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Abstract

To produce extreme ultraviolet radiation via high harmonic generation (HHG) in rare
gases, light intensities in excess of 1014 W/cm 2 are required. Usually such high inten-
sity are obtained by parametric amplification of laser pulses, which in turn reduces
the pulse repetition rate to a few kHz. Given that the HHG process is inherently
inefficient, with conversion ratios less than 10-5, only a small fraction of the pulse
energy is lost in the nonlinear interactions, so it is possible to enhance the pulse
intensity in a passive cavity retaining the original repetition rate. I present here a
novel broadband resonator design which has the potential of supporting intracavity
intensities in excess of 1015 W/cm 2 while allowing the harmonic radiation to couple
out of the cavity with no loss. Extensive computer simulations are performed with
a custom software package, and the required mirrors have been constructed using a
standard microfabrication process.
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Chapter 1

Introduction

Less than a year after the report of the implementation of the very first laser system,

researchers demonstrated experimentally second harmonic generation ([2]) as pre-

dicted by nonlinear polarization theories, and opened the door for nonlinear optics.

The key for this breakthrough was that for the first time it was possible to create

very high, coherent electric fields which produced measurable nonlinear excitations.

This first experiments focused the light beam in a material to reach intensities on

the order of 107 W/cm 2. As pulsed laser technology progressed, faster pulses allowed

for reaching higher peak intensities and hence excite even the weaker higher order

nonlinearities. One characteristic of perturbative nonlinearities is that in general

higher order effects require higher intensities to produce the same output power. So,

in a medium with inversion symmetry for example, we expect that at a given driving

intensity the third harmonic will have more energy than the fifth, which in turn will

have more energy than the seventh, and so on. Usually the output powers differ by a

few orders of magnitudes, so we would expect to be able to observe only the first few

harmonics.

In the late 1980s, however, an unexpected effect was discovered experimentally:

at an intensity above 1013 W/cm 2, a laser pulse shined into a rare gas would produce

very high harmonics ([3]). In the initial experiment, the 33rd harmonic of a 1064

nm driving pulse was measured. Since then, even higher harmonics have been gener-

ated, with wavelengths as short as a couple of nanometers. What distinguished high



harmonic generation (HHG) from other nonlinear processes was that it was not a

perturbative effect: the intensity of the generated harmonics decayed with increasing

frequency only initially, and was then fairly uniform up to a sharp cutoff.

The discovery of HHG attracted immediate interest in a number of fields, even

before it was fully understood theoretically. It promised the generation of coherent

extreme ultraviolet (EUV) radiation from a device with a cost and size small enough

for a university laboratory. Such radiation source is of interest in spectroscopy and

crystallography, and also for biological imaging due to the possibility to have a co-

herent source in the water window (the spectral region between 2.3 nm and 4.4 nm

where imaging has the maximum contrast with respect to water). Furthermore, the

broad bandwidth of the produced harmonics stirred up the ultrafast optics commu-

nity because it provided the means to generate light pulses lasting only a few tens

of attoseconds (1 as= 10-18 s)1. Such pulses could allow for imaging with time reso-

lution near the atomic time unit and sub-atomic spatial resolution. In the industry,

semiconductor manufacturers saw HHG as a promising EUV source for the future

13.5 nm lithography technology.

While research in the field is still very active, there have been some important

results such as the creation of isolated, sub 100 as pulses ([4]) and the tomographic

imaging of one of the molecular orbitals of N2 ([5]).

One of the current limitations of HHG is that the achievable repetition rate is

extremely low (a few kHz) due to the fact that the high pulse energies required

to excite the process are not available directly from the driving laser, requiring an

additional amplification stage which can operate at a pulse rate much lower than the

hundreds of MHz of a mode-locked laser. Furthermore, the conversion efficiency to

the harmonics is extremely low, between 10-5 in optimal cases and 10- or less to

generate the highest harmonics; in other words, the energy content of the initial laser

pulse is basically undepleted, and it is ultimately wasted.

A similar problem occurs with most nonlinear processes, for example in second

'Pulses generated from mode-locked lasers are limited by the bandwidth of the gain medium to
about 5 fs of duration or more.



harmonic generation (SHG). In that case, the intensity conversion efficiency increases

as the square of the input intensity (in the low depletion limit). While reaching

high instantaneous intensities is not too difficult with pulsed lasers, low efficiency

can be a problem if we desire a CW output. An elegant solution was presented

in [6]: a passive cavity enhanced the intensity of the laser by confining the input

beam and making it interfere constructively with itself, and the nonlinear material

was placed where the intensity was maximum. Not only the higher intensity in the

cavity resulted in better conversion efficiency, but also the large fraction of the light

that is not converted to the second harmonic keeps on circulating in the cavity, not

going to waste but contributing to the nonlinear process during the next pass. In

their initial experiment, a simple plano-concave cavity increased the second harmonic

output power by a factor of 10. Nowadays, by refinement of the technique, second

harmonic generation can be obtained with very high overall efficiencies even from low

power CW lasers 2, basically limited only by absorption and other losses and not by

the low conversion efficiency.

The use of a passive enhancement cavity in the case of HHG seems ideal: the

intensity enhancement allows for use without amplification, retaining the high pulse

repetition rate of the driving laser, and the confinement of the pulses allows for

reusing a large fraction of the undepleted energy for the successive passes, increasing

the conversion efficiency. However, there are a series of difficulties specific to HHG.

The intensities required in the region where the rare gas is present are at least 1013

W/cm2 , and ideally up to about 1015 W/cm 2 or slightly above it3 , while the surface

of a dielectric mirror can withstand peak intensities of about 1012 W/cm 2 . If we want

to generate harmonics efficiently, the intensity in the middle of the cavity needs to

be 2-3 orders of magnitude higher than at the surface of the mirrors; using a tightly

focusing cavity is not a desirable option because the mirrors will be located at the edge

of stability, and also because the rapidly changing phase at the focus limits the length

2 For example, green laser pointers output light at 532 nm obtained by SHG from 1064 un

radiation.
3 For much higher intensities, the gas stays permanently in an ionized state and harmonic gener-

ation comes to a stop, and also the effects of the strong magnetic field prevent the unionized atoms

to radiate efficiently.



over which HHG can occur without being limited severly by phase mismatch([1]).

A second problem is extracting the EUV radiation from the cavity where it is

generated. Early attempts using an intracavity block of sapphire worked at the price

of a reduced finesse of the cavity (therefore reducing the enhancement factor), and

were described in [7]. The coupling efficiency obtained was under 10%, and the overall

efficiencies reported were low. The state of the art coupling via intracavity elements

was reported in [8], where a grating etched on a mirror is used to deviate the harmonics

out of the cavity. The advantage of this setup is that it does not impact substantially

the cavity enhancement, but on the other hand it still has coupling efficiencies under

10% and the harmonic frequencies are separated spatially by the grating, making the

system not suitable for pulse generation. Furthermore, absorption of short wavelength

radiation by most materials limits substantially the maximum order of the harmonic

that can be coupled out of the cavity.

Another proposed coupling technique was that of creating a small hole in one of

the cavity mirrors ([9]). The idea was that the hole should have been small enough

to only perturb the cavity slightly, but the harmonics would couple out since, due to

their shorter wavelength, they diffract less by the time they reach the mirror, so they

would overlap maximally with the hole. Simulation results pointed at how a very

small aperture can keep losses low, but increasing the size to a fraction of the mode

waist would result in increased losses and poorer coupling of the driving pulse.

In this thesis, I propose a new design for a passive enhancement cavity geared

towards high harmonic generation. It uses mirrors with large apertures to obtain a

coupling efficiency of the harmonic radiation of practically 100%. It is not based on a

slight perturbation of a common resonator, but rather on a different idea which can

achieve low loss, high intensity gain from the mirror surface to the focus, practically

single-mode operation, and a mode shape which offers good phase matching and a

long interaction length for the nonlinear process.

In the next chapter I will review the basic mathematics of wave optics and paraxial

resonators, together with the properties of HHG that are needed to calculate how well

the process is phase-matched. The successive chapter describes in detail the mathe-



matical underpinnings of a fast MATLAB library that I developed for the numerical

simulation of general optical systems in the wave optics paraxial approximation, able

to simulate multiple internal reflections and to calculate the eigenmodes of a cavity.

The library was used extensively in the design and analysis of the proposed resonator,

which are the subject of the subsequent chapter. Finally, I will report on the results

of the fabrication of the particular mirrors needed for a test CW cavity and on a

feedback stabilization scheme for it.

The results of the simulations are very promising with regard to the possibility of

using the cavity developed here to generate EUV with high efficiency. Furthermore,

the simulation techniques and the software can be readily applied to the study of

other systems.



18



Chapter 2

Background

The goal of this study is to design an optical resonator, which is composed by two or

more mirrors separated by free space. While in principle Maxwell's equations could

be solved for a laser pulse between the mirrors, this approach is computationally

intractable due to the large size of the cavity compared to the wavelength and to

the pulse width. Furthermore, blindly solving the equations will be of no help in the

design process. It makes sense then to work within a simplified and more tractable

framework that still captures all the details of interest.

Wave optics provides an adequate description of the phenomena involved in a

typical cavity, while having the advantage of being much simpler to deal with con-

ceptually and in computer code. In this section I will present a brief review of the

key concepts of wave optics that will be used for the numerical simulations, together

with some key results about the shape and spacing of the modes of a cavity made

with spherical mirrors using the paraxial wave equation. Finally, I will show what

is known about the phase of the atomic polarization during the HHG process, which

will be crucial for phase-matching calculations.

2.1 Wave optics

In the context of wave optics, light is treated as a scalar wave, so phenomena involving

diffraction and interference can be described effectively. In the case of a cavity, we are



interested mainly in the effects of diffraction as the light propagates from a mirror

to the next one, and in the action of the mirrors on the propagating light. The

derivations presented in this chapter are adapted from [10] and [11].

2.1.1 Scalar wave equation

It can be shown that in the case of a infinite extent medium without free charge and

with spatially uniform permeability and permittivity, the following quantities satisfy

the wave equation 2:

" the electric field E,

" the magnetic field H,

" the scalar potential D,

" the vector potential A.

In the case of the three vector fields, the wave equation is obeyed independently by

the component of the field in any direction, in particular for the three directions

of a rectangular coordinate basis. For example the vector potential will satisfy the

equation

V2 A = poe t2 , (2.1)

where the speed of propagation is c = 1/poE. The same equation is satisfied by the

other quantities.

A solution of Maxwell's equations in such a medium necessarily solves the wave

equation for the quantities listed above3, however the converse is not always the case.

It is the case for the scalar potential and for the vector potential. It is not the case for

'It is assumed that all the materials that will be used are non magnetic, so y ~ Po.
2Assuming that the divergence of A is chosen using the Lorentz gauge, giving

O<D
V - A + poe = 0.

