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Bachelor of Science in Physics

Abstract

This thesis develops a simulation tool that can be used in conjunction with commercially

available electromagnetic simulators to model the behavior of superconductors over a wide range

of frequencies. This simulation method can be applied to metals both in the normal and

superconducting state and is based on calculating surface impedance as a function of

temperature, frequency and material parameters (such as the coherence length and the normal

state conductivity). The surface impedance calculations apply the Mattis Bardeen and

Zimmermann formulations of conductivity for superconductors to classical transmission line

theory. When the tool is used with the Zimmermann formulation, it can model the behavior of

superconductors with arbitrary purity, including very clean superconductors, which cannot be

handled correctly by the Mattis Bardeen conductivity approach used in current simulators such

as SuperMix [1].

Simulations were performed using the developed tool with Ansoft's HFSS EM simulator.

The results for a copper printed circuit board resonator showed very good agreement with

measured data, attesting to the soundness of the transmission line theory used to develop this

tool. A microfabricated niobium coplanar waveguide resonator - for use in quantum computing

applications - was also modeled and simulations gave the expected results for the electric field

distributions and the variation of Q with temperature and capacitive coupling.

The tool developed here can therefore be used to predict the electromagnetic behavior of

a superconducting device as function of the material parameters, operating temperature and

frequency. With measurements of the device's Q at a recorded frequency and temperature, this

tool can also be used to determine the mean free path of the material (assuming other material

parameters such as coherence length, transition temperature (Tc) and the ratio of the energy gap

to kBTc are known). Equivalently, if all material parameters are known, comparison of Q
measurements with simulation results can be used to determine the operating temperature, which

may otherwise be difficult to measure in cryogenic environments.

Thesis supervisor: Karl K. Berggren
Title: Professor of Electrical Engineering
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1 Introduction

Applications of superconductivity are becoming increasingly widespread in science and

engineering. Low losses and high quality factors (Q factors) make superconducting cavities

ideal for use as high efficiency detectors and resonators. In order to design and optimize such

devices without resorting to an exhaustive repetition of fabrication and measurement cycles, we

require an accurate simulation tool that, given a set of material parameters, can model

superconducting behavior at a wide range of operating temperatures and frequencies. This thesis

will develop such a tool from classical transmission line theory and the Mattis Bardeen and

Zimmermann formulations of conductivity for superconductors. The functionality developed

here can be applied to any electromagnetic simulation software package, and its use will be

demonstrated with Ansoft's HFSS 3D full-wave electromagnetic field simulator.

The simulations presented here will contribute to the development of a quantum

computer with molecular ions as qubits. We would like to use the two lowest rotational states of

SrCl* molecular ions as 10> and ll> qubit states. The ions will be trapped in a microfabricated

planar Paul trap [2] operated at cryogenic temperatures [3] with an integrated microwave

stripline resonator which will deliver the 6.5GHz microwave radiation required to excite

transitions between the two qubit states. The resonator takes a grounded coplanar waveguide

(CPW) design and will act much like an optical cavity, trapping photons of the desired resonant

frequency.

In order to do quantum computing with this system, we must be able to coherently

manipulate the ions, and this manipulation requires a strong coupling between the field generated

by the resonator and the microwaves emitted and absorbed by the ions: we would like

spontaneous emission to occur into a single mode of the electromagnetic field and, since



probability of emission into a mode is proportional to occupation number, the resonator must

trap a large number of photons in a single field mode. This translates into the requirement for a

very high Q factor, which calls for the use of superconductors: a patterned layer of niobium,

sputtered onto the top surface of the dielectric during fabrication, is expected to give rise to a

thousand-fold increase in the Q factor below T.

Chapter 2 discusses the skin depth effect in normal metals and the surface impedance as a

method of modeling real conductors. Chapter 3 extends the surface impedance treatment to

superconductors using the Zimmermann and Mattis Bardeen conductivities, which are derived

from the BCS (Bardeen-Cooper-Schrieffer) theory of superconductivity. Chapter 4 outlines the

MATLAB routines developed from the theory in the first two chapters to calculate the surface

impedance of a superconductor as a function of temperature, frequency and material parameters

and presents simulation results for a copper printed circuit board resonator and for the niobium

grounded CPW resonator described above.



2 Modeling Real Conductors

The challenge in modeling conductors under time varying excitations is that AC fields

will permeate the surface of any real conductor and generate non-uniform current

distributions, the simulation of which would require the time consuming solution of

Maxwell's equations inside the conductor. A perfect conductor would present no such

challenge, since there is no electric field in its interior and it can be modeled simply as a short

circuit boundary. Similarly, a real conductor excited by a DC field needs only be represented

by a resistive boundary since the current distribution within it will be uniform and will be

completely defined by its resistivity and Ohm's law. We seek an analogous boundary

condition for real conductors at AC, where the situation is complicated by the skin effect: a

time-varying tangential electric field impinging on a real conductor will decay exponentially

with distance from the surface, reaching 1le of its value at the skin depth 6:

1
8 = (2-1)

where f is the frequency of the impinging field; u is the magnetic permeability and a is the

DC conductivity of the conductor. The boundary condition we require is given by the surface

impedance, which is the impedance seen by the impinging electric field. The surface

impedance in ohms/square is defined as the ratio of the voltage drop across an arbitrary length

1 along the surface of the conductor to the current enclosed by a square of area l2 at the

surface.

In this chapter, we will model the skin effect in a real conductor by a lumped-element

circuit model. Following Kerr [4], we will use this model to derive the surface impedance of a

conductor of both infinite (bulk) and finite thickness and we will discuss how to use this



boundary condition in ElectroMagnetic (EM) simulators. Finally, we will introduce the

anomalous skin effect, which occurs at ;very low temperatures and high frequencies, when the

behavior of charge carriers becomes dependent on non-local electric fields and the traditional

Ohm's law is no longer valid.

2.1 Surface Impedance of a Thick Conductor

It will be useful to recall here that an infinitesimal length of a transmission line can be

modeled by a lumped element circuit model as shown in Figure 2-1, where the resistance R is

due to the resistivity of the real conductors which form the line, the inductance L arises from

their self inductance, the conductance G represents dielectric losses and the capacitance C arises

from the proximity of the two conductors [5].

i(z, t)

v(z, t)

az z

(a)

i(z, t) i(z + Az, t)

v(z, t) RALAzG Az C Az v(z + Az, t)

(b)

Figure 2-1 Infinitesimal length Az of a transmission line (a) represented as a lumped element circuit model (b). The
line is formed by two conductors separated by a dielectric (Figure redrawn from [5]).



We will now model the penetration of an electric field into a real conductor by viewing

the conductor as a transmission line. Let us begin by analyzing the scenario depicted in Figure

2-2, where a plane wave is normally incident upon the surface of a thick conductor. Since the

conductor is very thick, the surface impedance Zs, seen by the wave incident at the surface of the

conductor should be the same as that seen at a depth dz from the surface. We can therefore model

the conductor as a transmission line with a section representing the sheet of infinitesimal

thickness dz and terminated by an impedance Zs.

,+z
dz(a) <-+

conductor
Electric field

Wave propagation
direction

A

(b)

Transmission

Zin Zs line model of Zs
sheet of

0 thickness dz

Figure 2-2: (a) Plane wave normally incident upon surface of a thick conductor. (b)This scenario can be modeled as
transmission line with a section representing a thin sheet of thickness dz at the surface and terminated by an
impedance Z,, which represents the rest of the conductor and is the same as the impedance seen at the surface.

If we apply the transmission line circuit model of Figure 2-1 to this thin sheet, it is clear

that the capacitance C does not apply since our transmission line consists of solid metal and, in

the absence of a dielectric, charge separation is not possible. The resistance R can also be



neglected since the sheet is infinitesimally thin and the wave propagating into it will feel a

vanishing resistance in the z direction. The conductance G, however, cannot be ignored since it is

given by the conductivity of the sheet as experienced by current flowing parallel to the surface of

the conductor, along the electric field direction: dG = adz S/square, where a is the conductivity

of the metal in S/m. Finally, the inductance L will reflect the time delay introduced by the

passage of the wave through this sheet: the wave will take a finite time to move from the surface

to a depth dz because it propagates by accelerating electrons and, since this is a real conductor

with finite conductivity, the electrons will take finite time to be accelerated. This inductance is

derived from Ampere's law [4] to be dL = pdz H/square.

