
Evaluation of Boolean Formulas with Restricted

Inputs

by

Bohua Zhan

Submitted to the Department of Physics

MASSACHUSETTS INSTITUTE
OF TECHNOLOCGY

AUG 13 2010

LIBRARIES

in partial fulfillment of the requirements for the degree of

Bachelor of Science in Physics

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2010

@ Massachusetts Institute of Technology 2010. All rights reserved.

A uthor '

/9

Department of Physics
May 7, 2010(2'

Certified by...'N.
Edward Farhi

Professor
Thesis Supervisor

Accepted by i..h..a...........
David Pritchard

Physics Thesis Coordinator

ARCHIVES

2

Evaluation of Boolean Formulas with Restricted Inputs

by

Bohua Zhan

Submitted to the Department of Physics
on May 7, 2010, in partial fulfillment of the

requirements for the degree of
Bachelor of Science in Physics

Abstract

In this thesis, I will investigate the running time of quantum algorithms for evaluating
boolean functions when the input is promised to satisfy certain conditions. The two
quantum algorithms considered in this paper are the quantum walk algorithm for
NAND trees given by Farhi and Gutmann [2], and an algorithm for more general
boolean formulas based on span programs, given by Reichardt and Spalek [6]. I
will show that these algorithms can run much faster on a certain set of inputs, and
that there is a super-polynomial separation between the quantum algorithm and the
classical lower bound on this problem. I will apply this analysis to quantum walks
on decision trees, as described in [3], giving a class of decision trees that can be
penetrated quickly by quantum walk but may not be efficiently searchable by classical
algorithms.

Thesis Supervisor: Edward Farhi
Title: Professor

4- ----- -

Acknowledgments

I would like to thank my advisor, Prof. Edward Farhi, for his guidance throughout

this research project. This work is done in collaboration with Edward Farhi, Jeffrey

Goldstone, Sam Gutmann, Avinatan Hassidim, and Shelby Kimmel. I would not

have come this far without their numerous inputs in discussions over the past year.

I would also like to thank Andrew Lutomirski and Huy Ngoc Nguyen, with whom I

discussed at various points during this research and received many helpful comments.

6i

Contents

1 Introduction

1.1 Evaluation of NAND Trees ..

1.2 Span Program s .

2 Analysis of Quantum Algorithm

2.1 General Case

2.2 Two Specific Cases

2.3 Another Viewpoint.

3 Classical Lower Bound

3.1 Statement of the Theorem

3.2 Preparation

3.3 Case k = 1

3.4 General k

3.4.1 Exceptions

3.4.2 Bounds on S

3.4.3 Bounds on D

3.4.4 Bounds on Pk,

3.5 An 'Easy' Boolean Function .

4 Quantum Walk Through Decision Trees

4.1 Summary of Previous Work

4.2 M ain Result

7

13

15

18

23

23

26

28

35

35

37

39

40

41

42

45

47

51

. .

. .

..

.

.

5 Conclusion

List of Figures

1-1 Graph corresponding to a NAND tree of height 3. 16

1-2 Schematic diagram of a gadget. 18

1-3 A gadget for the 3-MAJ gate. 20

2-1 Assignment of weights for a sample tree. Empty circles denote nodes

with value 1, and solid circles denote nodes with value 0. 32

2-2 Example of a tree that does not satisfy k-faults rule for small k, but

still has JAI2 polynomial in n. Empty circles denote nodes with value 1,

and solid circles denote nodes with value 0. Ellipsis denotes attaching

a subtree without any faults to make the leaves of the resulting tree at

the sam e height. 34

3-1 A sample distribution for the NAND gate 36

3-2 A sample distribution for the 3-MAJ gate 36

4-1 An example of a decision tree with two lines attached to the root and

the unique node at level 4. 56

4-2 Visualization of entries in M. Each Mj corresponds to a weighted sum

of paths going from i on the left to j on the right. 57

10

List of Tables

12

Chapter 1

Introduction

Evaluation of boolean functions is a major class of problems considered in the theory

of computation. In particular, we may consider those boolean functions F that can

be written nicely as a tree. The leaves of the tree correspond to inputs. That is,

we consider an input to F as a function associating each leaf a to some ra E [0, 1].

Then we associate each node b in the tree to some rb E [0, 1], by requiring that

rb = fb(rbi, . . ,b r) for every non-leaf node b in the tree with child nodes bi,. .. , be,

where fb : [0, 1]' -> [0, 1] is a fixed boolean function. The output of F is the value

associated to the root. We may further simplify the situation by requiring each fb to

be the same function f, and that all leaves are at the same height. The function F

is then fixed by fixing f and a height n. Throughout the paper we will let the height

n be the number of edges in any path from the root to the leaves. Equivalently this

is the number of times the function f is composed.

As examples, we will mainly consider two such boolean functions: NAND trees

and 3-MAJ trees, but many of our results are more general. The function f for the

NAND tree is the NAND gate, with f(ri, r 2) = 0 if r1 = r 2 = 1, and 1 otherwise. We

may interpret a NAND tree with height n as a two-player game with exactly n turns,

with the turn alternating between the two players. At each turn the player moving

has two choices. An input to the function corresponds to an assignment of each end

position of the game to either win or loss for the player moving. Then the value at

each node in the tree corresponds to whether the player moving will win given best

play, and the output of the overall function F is whether the player moving first will

win with best play. For this reason NAND trees are also called game trees.

The function f for the 3-MAJ tree returns the value of a majority of its three

inputs. That is, f(ri, r2, r3)= 0 if and only if at least two of ri, r2, r 3 are zero.

There are several widely-used classical models of computation for constructing

algorithms to evaluate these trees, and examining the cost of these algorithms. We

give three examples. In all three examples the cost of evaluating a leaf (or equivalently

querying an input value) is 1, and all other computations are free.

Model 1: the computation is deterministic. No mistakes are allowed. The cost is

the number of evaluations maximized over all inputs.

Model 2: the computation is probabilistic. No mistakes are allowed. The cost is

the expected number of evaluations on a fixed input, maximized over all inputs.

Model 3: the computation is probabilistic, and the algorithm is allowed to make

mistakes with bounded probability, say less than 1/3. This means the algorithm

makes mistakes with probability less than 1/3 on any given input. The cost is the

number of evaluations, maximized over all inputs and choices of the algorithm.

It is clear that for Model 3, taking the maximum number of evaluations is not

very different from taking the maximum over all inputs of the expected number of

evaluations, since the number of evaluations can exceed the expected number by a

large factor only infrequently, so the algorithm can afford to guess randomly if this

happens and only add a small value to its probability of error. When comparing to

quantum algorithms that can make errors with small probability, Model 3 appears to

be the most appropriate.

For the NAND tree, the obvious algorithm is shown to be the best classically, with

cost O(N1i92[(1+v'33)/4]) = O(N 7 5 4) [7], where N = 2' is the number of inputs. How-

ever, there are quantum algorithms, first devised by Farhi, Goldstone, and Gutmann,

that can evaluate a NAND tree in time O(VN) [2]. The original algorithm, which

will be described below, is in the quantum walk model. It is written in the standard

query model by Ambainis in [1], still with O(N) running time.

The classical lower bound for evaluating 3-MAJ trees is still unknown. In par-

ticular, the obvious algorithm is known to be suboptimal. Reichardt and Spalek [6],

using a concept called "span programs", first gave a quantum algorithm with running

time O(2"). They also showed in the same paper that this is the best possible. It is

faster than the currently best lower bound of Q((7/3)") for classical algorithms.

In this paper, we will consider the problem of evaluating boolean functions when

its inputs are restricted to a certain set. We will show that the quantum algorithm can

be much faster on this set of inputs, and that there is a super-polynomial separation

between the cost of classical and quantum algorithms for this problem. This investi-

gation originated from attempts to find on which inputs can the quantum algorithm

for NAND trees run quickly, and which decision trees can be penetrated quickly by a

quantum walk (see [3] and below). However, it can be viewed with more generality

in the context of span programs, which we will do here.

In the next two sections, we will describe the algorithm given in [2] for NAND trees,

and the more general algorithm given in [6] using span programs. In chapter 2, we

will describe the restriction on inputs and analyze the cost of quantum algorithms for

the new problem. In chapter 3, we will analyze classical algorithms on this problem,

deriving a lower bound on the cost of any algorithm in Model 3 above. In chapter

4, we give an application of our results to quantum walk through decision trees. We

conclude in chapter 5 with possible directions of future research.

1.1 Evaluation of NAND Trees

In this section we will describe the algorithm given in [2] for evaluating NAND trees.

The algorithm is given in the quantum walk model. In this model, each case of the

problem is associated with a graph. This is then associated with a quantum system,

where each node in the graph corresponds to a vector in the standard basis, and the

Hamiltonian H is directly read from the graph. In this section we will let H be the

adjacency matrix of the graph. Afterwards we will consider weighted graphs (that is,

every edge (i, j) is given a weight vij), and we let Hij = vij if there is an edge (i, j),

and Hij = 0 otherwise.

After initializing the system to a certain state, the system evolves according to

the Hamiltonian for a certain time t, then the answer to the problem is found by a

measurement on the system. The equations of motion bear some similarity to that

of the classical random walk through a graph, hence the name quantum walk.

The algorithm in the quantum walk model is as follows. Consider the NAND tree

as a graph. For each leaf with value 1, add another node to the graph and connect it

only to that leaf. Next, make a 'runway' consisting of a line of 2M+1 nodes numbered

-M to M, where M is a large integer to be determined. The final graph is formed

by joining the root of the binary tree (denoted by |root)) to the node numbered 0

(denoted by |r = 0)) on the runway. See Figure 1-1 for an example.

Inputs

NAND Tree

Runway

Figure 1-1: Graph corresponding to a NAND tree of height 3.

