
SELF-ADJOINT EXTENSIONS TO THE DIRAC
COULOMB HAMILTONIAN

by

ANDREW ERIC BRAINERD

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

SAUG 132010

LIBRARIES

Submitted to the Department of Physics in partial fulfillment of the Requirements

for the Degree of

BACHELOR OF SCIENCE ARCHIVES

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June, 2010

@2010 Andrew Brainerd
All Rights Reserved

The author hereby grants to MIT permission to reproduce and distribute publicly

paper and electronic copies of this thesis document in whole or in part.,

Signature of Author .................................................
Department of Physics

A

C ertified by ........................... I- - - ----.---. ---

Pro sor Roman W. Jackiw
Thesis Supervisor, Department of Physics

Accepted by .................. - -.--.--. ----. --
Professor David E. Pritchard

Senior Thesis Coordinator, Department of Physics



2



Contents

1 Introduction

2 Theoretical Background

2.1 The Dirac Equation . . . . . . . . . . . . . . .

2.2 Operator Domains . . . . . . . . . . . . . . .

2.3 Operator Adjoints and Self-Adjoint Operators

2.4 Self-Adjoint Extensions to an Operator . . . .

2.5 The Dirac Equation in the Coulomb Potential

3 The Self-Adjoint Extension

3.1 The Problem of Self-Adjointness . . . . . . . . . . . . . . . . . . . . .

3.2 The Self-Adjoint Extension . . . . . . . . . . . . . . . . . . . . . . . .

3.3 Self-Adjointness and the Dirac Equation . . . . . . . . . . . . . . . .

4 Numerical Analysis of Self-Adjoint Extension Eigenfunctions

4.1 Computer Generated Plots of Eigenfunctions.... . . . . . . . ..

5 Classical Explanations of the Breakdown at Z = 1/o

5.1 The Classical Relativistic Kepler Problem . . . . . . . . . . . . . . .

5.2 Relativistic Bohr Radius..... . . . . . . . . . . . . . . . . . . ..

5.3 Bohr Radius and Most Probable Radius . . . . . . . . . . . . . . . .

11

. . . . . . . . . 11

. . . . . . . . . 15

. . . . . . 16

. . . . . . . . . 17

. . . . . . . . . 19

23

23

25

27

29

29

37

37

38

40



4



List of Figures

4-1 Probability densities of relativistic

with Z = 1 . . . . . . . . . . . . .

4-2 Probability densities of relativistic

with Z= 50 . . . . . . .

4-3 Probability densities of

with Z = 130 . . . . . .

4-4 # (r) for Z = 136.999,

4-5 # E,2(r) for Z = 136.999,

4-6 # 1 (r) for Z 137.001,

4-7 #2E(r) for Z = 137.001.

4-8 N 1 (r) for Z = 150. .

4-9 #N 2(r) for Z = 150. .

4-10 N E(r) for Z 137.001,

4-11 2 E(r) for Z = 137.001,

a

a

relativistic a

as a function

as a function

4-12 ON (r) for Z = 150, as a function of I

nd nonrelativistic ground state

. ..n .... . .. .. . . . .s. .

nd nonrelativistic ground state

. . . . . . . . . . . . . . . . . .

nd nonrelativistic ground state

oI)..................

i~)..................

ofI~ ). .............

.f . . . ..............

. .) . ...............

4-13 #2E(r) for Z = 150, as a function of ln(r). . . . . . . . . . . . . . . .

4-14 Dependence of the ground state energy E on Z for 0 = 5.69532. . . .



6



Chapter 1

Introduction

The Dirac equation is the relativistic generalization of the Schr6dinger equation for

spin 1/2 particles. It is written in the form

-ihc a + Omc 29 = ih-o (1.1)-ihcOXIat'

where V) is a four component Dirac spinor and the coefficients a and # are 4 x 4

matrices. Like the Schr6dinger equation, the Dirac equation can be written as a

time-independent eigenvalue equation H# = E* for a Hamiltonian operator H and

energy eigenvalue E through separation of variables. The energy eigenvalues obtained

by solving this equation must be real- one of the axioms of quantum mechanics is

that physical observables, in this case energy, correspond to self-adjoint operators, in

this case the Hamiltonian operator HI, acting on the Hilbert space 7H which describes

the system in question. It can easily be shown that self-adjoint operators must have

real eigenvalues.

The reality of the energy eigenvalues becomes important when examining hydro-

genic atoms using the Dirac equation. These atoms can be described by a Coulomb

potential, V(r) = -Ze 2 /r, where Z is the number of protons in the nucleus and e is

the elementary charge. When the nonrelativistic Schrodinger equation is solved for a



Coulomb potential, the energy levels are given by the familiar Rydberg formula

Z 2a 2mc 2 1
En 2 2 (1.2)

where Z is the number of protons in the atomic nucleus, a is the fine structure

constant, m is the electron mass, c is the speed of light, and n a positive integer.

Note that this formula assumes a stationary positive charge of infinite mass at the

center of the atom, and that the energy levels for a more realistic model of an atom

with a nucleus of finite mass M are given by replacing m with the reduced mass

= mM/(m + M) in Eq. (1.2).