With this, we can model our conductor with the lumped element circuit model shown in

Figure 2-3, and use it to find an expression for Zs.

Zin = Zs dG Zs

+ z <

Figure 2-3: Lumped element circuit model for a real, thick conductor with surface impedance Z, (Figure redrawn
from [4])

From Figure 2-3, we have that:

1 1
Zin = Z, = jwdL + =jwydz +

dG+ Tdz+
zS ZS



which implies that

Zs = jwydzZs + S
uZsdz+ 1

Z_2= (uZs dz + 1)

Now ignoring the terms in dz: ZS = ,which gives:

ZS = (1 + j) (2-2)2q

2.2 Surface Impedance of a Conductor of Finite Thickness

One may be concerned that the model we have just constructed might not be useful in

most engineering applications for two reasons: we will usually wish to model transmission lines,

where the electric field is not normally incident upon the conductor, but instead travels along it;

and we are often concerned with simulating thin conductors, or conductors with a finite thickness

t. The first concern is immediately dismissed by [6], who shows that the field analysis of parallel

propagation of a wave along the conductor yields the same solutions and surface impedance as

that of the normal incidence scenario. The second concern is only really valid when the thickness

is of the order of, or smaller than, the skin depth of the metal. This section will address this

situation by using a slightly modified version of the circuit model presented in Section 2.1.

Here we will outline the derivation presented in [4], which begins by using the model of

an infinitesimally thin sheet of thickness dz shown in Figure 2-4(a) to find an expression for the

current at any depth z in the metal, i(z). Note now that, if the wave is incident at z = t, where t is

the thickness of the conductor, it will meet a second conductor-air interface at z = 0. As shown in

Figure 2-4, this interface can be modeled by terminating the line with an impedance Z, = ,



which is the impedance of free space [5]. Using the expression for i(z) and this model, we can

deduce the surface impedance by simply finding the ratio of the voltage at the surface, v(t) to the

current at the surface, i(t) , which Kerr [4] determines to be:

i+di i i(z) i(0)

dL dL

v + dv 1dG V (z) dG Zr v(0)

+z :
++ :

+Z

(a) (b)

Figure 2-4: (a) Circuit model of sheet of thickness dz. (b) Circuit model of conductor-air interface. (Figure redrawn
from [4])

-ekt+aZ'I-k e-kt-
-v(t) =_ k [ekt +fle k]

ZS __ v e)_k -"z'k e-t(2-3)
- Z+k

with k = (1+j)

But note that for applications of interest, frequencies are in the Gigahertz range and metals used

are very good conductors so that w is on the order of 109 radians/s, a-~10 7 S/m, so that:

k Zp~ kI _1-2=(1 + j) => ~1~2 ,

while Z. 0 377K.

kTherefore, Z, is about 4 orders of magnitude greater than , which allows us to write:

ZnkaZ-k Z 1,
aZ7+k Z?+k

and equation (2-3) reduces to:

k [ekt+e-kt k
ZS = ekeke = - coth(kt). (2-4)



2.3 Using Surface Impedance to Model Conductors in EM Simulators

The effect of a real conductor on an EM wave travelling in air can now be entirely

captured by the simple transmission line model shown in Figure 2-5: a line of characteristic

impedance Z, terminated by the surface impedance of the conductor Zs, which can be calculated

as shown in sections 2.1 and 2.2.

Zr Zs

Figure 2-5: Transmission line model for EM wave incident upon a real conductor.

We now require a feasible way to implement this model in EM simulators, such Ansoft's

HFSS. Using a single boundary with the correct surface impedance to represent a metal sheet

would work, but it would be useful to preserve the geometry and dimensionality of the structure

we are modeling. Kerr [4] suggests representing the conductor as two sheets of the appropriate

surface impedance, separated by the thickness t. He finds that the surface impedance of each

sheet will have to be slightly modified from Z, and here we will use transmission line theory to

prove his result and suggest a generalized form of his correction.

From Figure 2-6, we see that free space between the two sheets of impedance Z, can be

modeled as the transmission line shown in (b). It is well known from transmission line theory [5]

that, for a lossless transmission line of length t with characteristic impedance Z, terminated by a

load ZS, the impedance looking into the line is:

zs+jZntan (flt)
Zin = n z,+jztan (ft) (2-5)

Where 27=0 w = r (2-6)
Whee l =fl =w IOE =C 3



Surface

z s

Incident wave

Reflected wave

impedances
Zs

Transmitted wave

t

Zn zs ~ ___ Zs

Zn Zs

(b)

Figure 2-6: (a) Two-sheet model for a finite thickness conductor. (b) Transmission line circuit model of (a) - the
transmission line between the two sheets is highlighted as a line of length t, characteristic impedance Z. and load Z,.
(Figure modified and redrawn from [4])

We know that the impedance of free space is much greater than the surface impedance of a

conductor, so we have that:

z >> ZS => «1.

Dividing top and bottom of equation (2-5) by Z,7:

Zin ~ Zs + jZtan (fit), (

< --t

(2-7)



so the transmission line will look like a load ZS in series with an inductor with inductance

Lt = ztan (Pt) as shown in Figure 2-7 (a). For thin films with t «A, f#t will be small and we see

from equation (2-6) that Lt reduces to: Lt Lo- g4uot = pot, which is the result
'0

obtained by Kerr [4].

Z = 2s

(b)
Figure 2-7: (a) The transmission line between the two sheets looks like an inductance Lt. (b) We can find the
impedance Zx which corrects for the effect of this inductance by setting Zi = Z,. (Figure modified and redrawn
from [4])

As in Figure 2-7 (b), we can correct for the effect of Lt by finding the impedance Zx

which makes Zi, = Z,. Noting that Z,7 is large and can be approximated as an open circuit, one

finds that the impedance of each of the sheets representing the conductor should be set to:

Zx = (2Z, - joLt) ± [4 + t)2(2-8)

which is applicable for any thickness t and is a more general version of the correction given by

Kerr, which sets Lt = pot and is to be used only when t «2.



2.4 The Anomalous Skin Effect and NonLocality

In deriving the surface impedance of a conductor, we used a transmission line analogy

which implicitly assumed that the familiar Ohm's law, J = aE, held i.e. that current density J at

a certain point inside the conductor would depend only on the electric field E at that point in

space and at that moment in time. However, it has been observed that, both at very low

temperatures and at very high frequencies, the measured surface resistance is much higher than

that predicted by the normal skin effect theory [6]. The low temperature effect, named the

anomalous skin effect, is attributed to the fact that Ohm's law ceases to be valid locally and the

current density at a given point depends on the electric fields in a surrounding volume of metal.

At high frequencies, the phenomenon is named the extreme anomalous effect and occurs because

the electric field changes fast enough for electrons to feel this change between scattering events,

causing their velocities to become dependent upon previous states. In this section, we explore

the origin of these nonlocal effects and attempt to give a more quantitative notion of when they

occur.

The crucial point is that the usual derivation of Ohm's law from the free electron theory

of metals, as given for instance in [7], assumes that the electric field seen by an electron between

scattering events is constant and gives a linear relationship between the current density and the

electric field at a point r in the metal:

Edc
J(r)= l+]W E(r)

1 + jorc

Where ade is the DC conductivity of the metal and r = 1 is the relaxation time of the electrons,gf

given by the ratio of the mean free path I to the Fermi velocity vf.