The initial state is a wave packet on the left branch of the runway, moving to the

right and having a narrow peak in the energy spectrum at E = 0. As the system

evolves, part of the packet will transmit through jr = 0), and the other part will

be reflected back. The following equation relating the transmission coefficient to a

parameter of the NAND tree is shown in [2].

2i sin 0
T(E) = 2ii6iyE'(1.1)

2i sin 0 + y(E)'

where
(root|E)E=-2cosO, y(E)= (roIE)
(r = 0|E)

and IE) is the exact eigenstate of the system with energy E. Here we assume that the

runway is essentially infinite. Given any (r = OE), one can see by counting equations

and unknowns that for generic values of E, the equation HIE) = E|E) fixes (bfE) for

every node b in the tree (that is, above |r = 0)). Moreover the value (root|E) fixed

this way is proportional to (r = OfE). So the quantity y(E) can be defined even when

the runway is finite.

The function y(E) can be computed as follows. First, for every node b in the tree,

let b' be the parent of b (the parent of |root) is |r = 0)). Define

(bfE)
y P (E) = ,VI.

Then if bi, b2 are child nodes of b, the equation H IE) = E|E) turns into the recursive

relation
1

Yb(E) -Eyb)= E- yb (E) - yb2 (E)

and yb(E) = 1/E if b is a leaf.

Using this recursive relation, one can compute y(E) = yroot(E). By induction

from the leaves to the root, one can show that yb(E) -+ 0 as E -- 0 if b has value 1,

and yb(E) -- ±oo as E -+ 0 otherwise. In particular the behavior of y(E) as E -+ 0

indicates the value of the root. Using equation 1.1, one can see that T(E) ~ 0 at

E 0 if the root has value 0, and T(E) ~~1 otherwise. Thus we can obtain the value

at the root by measuring how much of the initial wave packet transmitted through

fr = 0). In order for this to work, we need fy(E)f to be far from 1 for the range of

E in the packet (either near zero or very large depending on the value of the root).

From the range of E around 0 for which this is true, we can find how narrow the

wave packet needs to be in energy space, which in turn gives the size of the packet in

position space, which gives the length of the runway and evolution time required. So

the cost of the algorithm is inverse the size of range of E for which y(E) is far from

1. It is shown in [2] (by a method similar to the one described in the next section)

that the size of this range is at least 1 , where N = 2n is the number of leaves.

The cost is therefore O(N), which is shown in the paper to be the best possible.

1.2 Span Programs

The use of span programs in quantum algorithms is introduced by Reichardt and

Spalek in [6]. We will discuss in detail only the algorithm and the analysis of its

running time, for the special case where each input is used only once. This is sufficient

for the rest of the paper since it includes the case of NAND and 3-MAJ trees. We

will motivate the construction from the point of view of quantum walks.

To generalize the algorithm in the last section to evaluate other boolean formulas,

in particular those that can be written as a tree with boolean function f at each

node, one can try to construct subgraphs, or 'gadgets', with the following properties.

Let c be the number of inputs to f. The gadget should have c + 1 outgoing edges,

each connected to a different vertex inside the gadget. This is shown schematically

in Figure 1-2.

b1 bo

Figure 1-2: Schematic diagram of a gadget.

The edge shown at the bottom of the figure corresponds to the output xO, while

the c edges at the top are inputs x1,.. ., xc. To each input and output, we can define

yi(E) = (b E) O<i<c (1.2)
(ai|E)(

similar to before. The function y2 indicates the value xi in the sense that we require

as E -- 0, yi(E) -+ 0 if xi = 1, (1.3)

yi(E) -+ ±oo if x = 0.

Once y(E), 1 < i < c and (aoIE) are fixed, by counting equations and unknowns one

can see that for generic E the vector E) is uniquely determined inside the gadget

by the equation HIE) = E|E). Moreover the value of (bolE) thus determined is

proportional to (ao IE). So yo(E) is a function of yi(E), 1 <i < c. For the gadget to

correspond to a boolean function f : [0, 1]' -+ [0, 1], we require that given yi(E), 1 <

i < c satisfying condition 1.3, then yo(E) -+ 0 also does with xo = f(xi, ... , xc).

We can join these gadgets together to evaluate a function F as follows: let each

non-leaf node b in the tree correspond to a gadget Pb, and if node b is the i'th child

node of b' in the original tree, then identify the edge (ao, bo) in P with the edge

(ai, bi) in P'. The leaves of the original tree just correspond to the edges (ai, bi) in the

last level of gadgets. An input to F amounts to removing some of the edges (ai, bi)

corresponding to leaves. For consistency, the edge (ai, bi) is kept if and only if the

input xi is 0. Then yi(E) = 1/E if xi = 0 and yi(E) = 0 otherwise, so condition 1.3

is satisfied. By induction y(E) at the root indicates the output of F.

In order to have some bound on the running time of the algorithm, we can set

further conditions on yo(E) as a function of yi(E), 1 < i < c. Define si such that:

yi(F) 1
si (E) = ifxz=1 and si(E)= if Xi = 0. (1.4)

Roughly speaking, the smaller the values of si, the slower yi(E) approaches order

unity from either 0 or ±oo. We would like a condition such as Iso(E)| is at most a

constant multiple of s = maxiic Isi(E)I.

The paper [6] gives a construction of such a gadget based on span programs. A

span program P corresponding to a boolean function f : [0, 1]' -* [0, 1] consists of a

target vector t and input vectors vi, 1 < i < c such that f(xi, . . . , xc) = 1 if and only

if t is a linear combination of vi, where the coefficient of vi must be zero if xi = 0.

Here the vector space is over C, although different fields are also used. For example,

a span program for the 3-MAJ function is:

1 a a a

0 1 2

where a = -I and w = e2,i/ 3 . The above notation means vi, 1 < i 3 are the

columns of the matrix v.

It is clear that by a linear transformation on both t and vi, we can always make

t = (1, 0)x. The gadget is then constructed from vi as follows: the nodes in the gadget

include bo, ai, . . . , ac as shown in the figure, as well as auxillary nodes b',..., b' , where

d + 1 is the dimension of the vector space. The weight on each edge (ai, bi), 0 < i < c

is 1. The node bo is connected to each ai with weight (v) 1 , and the nodes b' are

connected to nodes as with weight (vr)j+1,2 . Figure 1-3 shows the gadget from the

span program for the 3-MAJ gate shown above.

b, b 2 b,3

a a 1O

b b 3

Figure 1-3: A gadget for the 3-MAJ gate.

First, we have the following.

Theorem 1.2.1 ([6], Thm. 2.5). Consider the gadget constructed as above from a

span program P corresponding to a boolean function f. Define yi(E), 0 < i < c as in

equation 1.2. Then yi(E), 1 < i < c satisfying condition 1.3 implies yo(E) satisfy the

same condition, with xO = f(x1,... , xc).

To give a bound on Isol in terms of s = maxli< |sil, we need to use the concept of

witness size. A witness can be considered as a certificate for whether the span program

has a solution. Let V be the span of all Ivi) such that xi = 1. If f(xi, . . . , xc), then

t E V, so there exists a vector 1w) such that wi = 0 for all xi = 0 and vfw) I It).
Otherwise, t (V implies the projection of It) onto the complement of V is nonzero.

So there is a vector w' such that (tlw') = 1 and (vgiw') = 0 for all xi = 1. We call

either 1w) or |w') a witness for P and xi.

Define s2(E) as in equation 1.4. Let si = supEE(oEo) isi(E)| for some chosen E0 .

Let i be the diagonal matrix with si on the diagonal. Then the witness size is defined

as the following:

Definition 1.2.2 ([6], Def. 3.6). Let P be a span program corresponding to function f.

If x0 = f (x) = f (xi,. .. , xe) = 1, then wsize(P, x) equals ||21/2IW) 2, minimized over

all witness |w) for x0 = 1. Otherwise, wsize(P, x) equals I|1/2 vTIw')||2, minimized

over all witness |w') for x0 = 0.

The significance of the witness size is shown in the following theorem.

Theorem 1.2.3 ([6], Def 3.3, Thm. 3.7). Let P be a span program corresponding to

f, and define y(E), s2(E) and si as above. Then there exist constants c1 and c2 such

that

IsO I ci + wsize(P, x)(1 + c2E0 max si) (1.5)1<i<c

for each input x and maximum energy E0 > 0 such that E0 maxl<i<e si < c for some

small e determined in the proof.

Currently the witness size of a gate depends on the values of si for inputs. However,

we can extract a less informative, but conceptually simpler quantity that measures

the intrinsic difficulty of a gate on a given input. It is clear from the definition

that witness size is an increasing function on each si. Let W(P, x) = min(wlw) or

min(w'Iw') depending on whether f(x) = 1 or 0 (minimum taken over all witnesses).

Then the following immediately comes Definition 1.2.2:

wsize(P, x) < (max si)W(P, x). (1.6)
1<i<c

21

Combining equation 1.6 and 1.5, we have the following equation which we will use in

the next chapter. Let s' = max1<i<c si, then

1sl < c1 + s'W(P, X)(1 + c2Eos'). (1.7)

The constants W(P, x) can be explicitly calculated. For the span program P

constructed above for the majority gate, W(P, X) = 1 if X1 = X2 = x 3 and W(P, x) = 2

otherwise. In particular the span program above is optimized so that max2 W(P, x) =

2 is the smallest possible. For the NAND gate, one can construct a span program for

the AND gate, then append single edges to achieve the effect of a NOT gate. The

result is the NAND tree given in the previous section with two single edges inserted

between each level. The effect of these two edges cancel out, giving the original NAND

tree (in particular single edges do not increase y(E) by much). For one possible span

program for the AND gate which we will use later, we have W(P, x) = 2 if xi / x2 and

1 otherwise. It is also possible to construct an AND gate with maxx W(P, x) = V2,

which gives the optimal running time for arbitrary inputs.

We will use Equation 1.7 and these values of W(P, x) to give upper bounds on

the running time of the quantum algorithm in the next section. However, we will also

give explicit calculations to provide more intuition, as well as verifying the values of

W(P, x) given here.

