 2.50
2 BOS 2907.2 3120 5.36 5.76 7.32
3 MIA 353.75 474.25 0.79 1.07 34.06
4 ORD 792.2 990 0.95 1.18 25.01
5] SFO 4412.4 | 4548.2 9.32 9.61 3.07

Table 3.6: Comparison of Delays (averaged over all capacity scenarios) computed for

the D/M/1 and M/D/1 Systems.
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Figure 3.1: Capacity Scenarios at ATL.
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Airport Acceptance Rate (flights per 15 minutes)

Airport Acceptance Rate (flights per 60 minutes)

Capacity Scenarios at BOSTON (BOS)

20 T x T T T v T T T T
Scenario 1 -
Scenario 2 -
Scenario 3 -
Scenario 4 -3 -
Scenario 5 - -

LR S P I T A SO RN
15 |
10 By BE BRRERR PR FE R
W sk M ke w4 wd ma
5 =

1 1 1 L 1 1 1 1

0 1
06:00 08:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00 00:00
Time of Day

Figure 3.2: Capacity Scenarios at BOS.

Capacity Scenarios at LA GUARDIA (LGA)
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Figure 3.3: Capacity Scenarios at LGA.
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Airport Acceptance Rate (flights per 15 minutes)

Airport Acceptance Rate {flights per 15 minutes)

Capacity Scenarios at MIAMI (MIA)
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Figure 3.4: Capacity Scenarios at MIA.
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Figure 3.5: Capacity Scenarios at ORD.

32



Capacity Scenarios at SAN FRANSISCO (SFO)
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Figure 3.6: Capacity Scenarios at SFO.

wide range of estimates obtained indicate that, improvements in either the pre-
dictability of the arrival process or the service process may lead to very substantial
reductions in delays. Further, a transition from the intermediate precision cases
to "ideal" deterministic scenarios (which, of course, may be extremely difficult to

achieve in practice) will lead to another level of improvement in system delays.

Relation between D/M/1 and M/D/1 delays.

Another key takeaway from the results is that the fit between the results of the
D/M/1 and M/D/1 models is very good with a R? (goodness-of-fit) measure of
0.99 (see Figure 3.7). The delay estimates provided by these two queuing systems
are best compared by dividing the set of airports into two groups - i) congested (ATL,
BOS and SFO); and ii) non-congested (MIA and ORD). At the two congested air-
ports, since the average per flight delays are greater than 5 minutes (see Table 3.6),
the intercept of -0.27 in the regression line has a small effect and hence, the slope of
0.99 suggests that the increase in D/M/1 delays over a M/D/1 system is typically of
the order of 1%. In contrast, the per flight delays for non-congested airports are typi-
cally less than two minutes and, hence, the intercept has a significant impact leading
to a higher percentage increase in the delays estimated by D/M/1 system over a
M/D/1 system (also corroborated by Table 3.6). In summary, the results indicate

33



that in all scenarios, the delay estimates under a D/M/1 system are higher than un-
der the M/D/1 system and the percentage increase is much higher for non-congested
airports, whereas for congested airports, the delay estimates are practically the same.

Results from Macro model.

For some of the least congested days (e.g., BOS2, ORD1, ORD3, SFO2 and all cases
of MIA), the difference between Macro and D/M/1 or M/D/1 (let alone M/M/1) is
1-to-5 or more. In addition, the difference between Macro and Micro can be very
large in such cases, pointing out the lack of usefulness of the Macro model for such
cases. The reason is that Macro does not use any information on the actual arrival
times, while only utilizing the aggregate demand during each bin. Hence, this char-
acteristic of the Macro model coupled with the small demand compared to capacity
for uncongested days leads to relatively miniscule delay estimates. In contrast, the
Micro model is able to reasonably overcome this shortcoming by taking into account

the unevenness associated with the actual times of deterministic arrivals.
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Figure 3.7: Regression Between D/M/1 and M/D/1 Queuing Systems.
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3.3 Additional Comparisons

In this section, we provide further comparisons of the delay estimates obtained
through the following three models - Stochastic (DELAYS), Deterministic (Micro)
and Deterministic (Macro). Figures 3.8, 3.9 and 3.10 compare the average delay
estimated by the Micro and Macro models, the DELAYS and Micro models, and the
DELAYS and Macro models respectively, for the various scenarios examined at the
subject airports.

It is evident from Figure 3.8 that the delay estimates from the Macro model are
slightly, but consistently, below those from the Micro model. Such an observation is
expected because the Macro model uses a smoothed demand profile as compared to
Micro which takes into account the exact scheduled arrival times of flights, which may
be far from evenly spread over time at many major airports. A R? (goodness-of-fit)
measure of 0.99 indicates that the linear correlation is very strong.