The skin depth 6 is the smallest electromagnetic length scale in our problem: if it is much

larger than the mean free path, it is clear that the electrons will not see significant variation in the

field between scatters. But 1 increases with decreasing temperature - since fewer lattice vibrations

translate into a longer mean free path - and therefore, at very low temperatures or very high

frequencies (i.e. small 6 by (2-1)), 1 becomes of the same order of magnitude of 6. In this

scenario, the current density at r will depend upon an average of the electric field over a sphere

of radius 1 around r. This non-local version of Ohms Law was derived by Reuter and Sondheimer

and can be written as [6]:

3de r(r - [E])e-r/dV
J(r,4t) = 4 d

where r is the distance from the origin in meters, 1 is the mean free path and [E] is the electric

field at volume dV at a time t - r/vf,where vy is the electron velocity at the Fermi surface (i.e. the

retarded field).

In the non-local limit, equation (2-4) for the surface impedance of a normal conductor is

no longer valid. However, since we are working with microwave frequencies, our skin depths

will be of the order microns, while the mean free path of an electron in a very good conductor at

room temperature will be of the order of nanometers, so here we are safely in the local limit. In

dealing with superconductors however, we must also concern ourselves with checking whether

or not we can assume local relationships in deriving surface impedance, and we will address this

issue in the next chapter.
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3 Modeling Superconductors

3.1 The Length Scales of Superconductivity

In 1957 Bardeen, Cooper and Schrieffer developed a theory of superconductivity [8] which

postulated that electrons in a superconductor can attract each other by coupling to lattice

phonons. As explained by Kittel [7], this interaction occurs because, as an electron moves

through a lattice of positive ions, it will attract nearby ions, causing the lattice to deform around

it. A second electron will then move to lower its potential energy in the deformed lattice, thus

becoming indirectly attracted to the first electron. This attraction leads to a correlation between

pairs of electrons of opposite spin and momentum, named Cooper pairs: in a superconductor,

either both the orbital kt with wavevector k and spin up and the orbital -kj with wavevector -k

and spin down are occupied, or both these orbitals are vacant [7]. This implies that however the

kt electron scatters, the same scattering will be mirrored in the -kj electron, so that the overall

change in momentum of the electron gas is zero - this translates into the macroscopic effect of

zero DC electrical resistance. In the superconducting regime, a metal will be characterized by

the following parameters:

* Energy gap at zero temperature, A0 : A Fermi gas of noninteracting electrons allows for

arbitrarily small excitations, since an electron can be excited to a state at any small

energy above the Fermi surface. In a superconductor, however, BCS theory predicts an

energy gap between the ground state and the excited states. For niobium, BCS theory

gives a gap ratio of = 1.76, where Tc is the transition temperature of the
kBTc

superconductor and kB is Boltzmann's constant. This ratio varies slightly from the BCS

value in the literature due to strong coupling effects, whereby the electrons and phonons



couple more strongly than predicted by BCS theory [9]. Some quoted values of gap ratios

for niobium are given in Table 3-1.

e Intrinsic coherence length fe: The coherence length is a measure of the distance over

which the correlation between electron pairs persists in a superconductor and is given by:

h vf
IrA0

where h is the reduced Planck's constant and vf is the electron velocity at the Fermi

surface. We will see in this chapter that the intrinsic coherence length is a key parameter

in determining the volume over which we have to integrate the magnetic vector potential

to obtain the current density in a superconductor - its relationship to other characteristic

length scales of a superconductor will determine whether or not this integration can be

reduced to a local Ohm's law relationship.

e London penetration depth AL,O and BCS effective penetration depth Aleff(T): The

penetration depth is a measure of the depth of penetration of the magnetic field in

superconductors. The London penetration depth at zero temperature AL,o is derived from

the London equations, which arise from a simplified phenomenological theory of

superconductivity that is approximates well the behavior of clean (with mean free path

approaching infinity) superconductors in the local regime [10]. Linden [9] gives an

approximate relationship between the BCS penetration depth Aeff(T) and the London

depth L,O:

A2 ( ) = 2 ,=ff (0(2 ff (T) e 12] ~ ff (0) = LO( (1 + fo12 31



We will see in this chapter that these parameters, along with the mean free path 1 and the

superconducting transition temperature Te, define the behavior of a superconductor and

determine the method by which we can calculate its surface impedance.

3.2 The Mattis Bardeen Conductivity

In 1958 Mattis and Bardeen [10] used BCS theory to derive the following expression

relating the current density J(r) and the magnetic vector potential A(r) [11]:

R

4g2 3 R -R -A(r')I(w, R, T)eT dr'
42vfhLO y R4

(3-2)

where we have defined the magnetic vector potential as H(r) = V x A(r), R = r - r' , vf is the

Fermi velocity of the electrons, ALo is the London penetration depth at zero temperature, and

I(w,R,T) = -jr f [1 - 2f (E + ho)][g (E)
A-hco

cos(aA2 ) - jsin(aA2)]e jaAldE

-jrc j[1 - 2f(E + ho)][g(E) cos(aA2)- jsin(a 2)]eja'AdE

+jo f, [1 - 2f(E)][g(E) cos(aAi) +jsin(aAi)]e-ja2dE

with

= E2 _g2 ,E| >A , A2 = (E + hw) 2 - g42 , g(E) = EA22+hwE , a = R(hvf)
w2 - E2 ,El <(u gb2

where A = A (T) is the energy gap at temperature T and f (E) is the Fermi function given by:

f(E) =
1

E

1+ekBT

where kB is the Boltzmann constant.



As noted by Gao [11], the function I (co, R, T) decays with a characteristic length scale

R-O since the coherence length (o defines the distance over which the density of

superconducting electrons remains approximately constant. Therefore, the function

I(o, R, T)eR/l, will decay on a length scale given by the smaller of (o and 1. So it is the smaller

of (O and 1 of that will define the effective radius of the volume V over which we are integrating

in (3-2) - outside this volume, the integral is negligible. If this radius is small compared to the

effective penetration depth 'eff of the penetrating magnetic field -i.e. the length scale over which

the electromagnetism changes in the superconductor - the electrons will see a constant field and

we are in a local regime: the magnetic vector potential A(r') will be virtually constant over the

volume of integration and can therefore be taken out of the integral. Equation (3-2) then reduces

to:

J(r) = -KO (O, l, T)A(r) (3-3)

where Ko({O, 1, T) is a constant that depends on (o, l and T, as shown by [11]. From Maxwell's

equations, and recalling that here we have that H = V x A = B , we find:
[to

E = -V #P - aA

but here we can set -V# = 0 because, if P were nonzero we would always have a constant

electric field E (as well as the time-varying field due to a) in the metal and there is no such
8At

field here. So E = - o - and, if we take A to be of the form A(rt)= A,(r)e, we have that

E = -jiowA. From (3-2) we see that:
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from which we now define the complex conductivity which was first proposed by Glover and

Tinkham [12]:

- Ko ({, 1, T )
aMB ~ j0

And now we have returned to Ohm's Law with J = aMBE ! This implies we are free to use the

classical surface impedance formulae derived in Chapter 2, provided we substitute the normal

conductivity for aMB. Mattis and Bardeen [10] give the following expressions for aMB:

Letting aMB U1 jO-2 :
00

ai 2 f[f(E) - f(E + hco)](E 2 + A2 + hoE) dE
un hw f E 2 -A 2 E + hw) 2 _ 32

1 [1 - 2f(E + ho)](E 2 + A2 + hwE)

-h E2 - 3 2 (E + ho) 2 -6 2

a2  1 [1 - 2f(E + h)](E2 +A2 + hwE)

max{n -hh- 3 2 - E 2 (E + hw) 2 _ A
2  (3-5)

Where a, is the normal state conductivity and the second integral in equation (3-4) vanishes if

ho < 2A.