From the results summarized above, Reichardt and Spalek gave an O(2") algo-

rithm for the 3-MAJ tree, as well as similar algorithms for other gates. Moreover,

they showed that for a large class of trees, including trees of uniform height made

of a single boolean function on at most three variables, the algorithm given by the

span program is optimal. In later papers, Reichardt extended this optimality result

to essentially all boolean formulas, see [5] and [4] for details.

Chapter 2

Analysis of Quantum Algorithm

In the previous chapter, we described how to construct quantum algorithms to evalu-

ate a boolean function F that can be written as a tree with function f at each node,

given a span program corresponding to f. We noted that the running time required

by the algorithm depends on the behavior of the function y(E), in particular the

functions s(E) defined in 1.4.

In this chapter we will describe in detail the calculation of s(E). In [6], the focus

is on the maximum of s(E) over all inputs. Here we will focus on how it varies with

the actual input, and for which inputs will it be small.

In section 2.1, we will use equation 1.7 from last chapter to obtain a general result

applying to any span programs. In section 2.2, we give concrete calculations for the

NAND tree and 3-MAJ tree, verifying the values of W(P, x) as well as equation 1.7 in

these cases. In section 2.3, we will give another way to see how the results for NAND

trees can be obtained.

2.1 General Case

The general result is the following.

Theorem 2.1.1 (cf. [6] Thm. 4.16). Let P be a span program corresponding to

function f. Let F be a boolean function that can be written as a tree with f at each

node. Let n be the height of the tree. Construct the quantum algorithm as before and

let s be the value of so at the root. Suppose W(P, x) > 1 for all x. Then for a given

input x to F, we have s = O(nWT) with Eo = O(n-2 W 1) where

WT = max U W(P, X(b))) (2.1)
paths X bcx

where the maximum is taken over all paths from the root to the leaves, and x(b) is the

input at the node b.

Proof. If we disregard the ci and c2 terms in equation 1.7, then at every node of the

tree representing F, the value of so is the maximum over all paths of the product of

si at the leaf and the difficulties W(P, X(b)) at the gates along the path. The value of

si at the leaves is at most 1. This gives s < WT if ci = c2 = 0.

Since we are giving an upper bound we may take c1 , c2 > 0. Then s is the

maximum over all paths from root to the leaves of a sequence of additions by c1 > 0

and multiplications by W(P, x)(1+c 2Eosb) > 1. For any such sequence, we can always

put all additions before all multiplications, without lowering the resulting value. The

addition part gives 1 + nc1 (where 1 comes from the initial si at the leaves). The

multiplication part for path x is

fJ W(P, X(b))(1 + c2Eosb) fJ W(P, X(b))(1 + c2Eos).
bEX bEX

By taking Eo = 1/(c2ns), we can make the product to be at most e] W(P, X(b)).

Taking the maximum over all paths, we find

s < (1 + nc1) - (eWT) = O(nWT).

From this we obtain Eo = O(n-2WFl). E

If for some span program P, there are inputs x = (Xi,.. ., xc) and y = (yi,..., yc)

such that f(x) # f(y) and W(P, x) = W(P, y) = 1, then there are inputs where

W(P, X(b)) = 1 for most of the nodes b in the tree. In particular, we can consider

trees such that along every path from root to the leaves, the number of nodes b on

the path where W(P, X(b)) # 1 is at most k, where k < n is fixed. This motivates the

following definition.

Definition 2.1.2. Let P be a span program corresponding to a function f . We say

an input x = (x1, . . , x) is trivial if W(P, x) = 1, and non-trivial if otherwise. For a

given k, we say an input x to the overall function F satisfies the k-faults rule if along

any path from the root to the leaves in the tree corresponding to F, there are at most

k nodes b where the input X(b) at b is non-trivial. Often we will just say that the tree

corresponding to F satisfies the k-faults rule.

The following is immediate:

Corollary 2.1.3. Consider P, f, F and s as before. If input x satisfies the k-faults

rule, then s = O(n -W(P)k) with Eo = O(n- 2 W(P)-k). So the running time of the

quantum algorithm can be set as O(n 2W(P)k).

Proof. The statements for s and EO follow immediately from Theorem 2.1.1 and

Definition 2.1.2. As observed in the last chapter, the shortest running time for which

the quantum algorithm makes errors with small probability is inverse proportional

to the size of the range of E where y(E) is far from 1. For |El < Eo, we have

y(E) < sE = O(n-1) if the output is 1, and y(E) > 1/(sE) = O(n) otherwise. So

y(E) is far from 1 within a range of size Eo. l

If we take k = a log n for some constant a, then the running time becomes

n 2W(P)alogn - n2+alog W(P) which is polynomial in n. In the next chapter, we

will give, for a class of boolean functions f that includes NAND and 3-MAJ, a lower

bound of Q((log n/di)k/d2) -- na(loglogn-log di)/d2 evaluations for classical algorithms,

where di, d2 are constants. This gives the superpolynomial separation between clas-

sical and quantum algorithms on evaluating F for inputs satisfying the k-faults rule.

Note the conclusion in corollary 2.1.3 does not depend on the condition that the

leaves of the original NAND tree are all at the same height. The corollary applies to

the evaluation of value at root of any tree where the leaves have value 0 and internal

nodes are assigned value by the extended NAND rule - the usual NAND rules together

with negating the value at single edges. Since single edges do not increase y(E) by

much, the parent of that edge is not considered a fault. We will make use of this

observation in chapter 4.

2.2 Two Specific Cases

In this section, we will give detailed computations for the NAND gate and the 3-MAJ

gate, verifying the result in the previous section. Since the result is proven in the

previous section, we will not be entirely rigorous in this section.

For the NAND gate, we will simply analyze the algorithm described in section 1.1.

Recall that we associated the function Yb(E) to each node b (instead of each edge as

for span programs). This is defined by Yb(E) = (blE)/(b'lE) where b' is the parent of

b, and the recursion relation is:

Yb(E) 1E - Yb (E) - Yb2 (E)

where bi, b2 are child nodes of b, and Yb(E) = 1/E if b is a leaf. It is clear that for

the recursion relation, y(E) increases with both Yb, (E) and Yb2 (E) on each side of the

pole Yb (E) + Yb2 (E) = E.

For energies |El < E0 , where E0 is to be determined later, we will verify that

0 yb(E) -sbE if the value at node b is 1, and that Yb(E) > 1/(2sbE) otherwise

(we will see soon the purpose of the factor of 2). Initially this is true with sb < 1.

Consider a node b with child nodes b1 and b2. Let s = sb and s' = max (Sb1 , sb2).

Then Yb, satisfies the conditions for s' if it does for sb,. So we may replace each sb

by s'. There are three cases for the recursion:

Case 1: v(bi) = v(b 2) = 0. From Yb (E) > 1/(2s'E), i = 1, 2 we have

Yb(E) 1 1 - - IE2 = -s'E(1 + O(s'E 2)).
E 2s'E 2s'E 1 sE

We assumed that Yb. (E) >> E which should be valid for small E. So we may take

s = s'(1+0(s'E2)). This verifies the equation analogous to 1.7 with W(P, (0, 0)) = 1.

Case 2: v(bi) = v(b 2) = 1. From 0 > Yb (E) > -s'E we have

Yb(E)> 11
E + s'E + s'E 2(s'+ !)E

So we may take s = s'+ 1/2, verifying W(P, (1, 1)) = 1.

Case 3: v(bi) = 0, v(b 2) 1. So

1 2s'E
yb(E) 2 E + s'E - 1 1 - 2s'E 2 - 2s'2E 2 -2s'E(1+ O(s'E)).

2s'E

So we may take s = 2s'(1 + O(s'E)), verifying W(P, (0, 1)) = W(P, (1, 0)) = 2. Note

that we do need a condition on Sb1 , since if it is too large, the term Yb, (E) may

dominate Yb2 (E) for the size of E we are considering here.

Now we consider the 3-MAJ gate. For a given node b in the tree with child nodes

bi, i = 1, 2, 3, we may again consider Yb(E) as a function of yb(E) for i = 1, 2, 3. Now

it is more difficult to show that this function is increasing in each Yb, (E). We will

assume that this is the case. So if s' = max(sb,, 8 b2 , Sb3), then we may replace each

yb,(E) by either -s'E or 1/(s'E).

The gadget for the 3-MAJ gate is shown in Figure 1-3. By abuse of notation,

we will let ao also represent (aolE), and similarly for other nodes. Reading from the

figure, we see that the equation HIE) = EE) becomes:

Ebo= ao+a(a±+a2 + a 3)

Eb'= a1 +wa 2 +w 3 a3

Ea 1 = obo+b'o+b 1

Ea 2 = abo+wb'o+b 2

Ea 3 = abo+w 2bO+b 3

If we set ao = -1, and substituting in bi = ajyj(E), 1 < i < 3, we get the following

system of equations:

1 -E 0 a a a bo

0 0 -E 1 W W2 bo

0 = a 1 -E+yb 1 (E) 0 0 ai

0 a w 0 -E + yb 2(E) 0 a2

o) a W2 0 0 -E+yb,(E) a3

It is clear how to generalize this to other span programs. For generic E this has a

unique solution. Then Yb(E) = bo/ao = -bo. For the case xi X2 = X3 = 1, we may

substitute in Yb.(E) = -s'E. The result is

s'E± +_
Yb(E) -bo = 1sE 2

- -(s' + 1)E(1 + O(s'E 2)).

So we may take s (s'+1)(1+ 0(s'E2)), verifying equation 1.7 with W(P, (1, 1, 1)) =

1. Similarly we can compute:

X1 = X2 = X3 = 0: yb(E) = -s'E 2 3 1±O(s'E 2)
(s'±1)E-S'E

3
-(S'+1)E

£1 = 0, X2 = = = 1: Yb(E) = 6(s'+1)E±O(s'E) = -2(s' + 1)E(1 + O(s'E)).