Comparisons of the delay estimates obtained from the DELAYS model with those
from the deterministic models are less straightforward. Specifically, there appear to
be a set of six points at the extreme right in Figures 3.9 and 3.10 with unreasonably
high magnitude of delay estimates (greater than two hours). These points correspond
to a specific capacity scenario of LGA (Scenario 5). We elaborate on this unusual
behavior in Section 3.3.2. For now, we focus on the comparison of the delay estimates
obtained across all points except these six. For this set of points, the best fit line
between DELAYS and Micro has a slope of 0.90 and an intercept of -0.84, i.e., given
a DELAYS estimate, there is a reduction of 10% and a subsequent reduction of 0.84
minutes in computing the Micro estimate. A similar analysis between DELAYS and

Macro shows a reduction of 12%, plus 1.5 minutes.

3.3.1 Effect of Congestion

The plots in Figures 3.9 and 3.10 indicate that there is some correlation amongst
the delays obtained from a stochastic model (DELAYS) and a deterministic model
(Micro or Macro) if one examines the respective results of these models as a func-
tion of level of congestion. Hence, in this section, we try to provide a qualitative

explanation of this phenomenon:

1. Low Congestion: Here, we would expect that DELAYS would provide higher
delay estimates than the deterministic models, possibly much higher on a per-

centage basis. In fact, in those cases where the demand rate is significantly
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Macro

Figure 3.10
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Figure 3.12: Regression between DELAYS-EFF and Macro.

lower than the service rate at all times during the day, a deterministic model
might produce a small delay estimate (possibly close to zero), whereas DE-
LAYS might produce an estimate that can be a large number if we set the
demand rate to be only slightly below the service rate for long periods of time
during the day. The points on the extreme lower left part of the two graphs

(i.e., for average delays of 20 minutes or less) corroborate this reasoning.

2. High Congestion: Here, we would expect that the results of DELAYS and of
the deterministic model would be quite similar, since the delays are dominated
by the fact that the demand rate exceeds the service rate for much of the time
and, thus, the effects of stochasticity are less important. This is also partly
borne out by the graphs where points fall close to the 45° line as we move
toward the right.

In summary, the level of congestion at an airport appears to have a pronounced
impact on the closeness of the delay estimates obtained from DELAYS, Micro and

Macro models.
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3.3.2 Some Anomalous Cases

In contrast to the trends observed in Section 3.3.1, we highlight next some anomalous
cases in Figures 3.9 and 3.10. Specifically, i) we focus on a scenario where the Micro
model produces a higher delay estimate than DELAYS; and ii) the set of six points

(LGA cases) which exhibit unusual behavior in Figures 3.9 and 3.10.

Point above 45° line.

There is a single point in the graph which falls above the 45° line (not by much, but
nonetheless higher). This means that for this point, the delay estimates provided by
Micro are higher than DELAYS. At first glance, this might seem impossible, as a
stochastic model should always lead to a higher delay estimate than a deterministic
model. We explain below how such a paradoxical situation is possible in an airport
setting.

As mentioned earlier, the Micro model uses the scheduled times of flights (arrivals
or departures) as the time when the deterministic demands to the system occur. This
means that, if the scheduled times are bunched together, many demands will occur
within a short span of time and a long queue may be formed. This is often exactly
what happens at some of the hub airports, where airlines, for competitive reasons,
schedule many flights to depart on the hour or on the half-hour, and also schedule
many flights to arrive within a short span of time, so that their passengers can alight
from their incoming flight and transfer to a departing flight. (These are the so-called
“airline banks” or “airline waves”). It is therefore possible that the demand stream for
the Micro model will have more “clusters” of demands than a Poisson arrival stream,
for which demands are spread independently and randomly over time. Thus, there
may be a few cases in which delays under the Micro D(¢)/D(t)/1 model could be
greater than delays under a stochastic model.

The case in which the Micro model produces greater delay than the stochastic
model (above 45-degree line) involves Chicago O’Hare (ORD) Airport. ORD, a
major hub for both American and United airlines, is notorious for the bunching of

its flights into “banks” or “waves”.

LGA cases.

There is a distinct bunch of six points in Figures 3.9 and 3.10 which appear outliers

given the general trend. These cases correspond to a particular capacity scenario
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of LGA (Scenario 5). These confounding outcomes can be traced back to the exact
mechanics of the DELAYS model. DELAYS works by first dividing the entire time-
horizon of analysis into several time-bins (this division is a function of the Erlang
parameter k of the service process). Subsequent to this, it approximates the aircraft
delays accrued in each of these bins by using the instantaneous service rate during
that particular bin to process the queue of aircraft. This, in turn, means that,
if the service rate changes drastically in the near future, starting from this bin, a
poor estimate of the actual delays will result (an over-estimate if the service rate
later increases, and an under-estimate if it decreases). For the LGA cases, this is
exactly the reason why DELAYS produces very high estimates as there is a drop in
the capacity at later in during the day which causes DELAYS to overestimate the
accrued delays in the middle of the day.