A Matlab program, supercondm (printed in Appendix A), was written to numerically

evaluate the conductivity integrals. The program's output is the ratio of the Mattis Bardeen

conductivity to the normal conductivity of a material at any frequency and temperature, and the

only inputs it requires are the superconducting transition temperature Tc, and the energy gap at

zero temperature A0 . Figure 3-1 plots the output of supercondm for niobium at a range of values

of frequency and temperature.
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Figure 3-1: Plots of the real and imaginary parts of the ratio of the Mattis Bardeen conductivity to the normal
conductivity of niobium for a range of values of temperature and frequency as calculated by the program

supercondm. Here, Te = 9.2K and d = 1.83.
kBTC

As given in equations (3-4) and (3-5), the conductivity integrals are singular since the

square root terms in their denominators are zero at their upper or lower limits. To remove these

singularities, we use the following substitutions:

To remove lower limit singularities:

b F(E) E=a+x2  C \_aF(a+x2
- dE 2 __ dx

fa fE2-a2 0 V2a+x 2

To remove upper limit singularities:

b F(E) E=b-x 2  f' b F(b X2)
i dE > 2 dx

fa -fb 2 -E2 0 2b-x2

In order to calculate the energy gap at temperature T, A = A (T), the function gapcond m,

was adapted from a routine in the C++ software library SuperMix [1], a freely available software

library for high-frequency circuit optimization and design. The routine linearly interpolates a

table of values of d (T) measured by Muhlschlegel [13] to find the gap at any temperature.

........ ...........



SuperMix also contains a routine that calculates the Mattis Bardeen conductivity ratios for

surface impedance calculations and the output of supercond m was verified against this routine

for temperature T = 4.2K and a frequency range of 0-12GHz. As shown in Figure 3-2, the two

outputs were found to be identical.

0

0.75 -- Supercond -200
0.7- 0 SuperMix -

c 0.65 - c -400
0.6- -

0.55- - 600
E

0.5- - -800 -- Supercond

0.45- - 10 SuperMix
-1000--

0.4 5 10 0 5 10
Frequency (GHz) Frequency (GHz)

Figure 3-2: Comparison of the output of supercondm and SuperMix for a temperature T=4.2K, Ao/kBT, = 1.91 and a
frequency range of 0-12GHz. The two programs output the same values.

It is important to remember that the Mattis Bardeen conductivity can only be used when

(o « eAff or 1 «;leff. Since the coherence length in a given superconductor is a fixed parameter

(independent of frequency, temperature and purity), it is the mean free path 1 which will

determine the applicability of the local limit of the Mattis Bardeen theory to a given sample. If

the sample is dirty and 1 is very small compared to the effective penetration depth, the Mattis

Bardeen conductivity will give a very good approximation of the actual behavior of the

superconductor. However, as 1 increases and the material becomes cleaner, we will violate the

1 «<Aff condition and move away from the local limit of the theory - the use of the Mattis

Bardeen conductivity will then no longer be appropriate. For such situations, we must either

'The agreement between supercond and supermix holds at any temperature T, over any frequency and for any any
gap ratio A(O)/kBTc as long as the same parameters are fed into both programs. (SuperMix usually uses
A(O)/kBTc=1. 83)
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evaluate the full non-local Mattis Bardeen integral, or seek an alternative formulation of the

theory which offers a simpler computation method for arbitrary sample purity. The next section

will explore such an alternative.

3.3 The Zimmermann Conductivity

In 1991, Zimmermann [14] used energy integrated Green functions to derive an

expression for the complex conductivity of a homogeneous isotropic BCS superconductor with

arbitrary mean free path. He found that:

sc = X (J + fA I2 dE),

for J(w ) 2A)= IidE,

tan E [1Az + E(E - w) 1 A2 + E(E - w) 1
11 = tanh

2kBT P4 P2 P 4 +P2 + P44 P2 p +

12 t /hE + co\ 1+2 + E(E + w) 1 A2 + E (E - o) 1

Stanh 1 + - 2 +E(E

2 kBgT P1P2 P _ P2 +-P1P2 P _ P2z

+3= tanh ( E 1 - 2 + E(E + w) 1 2 + E(E - ) 1

2 + ) 1 2 + E(E- o) 12kT P 3P p P2 P 3-P2 p + _ p

where:

P1 = (E + a) 2 - A 2 , P2 = VE 2 - A2 , P3 = (E - o) 2 _ 2 , P4 = jA 2 - (E + &)2,



where h has been normalized to 1, ao is the normal state conductivity and T = is the scattering

time constant, given by the ratio of the mean free path to the Fermi velocity.

In [14], Zimmermann gives a FORTRAN program to calculate Osc/ao, which was

translated here to a Matlab script zimcond.m (see Appendix A.2). The inputs to Zimmermann's

ho h T
program are: x = -, y = h and tt = T

hvo
but we can write, from [11]: fo=

So that we have y = / = mA-

Therefore, the only parameters required to calculate sc are (0,o o and Tc. A(T) is again

calculated here using the gapcond m routine taken from Supermix, which interpolates

Mihlschlegel's data [13] to find the gap at any temperature. Figure 3-3 uses zimcondm to

reproduce Zimmermann's results as plotted in Fig. 1 of [14].

0.8

E 0.4-

0.2-

0 0.2 0.4 0.6 0.8 1X

Figure 3-3: Verification of zimcond.m against Zimmermann's program: The black lines are taken from Fig. 1. in
[14], which plots the results of Zimmermann's program for input values of x from 0 to 1 and y from 0.0625to 4. The
overlaid red lines are the results produced by zimcond.m when given the same inputs.
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We now have a conductivity which is applicable for any mean free path length, and we can plug

it into the classical surface impedance formulae derived in Chapter 2 to calculate the surface

impedance of niobium, as shown in Figure 3-4.

x 10 ..... x 10

3. 8

Co
E E

0 0 X 12

6 12 6 12

2 4 6 2 4 6
Temperature (K) 0 0 Frequency (GHz) Temperature (K) 0 0 2 Frequency (GHz)

Figure 3-4: Bulk surface resistance R, and surface reactance X, over a range of frequencies and temperatures for
niobium. The plots were generated by using zimcond m to calculate the Zimmermann conductivity, sc (w, T) and
then applying the classical formula for bulk surface impedance (2-2) with qs(w, T) in place of the normal
conductivity a.

3.4 Comparison of the Zimmermann and Mattis Bardeen Conductivities

We would like to check the consistency of the Mattis Bardeen and Zimmermann theories.

Whilst the Zimmermann conductivity is applicable at any mean free path 1, we found in

section 3.2 that the Mattis Bardeen conductivity is only valid when (0 « eff or 1 «iaeff. From

equation (3-1), we see Xeff increases with decreasing mean free path 1 and that ALO, the London

penetration depth at zero temperature, is a lower bound for Aeff. The values of ALO for niobium

vary in the literature: Gao [11] quotes it as 33 nm whilst Linden [15], for instance, takes it to be

29 nm. However, for all quoted values of ALO it is clear the condition 0 <ALO does not hold for

niobium, since (O = 39nm. Therefore, what will determine whether or not the Mattis Bardeen

conductivity is applicable for Niobium is its purity: very dirty niobium with very small values of
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1 will satisfy I «eAff, whilst clean niobium will fall into the non-local regime of the Mattis

Bardeen theory.

We therefore expect the surface impedance as calculated from the Mattis Bardeen

and Zimmermann conductivities to be equal for very dirty niobium, but to diverge as the

niobium becomes cleaner. To check this, we consider in Table 3-1 three samples of

niobium studied in the literature and calculate their mean free paths using the following

equation from [9]:

1 _ OAOALOUOO

h (3-6)

The parameters for the "Dirty " niobium listed in the last column of Table 3-1 are taken from

Supermix [1], which uses the Mattis Bardeen conductivity to calculate surface impedance.

Parameters "Clean" "Mid-Range" "Dirty"
/=100nm l=20nm l=5.7nm

-O 3.3 x 10 8S/m 5.6 x 107 S/m 2.0 x 107S/m
A(O)/kBTc 1.97 1.76 1.83

ALO 29nm 33nm 29nm

4o 39nm 39nm 39nm

TC 9.2K 9.2K 9.2K

Source: Linden [15] Gao [11] SuperMix [1]

Table 3-1: Parameter values for different niobium samples studied in the literature and their calculated mean free
paths.