Xi = X2 =0, X3 = 1 : b(E) _ 3+O(s'E) 1+O(s'E)
6s'E+O(E) -2s'E

which verifies W(P, (0, 0, 0)) = 1 and W(P(O, 1, 1)) = W(P(0, 0, 1)) = 2.

2.3 Another Viewpoint

In this section we will focus on NAND trees as described in section 1.1. We will

give the expansion of y(E) around E = 0, and another way to view the result in the

previous two sections. While this approach does not yet yield any rigorous proofs,

it may give additional intuition about the situation, especially when considering for

what additional trees may the value of y(E) be small. Indeed this is the method by

which the constraint on the input is first arrived at.

Recall the construction of the quantum system given in section 1.1. Let H be

the Hamiltonian of the entire system S, and H' be the Hamiltonian of the system

S' derived from a graph consisting of only the tree (including leaves added for the

input). Let IE) be an eigenstate of H with energy E, and let E') be the vector

obtained by restricting IE) to S'. Then |E') satisfies the equation H'IE') = E|E')

everywhere except at the root. For the root, an extra term is needed to account for

the Ir = 0) neighbor of the root. These can be summarized as:

(r = O|E)Iroot) + H'IE') = E|E').

Now let |jx) be the energy eigenstates of H'. Expanding the equation above in

terms of these eigenstates, we have:

Z (r = OlE) - ailj) + Ajcjlyi) = EclXi)-

where Ai is the eigenvalue of |Xi), and aj, ci are coefficients of |root) and |E') respec-

tively when expanded in terms of the eigenstates |Xi). Since |Xj) form a basis, the

equation holds for each i. Rearranging, we get

ci = (r = OE) EA

Substitute into IE') = EZ cilxi), we get

IE') = (r = 0|E) aj IXi).

Taking the coefficient at the root:

y(E) - (root|E) (root|E') ai jail (2.2)y(E) = OI=) = -i A(rootlxi)ZE , (2.2(r = 0|E) (r = 0|E) E -A A E - Aj

where we used (rootIXi) = a*. We are most concerned about the behavior of y(E)

when expanded around E = 0. Therefore we make such an expansion:

ai12 |ai 12 /A lai2 (E E 2)y(E)= E - A 1 / A 1 + +..)

First, we need to explain what happens when Ai 0 for some i. If Iail 2 for one

such i is nonzero, then.y(E) has a simple pole at E = 0. This corresponds to the

case where the root has value 0, and y(E) - ±oo. On the other hand, if the root has

value 1, then we must have |ail 2 = 0, or ai = 0, for each i such that Ai = 0. We will

focus on the case where the root has value 1, so we can ignore the part of the sum

where Ai = 0.

Now we need to interpret the coefficient of E' in this sum. We will now write

H instead of H' for the Hamiltonian corresponding to the tree alone, since this will

become our primary concern. Let H- 1 denote the pseudoinverse of H. That is, the

operator satisfying H-1 lXi) = A 1 Xi) if Ai # 0, and H-1 |Xi) = 0 otherwise. Let H-h

denote H- 1 raised to n'th power. We can compute:

(rootIH~"Iroot) = Z(root|Xi)(Xi H "IXj) (X Iroot) = |ail2 -n
ij i,AkO0

Substitute in, we obtain:

y(E) = - (root|H -Iroot)E". (2.3)
n>O

It is easily seen that H-" root) is the vector with the smallest norm among all

vectors JA) such that H"|A) = |root). In our case the situation can be simplified

further because our graph is bipartite. That is, its nodes can be partitioned into

two parts such that each edge connects two nodes from different parts. The vector

|root) contains coefficients only in one of the two parts. If JA) = H-Iroot) contains

coefficients in both parts, then we can set its coefficients in the part containing the

root to zero. This will not change HIA) since this will just set the coefficients of

that vector in the parts not containing the root to zero, which they must be in the

first place. Since JA) has the property that norm is minimized, we can conclude that

|A) contains coefficients only in the part not containing the root. By induction, we

know JA) = H-"Iroot) contains coefficients only in the part containing the root if n

is even, and only in the other part if n is odd. This shows (rootIH 2 -1Iroot) = 0.

Using the hermiticity of H- 1, which follows from that of H, the above equation can

be simplified to give our main result:

y(E) = - (rootlH-2"|root)E2n1 = - -H-Iroot)2 E 2n-1.

n>1 n>1

From the equation, we see that the rate of growth of y(E) around E = 0 can be

associated with the norm of the vectors H~ -root). Another way to see this is to go

back to equation (2.3). The location of the pole of y(E) closest to E = 0 gives a good

indication of when y(E) increases to unity. This is the smallest nonzero eigenvalue of

H, which becomes the largest eigenvalue of H-1 , which in general will measure how

fast the norms of H-n root) increase as n increases. The fact that the running time

depends on the size of the smallest positive eigenvalue is a reflection of the possible

interpretation of the quantum algorithm as a spectral analysis around E = 0, see [6]

for details.

One way to estimate y(E) around E = 0 is to directly estimate the largest

eigenvalue of H-1 . In this section, however, we will just focus on estimating a =

IH-1Iroot) 2. In many cases y(E) will increase to order unity around E = a-1 , but

sometimes a can be small and IH-nIroot) 2 are large for some n > 1, making y(E)

increase faster than can be predicted from the size of a-.

By the minimal property of H-Iroot), we know a < |A|2 for any vector A such

that HA = Iroot). Therefore, to give an upper bound on a, it suffices to find one

such vector A and compute its norm. Finding such a vector is equivalent to assigning

weights to each node of the tree, such that the sum of weights at neighbors of the root

is 1, and the sum at neighbors of any other node is 0. This can be done according to

the following rules:

. All nodes with value 1 have weight zero.

. For each node b with value 1, whose parent is has weight z.

If b has two child nodes both with value 0, then each child node has weight

-z/2.

If there is a fault at b, then every node in the subtree of the child node with

value 1 has weight 0, and the child node with value 0 has weight -z.

* The value of z for the root is -1, and the assignment of weights proceeds

inductively starting from the root.

The nodes attached to the leaves with value 1 of the original NAND tree can be

considered a child node of the corresponding leaf, so the new tree is still labeled by the

extended NAND rule, with every leaf having value 0. See Figure 2-1 for an example.

0

1 0

0 0 0 0

-1/2 -1/2 -1 0 0 0 0 0

Figure 2-1: Assignment of weights for a sample tree. Empty circles denote nodes with
value 1, and solid circles denote nodes with value 0.

It is clear that only nodes at even levels have nonzero weights (when the tree is

considered as a bipartite graph, this is exactly the part not containing the root). If

there are no faults, the weights halve every two levels down the tree. This means

the contribution to |A|2 of each node is multiplied by 1/4. There are also four times

more nodes every two levels down the tree. So these changes cancel out and the

contribution of each level is the same. The sum |A|2 is then linear to the height of

the tree.

At every fault in the tree, the weight at the child node with value 0 is twice the

weight that node would have if there is no fault. A simple upper bound for |Al 2 for

trees satisfying the k-faults rule is then found as follows: for each node in the tree,

there are at most k faults in the path from the root to that node. At each fault the

ratio of the actual weights on the path to the weights that would be assigned if there

are no faults at all will either double or become zero. This means the contribution

to JAI2 from each node cannot be greater than (2 k)2 = 4 k times what it is before.

Combined with the result in the previous paragraph, this shows |A12 is of order at

most n -4 k (this can be reduced to n -2 k with more careful arguments).

As we stressed before, the linear term is not the whole story. One way to see this

is that we have not used all the conditions in the k-faults rule. Indeed our argument

seems to work regardless of what happens at nodes in the side of a fault rooted at

the node with value 1, since all these nodes have weight zero. However, when we

go to the next power H-2|root), some of these nodes will be numbered, and locally

according to the rules given above. If the subtree descending from the Y-child node

contains many faults, the norm of H-2|root) will be large, therefore y(E) will still

grow quickly.

On the other hand, this view also indicates that there are trees that do not satisfy

k-faults rule for any small k, but still has slow-growing y(E). One example includes

trees that have faults at every node along some path (say the right-most path), and

no fault anywhere else. The most difficult case among these trees is when the values

of nodes alternate between 0 and 1 along the path, so the weights on the path never

becomes identically zero (see Figure 2-2). Considering the assignment of weights

on this tree, it is clear that JA12 is quadratic in n, so the running time can still be

polynomial in n. This appears to be the case from numerical computations of y(E).

Figure 2-2: Example of a tree that does not satisfy k-faults rule for small k, but still
has |Al2 polynomial in n. Empty circles denote nodes with value 1, and solid circles
denote nodes with value 0. Ellipsis denotes attaching a subtree without any faults to
make the leaves of the resulting tree at the same height.

Chapter 3

Classical Lower Bound

3.1 Statement of the Theorem

In this chapter we will give lower bounds on the cost of classical algorithms for

evaluating one class of boolean formulas with restricted inputs. Recall that we are

considering boolean formulas that can be represented as a balanced c-nary tree, with

each node acting as a gate, evaluating a function f(x1, . .. , xc) of its child nodes. The

set of all possible inputs to a gate is partitioned into two types: trivial and non-trivial.

We call a node in the tree a fault if it is not a leaf and the input given by its child

nodes is nontrivial. We restrict the input to the overall formula so that along each

path from the root to the leaves, there are at most k-faults for some given k (this will

be called the k-faults condition). Let n be the height of the tree, as the number of

edges on any path from the root to the leaves. We say the root is at level 1 of the

tree, so the leaves are at level n + 1.

The main goal of this chapter is the following theorem.

Theorem 3.1.1. Given a function f : [0, 1]c - [0,1] and a partition of the inputs of

f into two types, trivial and nontrivial. Suppose the following two conditions hold:

1. There exists X = (x1... ,xc) E [0, 1]c such that both X and X = (,I... ze)

are trivial, and f(X) } f(X).