This choice of gauge is assumed in the rest of this work.
3 This is true only because there are no free charges and e is constant, giving V -E = 0, together

with the fact that there are no boundaries, so no static or quasi-static fields can exist.



the electric and magnetic field though, since they need to be also divergence free to

satisfy Maxwell's equations, which implies that there must be a certain relationship

between the field components.

Since the ultimate objective is to be able to use a scalar wave equation to describe

optical phenomena, dealing with the electric or magnetic field poses a problem. The

vector potential does not have this limitation however, so we can in fact force an

arbitrary polarization upon it:

A(r) = n -f (r),

and reduce the vector wave equation 2.1 to the scalar wave equation

V2 f = P t2. (2.2)

2.1.2 Fourier decomposition into monochromatic fields

Since equation 2.2 is linear and time-invariant, it is possible to express any solution,

which represents the wave amplitude as a function of position and time, as a function

of position and frequency. Transformation from time domain to frequency domain

and vice versa can be achieved very easily via the Fourier transform and its inverse:

1 f
F(x, y, z, w) = -- f (x, y, z, t)e7Jwt dt,

27r -o

F(x, y, z, t) J F(, y, z, )ewt dw.

The advantage of using the Fourier components instead of the time domain so-

lution stems from the fact that complex exponentials are eigenfunctions of linear

operators. In particular,

-eC =S - e, .
dt

If we take s = jw, by assuming that the solution has an e' time dependence 4 , then

4By which we mean that the actual disturbance at time t equals the real part of F(w)eiwt, since

there are no imaginary fields.



the wave equation reduces to Helmholtz equation:

(V2 + x 
2 poE) F(x, y, z, w) = 0, (2.3)

which is independently solved by each Fourier component.

By solving 2.3 for all frequencies, we also solved the wave equation 2.2 for all times,

since the two solutions are related via the Fourier transform. Therefore the fact that

we will need to use a pulsed laser in the cavity instead of a CW source makes no

difference, as long as the resonator works well for all the frequency components of the

pulse train and does not introduce temporal spreading due to dispersion. Since the

dispersion can be calculated from the solutions in frequency domain, we can simply

focus on solving for the cavity resonant modes in the monochromatic case. Later,

the results for a range of frequencies can be combined to recover the time domain

behavior.

If we denote the frequency of the monochromatic wave of interest by wo, then a one

dimensional wave at that frequency will have a wavelength Ao = 27rc/wo, and by using

the dispersion relation in a uniform medium k = w/c 27r/A, we can drop any time

dependence by introducing the scalar field $(x, y, z) = (r), which represents the

complex solution to the Helmholtz equation (here in canonical form) at the frequency

(V 2 + k )$(r) = 0, (2.4)

where ko = wo/c = 2-r/Ao is the wavenumber.

2.1.3 Wavefront decomposition in terms of plane wave solu-

tions

An important set of solutions for studying diffraction is that of plane waves, which can

be described by a simple sinusoidal disturbance along their direction of propagation:

V(r) = To exp(-jk - r).



The regions of constant phase for this solution are infinite-extent planes perpendic-

ular to the vector k, along which the disturbance propagates. If we assume k = koi,

then in time domain

f (x, y, z, t) = To exp (j(wt - kz)).

Since there is nothing special about the z-axis in equation 2.4, but ko is fixed due

to the fact that w = wo is constant, then the vector k in the more general solution

has fixed magnitude but arbitrary direction. The set of solutions represents then the

basic plane wave as above, rotated so that the direction of propagation points in every

possible direction.

It is interesting to analyze the value of the spatial part of such a solution on a

plane of constant z. With z being fixed, the disturbance on the plane can be described

as a function of x and y only, uz(x, y) = @(x, y, z), and if we rewrite the wavevector

as k = k42 + kyy + kzz, then for z = 0

uo(x, y) = To exp (-j(kzx + kyy)) ,

with the only limitation that kX + ky < ko, since the magnitude of the wavevector is

fixed.

The set of complex functions on the z = 0 plane is a subset with limited maximum

spatial frequency of the complete Fourier basis of functions on the plane. A plane wave

propagating in the direction perpendicular to the plane considered will always have

uniform phase across the entire plane, therefore it constitutes the DC component.

The highest spatial frequencies attainable on the cross sectional plane will be those of

the plane waves propagating in a direction parallel to the plane itself, corresponding

to a spatial frequency in the plane equal to the spatial frequency along the direction

of propagation, which is ko.

Assuming for now that |k| is larger than any of the spatial frequencies in the z = 0

plane, or in other words that the spatial variations of the disturbance uo(x, y) in the

plane occur over distances much longer than the wavelength, it is possible to describe

uo(x, y) as a superposition of plane waves in space.



The key mathematical concept is once again the Fourier transform, this time

between the two dimensional space of the z = 0 plane described by spatial coordinates

r (x, y) and the space of plane waves in that plane, described by spatial frequencies

Vi (vo, vY) 5 :

F {u(x, y)} = U(v', vY) = J u(x, y) exp [-j27(vxz + vyy)] dxdy, (2.5)

F-1 {U(v, vX)} = u(X, y) = JJU(vx, vy) exp [j2w(vx + vyy)] dvxdvy. (2.6)

If the disturbance is known across the plane z = 0, then it is possible to express

it as a weighted sum of two-dimensional plane waves, as in the inverse Fourier trans-

form 2.6, where the weights are simply the Fourier coefficients found via the forward

transform 2.5.

Each plane wave component in the x-y plane can be related to a plane wave in

three dimensional space, since the constraint on k being constant implies

k2 + k + + k = k2. (2.7)

It is important to notice how kx = 2wvx and ky = 27vy are known for a given Fourier

component, so the absolute value of kz is uniquely determined. The sign however is

not determined, since both the plane wave with k = (kx, ky, k2) and the plane wave

with k = (kx, ky, -k2) have the same value on the plane z = 0.

In general there is no way to resolve this degeneracy, unless some additional as-

sumptions are made. A reasonable assumption when we study the diffraction pattern

of a wave disturbance propagating mainly in a particular direction (along which we

align the z-axis) is to restrict all the constituents plane waves to not have a compo-

nent of their wavevector to point in the direction of negative z. So the wavevector's

'Or equivalently wavevectors, since k = 2i and so all the equations of interest are scaled by a
multiplicative constant. It is common in Fourier optics to deal with spatial frequencies in the plane
of interest, while plane waves in space are usually described in terms of their wave vector k.



z-component is uniquely determined by the imposed condition k, > 0:

k, = k 2 - k2 -2g 28

2.1.4 Wave propagation in the spatial frequency domain

The general problem in wave propagation is to find a method that given the complex

disturbance on the z = 0 plane allows us to calculate what the disturbance is on a

plane z = zo, for a generic zo > 0, without solving Helmholtz equation over the entire

volume of interest.

In the case of a plane wave, the solution to the problem is trivial. Figure 2-1

depicts the situation for two dimensional waves. In this case there is a plane wave

for which the magnitude of the wavevector is known. The cross section along any

straight line parallel to the z-axis will be a sinusoidal oscillation with wavenumber kz

(Az = 2ir/kz), and if we look at the wavefront for z > 0, we see that each point on it

undergoes a phase shift of -2wrz/Az, so we can derive the equation for the propagation

of the wavefront of a plane wave in two dimensions:

uzo(x) = o (x) - exp(-27rzo/Az) = uo(x) exp(-zokz).

Z

Figure 2-1: For a plane wave in two dimensions, each linear cross section is sinusoidal.
Given that Jk| is constant, k (and in particular kz) can be found from kx.



In practice though the only information that we are given is the cross section

along the x-axis and the distance of propagation zo. In the case of a plane wave, the

cross section will look again as a sinusoidal oscillation whose wavenumber k, we can

determine. From there, kz can be found and we can apply the above equation.

The case of a three dimensional plane wave is analogous (but harder to show

pictorially): the wavefront on the x-y plane will be a plane wave of which we can

determine directly k. and ky, from which kz can be found using equation 2.8 and so

the appropriate phase shift can be applied to find the new wavefront at z = zo.

Being able to propagate a plane wave's wavefront means that any disturbance can

be propagated due to the linearity of Helmholtz's equation. The phase shift of each

Fourier component can be easily calculated:

Uz. (v2, vy) = exp jzo k2 - k2- k) Uo(vx,vy) =

= exp (ikozoy1 - (Aov))2 _ ( )2 UO(vx, vY). (2.9)

A linear operator that performs the phase shift for a given A (or k) and z can then

be defined as the linear operator FA,z for which

Uze (vx, vy) = FA,zo - UO(vx, vy).

By composition with the Fourier operator F and its inverse, the propagation operator

in real space domain PA,2 can be constructed as

uz0 (X, y) = PA,zo - uo(x, y) = F-- FA,zo F -F o (x, y),

so that

PA,2 = F - FA,2 - (2.10)



2.1.5 Evanescent waves

So far, we restricted our analysis to wavefronts for which the spatial spectrum had a

limited bandwidth so that

|V|I > vo -=:> U (v) < 1.

However, a general wavefront could contain high spatial frequencies for example due

to interaction with a hard aperture, and the plane wave model does not cover such

cases.

If we simply substitute a wave with the form of a complex plane wave and force

kX + k > k0, then from equation 2.7 it must be that kz is purely imaginary. As

in the case where kz is real, the square root operation leaves the sign undetermined.

Mathematically, both solutions are valid, but physically they lead to two very different

situations. One of the solutions grows exponentially as z increases, while the other

one decays exponentially. The sign of kz depends on the sign that we assign to the

spatial dependence of the complex exponential', in this case negative. Therefore, the

sign of the imaginary kz needs to be negative to give a decaying exponential, and

equation 2.8 needs to be revised to become

kz k 2- k2 - k2.(.1

Note how the complex conjugation does not change the behavior when the solution

is real.

This exponentially decaying solutions are known as evanescent waves, and are a

phenomenon that occurs when a disturbance has a wavevector in any direction which

is larger than the wavevector of a plane wave at the same frequency. It can occur as

mentioned when a hard aperture is present, which introduces high spatial frequency

components, or when the wave transitions to another medium where the wavelength

at the wave's frequency becomes larger, as it is the case for total internal reflection.

6Which in turn depends on the (arbitary) sign in the exponent of the time dependence phasor.



2.1.6 Effects of thin optical elements on wavefronts

A thin optical element acts locally on the wavefront by changing the amplitude or

phase. A linear and time invariant thin optical element can be simply represented

as a position dependent multiplicative factor that transforms wavefronts traveling

through it.

A simple example can be an opaque thin film with a circular aperture of radius

ro, centered at the origin. The spatial transfer function of such an element is of the

form

, y) = 1 if X2--+y 2 < ro

0 otherwise,
which given an incident wavefront u(x, y) produces the new wavefront v(x, y) after

the aperture:

v(x, y) = a(x, y) -u(x, y).