From Figure 3-5 we see that, just as expected, the Mattis Bardeen and Zimmermann

conductivities yield very different surface impedances in the clean limit but produce very similar

results as we approach the dirty limit - the two theories are consistent.
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Figure 3-5: Plots of surface impedance of niobium films with parameters as given in Table 3-1. Red solid lines
represent the calculations at 7K and blue dashed lines represent calculations at 3K. Circles -o- represent calculations
done with the Zimmermann conductivity and crosses + represent calculations done with the Mattis Bardeen
conductivity.
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4 Simulation Results

The theory developed in Chapters 2 and 3 was applied to simulations of grounded coplanar

waveguide resonators using Ansoft's HFSS 3D full-wave electromagnetic field simulation tool.

This chapter will describe the simulation setup in HFSS and the software written to generate

frequency-dependent surface impedance values for given material parameters.

This thesis contributes to a research effort aimed at developing high Q resonators for

quantum computing applications. Adam McCaughan fabricated the prototype resonators

throughout this project and reported his experimental method and results in [17]. Here, we will

use the sets of dimensions which were used as fabrication prototypes to simulate the

microfabricated niobium resonators.

In order to fully validate the proposed simulation technique for superconductors, we must

compare simulation results against measured data. To do this accurately, we require knowledge

of all material parameters of the niobium used to fabricate the resonator (its gap ratio, transition

temperature, coherence length and either its normal state conductivity or its mean free path) as

well as an accurate measurement of the temperature at which the data was taken. Such

measurements are not currently available, but will be the next step in further work.

However, even without full knowledge of the superconductor parameters and precise

temperature measurements, it is still possible to verify that the simulator predicts the expected

trends in the variation of Q with parameters such as temperature and capacitive coupling, and

generates the correct form of electric field distribution. We can also check that the Q's produced

by the simulated resonators are reasonably close to those reported in [17], allowing, of course,

for errors due to the uncertainty as to the superconductor parameters. Further, we can apply the

simulator to a normal metal - thus eliminating the need for knowledge of any material parameter



other than normal state conductivity - and compare the results to measured data so as to verify

that the classical transmission line theory basis of this tool is sound.

This chapter will report simulation results for both a printed circuit board (PCB) resonator

and a microfabricated niobium-sapphire resonator.

4.1 Simulation Setup in HFSS

The grounded coplanar waveguide (CPW) geometry was modeled in HFSS as shown in

Figure 4-1. In order to limit the solution space, the entire geometry was surrounded by an empty

box with each face set as a radiation boundary and placed at a distance of 1/3 of the wavelength

of the radiation (~30mm) away from the resonator. Since we are simulating a grounded CPW,

the top and bottom ground planes were shorted all around the CPW's edges by a perfect-E

boundary condition. The power is delivered by lumped ports, shown in red in Figure 4-1.

Surface impedance boundary conditions were implemented in HFSS by representing the

each conductor as an empty box and assigning a frequency-dependent impedance boundary

condition to the top and bottom surfaces with the real and imaginary parts defined by calculated

datasets of Re(Zs) versus frequency and Im(Zs) versus frequency. The calculation of these

datasets was performed by MATLAB routines discussed in the next section.



z C Cu
electrode

w

Figure 4-1: Grounded coplanar waveguide geometry in HFSS. Insets (a) and (b) show two different coupling
capacitor configurations that will be simulated in throughout this chapter: (a) is a parallel gap capacitor and (b) is a
fingered capacitor which gives a stronger coupling to the resonator for the same capacitive gap c. L denotes the
length of the center electrode, wE denotes the width of the center electrode, w denotes the total width of the electrode
plus the gaps to the ground planes g.

4.2 Surface Impedance and Q-fitting Software

Surface Impedance Calculation

To generate the surface impedance datasets required by HFSS, the conductivity of the

conductor or superconductor was computed and used to calculate the surface impedance with the

formulae given in Chapter 2. However, before generating a dataset, one must consider:

1. Whether to use the Mattis Bardeen conductivity or the Zimmermann conductivity to

calculate surface impedance. Recall from Chapter 3 that the Mattis Bardeen

conductivity is only applicable for very dirty superconductors, with 1 5 nm.
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2. Whether to calculate the bulk surface impedance, the surface impedance for a

conductor of finite thickness for a one-sheet model of a conductor, or the corrected

surface impedance for a two-sheet model of a conductor of finite thickness. Recall

from Chapter 2 that the surface impedance of a conductor of thickness of the order of

the skin depth is different from the bulk surface impedance. Recall also that, if one is

applying a two-sheet model of a conductor, the surface impedance of each sheet must

be a corrected Zx (equation (2-8)) to account for the inductance seen between the two

sheets. This correction is negligible if the thickness of the conductor is much larger

than the skin depth, in which case Z, reduces to Zs as given in (2-4). It is of course

valid to always compute the corrected Z, for each sheet in the two-sheet finite-

thickness model regardless of the metal thickness since it will always produce the

correct surface impedance, reducing to the bulk Zs (2-2) for very thick conductors.

Several MATLAB routines were written to produce the required datasets. All routines are

printed in Appendix A and Table 4-1 gives a summary of their functions (parameter symbols

defined in the caption).

O-fitting Routine

A routine named findQ.m was developed to find Q given any S21 spectrum in dB.

Following Petersan and Anlage [16], the routine converts the dB values to voltage ratios and fits

this data with a modified Lorentzian (4-1), with coefficient p5 accounting for any DC baselines

and coefficient P6 accounting for the possibility of a skew due to measurement problems.



P5 + P40) + (p3 + POW)

P2
(4-1)

where w is the frequency in GHz. The routine also calculates and prints the mean squared error

of the fit, which was consistently below 10-8 for the fitted simulation results. An example of a

set of simulation data fitted by the program is given in Figure 4-2.

Function
Calculates the ratio of the Mattis Bardeen
conductivity to the normal state conductivity.

Calculates the ratio of the Zimmermann
conductivity to the normal state conductivity.

Calculates the normal state conductivity from
material parameters using equation (3-6).

Linearly interpolates a table of values of
A(T) measured by Mfhlschlegel [13] to find the
energy gap at any temperature.

Calculates the bulk surface impedance from the
conductivity using equation (2-2).

Calculates the corrected surface impedance Z,,
to be assigned to each sheet in the two-sheet
model of a finite-thickness conductor the
conductivity using equation (2-4).

Required Input Parameters
w, T, delOratio,

w, T, Tc, delOratio,
xi0, 1

Tc, delOratio, xiO, 1,
LambdaL

x = T/Tc

w, T, sn, rho0

w, T, sn, d, rhoo

Table 4-1: Table
T=temperature;

of routines used to calculate surface impedance datasets. Parameter symbols: w = frequency;
Tc = Transition temperature; xio = coherence length; 1 = mean free path;

de10ratio=A(O)/kBTc where A(O) =energy gap at zero temperature; lambda = London depth;

sn=normalized conductivity (i.e. ratio of Zimmermann or Mattis Bardeen conductivities to the normal state

conductivity), rhoo = normal state resistivity

Routine Name
Supercond m

Zimcond.m

Rhonorm.m

Gapsupcond. m

BulkZs.m

FilmZs.m
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Figure 4-2: Example of a fitted set of simulation data using findQ.m. Here, Q = 9464, error =1.64 x 10-12.

4.3 PCB Resonator

As an initial test of the HFSS resonator design and of the soundness of the transmission

line theory used to develop the MATLAB surface impedance calculators described in the

previous section, a PCB resonator was modeled with dimensions w = 67 mil and L = 665 mil,

wE = 45 mil, g = 11 mil, c = 11 mil (notation as defined in Figure 4-1). The resonator had the

parallel gap coupling capacitor configuration of Figure 4-1 (b). The thickness of the copper on

the PCB was 2.75 mil and the dielectric, Rogers RO4 3 50TM, was 30 mil thick. Figure 4-3

compares the measured [17] S21 spectrum to results for two simulation approaches: the green

line is obtained when all copper surfaces are simply modeled as blocks which are assigned

material "copper" from the HFSS materials library and the red line is produced when the center

electrode is modeled as two sheets with surface impedance as calculated withfilmZs. m (using the

same conductivity value for copper as is listed in the HFSS materials library). The surface

.. .. ......... .. ..... ............ .............................................. ...........



impedance approach shows better agreement with the data because it accounts for the fact that

the copper has finite thickness whilst HFSS most likely uses the bulk surface impedance for

copper - note that the HFSS results give higher S21 values at each frequency: there is less power

loss, which is consistent with the assumption of a thick conductor with lower resistance. The

simulator does offer the option of solving for fields inside the conductor to obtain an accurate

solution, but this is precisely what we were trying to avoid in developing the theory in Chapter 2.