2. There exists ko and no such that for each r E [0, 1], there is a distribution 9, of

trees with height no, root evaluating to r, and satisfying the ko-faults rule, such that

the probability of any leaf evaluating to zero is exactly 1/2 in this distribution.

Then for large n and k polynomial in log n, no probabilistic algorithm can obtain

the value of the root of every tree with height kn and satisfying the (kko)-faults rule

with confidence at least 2/3 before evaluating 0k leaves, where 3 = [(log n)/5], and

n = n - n o .

Both the NAND gate and the 3-MAJ gate satisfy the conditions of the theorem.

For the first condition, we can take xi = 0 in both cases. For the second condition, one

distribution for the NAND gate is shown in Figure 3-1, plus a suitable permutation

of inputs. One distribution for the 3-MAJ gate is shown in Figure 3-2, again plus a

0 1

1 1 0 1

0 1 0 1 1 1 0 0

Figure 3-1: A sample distribution for the NAND gate

suitable permutation of inputs. Here the case for r = 1 is symmetric.

0 0

0 0 1 0 0 1

0 0 1 0 0 1 0 1 1 00 1 0 01 11 1

Figure 3-2: A sample distribution for the 3-MAJ gate

The first condition allows the following construction: given a root value r E [0, 1]

and height n, there is a unique tree of height n, such that for any non-leaf node a

in the tree, the values on the child nodes of a are either X or X. Moreover the tree

with root 0 and the tree with root 1 differ at every node of the tree.

3.2 Preparation

We choose X, no, ko and 9, according to the conditions of the theorem. Fix n suf-

ficiently large (in particular n > no). To prove the theorem, we construct for each

k > 1 a distribution T k of trees with height kn and satisfying the (kko)-faults rule.

We show that no deterministic algorithm can obtain the root value of a randomly

chosen tree from T k with probability at least 2/3, before evaluating /k leaves. It is

clear that this implies Theorem 3.1.1.

The distribution T k is constructed by induction on k. For k = 1 the construction

is as follows: first the root value r E [0, 1] and an integer i E {1, 2, ... , i5} are chosen

uniformly. Then the first i levels of the tree are specified by requiring that for each

node a in the first i - 1 levels, the child nodes of a have values either X or X as

given in condition 1. By the discussion above this choice is unique. For each node b

at level i, we choose the next no levels of the tree rooted at b from the distribution

9v(b), where v(b) denotes the value of the tree at node b. Doing this independently

for each node at level i, we obtain the next no levels of the tree. Finally, we complete

the tree by requiring that each non-leaf node at or below level i + no has child nodes

with value either X or X. This completes the construction for k = 1.

For any k > 1, we construct the first n + 1 levels of the tree according to the

distribution T. Then for each node b at level n + 1, we choose the subtree rooted at

b independently from the distribution Tk_1. This gives a distribution Tk. It is clear

that any tree in T k will have height kn and satisfy the (kko)-faults rule. For any k,

we say a tree in T k has category i if i E {1, 2,.. . , i5} is chosen during the construction

of the first n + 1 levels of the tree.

Now we will follow a deterministic algorithm trying to determine the value at the

root of a random tree from these distributions. Note that at any point during the

computation, we know exactly which trees in the distribution are not excluded by the

known values of the leaves. Let po, pi be the probability (in the distribution) that

a random tree remaining has root value 0 and 1, respectively. Then the algorithm

should guess 1 if pi > 1/2 and 0 if pi < 1/2. Moreover the probability that the

algorithm will be correct is

1 |Po- pil
max(po,pi) = I + 2 I

2 2

Naturally we will try to bound |po - pi , which we call the confidence level.

Let p,(i), r E [0,1], 1 < i <h be the relative probability that a random tree

remaining has root value r and category i. Write S = E po(i) + Eipi(i). Note that

we have not specified S = 1 or any other normalization. With any normalization, we

have
I E po(i) - EZpi(i)| i= jpo(i) - p1(i)|

|PS - p1= -S

Write D = K=I lpo(i) - pi(i)| (for difference). Our general approach is to give, up

to some small probability, an upper bound on D and a lower bound on S.

For the lower bound on S, we need the following lemma:

Lemma 3.2.1. Fix A0 > 0. For each integer t > 0 we choose a number 0 < pt < 1

(knowing the value of At_1). Then At = ptAt_1 with probability pt, and At = (1 -

pt)At_ 1 otherwise. For any m E Z+ and 0 < C < 1, the probability that Am < CAo

is less than 2mC, regardless of the choices of pt.

Proof. First let A0 = 1. We can model the process as trying to bound a real number

x uniformly distributed between 0 and 1, where at each step t we choose a number

yt and is told whether x < yt. Here At corresponds to the size of the interval that

is not excluded after t steps, and pt corresponds to the relative position of yt within

the non-excluded interval (pt = 0 if yt is to the left of the non-excluded interval, and

pt = 1 if yt is to the right).

After m steps, each of the 2m possible strings of answers we receive corresponds

to some subinterval of [0, 1]. These subintervals cover [0, 1] without overlaps (if some

string of answers is impossible, let it correspond to the empty interval). The condition

Am < C corresponds to x falling in an interval of size less than C. Since there are

just 2m intervals, the combined length of intervals with size less than C is less than

2mC. So the probability that x will fall into one of these intervals is less than 2mC.

It is clear that for general Ao > 0, the same conclusion holds with Am < C

replaced by Am < CAO. E

In this chapter we will use AO = 25, m = # = [(log h/5)], and C = 5i- 2 /5 . So

Am < 2h3/5 with probability less than p = 2mC < 5-1/5. This particular choice is

used to ensure that 5/A 2 = o(1) with high probability.

3.3 Case k = 1

Now we begin the proof for the k = 1 case. We fix the normalization of p,(i) so it

equals the probability that a random tree with root value r and category i from the

distribution Ti is not excxluded by the known values of leaves. So at the beginning

of the computation, we have po(i) = p1 (i) = 1 for all 1 < i < h, and S = 25. Then

Lemma 3.2.1 can be applied as follows: suppose the algorithm chooses to evaluate

leaf b at step t, then pt corresponds to the probability that a random tree remaining

after step t - 1 has value 0 at b, and At corresponds to the value of S after t steps.

By the lemma we know that after m = # steps, the probability that S < 253/5 is less

than 5-1/ 5 .

For the upper bound on D, we need to examine how the values po(i) and p1 (i)

are updated after evaluating each leaf. The main property of the construction is the

following: for any node b at level i, where i is the category of the tree, if a is the

first leaf descending from b that is evaluated, then the probability that a evaluates

to 0 is exactly 1/2, even conditioning on the value at b. For any r E [0, 1] and i, it

follows that p,(i) = 1/2 after the first step. Now suppose leaf a is evaluated at step

t > 1. Let h be the level of the first node where the path from root to a breaks off

the tree formed by the already evaluated leaves. More precisely, let E be the set of

leaves already evaluated, and represent both a and each by E E by coordinates in [c]"

coding the path taken to reach the leaf. Then h is the number of initial coordinates

that agree between a and by, maximized over b E E. Let E' c E be the subset of

already evaluated leaves that agree with a to height h. We will examine how each

Pr(i) is updated upon learning the value of a. There are three cases:

Case 1, i+no < h: Here we are conditioning on the faults occuring before the last

split. In particular the leaves a and by E E' are contained in a subtree formed entirely

of inputs X and X. Recall that in such a subtree the value of one leaf determines the

value of all others. If the values of E' are inconsistent with each other, then p,(i) = 0

for all i + no < h to begin with. Otherwise, the value of a can be predicted from the

values of bj E E'. If the actual value of a is the same, then p,(i) remains the same.

Otherwise p,(i) = 0 after evaluating a.

Case 2, i > h: Here a is the first leaf we evaluated that descends from some

node b at level i. The probability that a has value 1 is exactly 1/2, even if we know

something about the value of b. So p,(i) is reduced by a half for all i > h.

Case 3, i < h < i+no: We cannot say anything about these cases without knowing

the details of the function f. However, the increase of |po(i) -pi (i) due to these cases

is at most no.

Neither case 1 nor case 3 involves any increase in D. So the increase is by at most

no for each step. Since D = 0 at the beginning, we know D < Ono after 3 steps.

Combining with the upper bound on S, we have

D <no#
po -p 23/5

with probability at least 1 -i -1/5.

3.4 General k

We will prove by induction statements of the following form: for a given 1 < 1 < k,

if less than #1 leaves are evaluated on a random tree from the distribution TA, then

with probability 1 - Pk,l, the confidence level |po - pi is at most Ck,1. For k = 1, we

proved this for

I = 1, pi,1 = 5-1/5, and ci,1 = 253

In general, we will show the following:

Pk,k < 5-1/5, pj, < 4 1 25-(k-l+1)/5 for 1 < k, (3.1)

and ck,l ;< (8no) k-1+13(k-1+1)/503+k-1. (3.2)

where a < b means a < b(1 + C#3nr), for fixed constants a > 0 and -y < 0, and C

grows polynomially in k and 1. The 1 = k part of the above statements easily imply

the theorem.

The proof naturally has three parts: bounds on S, D and Pk,l for each k, 1. But

first, we shall lay down a framework describing when is the algorithm 'lucky' during

the computation.