2.1.7 Paraxial approximation

A wavefront is said to be paraxial when it has most of its energy in spectral compo-

nents which propagate at a small angle with respect to the z-axis, which is equivalent

to the condition that there exists a vi < vo such that

|vl > vi =- U(v) < 1.

When dealing with paraxial optical fields, the propagation phase in 2.9 can be

approximated by the first term in its series expansion 7 :

kozo1 - (Aov2) 2 _ (Av) 2 ~ kozo 1 - I(Aov)2 -- (Aovy)2

The propagation of the Fourier components then can be rewritten as

Uzo(vx, v,) = exp(-jkozo) -exp Jkozo [(Aov2) 2 + (Aovy) 2] UO(vx, vy), (2.12)

7 1n the paraxial approximation kz is never imaginary, so we can ignore the complex conjugation.



from which it is clear that in the paraxial limit propagation consists of a phase shift

equivalent to that of a plane wave, plus an additional quadratic phase correction.

Since by assumption the quantity 1/2 [(Aovx) 2 + (Aovu) 2] is small, then over a short

distance the quadratic correction is negligible, and propagation can be approximated

simply by a constant phase shift for all the spatial frequencies, which in turn means

also a constant phase shift in the real wavefront.

In the paraxial approximation, it is possible to recover the electric field from the

scalar wave, assuming that the polarization ii of the vector potential is perpendicular

to the z-axis. If it is the case,

1
E = -jw VV(V -A . (2.13)

The time averaged Poynting vector, which can be interpreted as the local power

flux density in an electromagnetic wave, can be found from the complex fields as

|(S)|= -IRe(E x H*)|= -2 2 Z

where Z is the impedance of the medium.

Using equation 2.13, and neglecting the second term, the intensity in the i direc-

tion can be expressed in terms of the scalar wavefront as

(X, y) = InwU(x, y)|2, (2.14)
2Zo 0

where Zo is the impedance of vacuum (about 377 Q) and n = e/o is the refractive

index of the medium.

2.2 Two mirror resonators

A two mirror resonator is composed of two mirrors facing each other, allowing for a

standing optical wave to exist in the space between them. If the mirrors are perfect

reflectors separated by a distance L, the allowed frequencies for the standing waves



are those of the wave with A = 2L and of its harmonics. The spacing between the

allowed frequencies of resonance is called the free spectral range (FSR) of the cavity

and it is given by Av = c/2L. A cavity mode needs to be resonating longitudinally,

or in other words its frequency needs to be a multiple of the FSR.

Furthermore, a real cavity necessarily has finite extent, so the mirrors need to be

focusing and the transverse resonances occur when the spreading due to diffraction

is canceled by the focusing. In this section I will review briefly the properties of the

modes of two spherical-mirror cavities in the paraxial limit.

2.2.1 Longitudinal resonance

Since energy has to be transferred into the cavity to the modes, at least one of

the mirrors needs to be partially transmissive to let the light in. It is possible to

understand the resonant behavior and the nature of intensity enhancement in such a

cavity by following the path of an optical wave through multiple passes, as in figure

2-2. Such a setup is also used as an interferometer due to the possibility of obtaining

very narrow band resonances, and it is known as a Fabry-Perot interferometer.

EO jtE

jtEore -j4/2

jt Er 2, e -

Figure 2-2: Multipass interference inside a Fabry-Perot resonator.

Suppose that both mirrors reflect a fraction R of the incident power, and that the

phase shift is rr upon reflection and 7r/2 upon transmission'. The field reflection and
8 Appropriate reference planes before and after the mirror can be chosen so that the phase shift

is exactly as assumed.



transmission coefficients can be found from the power reflectance to be r = VR and

t = v1 - R respectively.

Referring to the figure, during the first pass the transmission from the incoming

plane wave of amplitude Eo will be jtEo. The wave will then propagate across the

cavity, acquiring a phase #/2 = wL/c before being reflected backwards, retaining

only a fraction r if the field. Again, the wave will propagate across the cavity and

be reflected, so that its amplitude has been changed by a factor of r 2e- *. If all the

successive passes are interfered with each other, the final complex amplitude inside

the cavity will be

Ef, = jtEo - (1 + r 2e-j* + (r 2e-jo) 2 ±...) = -_ 2 eJ o. (2.15)

If 4 = 0, and assuming 1 - R < 1,

1
Efp~ -JEol, (2.16)

t

which in turns means that the intensity is enhanced approximately by a factor of

(1 - R)- 1.

The intensity of the resonant wave can be shown from equation 2.15 to have the

following dependence on phase:

jEf 12  -1 - R 2

(1 - R)2 + 4R sin2 (4/2)

which when plotted as a function of w shows a series of equally spaced resonances.

2.2.2 Transverse resonance

In a real cavity with spherical mirrors, there will be a set of wavefronts that are in

resonance around a given w, meaning that propagation through the cavity and the

focusing effect of the mirrors cancel out, and the wavefront profile is unaltered after

a roundtrip.

For the design of this cavity, it suffices to know that in the paraxial approximation



it is possible to derive9 a set of modes that are separable in rectangular coordinates,

and whose transverse profile is that of a gaussian modulated by Hermite polynomials

for each of the axes. A mode can then be characterized by three quantum numbers

m, n, q, which identify the mode order along the x-, y- and z-axis respectively; the

mode will resonate at the frequency

fmnq= q + + 1os 1(- ) , (2.17)fn 2L _ + Ro

given the radius of curvature of the mirrors Ro (from [13]).

Another complete set of modes can be constructed by separating the variables

in polar coordinates, the Laguerre-Gaussian modes, which are gaussians modulated

radially by a Laguerre polynomial, and azimuthally by circular harmonics. Since both

sets of modes are complete sets, the basis elements of one can be rewritten in terms

of the elements of the other, as done in [14].

Some of the Laguerre-Gaussian modes transverse intensity patterns can be seen

in figure 5-2.

2.3 Phase of the atomic polarization during HHG

For any process where harmonics are generated, it is very important that the harmonic

wave's phase stays fixed with respect to the fundamental wave's phase10 . If the phase

relationship changes as the waves propagate, at a certain point the newly generated

harmonic field will be out of phase with the field generated previously, and destructive

interference will greatly reduce the harmonic output.

By knowing the amount of phase mismatch, it is possible to limit the extent of

the region where the harmonics are generated so that by the time the waves would

interfere destructively there is no more harmonic generation. In the case of HHG,

phase mismatch can be very severe because the harmonics involved are usually very

9 The interest reader should look at [12] for a detailed derivation and analysis of the modes of a
two mirror cavity.

100nce the trivial phase dependence from plane wave propagation is factored out.



high and the phase mismatch for the process exceeds the phase mismatch of the

fundamental field by a factor of the harmonic order.

The two prevailing phase effects to be taken into account for HHG are the Guoy

phase shift of the driving beam and the phase of the appropriate frequency component

of the atomic polarization in response to the driving beam, which is effectively the

phase of the harmonic field. The former is a geometric property of the beam, while

the latter depends locally on the intensity, the frequency of the fundamental, and the

order of the harmonic of interest. Detailed theoretical calculations in [1] have shown

that the dipole phase can be approximated very well by a piecewise linear function,

shown in figure 2-3.
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Figure 2-3: Phase of the atomic polarization for a single neon atom at the 45th
harmonic of a 825 nm driving field, from [1].

The independent variable is the ponderomotive energy Up, the average kinetic

energy of an electron in an oscillating field, given by

e2|E|2
UP = 4nw4 mew 2

for a linearly polarized plane wave of amplitude |EJ at a frequency w, where e and

me are the charge and mass of the electron, respectively. For a given laser frequency,



Up is then proportional to the intensity.

The ponderomotive energy is a property of the laser field, and it is crucial in

various aspects of HHG. The highest harmonic generated in the plateau has a photon

energy equal to approximately 3.17Up. Harmonics with higher energies are located in

the cutoff region, where there is no significant harmonic generation.

The cutoff frequency then is determined by the intensity of the laser (given w).

The photon energy of the nth harmonic is simply nhw, and it determines the point

where the change of slope occurs: if the harmonic is above cutoff (i.e. 3.17U, < nhw)

then the slope is approximately -3.2U, in atomic units normalized so that a = 1,

whereas if the harmonic is in the plateau region the slope becomes -5.8Up. Conversion

to atomic units is detailed in section 4.5.



Chapter 3

Mathematical theory behind the

numerical simulator

I adapted the techniques of wave optics to be suitable for computer implementation

and to be integrated with scattering matrices to provide a description of optical

systems composed of many linear dielectric sections and thin optical elements, and to

simulate and analyze such systems. The most important analysis of a resonator for

this study is that of its eigenmodes, which constrains the resolution of the wavefront

due to the computational space and time requirements. Since the systems of interest

to this study exhibit circular symmetry1 , the wavefronts are assumed to be separable

in polar coordinates:

u(x = r cos 6, y = r sin 0) = ur (r) - Uo(O),

and the transfer functions of all the optical elements are assumed to have circular

symmetry and so have the form a(x, y) = a,( /x 2 + y2).

Since calculations are done on the computer, wave propagation can be calculated

from the exact propagation operator (equation 2.10), without assuming the paraxial

condition. The simulation is still limited to paraxial systems however, because thin

optical elements are used in place of the real transfer functions for the elements, and

1As well as most systems in optics, where astigmatism effects can be neglected.



in any case the scalar wave approximation ceases to hold true when the angle between

the electric field and the vector potential is large.

3.1 Finite discrete description of wavefronts and

linear optical elements

The wavefronts described in the previous chapter are complex functions with the

entire R2 as the domain. To perform numerical calculations, the wavefronts need to be

sampled at a discrete and finite number of points (denoted by N), thus the wavefronts

become complex vectors2 . Each component of the wavefront vector represents the

value of the continuous wavefront at a particular point of the continuous domain.

Likewise, each component of the spatial frequency vector represents the complex value

of the spectrum at a particular point in the continuous spatial frequency domain. Let

us denote the wavefront vector as u and the spatial frequency vector as v.

Since the Fourier transform3 is a linear operator, it is reasonable to assume that it

is possible to create a discrete and finite linear operator that implements the Fourier

transform between the two discrete domains. Such an operator is simply a square

complex matrix which is invertible and in the ideal case numerically stable such that

u = FU

and

U V.

Finding the appropriate sets of points of discretization for which there exists

a discrete transform able to represent correctly the continuous transform4 on the

2There are also effects due to quantization, since a 64-bit double precision floating point number
cannot represent a real number. However, this aspect can be ignored since the dynamic range is
very high (18 decimal digits) so that the fractional error in the calculations is still unnoticeable even
with a large number of points.

3For brevity I will loosely refer to any transform to the frequency domain as Fourier transform,
unless more specificity is needed.

4 By which we mean that the inverse of the discrete transform matrix also represents the contin-



discrete domain is not trivial in general, and it is not of interest for this work. It

suffices to know that exact discrete and finite matrix representations exist for the

DFT (discrete Fourier transform), as well as for the qDHT (quasi-discrete Hankel

transform, discussed in section 3.2).