-5

-15-

0 -35-

~-45

~-55-
N - Measured data

--------. .... Simulation with Cu from HFSS library
-75- - Simulation with Zs boundary

-85 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9 10 11 12

Frequency (GHz)
Figure 4-3: Simulation results compared to measured data (jagged blue line) for the PCB grounded coplanar
waveguide resonator. The solid red line indicates the results obtained when two sheets of the appropriate surface
impedance Z, are used to model the center electrode and the dotted green line is obtained when we the electrode is
represented by a box filled with the material "copper" as selected from the HFSS materials library. The surface
impedance model is in better agreement with measured data.

4.4 Niobium Resonator

Using the Zimmermann conductivity infilmZs.m, we were able to calculate the surface

impedance for a superconductor of arbitrary purity. We were also able to calculate the surface

impedance at any temperature using the both the Mattis Bardeen and Zimmermann

conductivities for dirty superconductors, and the Zimmermann conductivity for clean

superconductors. If we then apply these surface impedances in simulation, we can generate Q

values for any temperature and mean free path, given the material parameters.

............................................................................... ............



Figure 4-4 plots Q versus temperature for the dirty niobium listed in the last column of

Table 3-1 using the Mattis Bardeen conductivity. The simulations for this plot were run with a

niobium-sapphire resonator with dimensions w = 38 pm and L = 19.937 mm, WE = 18 pim,

g = 10 pm, c = 5 pm (notation as defined in Figure 4-1). The resonator had the fingered

coupling capacitor configuration of Figure 4-1 (b) with fingers of length 54 gm and width

6.5 gm. The thickness of the niobium was 400 nm and the sapphire was 0.33 mm thick and

had relative permittivity 9.3. We see from the plot that, as expected, Q decreases with

increasing temperature due to an increase in surface resistance, which is shown in Figure 3-4.

We also see that the Q's obtained at the likely operating temperatures of 1K to 3K are within

tens of percent of those reported by McCaughan [17].
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Figure 4-4: Plot of Q versus temperature obtained by applying a surface impedance as calculated by filmZs.m with
the Mattis Bardeen conductivity to the HFSS simulation. The niobium simulated here is the "dirty" niobium with
parameters listed in the last column of Table 3-1.
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In order to match experiment to simulation, it is important to recall that any coupling

capacitance or mismatched impedance introduced by the measuring equipment (for instance, a

small gap between part of the network analyzer probe and the input port of the resonator) which

is not modeled exactly in simulations will introduce very large variations in loaded Q.

Goeppl [19], shows, for example, that if the coupling capacitance of his Aluminum CPW's

increases from 0.4pF to 56pF, the Q decreases from 200,000 to 370.

In order to accurately compare simulation and measurement, therefore, it is necessary to

determine the unloaded Q. This can be done by taking into account the coupling capacitance of

the resonator, or by increasing the capacitive gap until the Q saturates at a capacitance-

independent value - once the Q begins to vary negligibly with capacitance, we are in the

under-coupled regime.

Figure 4-5 shows the variation of Q when the capacitive gap is increased from 5 to 20 p.m

in a resonator with a parallel gap coupling capacitor (and with otherwise the same parameters

listed earlier in this section) simulated using the Zimmermann conductivity. We see that the Q

increases as the gap increases (and the coupling capacitance decreases), but the increase is very

small - of the order of 2%. This implies that we are in the under-coupled regime and that the Q

determined here is very close to the unloaded Q. These results are consistent with Goeppl's [19]

measurements in the under-coupled regime - over a 20 ptm change in gap, he reports no

significant change in Q.

Figure 4-6 plots Q versus mean free path using the Zimmermann conductivity at 3K

for the same resonator geometry as described for Figure 4-4. We discover an interesting

result: the cleaner the superconductor, the lower the Q it produces. To fully understand this



effect, it would be useful to develop an analytical model which allows for the calculation of Q

directly from values of surface resistance and surface reactance - a possible approach to this is

discussed in chapter 5.
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Figure 4-5: Plot of Q versus capacitive
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Figure 4-6: Plot of Q versus mean free path length I at temperature T = 3K obtained by applying using the surface
impedance boundary condition calculated byfilmZs.m with the Zimmermann conductivity to the HFSS simulation.
The Mattis Bardeen conductivity is not used here since, as we saw in Chapter 2, it is only applicable for very small
mean free path l~5nm.
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It is interesting to note here that, not only can we predict the Q given the material

parameters, but, if we have one unknown material parameter and can measure the Q, we are able

to determine that parameter by matching simulations to measured data. It is possible therefore to

determine the mean free path of a sample if the measurement temperature is known, or, similarly,

to determine temperature if sample purity is known.

To conclude this section, we show the tremendous increase in Q which arises from the

use of a superconductor instead of a normal metal in the microfabricated resonator. Figure 4-7

shows simulation results when niobium is replaced by Silver, a metal with an excellent normal

state conductivity of 61 x 106 S/m.
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Figure 4-7: Simulated Q for microfabricated resonator with normal state Silver in place of a superconductor. Here
Q = 2.42, a thousand-fold decrease from the superconducting Q's for the same resonator seen in Figure 4-4 and
Error! Reference source not found..
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4.5 Electric Fields

For quantum computing applications, we are interested in the second resonance of the S21

spectrum, where the standing wave on the resonator electrode consists of one full wavelength

and the field at the center of the electrode is at a maximum, as required for ion trapping (Figure

4-8). Figure 4-9 and Figure 4-10 are plots of the electric field obtained by modeling all niobium

surfaces of the microfabricated grounded coplanar waveguide as two sheets with surface

impedance as calculated by filmZs. m using the Zimmermann conductivity, at a temperature of

1K for a niobium with mean free path of 1 = 10 nm and a the gap ratio equal to the BCS value of

1.76. The resonator geometry used here is the same as described for Figure 4-4 but with a butted

capacitance with a capacitive gap c = 5 ptm.

Maximum field at center of
electrode for ion trapping

Magnitude of
electric field

Figure 4-8: Schematic diagram of field along center electrode (X axis as defined in Figure 4-1) for the second
resonance (~6GHz). This resonance provides a field maximum at the center of the resonator, which is required for
ion trapping.

PW
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Figure 4-9: Plot of electric field over the surface of CPW, at a distance of 38pm above the resonator. The second
harmonic standing wave with two nodes and a central maximum is clearly visible here and, as expected, the field is
constant over the electrode, spikes at the edges and decays over the gaps between the electrode and the ground
planes.
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Figure 4-10: Logarithmic plot of electric field at different distances along the central resonator electrode. Apart from
slight deviations close to the surface of the resonator (which can be attributed to meshing artifacts or near-field
effects), the field decay is exponential and extrapolated linear fits (dotted lines) can be used to establish the field at
ion-trapping distances above the surface.
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As we can see from the field plots, the electric field distribution predicted by the simulator is

qualitatively correct. Quantitative experimental verification of field simulation results for any

known set of material parameters could be obtained using a spectroscopy setup such as is

described in [19] as follows: a Sr* ion is trapped above the resonator (which is integrated into a

cryogenically operated Paul trap [3]) and a magnetic field in applied to produce Zeeman splitting

of its hyperfine levels. The electric field will generate Rabi oscillations between the Zeeman

states and the frequency of these oscillations will be proportional to the magnitude of the electric

field at the ion's location in space. Therefore, the field can be mapped by moving the ion across

the surface of the resonator (which can be accomplished by changing electrode potentials of the

Paul trap) and recording the Rabi frequency at several locations.