To rectify this issue, we utilize the concept of effective service rate as introduced
during the analysis of the D/M/1 system, and develop a variant of DELAYS (called
DELAYS-EFF henceforth), which essentially replaces the instantaneous service rate
used during each time-bin with an effective rate computed in a manner entirely
analogous to the one described in Chapter 2 [expression (2.30)]. It should be noted
that if the service rate does not vary significantly during the day, DELAYS and
DELAYS-EFF will produce practically same results. It is important to comment
that there is no rigorous theoretical justification for the correctness of DELAYS-
EFF, and a simulation would serve as a good way to confirm the correctness of
the resulting delay estimates. Figure 3.11 plots the average delays obtained from
Deterministic (Micro) and the DELAYS-EFF model, while Figure 3.12 plots the
average delays obtained from Deterministic (Macro) and the DELAYS-EFF model.
As expected, the points corresponding to the LGA cases become more aligned with
the general trend.

Next, we examine closely the detailed profiles of demand, capacity and delays
estimated by the DELAYS model over a 17-hour period for one of outlier points
corresponding to the LGA cases (Figure 3.13). A close inspection of the plot indi-
cates that between 14:00 and 18:00, the capacity is extremely low, so, based on the
explanation of the mechanics of the DELAYS model (and the use of instantaneous
service rates therein), the model predicts per flight delays of 400 minutes (about 7
hours)! After 18:00, the capacity recovers and estimated delays gradually taper off.
Overall, the model ends up overestimating delays. In practice, such cases do not

occur, because the airlines will cancel numerous flights when the FAA announces
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such a drastic drop in capacity later on in the day.
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Figure 3.13: One of the outlier points (LGA).

3.3.3 Regression as a Function of Level of Congestion.

Next, we examine the best-fit linear relations of the per flight average delays esti-
mated by the DELAYS-EFF, Micro and Macro models as a function of congestion.
As noted earlier, there is a strong correlation between the stochastic and determin-
istic delays as a function of the level of congestion in the system. A linear regression
applied to the average delays computed in all cases, without consideration of the level
of congestion present, has the shortcoming of ignoring this important characteristic.
Therefore, we perform separate linear regressions for the low and high congestion
cases and this analysis is tabulated in Table 3.7. We distinguish the level of conges-
tion into two cases: i) Low Congestion (per flight average delay < 20 minutes); and
ii) High Congestion (per flight average delay > 20 minutes). Table 3.7 indicates that
for the low congestion cases, the Micro and Macro produce delay estimates which
are smaller than those of the DELAYS-EFF model by 36% and 46%, respectively.
For the high congestion cases, Micro and Macro generate estimates which differ from
those of the DELAYS-EFF model only in the intercept, 3.7 and 6.4 minutes less,

respectively.
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| S.No. Scenario X-axis y-axis | Equation of Best linear-fit | R?
1 Low Congestion | DELAYS-EFF | Micro y — 0.64x - 0.01 0.98
2 High Congestion | DELAYS-EFF | Micro y=x-37 0.99
3 Low Congestion | DELAYS-EFF | Macro y — 0.54x - 0.52 0.95
4 High Congestion | DELAYS-EFF | Macro y — 0.99x - 6.4 0.99

3.4 Summary

Table 3.7: Regression analysis as a function of level of congestion.

In this chapter, we provide a brief description of the queuing models (in addition

to the D(t)/M(t)/1 model) used for a comparison of delay estimates for a set of

major and often congested airports in the United States. The key conclusions from

the computational results are that the range of resulting delay estimates can be
broadly divided into three distinct bands - namely, deterministic (D(¢)/D(t)/1),
intermediate precision (D(t)/M(t)/1 and M(t)/D(t)/1) and completely stochastic
(M(t)/M(t)/1); the level of congestion at an airport has a strong impact on the

closeness of the delay estimates obtained from the various models; and D(t)/M (t)/1
always results in higher delays than a M (¢)/D(t)/1 system.
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Chapter 4

Conclusion

In this thesis, we develop the capability of solving a set of dynamic queuing systems
with the aim of comparing airport delays. These queuing systems capture the entire
range of uncertainties expected during the deployment of various NGATS technolo-
gies. In particular, we present an efficient approach for the computation of delays
in a dynamic D(t)/M(t)/1 queuing system. In addition, we compare the delays re-
sulting from this system with D(¢)/D(t)/1 and M(t)/Ex(t)/1 (specifically for k =1
and k = 10000).

Our results indicate that the closeness of the delay estimates provided by the
different models depends on the level of congestion at an airport and the relative
shapes of the dynamic profiles of capacity and demand at the airport; the difference
(on a “percentage” basis) between the estimates provided by the deterministic model
and the stochastic ones is largest for uncongested airports and decreases as the level of
congestion increases. D(t)/M(t)/1 and M(t)/D(t)/1 produce estimates of the same
order of magnitude, and reflect delays in the presence of “moderate” uncertainty at
an airport; and delays under a D(¢)/M (t)/1 queuing system are always higher than
under a M (t)/D(t)/1 system.
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