Once a matrix expression for the Fourier transform is obtained, by knowing the

points of discretization in the frequency domain it is possible to create the matrix

for the operator FA,z. Since the operator is in the frequency domain, the matrix is

diagonal:

Fjj= exp (-jkz,1 - (Avi)2*)

where vi is the spatial frequency of the ith discretization point, and corresponding to

the ith component of v.

With the matrices for the Fourier transform and its inverse and the matrix for

wave propagation in frequency domain, the propagation matrix in the spatial domain

can be easily obtained, since

P\,z= F- - FA,2 F. (3.1)

Equation 3.1 is identical to equation 2.10, but the important difference is that here

the operators are N x N complex matrices, as opposed to linear operators acting on

functions R2 -+ C.

Thin optical elements are trivial to convert to matrix form in the spatial domain.

They are represented by a diagonal matrix whose entries have the same value as the

element transfer function at the corresponding point of discretization.

The representation of wave propagation and of optical elements as matrices pro-

vides us with a simple way of calculating the eigenmodes of a resonator. Consider

for example a symmetric linear cavity made with two identical spherical mirrors sep-

arated by a distance L, as shown in figure 3-1. Let us imagine that we can follow

a generic wavefront u(r) that is propagating in the cavity, starting at the center.

First of all, it will propagate for a distance L/2, then the mirror will add a quadratic

uous inverse transform in the reduced domain.



u(r)

Figure 3-1: A resonant wavefront undergoes a roundtrip of the cavity without altering
its spatial pattern, up to a multiplicative constant.

phase, and finally the wavefront will propagate L/2 more to be again at the center

of the cavity, this time going in the opposite direction. If we follow again the same

path, going in the other direction, the wavefront will now be in the same point as the

beginning, going in the same direction.

What distinguishes the wavefront of a resonant mode of the cavity from any other

wavefront is that after one roundtrip it has changed only by a multiplicative factor.

In other words, its finite representation is an eigenvector of the matrix T, describing

the transformation that occurs in a roundtrip in the cavity. In this case, if we call M

the matrix representation of the mirrors,

T = (FA,L/2 - M -FA,L/2) 2 . (3.2)

An eigenmode um of the cavity will solve the eigenvalue equation

Aum = T - um

for some complex number A, which represents the attenuation and phase shift5 over

the course of a roundtrip. The total energy after one roundtrip is a fraction |A|2 of

the initial energy.

A more complete formalism to find the resonances of cavities with elements inside
5The context should make clear when A is an eigenvalue as opposed to the wavelength.



of them is presented in section 3.4, but the underlying idea is the same as for the simple

algorithm presented here. This simple algorithm ignores the longitudinal condition

for resonance, however the eigen-wavefronts' transverse shapes are still correct in the

paraxial approximation, as shown in [15].

3.2 The quasi-discrete Hankel transform

Since for N discretization points the size of the matrices needed to describe the Fourier

transform and the optical elements is N x N, it is very useful to take advantage of

symmetries to reduce the number of points. Since the systems of interest present

circular symmetry (i.e. all the optical elements have transfer functions whose value

depends only on the distance from the central axis), all the modes of the systems

will be separable when parameterized in terms of r, the distance from the axis of

symmetry, and 0, the angular position around the axis6.

If the sampling points are approximately equally spaced, a transform that uses N

radial points has the same resolution of a 2N x 2N rectangular grid, but requiring a

matrix of only N 2 elements as opposed to 16N 4 , giving us the possibility of studying

fairly large systems at sub wavelength resolution.

Before going any further, it is important to note here that in the case where only

wave propagation is involved there is an advantage in using rectangular grids, for

in that case there is no need of explicitly creating the transform matrices since the

2D FFT can be used instead. The time complexity of computing wave propagation

becomes in that case O(N 2 logN), whereas for a transform taking advantage of sym-

metry but using an explicit representation it will take time O(N 2 ) to compute7 . The

extra flexibility in terms of input wavefronts comes at the price of a small hit in

performance.

60r if the modes are degenerate, they can always be combined appropriately in another complete
set of modes that is separable in that way.

7There are indeed algorithms for computing fast Hankel transforms, but their numerical accuracy
is not the same as that of the "slow" version used in this study. Achieving the same numerical
accuracy would require to increase N to the point where the time complexity is similar. Conversely,
the FFT retains the same accuracy as the discrete Fourier transform, so it should be used by all
means when possible.



However, in situations where it is necessary to calculate the eigenmodes of a

resonator, or to simulate a system with multiple reflections, an explicit matrix repre-

sentation is required.

In the continuous case, the Fourier transform of a function separable in polar

coordinates can be written as a weighted sum of Hankel transforms (from [11]):

00

Y{g(r, 0) = g,(r)go(O)} = c,(-j)P exp(jp)Rf{g,(r)},
P=00

where the expansion coefficients are given by

c, = 27r -P=2 !- j o(0) exp (-j*pO) dO,

and the Hankel transform of integer order p is given by

M,{gr(r)} = 27 rgr(r)Jp(27rv) dr,

where v and # are the radial and azimuthal coordinates in spatial frequency domain.

If the angular dependence of the wavefront is of the form exp(jpO) for some integer

p, then the expansion coefficients will all be zero except for c, = 1. In that case, the

Hankel transform provides a way of calculating the radial dependence in Fourier

domain given the wavefront, while its inverse

R {Gr(vJ)}= 27 j vGr(v)Jp(27rvr) dv

performs the reverse calculation.

The quasi-discrete Hankel transform (qDHT) is the discretized and finite version of

the continuous Hankel transform, and it has the desirable property that the inverse of

its matrix representation is the discretized and finite version of the continuous inverse

Hankel transform.

The transform can be expressed in terms of n and m, the indices for the space and

spatial frequency discretization points, which are also the indices of the discretized



vectors coordinates, as

ap f 1 N f(r = apn /2wV) apnapm
F v JrR) , (3.3)

27xR EV J+1 (a~n)S

N F(i = apm/27R) apnapm
F (r - n - J%, , (3.4)2x7V 7 R 2= j 1P r

where api is the ith zero of the Bessel function J,, and p is the order of the

transform. R is the limit radius for the simulation, while V is the limit bandwidth.

The space-bandwidth product is given by

S = 27 RV = ap,N+1

and it is constant given the number of points and the transform order.

While the formulas look intimidating, they are simply dot products of the vectors

r or v with constant vectors that depend only on the parameters of the transform,

therefore the transform and its inverse are simply a matrix multiplication.

The quasi-discrete Hankel transform was introduced in [16]. My implementation

follows the work of [17], where the transform matrix and its inverse are created from a

unitary matrix T which depends only on p and N, and which is changed appropriately

to the transform and inverse matrix depending on the value of R.

3.3 Simulation of thin optical elements

Thin optical elements are simply space-dependent multiplicative factors for the simu-

lated wavefront. By appropriately choosing the magnitude and phase of the filter, all

the common linear optical elements can be simulated in the paraxial approximation.

Even though circular symmetry is assumed, the filters derived in this section can

trivially be converted to rectangular coordinates.



3.3.1 Hard apertures, partially transmitting elements and

phase masks

The simplest element to simulate is probably a circular hard aperture, shown in figure

3-2. This system acts like a filter, blocking out the portions of the wavefront that are

farther from the central axis than a fixed radius ro. Given the discretization points

ri, its matrix representation is diagonal, and given by

if ri < ro

otherwise.

I
Io

Figure 3-2: Effect of a hard aperture on wavefronts.

Obviously we are not limited to all-or-none filters. For example, a filter for which

the transmitted intensity goes down linearly as the radius increases, with full trans-

mittance at the center and complete cutoff for r > ro can be described by the matrix

Aii = 1 - ri/To

0
if ri < ro

otherwise,

where the square root is needed because the matrix multiplies the wavefront complex

amplitude, whereas intensity is given by the magnitude squared.

In a similar way it is possible to construct matrices for phase-only elements, or

elements with both phase and magnitude transfer functions. It is possible to introduce

gain if the magnitude of the matrix elements is greater than 1.

Aii



3.3.2 Thin lenses

Lenses can be represented as a phase only element, without losses. In the case of thin

lenses, the only parameter that characterizes them is the focal length f, which can

be found from the material's index of refraction and the radii of curvature of the two

surfaces8 :

-~(n - 1
f (R1 R2

We can use R2= oc to easily calculate the phase shift at different radii, as shown

in figure 3-3. The overall phase can be ignored, so we set arbitrarily <0(r = 0) = 0

and compute the additional phase shift that the parts of the wavefront experience at

different r.

6(r)

r

Figure 3-3: Calculation of the matrix representation of a thin lens.

To evaluate 6(r), the path that the wavefront travels in air before reaching the

lens' surface, assume that the lens is at z = 0. Then its surface can be described by

2 12
z(r) = R1 - fRj -r 2 - R 1 - 1 ~ r2

where the quadratic approximation is valid if the lens is thin. Since 6(r) = z(r), the

extra optical path undergone by light inside the lens at the center with respect to

the light at distance r is (n - 1)6(r). The light propagating in the center will acquire

8Assuming that the lens is in a medium with n = 1.



more phase at a given z, since the optical pathlength is longer there, so since phase

goes negative as propagation occurs, a positive phase factor needs to be added:

1 r2) r 2
Lei = exp(jko(n - 1)6(r)) = exp (Jko(n - 1) = exp (Iko 5

This formula is valid for concave lenses too, by using f < 0, and it applies to wave-

fronts coming from both sides of the lens. The reflection due to index mismatch is

ignored, as well as the possible multiple internal reflections. The reason for not pur-

suing a more detailed model is that, even without AR coatings, lenses are elements

in a system through which the wavefront usually passes only once, as opposed to the

mirrors in a resonator for example.

Note how the paraxial approximation is crucial in the derivation of this matrix

representation, since in general it is not true that propagation for a short distance

can simply be treated as a phase shift.

3.3.3 Mirrors

Mirrors are the fundamental element in optical resonators. Unlike the case of lenses,

the light in a system often is reflected multiple times by the same mirror, and it

becomes important to take into account both the reflected and transmitted beam.

In the case of a flat mirror with no losses, there is going to be a certain relationship

between the phase of the incoming wavefront and that of the reflected and transmitted

wavefronts. Conventionally, the phase of the reflectivity and transmissivity is chosen

so that given the incident wavefront ui(r)

Ur (r) = -rui(r)

ut (r) = jtuj(r),

where u, and ui are the reflected and transmitted wavefronts, and for a lossless

mirror which reflects a fraction R of the incoming power the amplitude reflection and



transmission coefficients are

t = l - = v1 -r2.
Vi-R = R,-

A flat mirror will have the same operator form for wavefronts coming from either

direction. Mirrors used in resonators though are usually concave, as shown in figure

3-4. The reflecting surface is deposited onto a concave substrate with refractive index

n and curvature Ro, therefore the effect on the incoming wavefronts varies depending

on which side of the mirror is encountered first.