When the Dirac equation in a Coulomb potential is used instead of the nonrela-

tivistic Schr6dinger equation, the energy levels are instead given by

- 1/2

En, = mc2 1+ a2 (1.3)

n' - j j + )2_ - 2Z2

where n' is a positive integer and j is the total angular momentum of the electron.

The total angular momentum j can take on values in the range 1/2, 3/2, ..., n' - 1/2.

The eigenvalues in Eq. (1.3) match those in Eq. (1.2) in the limit VZ < 1, noting

that in Eq. (1.2), a free electron is considered to have an energy of 0, while in Eq.

(1.3), a free electron has energy mc2.

A problem arises with Eq. (1.3) when aZ > j--. The quantity (j + 2- aZ 2

is imaginary, causing Eq. (1.3) to yield complex energy eigenvalues. Since the eigen-

values of a self-adjoint operator must all be real, this indicates that the Hamiltonian

cannot be self-adjoint when aZ > j + 1.

This issue raises two questions. The first is whether there is a physical explana-

tion for the failure of Eq. (1.2) for large Z. The second is whether this problem can

be addressed mathematically by defining a new, self-adjoint operator H., which is

constructed from the old Hamiltonian H as a self-adjoint extension. In this thesis, I

will answer both of these questions in the affirmative, relying and building upon work



done by others on these questions. I will show how the failure of Eq. (1.2) can be

motivated by physical considerations, and I will examine a family of self-adjoint exten-

sions to the Dirac Coulomb Hamiltonian constructed using von Neumann's method

of deficiency indices.
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Chapter 2

Theoretical Background

2.1 The Dirac Equation

The usual Schr6dinger equation for a single particle in three spatial dimensions,

hV2o + V(y)o = in ,g (2.1)
2m at

make use of a nonrelativistic Hamiltonian operator H = -+ V(5E), which is derived

by quantizing the Hamiltonian for a classical nonrelativistic particle. To incorporate

the effects of special relativity, the Hamiltonian must be altered to incorporate the

relativistic energy-momentum relation

E = p2c2 + m 2 c4 , (2.2)

where p2 = p+p +pl is the total momentum squared. Following the prescriptions

of canonical quantization, we replace E with H and p with P in Eq. (2.2) to find

H = Vp 2c2 + m 2c4 . (2.3)

From canonical quantization, we assume that the action of P on a state |") is given

by

(x~p h) -. (2.4)
i Ox



From Eqs. (2.3) and (2.4), we can calculate the action of H on a state I@). We find

(z jlK)= ( -h2c2 + m2c4 @p(x). (2.5)

The only way to make sense of the expression in the parenthesis is to write it as a

series expansion. Using the series expansion

2 4
Vp2c2 +m2c4 = mc2 2 P P +..., (2.6)

2m 8m 3 c2

we find

(xfiI) = mc 2  + 8mac2 
2_ _ +.. . . (x). (2.7)

so that the relativistic version of the Schr6dinger equation is given by

i = c- 8m c2  + 1 0xxh . .2 (3). (2.8)

We see that there is a problem. The series expansion in Eq. (2.6) does not

terminate, which means that Eq. (2.8) is a partial differential equation of infinite

order. Besides being difficult to solve, partial differential equations of infinite order

are nonlocal. This makes them unsuitable to describe physics which we believe is local.

Note that this problem only occurs when working in position space. In momentum

space, there is no problem with the factor p 2c2 + m 2c4, since the P operator does

not correspond to a differential operator. However, for the sake of finding an equation

which we can use when working in position space, we abandon Eq. (2.8).

There are multiple ways to circumvent this problem. One method is to abandon

the requirement that the equation for the wavefunction be given in the Schr6dinger

form

in ) = $@). (2.9)

Instead, we can use the relation E2 = p2c2 + m 2c4 to write an equation which is



second order in time. We replace E -* ih(9/&t) and pi -> -ih(0/&xj) to get the

Klein-Gordon equation,

h20 = -h2c 2 + mc2 p. (2.10)
at2 Ox 2

However, it is found that the Klein-Gordon equation describes the behavior of spin-0

particles. Electrons are spin 1/2 particles, so the Klein-Gordon equation will not give

the correct behavior of electrons bound to an atomic nucleus.

Paul Dirac developed a different approach which is more appropriate for describing

the behavior of spin 1/2 particles. He noted that the problem of the infinite Taylor

series due to the square root in the relativistic energy-momentum relation would

disappear if we were able to write

23 2 C2 

p2c2 + m2 c4 = ca+pi +f mc2 (2.11)

for some coefficients a and #. Expanding out the square in Eq. (2.11), we find that

this is only possible if & and 13 fulfill the conditions

{I, #} = 0, (2.12)

2 = I, (2.13)

{ai, a = 26VI1, (2.14)

where the curly brackets denote the anticommutator, Vl- is the Kronecker delta func-

tion, and I is the multiplicative identity. This is not possible if a and 3 are scalars.

However, if they are matrices, these relations can be fulfilled. For 3 + 1 dimensional

spacetime, the smallest such matrices for which this factorization is possible are 4 x 4.

One possible choice of these matrices is

. a o^ 12 0

07 0 )(0 -12



where o are the Pauli matrices and 12 is the 2 x 2 identity matrix.