3.4.1 Exceptions

The concept of exception is defined inductively as follows. For k = 1 = 1, an exception

occured if the algorithm is lucky in the division process specified in Lemma 3.2.1 (so

the probability is bounded by h-1/ 5 , from now on we will just say the division process

is lucky). For k > 1, let L be the set of nodes at height n + 1. We will imagine the

algorithm as trying to evaluate leaves descending from different b E L, then piece

together information about nodes in L to guess the value at the root. It doesn't

matter whether the algorithm is following this type of strategy, since any sequence of

evaluations is allowed in this view, and in principle we can calculate exactly which

root value the algorithm should return, along with the confidence level. For 1 < k, an

exception occured if exceptions occured for at least two of the subtrees (with roots in

L, same below). If this does not happen, then we will show that the algorithm has

high confidence in the value of at most one b C L. Since the first sure value of a node

in L simply sets each pr(i) to 1/2, the division process does not properly begin. If

1 = k > 1, an exception occured if exceptions occured for at least two of the subtrees,

or if the division process is lucky. In this case, we may evaluate 0#k1 or more nodes

on a subtree (which is in the distribution Tk-1). For these subtrees we have no bound

on the confidence level. The number of such subtrees is at most # - 1. If at most one

exception occured on subtrees, then the algorithm has high confidence on at most

0 - 1+1 = nodes in L, which is just the maximum number of steps in the division

process.

In the next two subsections, we will give bounds on S and D given that exceptions

did not occur. By induction, we may use the value of Ckl,i for any 1 < i < k - 1

when considering the case (k, 1). Also, to simplify the argument, we give the algorithm

the correct value of a node b E L after #k-1 leaves descending from that node are

evaluated, or after an exception occured at b. Equivalently we give the algorithm the

values of all leaves descending from b. Clearly the algorithm cannot do worse with

this help. In the last subsection, we will bound the probability of an exception, which

becomes Pk,i.

3.4.2 Bounds on S

First, we will describe how Pr(i) is calculated in the case k > 1. For each b E L and

r E [0, 1], let p(b, r) be the probability that a randomly chosen tree with root value r

in T_ 1 is not excluded by the known values of leaves descending from b. For example,

at the start of the computation p(b, 0) = p(b, 1) = 1. If enough leaves are evaluated

so that we are sure from the leaves descending from b alone that b has value 0, then

p(b, 1) = 0.

For each tree I E T and b E L, let v(t, b) be the value of t at b. Then

p(t) = 1 p(b, v(t, b)).
bEL

gives the probability that a randomly chosen tree from T with first n +1 levels equal

to t is not excluded. So we can let Pr(i) be the weighted average of p(t) for all t E Ti

such that t has root value r and category i.

The values of p(b, r) and p(t) calculated this way may be extremely small. To

make them easier to handle, we will change the normalization of p(b, r) as follows: if

we give the algorithm the correct value of b, as specified at the end of last subsection,

so p(b, r) = 0 for some r E [0, 1]. Then we reset p(b, r) = 1. Otherwise, by induction

we know the confidence level for the value of b is low, so the relative difference

between p(b, 0) and p(b, 1) is very small. We multiply both p(b, 0) and p(b, 1) by the

same constant so that p(b, 0) + p(b, 1) = 2, so both p(b, 0) and p(b, 1) are close to 1.

Then p(t) and Pr(i) are calculated from p(b, r) as above. This is simply a change of

normalization, so Pr(i) are still relative probabilities.

Now we will make precise the claim that p(b, 0) and p(b, 1) are close to 1 before

either an exception or 03 k1 evaluations on b. If no exception occured at b and the

number of evaluations on b is less than /33, then |Po - Pi I ckl,j for the value at b.

This is

IPo -Pit = |p(b, 0) - p(b, 1)| 1 |p(b, 0) - p(b, 1)1 < CkIJp(b, 0) + p(b, 1) 2

so

|p(b, r) - I ck- 1 ,j for r E [0, 1].

In particular, suppose p(b, r)' is the value of p(b, r) after evaluating a leaf de-

scending from b, without obtaining the correct value of b. Then p(b, r)' = p(b, r)A

where

A E 'k , - | log Al < 2ck-1,, (3.3)
1 + ck_1, 1 - ck_1, _

assuming by induction that ck-1,j is small.

Now we begin to estimate S, assuming that exception did not happen overall.

First the case 1 = k. We have at most # sure values for nodes b E L, including

0 - 1 from evaluating more than 3 k-1 leaves on nodes in L, and 1 from a possible

exception at some b E L. When a sure value is given, we update the value of p(b, r)

(and therefore Pr(i)) by first setting one of p(b, r) to zero and then change the other

to one. Therefore for at most /3 times during the computation, some p(b, r) is set to

zero. At all other times p(b, r) simply fluctuates around one.

We claim that the decrease in S due to setting some of p(b, r) to zero is modeled

by the division process in Lemma 3.2.1. First consider the case where we give the

value of b C L to the algorithm after evaluating #k-1 nodes descending from b. In

this case evaluating the ok-1 'th node descending from b can be considered as a query

for the value at b. Let pi (in the lemma) be the probability that a randomly chosen

tree from those remaining has 0 at b (this is not necessarily p(b, 0)/2). Then the

probability that b indeed has value 0 is exactly pi. Also, if b turns out to have value

0, then setting p(b, 1) = 0 without changing p(b, 0) will change S to piS. This gives

a correspondence to the situation in the lemma. Now consider the case where we

give the value of b E L due to an exception at b. Note whether an exception occured

depends only on the leaves evaluated and their values. So whenever the algorithm

evaluates a leaf a descending from b, it knows which values of a will produce an

exception at b. If both values of a will, then the situation is the same as the previous

case. If one of the values of a, say 0, will produce an exception, then let pi be the

probability that a randomly chosen tree from those remaining that has 0 at a will

have 0 at b (same probability as above, except conditioning on v(a) = 0). In the

event of an exception at b, then b has value 0 with probability pi, and S -+ p2S in

this case. If no exception occured, then we do not consider this step as part of the

division process.

Given this correspondence, also assuming that the division process is not lucky,

we conclude that the decrease in S due to sure values of nodes in L is by a factor of at

most 5-2/5. That is, the decrease in log S, written as A log S, is at most (2 log 5)/5.

Now we estimate the decrease in log S due to other nodes. For each b E L, let

M(b) be the number of leaves descending from b that have been evaluated. For each

j, 1 j < l, let A, = {b E Lli- 1 < M(b) < 3}. Note the sets A9 depends on where

we are during the computation. If there is an exception at b E L, we will exclude b

from any A,. We have the obvious bound that |Aj #1j+1 - 1. Nodes in Ak will

produce sure values which we considered above. For A, with j < k, we will repeatly

make use of Equation 3.3.

There are at most # times when some p(b, r) is set to zero. Consider the (at

most) # + 1 intervals in between. Since we will no longer use information about what

the algorithm knows during the computation (only Lemma 3.2.1 makes use of this

information), we can rearrange the order of evaluations within each interval, so that

evaluations descending from the same b E L are placed together. For each interval,

consider the sets Aj just before the end of the interval. For each b E Aj, j < k, the

total change in log p(b, r) during the interval is bounded by 2 Ck_1,J (here we also count

the change of p(b, r) to 1 immediately after b gives an exception). This is also the

maximum possible change in Pr (i) and therefore S. Summing these together, we have

A log S < 2log + 2(/3 + 1)(ckl,k_1/3 2 + ck-1,k-2 3 ...5

Using values of Ck_,J, we have A log S < (2log h)/5. So S ;> 253/.

Now consider the case 1 < k. We will not use Lemma 3.2.1 at all so we may

rearrange the evaluations to put those for the same b E L together, also putting

evaluations for the only exception at the front (if there is any). The possible exception

will simply reduce each Pr(i), and therefore S, by a half. Adding to this reduction of

S due to other nodes, we have

A log S < log 2 + 2(c_1,f + ck_1,1__10 2 +...) < log 2.

So
25

S > =n.

3.4.3 Bounds on D

Again, we rearrange the evaluations to put those for the same b E L together, and

putting evaluations for those b E L for which we have sure values at the front. So in

the first phase, the evolution of Pr(i) is just the same as the k = 1 case.

At the end of this phase, each p(b, r) is either 1 or 0. For each b c L, let Pr(i, b)

be the probability that a remaining tree with root r and category i will have 0 at

b (clearly we only need to consider those i, r for which Pr(i) # 0). By the same

reasoning as in the case k = 1, there is an integer h such that Pr(i, b) = 1/2 for

i > h, and either 0 or 1 for i + no < h. If Pr(i, b) = 0 or 1 it will not change again.

Suppose leaves descending from b are evaluated during the second phase, and consider

all nodes b' E L visited before b. For each such b' E A (where Aj are constructed at

the end of the computation), the change in log p(t) for each tree t C T due to b' is at

most 2 Ck_1,j as before. This shows that for root value r and category i, the change

in log p,(i, b) is at most 4ck_1,J. Summing over b' E L visited before b, we have

A log p,(i, b) 53 4(ck_1,1# + Ck_1,1_10 2 + . .

where the first term is omitted for the case 1 = k (and same below). This means for

i > h, we have
1

Ipr(i, b) - < 4(ck_1,, + Ck_1,-1#2 + ...), (3.4)

just before leaves descending from b are evaluated.

Now we begin to estimate D. Suppose b E L is visited in the second phase,

with b E A3 . Since b is not visited in the first phase, we have p(b, 0) = p(b, 1) = 1

beforehand. Now let p(b, 0) and p(b, 1) denote their values after visiting b. We have

jp(b, r) - 11 < Ck1,3 . Let Pr(i)o be the value of p,(i) before visiting b, and let p,(i1

be the value after. Then we have

Pr(i = Pr(z)0 [Pr(i, b)p(b, 0) + (1 - pr(i, b))p(b, 1)1.

In particular

Pr(i) $ 1 + 2 (ck_1,# + ck-1,1_.12) + - - - 1,

throughout the computation.

There are three cases for i:

Case 1, i + no < h: we know po(i, b) and p1 (i, b) are either both 0 or both 1. So

Ipo(i) - pi(i)I are multiplied by the same factor less than 2 Ck_1,J. This has the effect

of at most multiplying D by 1 + 2 ck_1,.