RO n

EO,

-rEO jtEO

Figure 3-4: Calculation of the matrix representation of a mirror.

If the reflecting surface is encountered first, the reflected wavefront will acquire a

phase equivalent to that of a lens9 with f = Ro/2, while the transmitted one will be

refracted by the substrate, a plano-concave lens with

f Ro
n -

Therefore, for wavefronts incident to the reflecting surface first,

ur (rk) = -r exp Jko -) ni (rK),
Ro

r 2 (n - 1)
Ut(r) =jt exp -jko Ui (rk)

9 Because the phase mismatch between parts of the wave at different radius is quadratic: 2k-
r 2/2RO.



For the wavefronts which are incident on the substrate first, the transmitted com-

ponent will pass through the substrate, so it will undergo the same phase shift and the

expression is unchanged. The reflected component, on the other hand, will traverse

the substrate twice, so its relation to the incident wavefront is

Ur (rk) = -r exp -jk Ui(rk)
(_ Ro

3.4 Linear optical systems

Using the methods described above to calculate the effects on the wavefronts of prop-

agation and interaction with thin elements, it is possible to develop a convenient and

scalable representation of linear optical systems that are constrained between two

parallel planes.

3.4.1 Scattering matrices

ai

b-

a2

I I
I I

I I

Figure 3-5: Wavefronts naming conventions with scattering matrices.

Any linear system of this form can be entirely characterized by a scattering matrix,

relating the two wavefronts propagating out of the reference planes b1 and b2 to the

two incoming ones ai and a2 , as shown in figure 3-5. S is a 2x 2 matrix whose elements



are linear operators on wavefronts' 0 , and will be denoted as

S =1 Su 12

S21 S22

If the inputs to the system (i.e. a1 and a2) are known, the outputs can be found

by applying the scattering matrix:

b = Sa,

or written by components

b1 = Suai + S12a2

b2 = S21a1 + S22a2.

Scattering matrices for both propagation in a dielectric and interaction with a thin

element can be easily constructed. In the first case, the incoming wavefronts propagate

through the material and leave on the other side, without any back reflection. For

a propagation distance d in a medium with refractive index n, the scattering matrix

for wavefronts with wavelength AO in vacuum will then simply be

s (FO Fo/nd)

In the case of a thin element, the operators Sij can be defined in terms of the

filtering transfer functions sij(X, y) : R2 -+ C so that Siju(x, y) = sij(x, y) - u(x, y).

There are four separate filtering functions: two for transmission and two for reflection

(one in each direction). For example, a thin film that absorbs half of the power of

ioln the discrete and finite case, S is a 2 x 2 matrix of N x N complex matrices, or a 2N x 2N
complex matrix. However, the formalism derived in this section is completely generic, so it is

described in the notation of continuous wavefronts and of the linear operators acting on them.



the light going through it can be represented simply as

0 1

0)

while a mirror reflecting about 98% of the light coming from both sides and absorbing

the rest, as might be the case for a layer of silver for some wavelengths, can be

represented as

0.99 0

0 0.99

Similarly, the scattering matrices for the elements analyzed in section 3.3 can be

constructed by evaluating the appropriate spatially dependent multiplicative factor

at the points of discretization.

Deriving scattering matrices for more complex systems becomes a difficult task,

so it is convenient to be able to compute the scattering matrix of a composite system

made of a succession of simple systems for which the scattering matrices can be

constructed easily.

3.4.2 Transfer matrix composition technique

A technique of microwave electronics commonly used in optics is to convert the scat-

tering matrices of the elements of the system into transfer matrices. The transfer

matrix is a 2x2 matrix of operators whose elements satisfy the following relation in

terms of the wavefronts of figure 3-5:

b2 T11 T12  a1
a2  T 21 T 22  b1

The important difference with the S-matrix is that a T-matrix relates inputs and

outputs on one side of the system to inputs and outputs to the other side. Now, if we

arbitrarily take the wavefronts on the left side of the system as the known quantity,

we can recover the wavefronts on the right side. If we cascade another system, the



wavefronts to the right of the first system become the wavefronts to the left of the

second one, and can be transformed again with the T matrix of the second system.

Therefore, the T-matrix of a composed system is simply the composition of the

T-matrices of the constituents:

T = Tn -T 1- .  T2 - T1,

or for just two systems, T2 o T1 = T 2 -T 1 , where o represents composition of systems,

while - represents matrix multiplication.

Using the transfer matrices we have a simple way of cascading systems, but this

method has two severe drawbacks. First, the transfer matrix will be unstable when the

underlying scattering matrix contains wave propagation, since determining a2 from

b1 will involve inverse propagation, with the exponential explosion of any evanescent

component".

An even more serious problem is that transfer matrices require that the optical

system is invertible, so that one of its inputs can be recovered from the other input

and one of the outputs. This operation is impossible even for a simple system such

as an aperture. The portion of the a2 wavefront that is filtered out will never reach

bi, so it is impossible to recover that lost information and recreate a 2. Since there is

no solution to this problem, a different approach is needed.

3.4.3 Direct composition of S-matrices

The technique that I developed to be able to calculate the input-output relationships

of cascaded systems, while at the same time being able to reconstruct what happens

at the interface between the constituents, allows to overcome the limitations of the

transfer matrix technique.

The generic system shown in figure 3-6 is composed by cascading two systems

with known S-matrices, S' and S". To solve for b1 and b2, we need to calculate a and

"Very small evanescent components will always be present due to numerical artifacts. The only
way around this problem is to completely ignore evanescent waves.



a a2

I - - - -j

Figure 3-6: Wavefront naming convention for composition of S-matrices.

b in terms of ai and a2 .

The scattering relations of the two subsystems are

S11

S/2

s12
S22

a J
b )

b

b2
S/I1

S21

S1'2

S'2

a

a2

which give the following relations:

a = S' 1a1 + S' 2b b =S' 1a + S"2a2

Substituting the second one into the first one gives

a = S+1ai + S' S 1a + S1S'a 2

(I - S 2S'1')a = Slai + S S'2 a2

a = (I - S2 S' 1 ) 1 -(S2 ai + S2 SI'2a2),

and the reverse gives

b = (II - S"1S' (S'1 S21ai + S' 2a2 ),

so the wavefronts at the interface of the two systems are known. The two outgoing

wavefronts of the composite system can then be found directly using the scattering



matrices of the component systems:

=S' 1ai + S'b = SI ai + S'(I - S'1S'2) -(S1Sai + S' 2a2 ),

b2 =S'1a + S1" 2  '- S' 2 i5)1- (S/ai + S' 2 1 2a2) + S' 2a2

The rule for composing scattering matrices then becomes

S=S'oS"= S2 'n+ S(II - S{'SG)-S'l S'( - S{'11 )-1S'2( S'1(l - S' 1 )-1S S/'1( - S2 12S'1) SS' 2 + 2

3.4.4 Physical interpretation of the composition of scattering

matrices

The formula found above to calculate the scattering matrix for a system composed of

two subsystems with known scattering matrices may look cryptic if derived only by

algebraic manipulations. Also, matrix inversion is required to compute the composed

matrix, so it is not clear whether or not this method overcomes the stability limitations

of the transfer matrix technique. In fact, the method works, and its functioning can

be understood in terms of the actual physical behavior of the composite system.

The existence of the composite matrix depends on the fact that the matrices

(I - S/'/S/2) and (I - S2S') are invertible. Consider the first one (the other case

is equivalent). If it is singular, then det(S"iS 2 - II) = 0, which implies that S'1S'

has at least one eigenvalue A = 1. This condition for the existence of the composed

scattering matrix is very strange, and in fact wrong, because unphysical solutions are

created.

Consider what happens if there is only one input field ai (so a2 = 0). First,

the effect of system S' will be that a wavefront S'1ai is reflected, while S21ai is

transmitted. If we define d = S21ai, the transmitted field, d will enter system S",

where a wavefront S'id will be reflected back. Then, the latter wavefront will enter

system S' from the right, and the total reflection to the right will be S2 S'id. The



wavefront just found will undergo the same path as d originally did, and so on.

Therefore, the wavefront moving to the right between the systems (a) can be found

as:

a =d + S 1S"1 d + (S' 2S"1 )2 d +

Once a is known, then b2 = S2"'a. If all of the eigenvalues of S 2 S'i are such that

A < 1, then we can rewrite

((S'2 S1I)= (l - S22Sli1
n=o

in the same way as the geometric series adds to 1/(1 - x) if |x| < 1. Substituting this

result yields

b2 = S"1 (l[ - S2S21)Sai

which is exactly the result found by algebra in the previous section. The three other

entries of the composed scattering matrix can be found in the same way and are in

agreement with the algebraic derivation.

The condition for the existence of a scattering matrix for the composite system is

then that all the eigenvalues of S1'iS' and S22S'i must satisfy JAI < 1. The formula

will work if A # 1, just in the same way as the geometric series for x = 2 does not

converge but the formula gives a value of -1.

Physically, the condition states that two linear systems described by scattering

matrices can be composed in a system described by a scattering matrix if and only

if there is no eigen-wavefront that can loop between the systems and increase in

magnitude.

The physical picture also sheds light into the stability of the technique with respect

to evanescent waves. The inversion just serves as a convenient computational tool

to calculate the geometric series of matrices, and in no case reverse propagation is

involved. If the evanescent components decay over a roundtrip, which will happen

as long as inverse propagation was not included in the component systems, then the

resulting matrix will be stable.



3.4.5 Finding eigenmodes

With the ability to compose scattering matrices, the eigenmodes of a system can be

found very elegantly and easily. Assume that we are interested in finding the resonant

wavefronts on a certain plane in the system for which z = zo. Using the rules for

composition it is possible to construct S', the scattering matrix for the portion of the

system with z < zo, and also S", the scattering matrix for the part of the system

with z > zo.

Suppose that we are interested in the wavefronts moving to the right. If we follow

a wavefront u (see figure 3-7), the reflection from the right part of the system can

be found from its scattering matrix as S'iu. The resulting wavefront will again be

reflected by the left part of the system, and come out as S22SI'1 U.

S' 2 S"I -

St S S

Figure 3-7: Roundtrip transformation of a wavefront in a system.

Finding the resonant modes can then be cast again as an eigenvalue problem:

Au = S22S'l-

The mode finding algorithm using scattering matrices requires more computation

to set up than the simpler algorithm of section 3.1, but it allows to calculate the effects

on the mode due to multiple reflections, for example in the case of an intracavity

element. However, if the extra flexibility is not needed, the simpler algorithm will

work well and be much faster.

In order to find the eigenmodes correctly, with either method, it is important to



set up the system so that the portions of the wavefront that get close to the limit of

the finite domain get filtered out. This procedure is required to prevent wavefronts

to wrap around the system's boundaries due to aliasing, which compromises the

correctness of the numerical solution in representing the continuous eigenmodes.