Using this factorization, the Dirac equation for a free particle is thus

i- = -ihc I + 3mc 2V, (2.15)at _ x

where @b is a four component Dirac spinor. For particles in a potential, the Dirac

equation is modified according to the nature of the potential. For a scalar potential

V(r), the Dirac equation is

ih- = -ihc ai + # (mc2 + V(r)) @. (2.16)
at

Electromagnetic interactions are described by a four-vector potential, (#(r), A(r))

where #(r) is the electric potential and A(r) is the magnetic vector potential. For such

potentials, the free particle Dirac equation is modified according to the prescription

ia -+ ih - q#(r), (2.17)

at a
-ih - -- i . - qAj(r), (2.18)

azi azt
where q is the charge of the particle.

For the Coulomb problem, we take #(r) = Ze/r and Ai(r) = 0, and note that we

are working with an electron of charge q = -e. This yields the equation

OVp 3 a8 Ze 2
i [ -ihcca9+ 2 - --- g, (2.19)

at axi r

so that the appropriate Hamiltonian is given by

H = -inc ( a' + mc2 - ZC2  (2.20)
Ozi r



2.2 Operator Domains

In quantum theory, states of a physical system corresponds to elements of a Hilbert

space K. In the case of the Dirac Coulomb problem in 3+1 dimensions, the Hilbert

space R is the space of continuous, square integrable functions from R3 to C4 . Given

two such functions #(r-) and 0(r) corresponding to states 1#) and IV)), we define the

inner product
4

(d) Jd3r #,()i() (2.21)
i= 1

where 0#() and 0i) are the ith components of #(i) and 0(f).

A operator A on K acts on element I') of K to return another element, A I@), of

K. A linear operator A is an operator which satisfies the requirement

A(a IV)) + b Il 2)) = aA 10i) + bA 12) (2.22)

for all |11), |02) in K and complex numbers a and b.

Not all operators of interest in quantum physics can be defined on the entire

space K. For example, consider the Hilbert space K of square integrable functions

f(x) which take R to C. This Hilbert space is frequently used in nonrelativistic single

dimensional quantum mechanics for systems like the harmonic oscillator . Given an

element If) of K, which corresponds to a square integrable function f(x), the position

operator i acts on If) to yield a state I f), which corresponds to a function xf(x).

However, even though f(x) is square integrable, it may not be that xf(x) is square

integrable. For example, the function

1
f () = 1 + 2 (2.23)

is square integrable, but
z

xf (X) 1 , (2.24)

is not square integrable. The action of the operator i on a state If) cannot be defined

for all If) in X.



We see some operators cannot be defined on the whole of N. Instead, the operator

is assigned a domain, which is in general a subspace of H. For example, we can define

the domain of & to be the space of all functions f(x) which take R to C such that

xf(x) is square integrable.

When we define an operator, we must take care to specify the domain of the oper-

ator. For many operators, the domain can be defined as those functions which satisfy

a certain boundary condition. For the three dimensional Dirac Coulomb problem, we

can define the domain of our Hamiltonian H to be those 4@) for which the function

corresponding to H 1@) is square integrable.

When we solve the Dirac equation in the Coulomb potential, we will separate

variables to get angular and radial equations. The radial equations will be of most

interest, and can be written in the form

Hr 1#) = E #) (2.25)

for a radial Hamiltonian Hr, where 1#) is an element of the Hilbert space Nr of

functions 0(r) from the nonnegative real numbers R+ to C2 . The domain of the

operator Hr is defined to be those functions #(r) which satisfy #(0) = 0.

2.3 Operator Adjoints and Self-Adjoint Operators

Given an operator A on a Hilbert space N with domain Dom(A), we can define

another operator At called the adjoint of A. The action of the adjoint operator on

an element of N is defined by the requirement

(#|A@) = (At#|g) (2.26)

for all 1') in Dom(A) and 1#) in Dom(At ). The domain Dom(A) is defined to be

all |#) such that for every IV)) in Dom(A), Eq. 2.26 holds. In general, the domain

Dom(A) and the domain Dom(A) are different.

A self-adjoint operator is an operator A such that A = At. This equality has two



conditions: (i) A ) = Zi 1') for all 14') in Dom(A), and (ii) Dom(A) = Dom(Af).

Condition (i) alone is not sufficient for self-adjointness.

Some operators which appear naively to be self-adjoint are not. For example,

consider momentum operator P in the one dimensional infinite square well. The

Hilbert space 7,w consists of differentiable square integrable functions f(x) on the

interval [0, L] . The momentum operator acts on a function f(x) to give (h/i)f'(x).

The domain of the momentum operator P is defined to be those functions f(x) which

meet the boundary conditions f(0) = f(L) = 0. We see that the domain of the adjoint

consists of all functions g(x) which meet the condition

(glpf) - (Ptg1f) j g*(x) (x) - (Pf g)*(x)f(x)dx = 0. (2.27)

Integrating by parts, we see that this condition will be met if we have

h L _fL
-hg*(*f (x) + (Pjg)* (x) f ()dx = 0. (2.28)

Z i dx

We find that this will be only if

h dg
(Pf g) (x) = . (x), (2.29)

i dx

and

g*(L)f(L) = g*(0)f(0). (2.30)

We see that Eq. 2.30 is true even if g*(L) and g*(0) are nonzero, because f(L) =

f(0) = 0. Thus the domain of Pt is larger than that of P, because Dom(pt) includes

functions which do not have to vanish at the endpoints of the interval.