5 Conclusions and Further Work

This thesis develops a simulation tool which, when used with commercially available

electromagnetic simulators, can model the behavior of superconductors of arbitrary purity over a

wide range of frequencies, predicting Q factors, electric field distributions and S21 transmission

spectra for superconducting devices. This simulator can also be used to generate a table of values

of Q for a given device geometry as a function of metal purity (mean free path) and operating

temperature. If one then takes a superconductor of unknown purity, measures its gap ratio,

transition temperature, and the Q produced when it is used to make the given device, it is

possible to use this tool to determine the superconductor's mean free path by comparing

measured data with simulation results. If all material parameters are known, it is also possible to

determine the temperature at which the Q measurements were made.

Simulation results for a printed circuit board resonator were an excellent match to

measured data, confirming the soundness of the transmission line theory basis of this simulator,

as developed in Chapter 2. When a microfabricated niobium resonator was modeled, the

obtained variation of Q with temperature and capacitive coupling followed the expected trends,

and, allowing for errors due to the lack of information about the superconductor's parameters,

the Q's obtained were in good agreement with measured data (within tens of percent). The

simulated distribution of the electric field over the resonator was also of the correct form.

The next step in further work will be to measure the Q of a resonator fabricated with a

niobium sample of known material parameters and compare it with simulated results. In

performing the measurements, one can either compare loaded Q simulation to measurement

using a very well controlled measurement setup where all coupling capacitances are known and

can be simulated exactly (such as the measurement setup shown in [20]), or one can determine



unloaded Q by decreasing the coupling capacitance to the device until the measured Q saturates

at a constant value. The unloaded Q can then also be determined from simulation by taking

capacitance into account, as shown in Chapter 3.

It would be interesting to pursue, in further work, the development of an analytical model

which allows for the calculation of Q directly from values of surface resistance and surface

reactance. This could perhaps be accomplished by running simulations with resonators of

different lengths (and hence different surface areas) and determining the dependence of Q and

resonant frequency on surface resistance and reactance. Using a simple RLC model for the

resonator, one may be able to establish how much of the lumped resistance, inductance and

capacitance is derived from surface effects and how much is due to the intrinsic transmission line

impedance.

Another goal for future work is to use this tool to establish ways of increasing the Q by

changing the resonator design.

The tool developed here can be used to optimize and characterize superconducting

devices, avoiding the need for repetitive and costly fabrication and measurement cycles.
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Appendix A: MATLAB Routines

Al. Supercond: Mattis Bardeen conductivity calculator

function sigma_ratio = supercond(w, T, sup)
% supercond(w, T, sup)
% Computes the complex conductivity ratio of a
% superconductor sup at angular frequency w and temperature T.
% This is done by numerically integrating the Mattis Bardeen
% equations.

% Get required superconductor characteristics
Tc = sup.Tc;
delOratio = sup.deloratio;

kb = 1.3806503e-23; % Boltzmann constant
hbar = 1.054571628e-34; % reduced Planck constant

delO = deloratio*kb*Tc; % delta at 0 K
delt = gap supcond(T/Tc)*delO; %- temperature corrected delta

if (w > (2*delt/hbar))
fprintf('Warning: w too large in function supercond\n');

end

% Computes the conductivity ratio by numerical integration.
% First find a reasonable upper limit to replace infinity in
% the first integral (was fixed at 1.5e11*delt). The algorithm
% used works well provided the temperature is not too near Tc or 0 K.

if (T<0.5) I (T>8.5)
fprintf('Warning: results may not be accurate at this temp.\n');

end

if T>7.8
upperlimit = delt*(1.3*T/1.5 - 4.617)*1.3e11;

else
upperlimit = delt*(1.5*T/6 + 0.225)*lell;

end

sigmalLint=quad('sigma1L',0,upper limit,le-4,0,w,T,delt);
sigma2Lint=quad('sigma2L',0,sqrt(hbar*w/2),le-4,0,w,T,delt);
sigma2Uint=quad('sigma2U',0,sqrt(hbar*w/2),le-4,0,w,T,delt);
sigma_ratio = sigmalLint - j*(sigma2Lint + sigma2Uint);

function y = sigmalL(x, w, T, delt)
% sigmalL(x, w, T, delt)
% Integrand used to find the real part of the complex conductivity
% E -> delt + x^2 (to remove the square root singularity at the lower limit)
% new lower limit = 0; new upper limit = Inf
E = delt + x.^2;

hbarw = w*1.054571628e-34;



y = (4/hbarw)*(fermi(E, T) - fermi(E + hbarw, T)).*(E.A2 + deltA2 +
hbarw*E)./(sqrt(2*delt + x.A2).*sqrt((E + hbarw).A2 - deltA2));

function y = sigma2L(x, w, T, delt)
% sigma2L(x, w, T, delt)
% Integrand used to find the imaginary part of the complex conductivity
% E -> delt - hbarw + X^2 (to remove the square root singularity at the lower
limit)
% new lower limit = 0; new upper limit = sqrt(hbarw)
hbarw = w*1.054571628e-34;
E = delt - hbarw + x.^2;

y = (2/hbarw)*(l - 2*fermi(E + hbarw, T)).*(E.A2 + deltA2 +
hbarw*E)./((sqrt(delt^2 - E.A2).*sqrt(2*delt + x.^2)));

function y = sigma2U(x, w, T, delt)
% sigma2U(x, w, T, delt)
% Integrand used to find the imag part of the complex conductivity
% E -> delt - X^2 (to remove the square root singularity at the upper limit)
% new lower limit = 0; new upper limit = sqrt(hbarw)
E = delt - x.^2;

hbarw = w*1.054571628e-34;
y = (2/hbarw)*(l - 2*fermi(E + hbarw, T)).*(E.^2 + delt^2 +
hbarw*E)./((sqrt(2*delt - x.^2).*sqrt((E + hbarw).^2 - deltA2)));

A2. Zimcond: Zimmermannn conductivity calculator

function s = zimcond(w, T, sup)
% zimcond(w, T, sup)
% Computes the complex conductivity ratio of a
% superconductor sup at angular frequency w and
% temperature T using the Zimmermann method.

% Get required superconductor characteristics
Tc = sup.Tc;

delOratio = sup.delOratio;
xiO = sup.xio;

1 = sup.l;

kb = 1.3806503e-23; % Boltzmann constant
hbar = 1.054571628e-34; % reduced Planck constant

delo = deloratio*kb*Tc;
delt = gapsupcond(T/Tc)*delO; % temperature corrected delta
k = delO/delt;

if (w > (2*delt/hbar))
fprintf('Warning: w too large in function zimcond\n');

end

s = conj(zimcalc((hbar*w/2/delt), (pi/2)*(xiO/1)*k, T/Tc, deloratio));



function s = zimcalc(x, y, tt, delOratio)
% zimcalc(x, y, tt, delOratio)
% Computes the complex conductivity of a superconductor using
% the Zimmermann et al approach.
% Inputs: x = hbar*w/(2*delta), y=hbar/(2*delta*tau), tt=T/Tc
% where w is the angular frequency, delta is the gap, Tc is
% the critical temp and tau is the electron collision time. If
% the electron mean free path is le and vf is the Fermi velocity
% tau = le/vf. The coherence length xio = hbar*vf/(pi*delta0)
% so y can also be written y = (pi/2)*(xio/le)*(deltaO/delta).

deltratio = del0ratio*sqrt(l-tt)*(0.9963 + 0.7733*tt);
t = tt/(2*deltratio);
M = 250;
du = 1/M;
urange = 0.5*du:du:l;
sl = sum(zimintl(urange, x, y, t));
s2 = sum(zimint2(urange, x, y, t));
s = (sl*du + s2*du)*j*y*0.5/x;

function intl = zimintl(u, x, y, t)
% zimintl(u, x, y, t)
% Zimmermann integral 1
e = 0.5 + x*u.*u.*(3-2*u);
tiny = le-20;
small = le-3;
p4 = j*sqrt(0.25 - (e-x).^2);

p2 = sqrt(e.^2 - 0.25);
c42 = (0.25 + e.*(e-x))./(p4.*p2 + tiny);

cy = j*y;
th = tanh(e/(2*t + small));
intl = 6*x*th.*((l-c42)./(p4+p2+cy) - (1+c42)./(p4-p2+cy)).*u.*(l-u);

function int2 = zimint2(u, x, y, t)
% zimint2(u, x, y, t)
% Zimmermann integral 2
e = 0.5 + (u./(1-u)).^2;

tiny = le-20;
small = le-3;
pl = sqrt((e+x).^2 - 0.25);
p2 = sqrt(e.^2 - .25);

c12 = (.25 + e.*(e+x))./(pl.*p2 + tiny);

cy = j*y;
th1 = tanh((e+x)/(2*t + small));
th2 = tanh(e/(2*t + small));
int2 = 2*(thl.*((l+cl2)./(pl-p2+cy) - (1-c12)./(-p1-p2+cy))...