Case 2, i > h: in addition to the same effect above, there is another addition to

D caused by the difference between po (i, b) and pi (i, b). This difference is bounded

by Equation 3.4. The addition to D from this source is at most

(maxpr(i)o)|(po(i, b) - p 1 (i, b))(p(b, 0) - p(b, 1))l < 8(ck-1,# + ...) - 2 c_1J.
r

Case 3 i < h < i + no: we have no assumption on p,(i, b). But jp(b, 0) - p(b, 1)|

is still bounded. So the addition to D from this part is at most

(maxpr(i)o)nolp(b, 0) - p(b, 1) ,< no - 2 Ck_1,.

Summing these together for all b, putting multiplications from case 1 and 2 after

the additions from case 2 and 3, we have

D ;< [Do + 165(ck-1,10 + ...)2 + 2no(ck-1,/ + . . .)](1 + 2 ck1,/ 3 +...),

where Do is the value of D after the first phase, which by the argument in the case

k = 1, is at most 2no# if 1 = k and 0 if 1 < k. The point is that any Ck,1 contains a

factor of n-' with a > 3/5, so any term other than Do in the expression above is at

most of order n-1/5. If I = k, then Do dominates the sum, so for this case D < 2no3.

If 1 < k, from the values of ckl,j we see that the terms 165T(ck_1,10) 2 and 2 noCk_1,1/

dominate.

Combining the bound on D and S, we have for 1 = k,

D 2noQ
ckk _ 3/5

and for I < k, it is a straightforward calculation to verify that

Ck,1, (8 no0k-+13(k-1+1)/513 3+k-1

satisfies the recursion relation.

3.4.4 Bounds on Pk,l

Now we begin the proof of the bound on Pk,. By induction we can use the values

Pk-1,j, which give the probability of getting exceptions at subtrees (rooted at nodes

in L, same below). We say an overall exception is of type I if it is caused by at least

two exceptions on subtrees, and type II if it is a result of luckiness in the division

process.

We make two observations to prepare for the proof. First, note that the condition

for getting an exception at the root is the same among all 1 less than k. Moreover

this condition is the same as the condition for getting a type I exception for the case

1 = k. For 1 = k, if less than 0- leaves are evaluated, then the division process

has not began, so the probability of getting a type II exception conditioning on the

values known so far is still bounded by 5- 1/5 .

Second, note that for large n, the number of nodes in L is far greater than the

number of evaluations we have. This means we can combine evaluations of different

subtrees into the same subtree. Let's make this more precise since it will be used

repeatedly below. Suppose an algorithm evaluated leaves from subtrees rooted at

bi, . . . , bi. The algorithm may interleave evaluations on these subtrees. We may

simulate this process on a single subtree rooted at b as follows: for each 1 < j < m,

we set aside a sufficiently large set Bi of subtrees of b (that is, rooted at level 2n + 2

from the original root). Each time the algorithm evaluates a new subtree b'8 of bi, we

choose a new subtree b' in Bi and keep track of the correspondence so we can simulate

any further evaluations on b'. as evaluations on b',. The key difference produced by

this simulation is that the total number of evaluations on b is usually larger than the

number of evaluations on each bi. The number of steps in the division process in b

may also be larger. However, the number of evaluations on a subtree of bi is the same

as the number of evaluations on the corresponding subtree of b.

We begin with the case 1 < k-2. Here only type I exceptions are relevant. Assume

that there exists an algorithm A that has probability P of producing exceptions at

more than one subtree. This algorithm may evaluate on as many as #1 subtrees. We

will produce a new algorithm B simulating the old one using only # subtrees. Each

time A begins evaluations on a new subtree b, the algorithm B randomly chooses one

of the / subtrees, which we call b, and sets apart enough nodes at level n + 1 of b to

simulate future evaluations of A on b. Now the probability of A producing exceptions

at more than one subtree is P. If this happens, consider the first two subtrees bi, b2

at which an exception is produced. The probability that b1 and b2 are the same

subtree is exactly #1'. If they are not the same, algorithm B also produced at least

two exceptions. This is because the condition for an exception at a subtree stays

the same before 1k-2 evaluations are taken, so the extra evaluations on b compared

to b does not matter. Also ok-2 evaluations are not enough to begin the division

process at any b or b. This shows the probability of exception for algorithm B is at

least P(1 - #-1). On the other hand, we may consider the algorithm B as choosing #

subtrees and evaluating them up to /'. So the probability of producing two exceptions

is at most p 1 ,,#(# - 1)/2 (adding together probabilities of exceptions at each pair

of subtrees). So

P(1 - -) 2 0-1) ==- P < (pk_1,1) 2.

Now consider the case 1 = k - 1. Again we simulate on only # subtrees. The new

feature is that now it is possible to produce exceptions of type II on a subtree. We

need #k-2 evaluations on a subtree to begin the division process, so there are at most

attempts, for a probability of at most #5~1/ 5 to get one exception of type II. Now

suppose A produced an exception of type I at subtree b, then there is an exception

of type I on b, even though the number of evaluations on b may be as many as 3k-1.

So the probability of one exception of type I is at most Pk-1,k-1/3 and by the same

argument as in case I < k - 2, the probability of two exceptions of type I is at most

(Pk-1,k-1/3) 2 . Adding together all ways to produce two exceptions, we get

Pkk-I < (#5-1/ 5 + Pk-1,k-10)2 2 4 2ii- 2/5

Finally we consider the case 1 = k, again simulating on # nodes. We may consider

exceptions of type I and type II separately. Probability of exceptions of type II is just

h-1/ 5 . Now focus on exceptions of type I. Suppose algorithm A has an exception on

a subtree b. There are again two cases: first, the exception is of type II. Since ok-2

evaluations at b are required to initiate the division process, there are at most 32 tries.

So the probability of getting one such exception is at most #2 h-1/ 5 . Now suppose

the exception at b is of type I. This means there are exceptions on two subtrees of b.

Then there are also exceptions on two subtrees of b. The problem is that the number

of evaluations on b may exceed #0-1, so the available values of Pk-1,i cannot help

directly.

This suggests that we establish the following statement, used with k -+ k + 1 and

b being a tree from T k.

Lemma 3.4.1. Suppose an algorithm made less than #k+1 evaluations on a tree from

Tk, then the probability of getting one exception on subtrees is < (3+# 2)i- 1 /5 . The

probability of getting two exceptions on subtrees is ;< (/33 + /32)2A-2/5.

Proof. We will prove this by induction on k. For case k = 1, there is no such thing

as exceptions on subtrees, so the probability is zero.

Given algorithm A, we produce a new algorithm B by simulating on #2 subtrees,

again randomly assigning any subtree b evaluated by A to one of the subtrees b in

the simulation. If A evaluates more than ok-1 leaves on a subtree b, then it will no

longer produce an exception at b, so we may as well stop simulating that subtree.

If A produces a type II exception on a subtree b, then it must have evaluated more

than #k-2 leaves on b, so there are at most 3 tries, and the probability of getting

one exception this way is at most #33 i5- 1/5. If A produces a type I exception on b,

then we may use the case k - 1 of this lemma as long as the number of operations

made on b does not exceed #k. We will bound the probability that the number

of evaluations will exceed 13k on any of the 32 subtrees used in the simulation. In

the simulation the number of evaluations corresponding to one subtree in A is at

most #k-1. Moreover the total number of evaluations is at most /3k+1. Lemma 3.4.2

below shows the probability that the number of evaluations on a given one of the

/2 subtrees exceeding /k is at most of order 1/0!. The value /! is superpolynomial

in h, so this probability may be ignored, even after multiplying by /32. So up to a

negligible probability, a type I exception on b implies at least two exceptions on the

subtrees of :, which has probability < (#3+/ 2) 25- 2/ 5 < h-1/ 5 by the k -1 case of the

lemma. The probability of collision is now #-2. So the probability of getting one type

I exception is at most 5-1/ 5 #2 and the probability of getting two type I exceptions is

at most

5 -2(/32 2 1) (1 <i5~2/5o4
2 (1

by a similar argument as before. Adding together the probabilities we get the lemma

for case k.

Lemma 3.4.2. Given a finite sequence of real numbers {ai}. Suppose each ai < 0k-1

and their sum is at most #k1. Consider a subset S of {ai} constructed by placing

each ai into S with probability 0-2. Then the probability that ZaiS ai < #k is of

order 1/n!.

Proof. Normalize by dividing everything by #k-1. The sum of elements in S is a

random variable X that is the sum of random variables Xi, with each mean value

X, < #2, and j Xi 1. Each Xi takes 0 with probability 1 - #-2 and a nonzero

value with probability #-2. Then the distribution of X is very closely poisson with

parameter at most 1. So the probability that X > # is at most of order 1/3!. E

To finish the proof, we just need to sum together all possibilities for the case 1 = k.

This gives

Pk,k < h-1/5 + (2f,- 1/5 _ (3 + 2 2ii- 2/5)2 < h-1/5.

One can check that the bounds of Pk,l given in Eq. 3.1 are satisfied.

3.5 An 'Easy' Boolean Function

In this section we give a boolean function that does not satisfy the conditions of the

theorem, and for which the classical algorithm can evaluate faster than implied by

the theorem. Consider the AND gate with (0, 0) and (1, 1) being the trivial inputs.

Condition 1 of the theorem is satisfied but condition 2 is not, since any tree with

root value 1 must have value 1 at all leaves. Consider any tree with height n and

satisfying the k-faults rule. If the root value is 0, then some thought shows that at

least a proportion 2 -k of the leaves must have value 0. If the root has value 1 then

all leaves have value 1. So one can obtain the value of the root by sampling O(2k)

leaves, and return 0 if a leaf with value 0 is found. This gives high probability of

success when the number of evaluations is a large but constant multiple of 2 *.

Chapter 4

Quantum Walk Through Decision

Trees

In this chapter we will apply some previous results to quantum walks on decision

trees, as formulated by Farhi and Gutmann in [3]. In the first section, we will briefly

summarize the construction and main results in [3]. In the second section, we will

give a class of decision trees that is quantum penetrable in polynomial time.