2.4 Self-Adjoint Extensions to an Operator

Given an operator A with domain Dom(A) such that Dom(A) C Dom(A), it is

sometimes possible to construct a new operator Aex which satisfies the following re-

quirements: (i) Aex I4) = A 4) for all |@) E Dom(A), (ii) Dom(A) c Dom(Aex) C



Dom(A t ), and (iii) Zt = Aex. When this is possible, the operator Aex is called a

self-adjoint extension of A.

One technique [4] for obtaining a self-adjoint extension of an operator A is the

method of deficiency indices, discovered by John von Neumann. We define a sym-

metric operator to be an operator A such that (A4|) = (4|A) for all 14) and 10)

in Dom(A). For such an operator, we will have A 4) = At 1@) for all 1@) in Dom(A),

though we will not necessarily have Dom(A) = Dom(At). We solve the eigenvalue

equations

At |4±) = ii l4±) (2.31)

and examine the solution spaces S± = {|4) : Zi|4) = ±i|4)}. Let P± be the dimen-

sion of S±. Assume Ar+ = V-. We define an isometry to be a function U : S+ -+ S-

such that (4|1) = (U4IU4) for all |4) in S+. If 1+ = - = n, the set of all isometries

is isomorphic to U(n), the set of n x n unitary matrices.

For every isometry U, we can define a self-adjoint extension Au. The extension is

defined by the conditions

Au 14) = At |(2.32)

for all 14) in Dom(Au), and

Dom(Au) = { I4o) + c (|4+) + U 14+)) : |3o) E Dom(A), c E C, +) ES+

In the special case that P1+ = K_ = 1, we can write

Dom(Au) = {|40) + c (14+) + e"| 4)) : |0o) E Dom(A), c E C

where Zt |4±) = ±i l4±) and (4±1±) = 1.



2.5 The Dirac Equation in the Coulomb Potential

The Dirac equation for a Coulomb potential is given by

a' + # '] r OT (2.33)K ( i ..

where we have set h c m 1, a is the fine structure constant a = e2 /hc 1/137,

and we have defined

. 0 12 0

01 0 0 -I2

where the a- are the Pauli matrices and 12 is the two dimensional identity matrix. We

can separate out the time variable by setting I(, t) = @()T(t), yielding the time

independent Dirac equation

H (& 8 aZ1
- + j - = E@b, (2.34)

as well as the familiar time dependence, T(t) = e-iEt

Following [2], we can separate variables to eliminate the time and angular vari-

ables. We separate

(f ) r(r)Oje'1 (Q) ) (2.35)
-r f (r )0jy,m(Q)

where ejem (Q) is a two component spinor with definite total angular momentum j,

orbital angular momentum f, and spin angular momentum m, and f' = 2j - f. After

some algebra, this gives rise to the eigenvalue equation

(l- +r ) f(r) J (r) (2.36)

w + = -1 -a thgfr ger

where r,= + 1/2. W~e note that this has the form of an eigenvalue equation for a



radial Hamiltonian H, whose action on a state 1#) is given by

1 - z -!I + L
r dr r

d + !S - 1 - zadr r r

where

(r|#5) -=

Eq. (2.36) is a system of two first-order

two linearly independent solutions. For

1(r) = E ,1 M

#2 (r) # 2 (r))

(2.37)

( 0, M(2.38)
#2 (r))

differential equations, so there are in general

arbitrary E, one solution is given by

#1(r-) =-v1 +E exp (-p/2)pAx (2.39)

x [F(A-E6 1+ 2AIp) + E6E - A F(A - EE +111+ 2Alp)l
x - 6E

02(r) =V1 -E exp (-p/2)pA (2.40)

x -F(A - EEI|1+ 2Alp) + EE- A F(A - EE +111+ 2Alp)]
X - 6 E

where F(alblc) is the confluent hypergeometric function (see Appendix A) 1 and we

have defined p = 2r 1 - E 2 , E = aZ/N1 - E2, and A = - a2Z 2. We denote

this solution as #+(r) and its components by # 1 (r) and #2 (r). The other linearly

independent solution is denoted by #-E (r) and its components by #E, (r) and # (r).

The solution # E(r) is obtained by replacing A with -A in Eq. (2.39) and (2.40). The

hypergeometric functions diverge as p tends towards infinity unless

A - E3 E - (2.41)

'The confluent hypergeometric function is defined as a power series, F(alblx) = 1+x+" (+b± 2

a(a+)(a+2) +. ... As x tends to infinity, we have F( b'x) ~ b exp [(a - b)x]. If a is a nonpositive
b(b+)(b+2) 3! i o ny . t(al.x) p ( a pln isa.
integer, the series will have only finitely many termns. -,o that F(alblx) is a polynomial.



for some nonnegative integer n, yielding the energy eigenvalues

En[, = 1 -+/ (2.42)

(n' /2a2Z2)

when aZ < K. If we set n' n - j - 1/2, we recover the well-known Sommerfeld fine

structure formula

-- 1/2

ae2Z2

En, = 1]+ 2 (2.43)

n-- K + r2 - (aZ)

We find the linear combination of #+(r) and #-(r) which is consistent with the

boundary condition #E(O) = 0 by noting that #E(r) diverges at the origin when A

is positive, i.e. when cZ < r. Thus the energy eigenfunction for the energy En," is

#. (r), normalized appropriately.