Chapter 4

Design and analysis of the cavity

The proposed cavity consists of a two mirror confocal cavity1 , where the mirror sur-

faces are limited to a fairly thin ring. This chapter provides some insight in the

cavity functioning and also analytical expressions for the parameters of interest and

for sizing the mirrors given the separation and wavelength.

Alternative designs were also explored in the past, for examples by designing the

profile of the mirror ad-hoc to generate a mode that does not diffract significantly

through an aperture ([15]). However, issues of manufacturability and coupling make

it so that only spherical mirrors are feasible outside of computer simulations. Further-

more, the solution found using spherical mirrors is extremely satisfactory, so there is

no point for designs harder to implement.

4.1 Choice of using a confocal cavity

The first thing that I did after having written the simple eigensolver described in

section 3.2 and having tested it successfully on textbook examples was to model a

simple cavity with a fairly tight focus and a small hole in the mirror, assuming no

angular dependence of the eigenmodes. For such a system, the losses per roundtrip

of the best mode 2 are fairly high unless the size of the aperture is kept really small,

'The separation of the mirrors equals their radius of curvature.
2For brevity, I will refer to the mode with the least losses as the best mode.



as noted in other studies (see chapter 1).

To have an idea of the parameter space, and as a good way of testing the solver,

the variations in roundtrip loss were explored by varying the radius of curvature, the

wavelength and the separation between the mirrors. Varying the first two parameters

did not result in surprises. However, varying the cavity length gave a result with

lots of structure. Figure 4-1 shows the fraction of the energy 3 that is retained after

one roundtrip by the best mode in a cavity with R = 20 cm constructed with 1/2

inch mirrors having an aperture with a diameter of 1 mm and driven with a field at

A = 2pm.

Energy retained after a roundtrip

0.9

0.8

0.7 -

0.6 -

0.5 -

0.4 I10 15 20 25 30 35
L (cm)

Figure 4-1: Fraction of the energy left after one cavity roundtrip for the least lossy
resonant mode as the distance between the mirrors is varied.

It is immediately clear that there are certain values of L for which having an

aperture does not introduce significant loss. The most evident value corresponds to

the case of a confocal cavity (L = R), and the two next prominent peaks occur for

L = R/2 and L = 3R/2. There are many other peaks, but they are all very narrow

and most of them have visible losses. For alignment reasons, it is encouraging that

the fractional loss curve (simply 1 - A12 ) has quadratic behavior in proximity of the

three points mentioned.

If the cavity needs to have a hole of relatively large size, it is imperative that it

3 Or in other words A2 in terms of the eigenvalue.



is operated near a peak. The loss calculated for figure 4-1 is in the case of perfectly

reflecting mirrors, and it is entirely due to diffraction directing energy out of the

cavity either through the hole or off the sides. This loss of energy can be seen as

an increased transmissivity in equation 2.16, leading to a decrease in enhancement.

Since cavity enhancement is crucial to be able to reach critical intensities for HHG,

it is not acceptable to have a cavity limited by design to have low finesse.

To understand the nature of these resonances that can withstand the presence of

an aperture without experiencing losses, we can look at equation 2.17 which gives the

frequency of a cavity mode (for a cavity with no holes) given its quantum numbers

in rectangular coordinates. In the case of a CW laser, the cavity is excited only at a

single frequency, so only the modes for which

fmnq ~ fiaser

can be excited.

The amount of modes that can be excited at a certain cavity length is determined

by the factor

cosi1j- L .
Ro

Suppose that the factor is an irreducible fraction of ir of the form a7r/b, then the

frequency of the modes reduces to

fmnq = [q+ (m + n + )a,

meaning that all the modes for which bq + a(m + n + 1) is a constant integer can be

excited.

It is clear that not all transverse modes are accessible with a single frequency.

Suppose that the mode for m - n - 0 can be reached for a certain cavity and a

certain laser, and that such mode has q = qo. The next excitable mode for either m

or n is such that

b - Aq+ a -Am = 0



which can be solved for the smallest integers giving Am = b and Aq = -a.

Knowing that the mode (mo, no, qo) can be excited, it follows that also the modes

with quantum numbers

(mo + ib, no + kb, qo - (i + k)a),

given integers i and k, can be excited with the same setup.

The more modes that are accessible (of the traditional cavity without apertures),

the better the cavity can withstand the presence of an aperture without losses. This

property is due to the fact that all the Hermite-Gaussian modes that can be excited

are in fact part of the same degenerate space, so it is possible to superpose them in

any way to get another eigenmode with the same eigenvalue. The more basis vectors

that are available, the more flexibility we have in generating arbitrary wavefronts by

superposition. In particular, if the basis set is close to being complete, it is possible

to create a new eigenvector by superposition which has extremely low field amplitude

in the location where the aperture is.

In the ideal case it would seem that a/b = 1, so the entire set of Hermite-Gaussian

modes can be accessed. However, this condition corresponds to L = 2Ro, a cavity

with a really tight focus at the limit of stability. The reason why this kind of cavity

would work very well in the presence of holes can be understood from ray optics. All

the rays pass through a single focal point, and the mirror surfaces are both on the

same spherical surface centered around the focus. A single ray will bounce back and

forward along a diameter of the sphere, intersecting it always at the same two points.

Therefore all those rays for which both of the points are on the mirror surface (not

on the aperture) will be stable.

In the case where the system is forced to have circular symmetry though, the

entire set of Hermite-Gaussian modes is not needed, since the corresponding Laguerre-

Gaussian modes can be constructed by using either all-even or all-odd m and n4, so
4The parity of m and n can differ, but all the HG components will have the same parity for m

and n. For example,

H Go2 + HG20
LG10 =2-



effectively the case where a/b = 1/2 is enough to have a complete basis. This is the

case for the confocal cavity, where L = Ro. The physical reason for needing only half

of the modes is that any mode with circular symmetry and even angular dependence

has to be constructed only of modes that are inversion symmetric5, while any mode

with circular symmetry and odd angular dependence has to be constructed of modes

antisymmetric with respect to inversion.

When L = R/2, a/b = 1/3, and when L = 3R/2 a/b = 2/3, so the transverse

modes accessible are one out of three in each dimension. When L = R(1 ± 1/ /2),

the accessible modes are one out of four in each dimension6 , and so on. Each length

for which the inverse cosine factor is a fraction of r will be a peak in the graph of

figure 4-1.

The choice of the confocal cavity stems from its property of supporting a complete

basis of eigenmodes, therefore giving it the best rejection to losses due to apertures

and the highest tolerance for imprecise alignment. Furthermore, the L = 3R/2 cavity

has a double focus, while the L = R/2 presents no significant advantage over the

confocal cavity and has a tighter tolerance for alignment.

4.2 Single-mode operation

Since the resonances that are stable when apertures are introduced arise from the

fact that the modes are degenerate, these kind of cavities also have the downside of

supporting many modes all of which are excitable. Mode degeneracy is unwanted in

a resonator, because of inter-mode coupling occurring due to scattering and nonlin-

earities which brings the cavity in unwanted and unexpected regions of operation,

with not well-characterized spatial properties of the focus and also a bad intensity

and phase profile due to beating.

while
3 1V5LG 13 = -HG14 + HG3 2 - -HG 0.
4 2v'2 4

The derivation of the formulas for conversion between the two basis of modes can be found in [14].
5With respect to the origin.
6Notice the resonance corresponding to L = R(1 + 1/v5,) in figure 4-1 at L ~ 34.14 cm.



In the case of the designed cavity, there are actually two degenerate modes that

survive due to the geometry of the resonator, but they are a pair of symmetric and

antisymmetric modes that for all practical coupling techniques will be equally excited

in a reliable way, as will be analyzed in section 4.2.4.

4.2.1 Single mode operation in a degenerate cavity

Ideally, the cavity should support only a single mode at a given laser frequency. In

the case of a cavity with degeneracy though, it is nearly impossible to achieve pure,

single mode resonance, so what we really care about is the fact that one of the mode

dominates over the others.

If each mode is excited equally by the external laser field, their intensity enhance-

ment is proportional to
1

(1 - R)21

from equation 2.15, assuming zero roundtrip phase. The squared quantity, in the

context of a cavity with losses is simply half of the roundtrip losses7 , so the resonance

boosts the intracavity mode power by a factor of

L (4.1)

where L is the total roundtrip power loss, compared to the power that will be trans-

mitted through a single mirror.

Therefore, if the fractional loss of the eigenmode ui is L1 , and the fractional loss

of eigenmode U2 is L 2 , the ratio of their intracavity powers will be

P1  L2

P2  L2

If there is a single mode Ub for which given any other mode ni

()Li 2 K
Lb)

'Which are -2T = (1 - R) if the cavity has no losses and the reflectivity is reasonably high.



then if we couple equal amounts of power with equal coupling efficiencies in the

cavity for all modes, the circulating power in mode Ub is going to be a factor of K,

higher than in the other modes. If a value of K, can be found for which the cavity

behavior is practically single mode for the intended application, then the problem

with degeneracy is solved.

Fairly good mode separation can occur even if the roundtrip energy change is

very similar because of the quadratic dependence. If one mode retains 99% of its

power, while another retains only 95%, the first one will have a circulating power

approximately 25 times higher. It is crucial that L takes in account the power lost

due to transmission through the mirrors as well, usually an additive factor of 2T for

high reflectance mirrors and low loss modes.

It is important to keep in mind that the enhancement factor of equation 4.1 is

purely that of the mode's wavefront once it is already inside of the cavity. The overall

enhancement from the coupled portion of driving beam depends also on the mirror

reflectivity as shown in equation 2.15. For a given mode, the total enhancement factor

becomes smaller as the intracavity losses lower the finesse:

|E2 T 11t 1

IEOI 2  L/2 (T + Lo/2)2  T (1+ LO) 2

where Lo is the amount of losses not due to the transmissivity of the mirror. When

the extra losses amount roughly to 0.82T, the enhancement factor is reduced by a

factor of 2. Since one of the goals of the cavity is to produce enhancement, it is a

good idea to limit the losses of the chosen mode to be less than half of those due to

one reflection at the mirror.

Furthermore, at least the mirror through which light is coupled in should be nearly

lossless, otherwise the enhancement is further reduced, while the other mirror could

ideally have R = 1. If it is the case', then the overall power enhancement becomes

4T 4 1

(T + Lo)2  T (1+ O)2

8Real dielectric mirrors are very close to this ideal case.



In light of the above expression, the maximum enhancement is limited by losses to

1/LO when T = LO.

4.2.2 Traditional ways of limiting degeneracy

Two common methods to force operation at a non-degenerate point are the introduc-

tion of an aperture in the cavity and the operation slightly off the degeneracy.