+ th2.*((l-cl2)./(pl+p2+cy) - (1+c12)./(pl-p2+cy))).*u./(l-u).A3;

.. M ......... .



A3. Rhonorm: Normal resistivity calculator

function rho0 = rhonorm(Tc, delOratio, lambdaL, xio, 1);
% rhonorm(Tc, del0ratio, lambdaL, xio, 1)
% Computes the normal resistivity (in ohm-m) of a superconductor
% based on its superconductivity parameters.

mu0=4*pi*le-7; % magnetic constant
kb = 1.3806503e-23; % Boltzmann constant
hbar = 1.054571628e-34; % reduced Planck constant

delO = delOratio*kb*Tc;
rhoo = lambdaLA2*muo*pi*delO*xiO/(l*hbar);

A4. Gapsupcond: Gap calculator from SuperMix [1]

function gap = gapsupcond(x)
% gapsupcond(x)
% Calculates superconducting energy gap as a function of temp
% ratio x = T/Tc. (This function was taken from supermix.)

% Table of reduced energy gap vs. T/Tc, from Muhlschlegel (1959).
% Table starts at x = T/Tc 0.18, and goes in steps of dx = 0.02

ratio = [
1.0,
0.9999,
0.9997,
0.9994,

0.9989,
0.9982,

0.9971,
0.9957,
0.9938,
0.9915,
0.9885,
0.985,
0.9809,
0.976,
0.9704,

0.9641,
0.9569,
0.9488,
0.9399,
0.9299,
0.919,
0.907,
0.8939,
0.8796,
0.864,
0.8471,
0.8288,
0.8089,



0.7874,
0.764,
0.7386,
0.711,
0.681,
0.648,
0.6117,
0.5715,
0.5263,
0.4749,
0.4148,
0.3416,
0.2436,
0.0 ];

% check if x is physical

if (x < 0) | (x >= 1)
gap = 0;
return

end

if (x < 0.04)
gap = 1;
return

end

% if x <= 0.32, we use an analytic expression to extend the gap table;

% (which uses k Tc -= Delta(O)/1.764; c.f. Tinkham)

xmatch = 0.32; % xmatch must be a multiple of 0.02, >= 0.18

ymatch = exp(-sqrt((2*pi/1.764)*xmatch)*exp(-1.764/xmatch));

if (x <= xmatch)
gap = exp(-sqrt((2*pi/1.764)*x)*exp(-1.764/x));
return

end

% if we get here, we interpolate between data points to calculate gap, taking

% sqrt(l - T/Tc) dependence near the gap into account.

index = floor((x-0.18)/0.02); % index into ratio table
xl = index*0.02 + 0.18;
xu = xl + 0.02;

if (xl > xmatch)
yl = ratio(index + 1)/sqrt(1-xl); % Changed to account for Matlab

indexing
else

yl = ymatch/sqrt(1-xl);
end

if (index < 40)
yu = ratio(index + 2)/sqrt(l-xu); % Changed to account for Matlab

indexing
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else
yu = 1.74; % behavior near Tc - see Tinkham, eqn. 2-54.

end

gap = sqrt(1 - x) * (yl + (yu-yl)*(x-xl)/(xu-xl)); % linear interp into
ratio table

A5. BulkZs: Bulk surface impedance calculator

function Zs = bulkZs(w, sigma, sup)
% bulkZs(w, sigma, sup)
% Computes the bulk surface impedance at angular
% frequency w for a material sup with normalized
% conductivity sigma.

rhoO = sup.rhoO;

mu0 4*pi*le-7;
Zs = sqrt(j*w*muO/(sigma/rhoo));

A6. FilmZs: Finite thickness surface impedance calculator

function Zx = filmZs(w, sn, d, sup)
% filmZs(w, sn, d, sup)
% Computes the surface impedance of a sup film of thickness
% d with normalized conductivity sn at angular frequency w.
% Includes the inductance correction for the two sheet model.

rhoO = sup.rhoo;

mu0=4*pi*le-7; % magnetic constant
sigmaO = 1/rho0; % normal conductivity
Zn = 376.730313; % impedance of free space
c = 299792458; % speed of light in vacuum

sl = sn*sigmaO;
delta = sqrt(2/(muo*w*sl));
lambda2 = (1 + j)/delta;
L = Zn*tan(w*d/c)/w;

% Compute the surface impedance - classical Zs from Matick pg 128
Zs = (lambda2/sl)*coth(lambda2*d);

% Correction using the inductance between two sheets = L
Zx = 0.5 *((2*Zs - j*w*L) + sqrt(4*ZsA2 +(j*w*L)A2));



A7. FindQ: Q calculator

% Find Q from S21 data.

% According to Petersan and Anlage, "Measurements of Resonant frequency
% and Quality Factor of Microwave Resonators: Comparison of Methods"
% (http://arxiv.org/pdf/cond-mat/9805365), a good way to find Q is to
% fit a Lorentzian curve to the measurement data. This program does
% that using Matlab's non-linear least squares fitting routines.

% Input should be an ASCII data file with frequency as the first column
% and measured power (in dB) in the second column. Frequency is assumed
% to be of order 1e9.

clear
close all
clc

% load measured data
S21 = load('S21.txt');
x = S21(:,l)/1e9; % scale frequency
measured = S21(:,2);
y = 10.^(measured/20);

plot(x,measured,'bo'); % shc
hold on;

% esti
[peak ipeak] = max(y); % gue
fres = x(ipeak); % gue
N = size(x);

% find approx half power ind
ihalf = 0;
for i = ipeak:N,

if (y(i) <= peak/sqrt(2))
ihalf = i;

break
end
i = i + 1;

end

Q = 1000;
if ihalf > 0

Q = fres/2/(x(ihalf) - fres);
end

w measured data

ss the gain
ss the resonant frequency

ex

% guess Q

p0 = [fres fres/Q peak 0.000001 0.1 0.0001]; % starting parameters

guess = lorentzmodel(pO, x); % show inital guess
plot(x,20*log10(guess),'r-');

% improve the guess by fitting



pl = nlinfit(x, y, @lorentzmodel, p0);
p2 = lsqcurvefit(@lorentz_model, p0, x, y);

% show fitted curves
y1 = lorentzmodel(pl, x);
plot(x,20*log1O(y1),'g.');
y2 = lorentzmodel(p2, x);
% plot(x,20*loglO(y2),'g-
legend('Data', 'Fit');
xlabel('Frequency (GHz)');

ylabel('S21 (dB)');

el = sum((y-yl).^

e2 = sum((y-y2).A

fprintf('
fres, Q);
fprintf('NLINFIT
%.2e)\n', p1(3),
fprintf('LSQCFIT
%.2e)\n', p2(3),

Guessed: Peak = %f, Resonant freq = %f, Q = %f\n', peak,

Estimated: Peak
pl(1), abs(p1(1)
Estimated: Peak
p2(1), abs(p2(1)

= %f, Resonant freq = %f, Q = %f (error =
/p1(2)), el);
= %f, Resonant freq = %f, Q = %f (error =

/p2(2)), e2);