For the ground state, we have E1,1 = 1l - (aZ)2 and a wavefunction #(r) with

components

OE1 1,1(r) = V1 + E1,1 exp (-p/ 2 )pA, (2.44)

$E1, 1,2(r) = V1 - E1,1 exp (-p/ 2)PA. (2.45)
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Chapter 3

The Self-Adjoint Extension

3.1 The Problem of Self-Adjointness

There is a problem with the fine structure formula in Eq. (2.43). When ri < aZ, the

energy eigenvalues are complex. Furthermore, the energy eigenfunctions for arbitrary

E no longer meet the boundary condition #E(r) = 0. Near the origin, we have

#El(r) ~ 2 (r) r*A, and when K < aZ, we see A = fK 2 - (aZZ) 2 is imaginary.

Defining L = f(aZ)2 - K2 , we see that

r*A = cos (L In r) i i sin (L In r). (3.1)

As r tends towards 0, the quantity r±A does not converge to a limit. Instead, it spins

around the unit circle in the complex plane, moving faster and faster the closer r gets

to 0. Thus, when aZ > K, the Hamiltonian does not have energy eigenfunctions for

any value of E which lie in its domain. Our discussion of these problems follows that

of [1].

These problems arise because the Hamiltonian f, from Eq. (2.37) is not self-

adjoint. The domain of the Hamiltonian H, is all two component continuous functions

#(r) which are square integrable on [0, oc) and for which (H#)(r) is also square

integrable on [0, o). The domain of tihe adjoint fj is deduced from Eq. (2.26). We



see

( #- (Tft) = *(0)#1(0) - 71(0)02(0), (3.2)

which vanishes due to the boundary condition 0(0) = 0. There is no requirement for

r(0) to vanish. Thus the domain of Ht includes functions which do no vanish at the

origin.

In fact, we have a stronger requirement on the functions in Dom(H,) stemming

from the condition (Hr#)(r) square integrable. Assume that near the origin, #1(r)

behaves as rs and #2(r) behaves as crt for some c, s, and t. We see near the origin

rS - cZr~ 1 + c(+ ( - t)rt-1

c. --cri - axZcrt~l + (s + K)rs-1 /

We find that I(f,#)(r)|2 has terms with r2s, r2 , r28-2, r2t-2

integrability requires that for each of these terms with a factor of

This yields the condition s, t > 1/2.

There is one exception to this requirement. If we pick s = t,

make all of the terms except for the r' terms cancel if we have

aZ = c(s - r),

ccaZ = s + KI

(3.3)

and rs+t 2 . Square

rk, we have k > -1.

we find that we can

(3.4)

(3.5)

which occurs if we take s = A and c = (, + A)/aZ. In this case, we see that #(r) can

behave like rA near the origin, even if A < 1/2.

With these considerations, we find that functions T(r) in Dom(Ht) need only fulfill

the requirement lim,_o rkT(r) = 0 where k = min (A, 1/2), assuming that A is real,

and lim,_o r1 / 2 r(r) = 0 otherwise. From this, we can deduce why the Sommerfeld fine

structure formula is incorrect for aZ > r,. The operator Hr is not self adjoint because

its domain is smaller than the domain of its adjoint fig. This is true even when A is

real. However, the fact that Hr is not self-adjoint does not become important unless

A is imaginary. When A is real, the domain of H, includes its energy eigenfunctions,,

(Hr#)(r) ~(



even though H is not self-adjoint. When A is imaginary, the energy eigenfunctions

of H, lie outside Dom(H,), so that a self-adjoint extension of H, must be found.

Consider the class of functions defined by

#N(r) = A(A, E)#+'(r) - A(-A, E)#(r), (3.6)

where we pick A(A, E) = r (A - E6E)F(I - 2A). These functions are square integrable

for all E when A is imaginary. Near the origin, they behave as rA. This means

that they satisfy the boundary conditions of Dom(N14) since limro rA+1/ 2 = 0. They

decay exponentially at infinity, as can be checked using the asymptotic form of the

confluent hypergeometric function (see footnote in section 2.5). This is the only linear

combination of #+ (r) and #-(r) (up to a scaling factor) which is normalizable and

hence in Dom(14).

In particular, choosing E = ±i, we see that 14 has a deficiency index of A±

A_ 1, implying that we can find a self-adjoint extension to 14.

3.2 The Self-Adjoint Extension

Using the method described in section 2.3, we can find a family of self-adjoint exten-

sions to the Hamiltonian Hr. We define new operators Hn as the restriction of M4 to

the domain

Doin(Hr) = {qo(r) + 3 kf(r) + e i 4(r)), #o(r) E Dom(Hr), # complex} (3.7)

for 0 C [0, 27).