The usual way to force lasers to radiate in a single mode is to include an aperture at

the center of the cavity, introducing high losses in the high order modes and allowing

for lasing mainly at the fundamental gaussian mode.

Simulating on the computer the iris at the center of the cavity, and varying its

aperture size gave the plot of figure 4-2. Unfortunately, the roundtrip loss is at around

5% before the mode degeneracy starts to break, leading to a maximum theoretical

enhancement of around 20.

Mode selectivity with an iris at the center of the cavity
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Figure 4-2: Mode selectivity when an iris is placed at the center of the cavity.

Another way of breaking the degeneracy is that of moving the mirrors slightly off

the confocal configuration, so that one mode will survive more than the others as the

degeneracy is broken. The result of simulating this method on the computer is shown

in figure 4-3. Unfortunately the modes do not separate enough from each other to be

able to achieve effective single-mode operation.



0.995-

0.99 -

0.985 -

0.98

0.975-

0.97 --- First eigenvalue
Second eigenvalue

0.965 --- Third eigenvalue

0.96 I
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Displacement from confocal (mm)

Figure 4-3: Mode selectivity obtained by displacing the mirrors from confocal config-
uration.

4.2.3 Restriction of the mirror size

A third approach that I tried was to restrict the size of the mirror. Suppose that

the dimensions of the hole have already been decided, then it is possible to size the

outer radius of the mirror so that only a ring is left. By reducing the thickness of the

ring appropriately, it should be possible to get to the point where the complete but

bandlimited basis of modes can be superposed only in one way such that the losses

are small.

An analytical formula to determine the optimal mirror width

Let us define a few fundamental variables for the design of the cavity. Let R be the

radius of curvature of the mirrors, r be the average radius of the ring-shaped mirror,

Ar be the thickness of the ring and A be the wavelength of the driving laser. Refer

to figure 4-4.

Assuming that r < R, 0 ~ 2Ar/R. If two plane waves were to propagate at an

angle 0 with respect to each other, the spatial period of their interference pattern will

be
A

2 sin 0



R/2

\ /
Figure 4-4: Naming of the variables determining the geometry of the cavity.

It is reasonable to assume that if Ar is proportional to the pitch of the interference

of the two plane waves above, then the cavity will practically operate in single mode.

The exact constant of proportionality is hard to compute from first principles, and

it depends also on what mode separation is considered acceptable. Leaving the nu-

merical solver with the task of finding the constant of proportionality, an analytic

expression can be derived in the paraxial case for determining the dependence of Ar

on the other parameters:

A A A AR
2sin0 20 2. 2A 4Ar'

from which it follows that

Ar A -R. (4.2)

Numerical computations

While the above physical reasoning gives an approximate functional form for the point

where modes start to get a considerable loss, in principle it is hard to tell whether the

modes will separate in a convenient way, or all of them will equally get more lossy.

It is possible to use the computer to analyze the loss of the resonant modes as the

thickness of the ring is varied, as well as test numerically equation 4.2 and in case

find a suitable constant of proportionality.



Mode selectivity for ring shaped mirror
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Figure 4-5: Mode selectivity obtained by varying the extent of the mirror surface,
shaped as a circular ring.

The results for a 20 cm cavity with r = 1.5 mm driven at 1 pm are shown in figure

4-5. When compared to the two common techniques, reducing the mirror size is able

to achieve a sharp separation of the first two modes from the other ones.

Given the fact that the roundtrip losses for the first two modes are in the neigh-

borhood of half a percent, the optimal power reflectance of the mirrors is at around

99%. As a reasonable target value for the attenuation of the third mode, I choose 5%

per roundtrip. The numerically found curve for the loss of the third mode of figure

4-5 attains the desired value for a thickness of 768 pm, which can be used to evaluate

the constant of proportionality to be very close to 1.72 (which in turn is very close

to v/3, to keep the formula simple). For a third mode loss of 5% then, the thickness

of the ring is given by 9:

Ar ~ v/3AR. (4.3)

It is also possible to use the computer to check the correctness of equation 4.3 for

its dependence from the cavity parameters R, r and A. I used the software to sweep

through a range of values for the parameters, while evaluating the eigenvalues at ten
9 1f the target attenuation is different, the constant will differ, but only by a small factor. From

figure 4-5 it is possible to notice how over a ~ 12% fractional variation of Ar the third mode loss
goes from 1% to 8%.



different values for Ar centered around the expected result from the analytic formula

and spanning 150 pm. The ring thickness for which the third mode losses reach 5%

was then estimated from the ten datapoints using MATLAB's standard piecewise

cubic interpolation.
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Figure 4-6: Single mode cavity as A is varied. (a) Ar to achieve single mode operation

(together with the analytic expression), (b) roundtrip losses of the second mode.

Using this technique, the dependence of. Ar on A was analyzed numerically (see

figure 4-6). For a cavity with R = 20 cm and for r being 1 or 2 mm, the required ring

thickness predicted by equation 4.3 is very close to what determined numerically for

A between 500 nm and 2.5 pm. The losses of the first two modes are also below 0.7%

for all the cases, and below 0.4% for r = 1 mm and A < 1200 nm.

In figure 4-7, Ar is determined for a cavity with r = 1.5 mm driven at A = 1

pim for R between 10 and 40 cm. The ring thickness again behaves as predicted, but

the losses of the second mode, below 0.4% for R > 15 cm, increase substantially for

values of the curvature under 15 cm. More careful analysis indicates that it is not a

numerical artifact, so this result might indicate that this kind of cavity can operate
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as intended only for r < R/100.

Finally, the variation of Ar with respect to r is shown in figure 4-8, for a cavity

with R = 20 cm and driven at A = 1 pm. As expected, the radius for single mode

operation is insensitive to changes in the ring mean radius, and it deviates less than

20 pim from the reference level; the losses stay below 0.4%.
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Figure 4-8: Single mode cavity as r is varied. (a) Ar to achieve single mode operation
(together with the analytic expression), (b) roundtrip losses of the second mode.

Considerations for the enhancement of ultrafast pulses

Confocal cavities are very broadband structures, however by forcing pseudo single-

mode operation via ring shaped mirrors bandwidth is reduced. If the cavity is designed

for a particular wavelength A0, then the components with A < A0 will see reduced

losses for the transverse modes beyond the first two, reducing the effective single-mode

operation. If A > A0, then eventually the first two modes will start to experience



losses.

From figure 4-6, it looks like it is possible to get about 100 nm or more of band-

width in the Ti:Sapphire window, while maintaining a sufficient enhancement factor

for HHG and fair mode separation.

4.2.4 Structure of the two dominant modes

As mentioned earlier, it is actually impossible to limit the cavity to resonate in one

single mode, and two modes will always have similar losses10 . By using the software,

it is possible to visualize the spatial field distribution inside of the cavity for the

two modes of interest. The result of simulating the propagation and reflection of the

modes' wavefronts is shown in figures 4-9 and 4-10. Let us denote these modes by ui

and U2, respectively.

These plots represent the magnitude of the complex field for a roundtrip in a 20

cm long cavity with r = 2 mm and A = 2 pm. The wavefront starts immediately after

a mirror at z = 0, then propagates through the cavity and gets reflected at z = 20

cm by the second mirror, and finally comes back where it started.

First eigenmode
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Figure 4-9: Magnitude of the complex field of the first mode (ui).

The two modes appear almost identical, but they differ by the relative phase of

the straight section with respect to the crossed section, as it is possible to notice

ioIn fact, even the more lossy modes come in pairs, but we are not interested in them.



by examining the interference patterns in proximity of the mirrors (the fringes are

shifted between the two modes). Even though the different interference pattern at

the mirrors produce slightly different eigenvalues, due to the fact that some of the

field on the sides is not reflected, the two modes are practically degenerate.

Second eigenmode
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Figure 4-10: Magnitude of the complex field of the second mode (U 2 ).

Any linear combination of the two modes is then itself a low loss mode, so it is

possible to combine them in a more convenient way. In figures 4-11 and 4-12 are

shown the field distribution of modes #1 = (ui + u2)/v2 and 42 = (U1 - U2)/v 2.
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Figure 4-11: In phase addition of the first two modes ('i 1 ).

The structure of these modes is clear from the ray picture: for $1, light travels

straight up to the first mirror, which focuses it in the center of the cavity, imaging
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Figure 4-12: Out of phase addition of the first two modes ($2 ).

it exactly on the other mirror 1 . b2 is exactly the same, except that fight is initially

focused, and then the return path is straight.

The behavior of 02, shown in figure 4-13, is convenient for HHG. Assuming that

the laser pulse is coupled in from the left, it is focused on the forward path, so

the generated harmonics can leave the cavity from the other side, where there is no

coupling optics.

It is possible to excite almost exclusively 01 or 02 by entering the cavity with a

ring shaped beam that goes initially straight or that focuses, respectively, therefore

in practice it is possible to operate this cavity in a single mode, which was our goal.

4.3 Analysis of the focus

So far, we showed that it is possible to design a cavity with large apertures which

allows for a pulse energy enhancement factor of around 100. While it certainly helps,
it is still not sufficient to achieve HHG. The limitation is that a good dielectric mirror

can withstand instantaneous intensities12 of about 1012 W/cm 2 , therefore the driving

pulses are limited to have a peak intensity of about 1010 W/cm 2 right before the

mirror. To achieve the intensities required by HHG, the cavity needs necessarily to

"Notice how the imaging condition is satisfied from a mirror to itself, since the if f is the focal
length of the mirrors, the cavity is 2f long so 1/2f + 1/2f = 1/f

12Only for ultrashort pulses that do not induce thermal damage.



Figure 4-13: Direction of wave propagation for V 2.

focus the light very strongly.

To calculate the intensity gain from the mirror's surface to the focus1 3 , let us

first calculate the size of the focal region, shown in figure 4-14. In the paraxial

approximation, we have that L sin 20 = Ar. Therefore the transverse size of the focal

region is

Tcenter ~A

while the longitudinal extent is

Ar RAr A1/ 2R 3/2
f Ocus ~ 2L cos 0 = 2 cos 0 r

sin 20 r r

The ratio of the area of the ring to that of the focal region is proportional to

rAr r
2 A'Tcenter r

which for the cavities considered so far is a small value. However, this ratio does not

13This derivation is aimed only to find the functional form of the expressions for spot size and
gain. The constant factors will be calculated from computer simulations.



Figure 4-14: Calculation of the size of the region of focus.

constitute the gain, because the focus has additional structure due to interference, as

shown in figure 4-15.
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Figure 4-15: Field strength at the focus.

the width of the central fringe can be related to the width of the interference

pattern of plane waves incident with angle 20 ~ 2r/R, so that in the paraxial ap-

proximation
AR

T focus ~ t.

To determine the gain, it is not sufficient to take the ratio of the ring area to the



focus transverse area, since there is a non-negligible amount of energy in the fringes

surrounding the central interference peak.