4.1 Summary of Previous Work

Abstractly, a decision tree is just a binary tree. However, here we are considering the

binary tree as encoding some decision problem that involves finding a solution satis-

fying certain constraints, among a large number of possible solutions. For example,

in 3-SAT problem on n variables, we are asked to find an n-bit string (x1,... , xn)

satisfying all of the given clauses. The example given in [3] is the "exact cover" prob-

lem. In this problem, we are given a set S and a collection A of subsets of S. We

want to find a subcollection A' c A such that the union of sets in A' is S, and that

the sets in A' are mutually disjoint. Again we can consider a possible solution as an

n-bit string, where n is the size of A. The strings encode which sets in A are chosen.

Each of the above two problems can be considered as a binary tree, with each

node in the tree representing a partial solution. One way of doing this, which we

will consider here, is to associate each node at level i as a choice of the first i bits,

and the two child nodes of each node b correspond to the two ways of extending the

partial solution of b (in this chapter we will let root be at level 0, so the leaves are at

level n). Starting from the complete tree with height n, we remove all leaves that do

not satisfy the constraint. We may also remove nodes that represent partial solutions

that cannot be extended to a valid solution, for example those already violating some

of the constraints. The original problem is then converted to the problem of finding

a node at level n, starting from the root.

One way of finding a node at level n is to perform a random walk through the

tree, starting from the root. At each time step, we choose a neighbor of the current

node with uniform probability and move to that neighbor. We say a class of decision

trees is classically penetrable if we can arrive at a node at level n within polynomial

time. That is, there exists constants A, B such that for large height n, the probability

that we arrive at a node in level n before n^ steps is greater than n-B

Now we construct a quantum system from this binary tree, by taking the Hamil-

tonian to be the adjacency matrix. In the original paper, the Hamiltonian is defined

as (ajHb) = -1 if a, b are joined by an edge, and (a|Hla) = d(a), where d(a) is the

number of neighbors of a. With this Hamiltonian the equations of motion resembles

that of the classical random walk. However, we will simply use the adjacency matrix

for a closer correspondence with previous sections. The difference is mostly a shift

in overall energy and a change of sign, so it should not have a large effect on the

analysis.

One way to define quantum penetrability for a class of decision trees is as follows.

Start with the initial state |root) localized at the root of the tree. If there are con-

stants A, B and C such that after evolving the system for time CnA followed by a

measurement with the nodes as the basis, then the probability that the state is on a

node in level n is at least n- . In other words, there is A, B and C such that

S I(aIe-iHt Iroot)I12 >n -B,
a

where t = CnA, and the sum is taken over all nodes a in level n. This problem is

found to be more difficult to analyze. Therefore we will make two simplifications:

first, we suppose there is only one node at level n, and second, we attach long lines of

nodes to both the root and the unique node at level n. Then we can consider the tree

as a runway with several branches coming out of it. See Figure 4-1 for an example.

The initial state is a wave packet on the left part of the runway travelling toward

the right, with a peak around E = 0 in the energy spectrum. As the system evolves,

the packet will travel through the trees coming out the runway, and one part of

it will clear all of the trees and continue toward the right. For a given energy E,

we may define the transmission coefficient T(E) as usual. Then we say the tree is

quantum-penetrable if there exist constants A, B and C such that |T(E) I > n-B for

all |El < Cn-^. Moreover the phase of T(E) should not fluctuate with frequency

more than polynomial in n. This condition implies that a wave packet containing

energies E with |El < Cn-A will mostly transmit through the trees, so the time

of evolution and length of runway required for the packet to pass through are both

polynomial in n.

As in the previous chapters, we can define a function ym(E) for each tree coming

out of the node m. If im) is the m'th node on the runway and Im') is the node

just above m in Figure 4-1, then we define ym(E) = (m'|E)/(m|E), where |E) is

the eigenstate of the system with energy E (for this definition we again imagine the

runways to be infinite. See section 1.1).

The transmission coefficients T(E) are determined from ym(E). See [3] for details.

Here we will just give the result. Let

Mm E- ym(E) -1

1 0

and

a b
M = Maa Mn-2 ... MO =.

(c d

2 3 4

Figure 4-1: An example of a decision tree with two lines attached to the root and the

unique node at level 4.

Then

(4.1)T(E) i 21sin 0
c- b+ (d- a) cosO+ (d+ a) sin0'

where

E = 2cosO.

Note that the expression for Mm and E are slightly different due to the use of a

different Hamiltonian.

Farhi and Gutmann gave in [3] a family of trees that is quantum penetrable but

not classically penetrable. However, it is possible to design a classical algorithm that,

knowing only the depth of nodes in the tree (that is, which way is up and which way

is down), can find the node at level n in polynomial time for this family of trees. Now

we will give a wider class of trees that is quantum penetrable, but for which there

may not be such classical algorithms.

0

4.2 Main Result

First, we establish the following intuitive result: if for some energy E near zero,

each ym (E) is small (that is, each tree coming out of the runway has transmission

coefficient near 1), then the overall amount of transmission |T(E)| is near 1. Moreover

the phase of |T(E)| does not fluctuate quickly.

We will prove this by visualizing the entries in M as a weighted sum over paths

from left to right in Figure 4-2, where each path is given the weight that is the product

of weights on edges in the path.

E-y1 (E) E-y1 (E) E-%(E)

2 1 -1 1 -1 1 -_1 1 -_1 1 -1 2

Figure 4-2: Visualization of entries in M. Each Mij corresponds to a weighted sum
of paths going from i on the left to j on the right.

This is a result of writing

Ij = (Mn-1)i,8_1 (Mn-2)8(I),1 , .1. (M1)S2,8 1 (Mo),,.
S1,S2--. in-1~ 1,2

If E is small and each ym(E) are small, then going horizontally will sharply de-

crease the weight of a path. So the paths with the highest weights by magnitude are

those that never travelled along the horizontal line. If n is even, there is such a path

for each i = j, whose weights are 1. If n is odd, then there is such a path for each

i / j, with weights ±1. There are at most n" paths that travel along the horizontal

line for a steps. Let c = maxm(E - ym(E)). Then the total contribution from paths

that travel along the horizontal line is at most Ea>1 Cana = O(cn) for cn small. When

.E z: 0, we have cos 0 = 0(E) and 1 - sin 0 = 0(E 2). From equation 4.1, we see that

1 - T(E)| = O(cn) + O(E 2). Moreover T(E) is always close to one of ±ie--in, so the

phase also does not fluctuate much.

In particular, if there is EO and sm such that for each m and |El < Eo there

is lym(E)| < smjEj, then the transmission coefficient T(E) satisfies 1 - |T(E)I =

O(maxm nsm|E I) + O(nIE1). Combining with the results in section 2.1, we have the

following result.

Theorem 4.2.1. For a given decision tree, consider each tree Tm coming out of the

runway as a NAND tree with each leaf given value 0. If each Tm evaluates to 1 and

satisfies k-faults rule for a fixed k, then 1-| T(E)I= O(n 22k|E|) for |El O(n- 22-k).

Moreover the phase of T(E) does not fluctuate much in this range of E. In particular,

a class of decision trees is quantum penetrable if each tree satisfies this condition with

k < a log n for a fixed constant a.

Proof. Follows from previous discussion with sm = O(n - 2 k). D

For instance, the example of even-height bushes given in [3] contains trees with

no faults. The condition on the parity of the tree corresponds to the condition that

these trees evaluate to 1 at the root.

Chapter 5

Conclusion

In this paper we investigated the running time of quantum walk algorithms for eval-

uating boolean functions on a special set of inputs. We showed that on these inputs,

there is a super-polynomial separation in cost between the quantum algorithm and

classical algorithms. We also applied this result to give a class of decision trees that is

quantum penetrable, but may be difficult for a classical algorithm to search through.

There are still many directions in which one can extend these results. First, one

can try to formulate a better condition for when a NAND tree can be evaluated

quickly by the quantum walk algorithm (that is, for which trees is the growth rate of

y(E) polynomial in n). We showed at the end of section 2.3 that there are trees which

do not satisfy k-faults rule for any small k, but nevertheness have y(E) growing at

rate polynomial in n. We would like to find a succinct condition that includes these

trees and many other such examples.

This question can also be asked for general span programs. Since the process

of assigning weights to nodes described in section 2.3 is used to motivate the above

example, a related question is how to generalize this process to other span programs,

and how to construct rigorous proofs based on this technique.

The same situation applies to classifying quantum penetrable decision trees. It is

clear that the previous question is a necessary first step in this classification. One

can also consider what can be said in the related but more realistic situation where

there are many valid solutions and there are no lines attached to those solutions.

In the realm of classical computing, we have not yet proved that the class of

decision trees given in section 4.2 is not efficiently searchable by a classical algorithm

that knows depth in the tree. Finally, we can ask whether it is possible to construct

more realistic classical problems (for example, non-oracular problems), that generate

NAND trees, general span programs, or decision trees with restriction to inputs as in

the paper.

Bibliography

[1] Andris Ambainis. A nearly optimal discrete query quantum algorithm for evalu-
ating NAND formulas. arXiv:0704.3628v1 [quant-ph].

[2] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum algorithm for
the Hamiltonian NAND tree. quant-ph/0702144v2.

[3] Edward Farhi and Sam Gutmann. Quantum computation and decision trees.
quant-ph/9706062.

[4] Ben W. Reichardt. Span-program-based quantum algorithm for evaluating unbal-
anced formulas. arXiv:0907.1622v1 [quant-ph].

[5] Ben W. Reichardt. Span programs and quantum query complexity: The general
adversary bound is nearly tight for every boolean function. arXiv:0904.2759v1
[quant-ph].

[6] Ben W. Reichardt and Robert Spalek. Span-program-based quantum algorithm
for evaluating formulas. arXiv:0710.2630v3 [quant-ph].

[7] Michael Saks and Avi Widgerson. Probabilistic boolean decision trees and the
complexity of evaluating game trees. Proc. 27th FOCS, pages 29-38, 1986.