With our new operators Hr" defined, we can solve the eigenvalue equation

H$r|) =Eq#), (3.8)



by writing 1#) = |#o) + (e-5) + e0 |#)). We can rewrite the equation as

(H' - E) 1#o) = 0[(E - i) 1#-i) + e2O(E + i)#)] (3.9)

where we have #o(0) = 0. This gives rise to the solution

#o(r) = #N(r) - 3[#5(r) + eiON(r)], (3.10)

and boundary condition

#N(0) = 3[#N(0) + ei O# (0)]. (3.11)

Eq. (3.10) tells us that the solution #E(r) is given by

~~~)= ON (r), (.2

as expected, and Eq. (3.11) can be manipulated by eliminating # into the boundary

condition

#N,2(0) [#N(0) + ei"#!, 1(0)] = #N,1(0) [#N (0) + e 06iN, 2 (0)]. (3.13)

The boundary condition Eq. (3.13) relates two parameters: the energy E and the

extension parameter 0. After some algebra, Eq. (3.13) can be turned into an implicit

equation for E in terms of 0,

r,+ iL - + (1+ E)6E + iL r (-i'L - E6E)( J2+L2 ) (-K+ (1+E)6E+iL) (iL-EE) 3.1))

(26i - , + L) 1/ 2 (-iL - i 6)ei0/ 2 + (26J - K - L) 1/2 (-iL + io )e-i6/2 .

(26i - , + L)1/ 2 F(iL + ioj)e-i0 /2 + (26i - K - L) 1/ 2 F(i L - ij)e 0 /2 9

where o- = sign(6i - /) and f = Im(A). This information allows us to compute both

the energy eigenvalues for a given value of 0 and the corresponding eigenfunctions

<py(r).



3.3 Self-Adjointness and the Dirac Equation

It is instructive to go through the proof that self-adjoint operators have real eigenval-

ues in order to see where the argument breaks down for the Dirac Coulomb Hamilto-

nian. We start with the eigenvalue equation

y - - +4 r E,1(r) = E E,1(r) , (3.15)
dr + r -1 - OE,2 (r) OE,2 (r)

and take the complex conjugate to obtain

1 az d. +t

4*( (r) 43*(r) )z ) E* ( 4* (r) 4*E 316)
dr r r

where the differential operator d /dr acts to the left so that f(r) d/dr = df/dr.

Multiplying Eq. (3.15) by 4*(r) on the left and Eq. (3.16) by #(r) on the right and

subtracting the latter from the former, we obtain

(4E,1(r),2(r) - OE,2 (r) E,1(r)) = (E - E*) [I4E,1(r)2 I E,2(r) 2
drE

We can integrate Eq. (3.17) with r ranging from 0 to positive infinity, yielding

#E,1(0)> (0) - OE,2(0)0E1(0) =E* - E, (3.18)

where we have assumed #E(r) is properly normalized. When #E(r) meets the bound-

ary condition #E(0) = 0, the left hand side of Eq. 3.18 vanishes, yielding E = E*.

However, when aZ > r,, there are no energy eigenfunctions which fulfill the bound-

ary condition #E(r) = 0. All energy eigenfunctions will be proportional to a linear

combination of rA and r- near the origin, where A is imaginary, and no nontrivial

linear combination of rA and r-A approaches a limit as r tends to 0. The proof of

self-adjointness does not go through because the energy eigenfunctions do not fulfill

the boundary condition which causes the left hand side of Eq. (3.18) to vanish.
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Chapter 4

Numerical Analysis of Self-Adjoint

Extension Eigenfunctions

4.1 Computer Generated Plots of Eigenfunctions

In this section, we provide plots of the components of the energy eigenfunctions,

the probability density corresponding to those eigenfunctions, and the probability

density for a nonrelativistic electron by comparison. The plots were generated in

Mathematica version 7.0.1.0, using the formulae derived in chapter 3.

The energy eigenfunctions for Hf are two component spinors given by #'(r) from

Eq. (3.6). The components of O4(r) are denoted by #%a(r) and 4, 2 (r). Each com-

ponent corresponds to a possible spin that the electron can have. The probability

of finding the electron in either spin state at a distance from the nucleus between r

and r + dr is given by le'(r)|2 dr = (10#,(r) 2| + I4, 2(r) 2 ) dr. The non-relativistic

Schr6dinger equation for the three dimensional Coulomb problem yields a one com-

ponent radial wavefunction, r~Pt(r), with the probability of finding the electron at a

distance of r to r + dr from the radius given by r 2 1 ?Inr()1 2 . Plots comparing 1#(r)12

and r 214nr(t) 12 for an electron in the ground state of a hydrogenic atom are shown

for Z = 1, 50, and 130 in Fig. 4-1, 4-2, and 4-3, where #'(r) has been normalized

for comparison to r4nr(r). This corresponds to the choice r = -1. We see that

as Z increases, the relativistic corrections become more significant. The relativis-



tic wavefunction is focused more tightly around the nucleus than the nonrelativistic

wavefunction. The behavior of the peak of the probability density is discussed in

section 5.3.

The behavior of the wavefunction #'(r) is qualitatively different in the regimes

aZ < |r| and aZ > |i.. In the aZ < I|j regime, each component of the ground

state radial wavefunction is a smooth function with no roots, behaving similarly to

the non-relativistic Schr6dinger wavefunction. The wavefunction components #$N (r)

and #4, 2(r) vanish at r = 0, meeting the same boundary condition as the radial

wavefunction for the nonrelativistic Schr6dinger radial wavefunction rVnr(r).

In the regime where Z > 1/a, we must choose a radial wavefunction which corre-

sponds to a self-adjoint extension of the Hamiltonian. The wavefunction depends on

the extension parameter 9 implicitly as the energy eigenvalues vary with the extension

parameter. The energy eigenfunctions depend on 0 implicity, since the eigenfunctions

depend on the energy eigenvalue E and the energy eigenvalues depend on the choice

of 0. In Figure 2, we show the components of the ground state wavefunction for

K= -1 with Z = 136.999 and Z = 137.001, where we have approximated a = 1/137.

For the extension wavefunction with Z = 137.001, the parameter 9 has been chosen

so that the ground state energy E considered as a function of Z is continuous across

Z = 1/a. This corresponds to a value of 0 = 326.318 = 5.69532, as discussed in

[1]. The phase of the self-adjoint wavefunctions is constant but arbitrary. We choose

those wavefunctions to be real valued with the sign chosen so that #1(r) is positive.

As Z increases past 1/a, the maximum of the wavefunction moves back away

from the origin, as can be seen comparing Figures 4-6 through and 4-7 with Z = 150

to Figures 4-4 and 4-5 with Z = 137.001. These plots are somewhat misleading as

they mask the behavior of the wavefunction as r -+ 0. Near the point r = 0, the

wavefunction is proportional to sin(lln r + 6) for a phase shift 6. Contrary to the

impression given by the plot, the limit lim,,o #(r) does not exist. The dependence

on ln r makes this behavior difficult to see on a linearly scaled plot. The period of

the oscillations as a function of ln(r) is given by 7, which decreases as Z increases

past 137. This can also be seen by comparing Figures 4-4 and 4-5 to 4-6 and 4-7.



The period of the sinusoid as a function of ln(r) is much shorter for Z = 150.

We also show in Figure 4-14 the dependence of the ground state energy E on Z

for the extension parameter 0 = 5.69532.

There is no clear physical meaning for the oscillations near the origin for wave-

functions in the aZ > IK| regime. As discussed in [2], the problem occurs when

the binding energy of the electron exceeds the threshold necessary for creation of

e+e- pairs, so the single particle Dirac equation may not be applicable. Furthermore,

though a unique value of the extension parameter 0 can be found so that E depends

continuously on Z across the boundary aZ = |r|, there is no physical reason why

0 cannot vary with Z. As discussed in Chapter 5, there are reasons to believe that

the problems here are not merely a mathematical problem. Even in classical physics,

there are hints that bound states should be problematic for strong enough fields in

1/r potentials.



Figure 4-1: Probability densities of relativistic and nonrelativistic orbitals for Z =

1, with units of h/mec for r. In Figs. 4-1, 4-2, and 4-3, the dashed line is the

nonrelativistic probability density and the solid line is the relativistic probability

density. In Fig. 4-1, these are indistinguishable.

Figure 4-2: Relativistic and nonrelativistic probability densities for Z = 50.

Figure 4-3: Relativistic and nonrelativistic probability densities for Z = 130.
32



Figure 4-4: 1, 1 (r) for Z = 136.999, with units of h/mec for r.

Figure 4-5: #4, 2 (r) for Z = 136.999.

Figure 4-6: #N, 1 (r) for Z = 137.001.



-04

Figure 4-7: #2NE(T) for Z =137.001.7.,
/4

Figure 4-8: #N 1(r) for Z = 150.

Figure 4-8: #N,2(r) for Z = 150.
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Figure 4-10: ONE(r) for Z = 137.001, as a function of ln(r).

Figure 4-11: 42E(r) for Z = 137.001, as a function of ln(r).

Figure 4-12: ONE(r) for Z = 150. as a function of ln(r).



Figure 4-13: #2NE(r) for Z = 150, as a function of ln(r).

Figure 4-14: Dependence of the ground state energy E on Z for 0 = 5.69532. Energy
is in units of mc 2.
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Chapter 5

Classical Explanations of the

Breakdown at Z = 1/a

5.1 The Classical Relativistic Kepler Problem

The lack of a physically meaningful bound state for sufficiently large nuclear charges

and small angular momenta occurs in classical as well as quantum mechanics. Even in

classical physics, the Coulomb potential does not always admit bound states for rela-

tivistic particles. This can be seen by analyzing the Kepler problem using relativistic

expressions for energy and momentum, following [3]. The energy of a relativistic

particle with mass m and charge e in a Coulomb potential is given by

Ze2

E = fp 2 c2 + m2 c4 - , (5.1)

where p is the momentum of the particle. The square of the momentum can be broken

into tangential and radial components, p2  pr +., where L is the particle's angular

momentum. Substituting this into Eq. (2.1), we find

L 2 Ze2

E = c pr+ L + m 2c 2 - . (5.2)
r2 r



We note that
L2 Ze2 Lc -Ze

2

E = c p2 + L + m 2c 2 - -- ;> , (5.3)
r r

and that the right hand side of Eq. (5.3) is always positive if L > Ze2 /c. As r

approaches 0, (Lc - Ze 2 )/r increases without bound. Since E > (Lc - Ze2 )/r and

E is a fixed constant, we must have that there is some finite minimum value which r

can take on.

If L < Ze 2/c, then (Lc - Ze 2)/r diverges to negative infinity as r tends to 0. If we

choose p, to diverge to positive infinity as r tends to 0 in Eq. (5.3), we can make the

divergences cancel out so that a finite value of E is consistent with arbitrarily small

values of r. This indicates that the particle will spiral into the nucleus for sufficiently

small L. This phenomenon does not occur in the non-relativistic case. Furthermore,

if we get L - h, we find that the condition for the non-existence of a bound state is

h < Ze 2 /c, which can be rewritten as Za > 1.

This is the same as the condition for the Dirac Coulomb Hamiltonian to fail to

be self-adjoint. This gives us a new insight into why this failure of self-adjointness

occurs- the problem of a non-self-adjoint Hamiltonian is not merely a mathematical

one. There are physical reasons why there should be no bound states when Za > 1.

5.2 Relativistic Bohr Radius

There is another way to see how this problem arises even classically. In Bohr's model

of hydrogenic atoms, the spectrum is calculated by assuming that electrons travel in

circular orbits around the atomic nucleus with angular momenta that are multiples

of h. By simultaneously combining Bohr's angular momentum quantization

mvr = nh, (5.4)

with the requirement that the centripetal force equal the Coulomb force

mnv 
2  Ze

2

r -= 2 (5.5)



we obtain
Ze2 1 (5.6)

vn = -(h n

and
h2 n2

r = (5.7)
" Ze2 m

For a particle in a 1/r potential, the energy is given by

E = -mv2 Ze 2  (5.8)
2 r

Substituting Eqs. (5.6) and (5.7) into Eq. (5.8), we find

Z 2e4m 1
E = - (5.9)

which matches the energy spectrum given by solving the nonrelativistic Schr6dinger

equation.

This technique can be extended to find the spectrum of a relativistic particle in

a 1/r potential. We replace the mass m in Eqs. (5.4) and (5.5) with the expression

ym, where y (1 - v2 /c 2 )- 1/2 , obtaining

mvr = nh (5.10)

and
mv2 Ze2

= . (5.11)

Solving Eqs. (5.10) and (5.11) yields

Ze 2 1
n - (5.12)

h n

and

rn = h22 (1 - Z 2 a 2)1/ 2 . (5.13)
"Ze2m



The relativistic energy is given by

mc 2 Ze2
E - n Z (5.14)

-1- v 2/c 2  r

Substituting Eqs. (5.12) and (5.13) into Eq. (5.14), we obtain the energy spectrum

Za2
En = mc 2

n

We note that this is the same as the fine structure formula obtained using the Dirac

equation under the assumption that n = K. We also see that the formula for the Bohr

radii,
n2h2

r1 = l - (Za)2 , (5.15)
Ze 2m

yields imaginary values for Za > 1. This fact gives us another way of seeing why the

Dirac equation should not be expected to yield a sensible ground state when Za > 1.

The Bohr quantization condition cannot be met.

5.3 Bohr Radius and Most Probable Radius

In nonrelativistic quantum mechanics, the Bohr radius of an electron in a hydrogenic

atom with nuclear charge Z is also the most probable distance of the electron when

the wavefunction is found with the Schr6dinger equation. The nonrelativistic ground

state is given by
1

(r) = exp (-r/ao), (5.16)

where ao = is the Bohr radius. The most probable radius can be computed,

d d r2
-- (r2|(r)) p = 3 exp (~2r/ao) 0dr dr irao

which yields r = ao.

The same property holds in the case of the relativistic hydrogenic atom and the



relativistic Bohr radius. The relativistic Bohr radius for the ground state is given by

1 h2

ao,rel Ze 2 m /1 (Za) 2 .

The most probable radius can be found by maximizing 1(r)|2 , where #+ (r) is given

by Eq. (2.39) with A - EE = 0 and r = -1 so that E = mc2 N/1 - (Za)2 . In this

case, the components of #(r) can be written as

v1 + Ep exp (-p/2), (5.17)

#E,2(1) = 1 - Ep exp (-p/2), (5.18)

where as in Eq. (2.39) p = 2(1 - E 2)1 /2 r, and we have used H(011 + 2Alp) = 1 and

A - E 6 E = 0. Calculating 1(r) 12 , we find

1#(r)| 2 = P2'exp (-p) = [2 1- E2 r 2A exp (-2r 1- E2). (5.19)

Finding the maximum of this, we see that it occurs when

A 1
r £2 - Zev/1 - (Za)2 . (5.20)

21-E2 Ze2

Reinserting the dimensional factors h and m, we find that

1 h 2

r = - 2m - (Za) 2, (5.21)

which is the same as the expression for the relativistic Bohr radius. Thus, we see

that the property that the most probable radius equals the relativistic Bohr radius is

preserved in relativistic quantum mechanics.
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