Since the focal region is approximately formed by the superposition of plane waves

whose k vector makes a constant angle with respect to the axis of propagation, the

Hankel transform tells us that the spatial pattern must be very similar to a truncated

Bessel beam.

The envelope of a Bessel function goes as 1/fr, so the differential energy per

radial increment is

dE = 27rrkt|2dr ~ dr.

This result means that the fraction of the energy in the central peak is proportional

to the ratio of its radius to the radius of the entire focal region, so the cavity gain

can be expressed as

- Aring rfocus t-r-rA r 2  AR 1 _ 2
A50cus rcenter A2R 2  r AR AR

Numerical testing for equation 4.4 has been performed for the same cavity param-

eters as in the previous section, and the results are shown in figures 4-16, 4-17, and

4-18.

As before, the functional form of equation 4.4 is verified, and numerical constants

can be estimated for gain and spot size to be:

r 2
g 119.2 AR

A R

wo ~ 0.177 -
r

Therefore, this kind of cavity allows for an intensity gain of three orders of mag-

nitudes, reaching intensities compatible with high harmonic generation at the focus,

while not damaging the mirrors.
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Figure 4-16: (a) gain and (b) spot size dependence on A, together with the analytic
expressions.
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Figure 4-17: (a) gain and (b) spot size dependence on R, together with the analytic
expressions.
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4.4 Coupling of external fields

The disadvantage of the proposed cavity design is that the coupling efficiency of a

regular gaussian beam is extremely low, due to the fact that either most of the beam

power is located where the aperture is, or the beam is expanded so much that most

of the power lies outside of the ring mirror.

Even considering the large gain and the power enhancement, for the cavity to

be practical external fields need to be coupled in fairly efficiently. Given the mode

structure, a good way of coupling the laser into the cavity is to transform the beam

to have a ring shape, which can be done by using an axicon".

The idea is to use the axicon to convert a gaussian beam into a ring shaped beam

which is then coupled into the cavity at the right angle with the help of two lenses,

as shown in figure 4-19. Even though other combinations of lenses' focal lengths and

distances can produce the right coupling angles for a single ray, the 4f combination

also ensures that the ring's wavefronts themselves are not diverging.

2fR

Figure 4-19: Proposed coupling scheme, using an axicon.

Given the length of the resonator R and the angle of the axicon a', the average

radius of the mirror ring can be determined geometrically. Referring to figure 4-20,

call a the angle (7r - a')/2. For an incoming ray perpendicular to the axicon's flat

face, the conical surface's normal will be at an angle a with respect to the z-axis, so

"Also, the mode at the focus is very similar to a truncated Bessel beam, which can be created
using an axicon.



(assuming that all the angles are small)

wr n+ t nac,

where na is the refractive index of the axicon, so that the angle of the ring beam is

-y = (na - 1) a. (4.5)

Figure 4-20: Angle of ring-shaped beam.

The lens system makes it such that the incident angle at the mirror will be -Y, as

shown in figure 4-21. The angle inside the substrate of refractive index nm will then

be -y/nm. If the angle of the beam inside the cavity is denoted by 3, then the surface

normal at the mirror is //2, and Snell's law gives the relation between -y and 3 as

2n -m 2'
2 n, nm 2'

which can be rewritten as

(nm + 1)3 = 2-y. (4.6)

Putting together equations 4.5 and 4.6, the angle inside the cavity can be calcu-

lated from a directly:

2na-1
n +1



-43/2

Figure 4-21: Beam angles in refraction from the mirror's substrate.

The mean radius of the ring mirror surface can then be calculated to be

r = n aR.
nm +1

Using the computer, this coupling scheme was simulated for a cavity with R =

15 cm, A = 633 nm, a' = 175' and f = 10 cm, for mirrors with 99% power re-

flectance 5 . The refractive indices were taken to be both 1.52. The mirrors were

assumed to be fully transparent in the regions outside of the ring.

The cross sectional field strength is shown in figure 4-22, and it is in accordance

with the ray-optics picture. The total beam power and the peak intensity are shown

in figure 4-23. The overall intensity gain from the initial gaussian beam to the cavity

focus is g = 4404, for a waist size of 200 pm.

This means that to reach an intensity of 10" W/cm 2, the gaussian's peak intensity

needs to be around 2.5 x 1011 W/cm 2, and so have a peak power of about 300 MW.

If we assume a pulse width of 25 fs, the total pulse energy required for HHG will be

around 8 pJ.

Approximately 68% of the incident power leaves the cavity from the rightmost

mirror, therefore even with relatively simple coupling optics the coupling coefficient

can be fairly high.

15These parameters were used because a possible test cavity could be made from such components.
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Figure 4-23: Plot of
propagating waves.
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4.5 Phase matching

A factor affecting the maximum interaction length of the laser pulse with the gas jet

is the length of the region where quasi phase-matching can be achieved. The proposed

cavity design has a linear Guoy phase shift at the focus, due to the fact that the beam

structure is similar to a Bessel beam.

Given the angle 0 = 2r/R, then the phase shift with respect to a plane wave per

unit length is given by

d#$ 2r 2

d=kz - ko = -ko(1 - cosO) ~ ---ko .dz k e R2

The phase shift is negative, since the phase velocity along the z-axis is never less than

the speed of light.

In the case of a 20 cm cavity with r = 2 mm and A = 2 pm, the predicted phase

shift rate of change is 27r x 102 rad/m. Using the computer, it is possible to calculate

the phase difference with a plane wave for a series of closely spaced points along the

(4.7)
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z-axis, and then unwrap the angle. The result is shown in figure 4-24; evaluating the

slope between z = 9 cm and z = 11 cm gives a variation in phase shift per unit length

of 630.9 rad/m, extremely close to the predicted value from equation 4.7.

Guoy phase shift
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Figure 4-24: Guoy phase shift calculated numerically.

The Guoy phase shift is referred to the fundamental field, so when it is considered

in the context of the generation of the nth harmonic the effective phase slip in terms

of the harmonic wave gets multiplied by n. Also, for the presented cavity it is not

well defined outside of the focus, since the field is practically zero on the z-axis in

proximity of the mirrors.

The second predominant phase effect is due to the phase of the atomic dipole (see

section 2.3). In this case, the slopes reported are correct when the ponderomotive

energy is expressed in atomic units with wo = 1.

Given the ponderomotive energy in SI units in terms of the intensity,

U(s.1.) Zo
2mewo



it can be easily converted into renormalized atomic units 6 as

U(S-'~)
U(au.)

P 4.36 x 10- 18 -Wa..

where the frequency in atomic units is Wa.u. = 24.2 x 10-18W.
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Figure 4-25: Ponderomotive energy in normalized atomic units.

The ponderomotive energy along the z-axis for the cavity above is shown in figure

4-25 for a peak intensity of 5 x 1014 W/cm 2 . Consider the 10 1" harmonic, at A = 20

nm. In that case, the cutoff occurs for Up = 31.5 in normalized atomic units, so from

the figure we can see that we are above that intensity for the most part of the focus.

The total phase shift between the fundamental and the harmonic can be computed,

and it is shown in figure 4-26. The linear phase due to the focus characteristics

becomes very steep due to high harmonic order, and the dipole phase shift creates a

visible dip in the curve, creating two regions in which the phase shift has zero rate of

change. Observing the one closer to the peak of intensity (i.e. the local minimum),

we can see that the generation of the 10 1st harmonic can occur over a region spanning

about 500 pm.

If the phase shift for a higher harmonic is analyzed, in this case the 28 1"t, shown

in figure 4-27, the Guoy phase shift is much more dominant, moving the two phase-
6 Here we care only about the numerical value. Assume that appropriate multiplicative constants

are applied so that the final unit for phase is the radian.
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Figure 4-26: Total phase shift for the 101" harmonic.

matched regions closer to each other, and increasing the length over which the nonlin-

ear generation is coherent. In this case, the process can be phase matched for slightly

over 1 mm.
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Figure 4-27: Total phase shift for the 2 8 1"L harmonic.

Unfortunately, as higher harmonics are generated, the phase matched regions

shift, so it is unlikely that the entire spectrum of harmonics can be generated without

destructive interference.

There are a few remedies to this problem. First of all, it is possible to increase

the size of the cavity. In the example considered, the intensity is enough to generate

harmonics up to the 1 0 0 0 1h order, but the phase of the focus limits phasematched

emission to approximately the 30 0 th order. If the ring radius is increased by a factor



of v/3 and the cavity length by a factor of 3, so to maintain the same gain, the

slope of the Gouy phase will be reduced by a factor of 3, allowing to generate all

the harmonics up to around the 1 0 0 0 'h order at the expense of increasing the pulse

energy by a factor of 3 as well (in which case though the area of the focus and so the

harmonic power output goes up by the same factor).

Another possibility is to increase the intensity, so that the dipole phase will have

a dominant effect for more harmonics. This solutions reduces the length where the

interaction is phasematched, but increases the overlap of the phasematched regions

for different harmonics (starting from the lower orders).

It is important to point out that for most applications it is not necessary to have

the entire spectrum of harmonics, and this cavity still allows for generation of octave

spanning high harmonic spectra while phase matched, if the gas jet location and

thickness is determined correctly.
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Chapter 5

Experimental work

To confirm experimentally the viability of the proposed cavity, I attempted to im-

plement the system outlined in section 4.4. Unfortunately, the unusual substrate

prevented me from using the semiconductor fabrication facilities, and getting trained

in a laboratory with the necessary capabilities was not a possibility before the end of

this work, therefore the full cavity has not been completed. However, the experimen-

tal work done so far shows that the ring mirrors are fairly simple to create.

5.1 Fabrication of the mirrors

The system shown in section 4.4 was the model for a possible system to implement.

The 633 nm design wavelength was chosen due to the availability of He-Ne gas lasers,

and the fact that operating with visible light would be simpler for alignment and

observation for a novel cavity design.

The mirrors of choice were the PR1-633-99-0537-0.15CC from CVI Lasers (Al-

buquerque, NM), which are dielectric mirrors with a power reflectance between 98.5%

and 99.5%. The average radius of the ring was chosen to be 1.3 mm because of the

15 cm curvature and the availability of axicons with 175' cone angle.

The idea is to deposit a layer of positive resist (S1813) on top of the dielectric

stack, and expose it with a mask shaped like the ring. The fact that the mirrors are

concave is not a problem both for spinning the resist and for the lithography step,



since even with a curvature of 15 cm a 1/2 inch mirror goes only about 130 pm below

the rim level. Using a 400 nm light source, the ring has to be oversized by less than

10 pm on the mask.

The mask was created with an imagesetter on film (Printworks, Cambridge, MA),

and was fixed on a glass slide which was balanced on the mirror's outer rim, keeping

the emulsion side on the bottom.

Figure 5-1: Etched mirror.

The mirror shown in figure 5-1 has been etched using an ammonium fluoride/potassium

fluoride etching paste. While the border is rough for approximately 25 pm, the por-

tion that is preserved is quite circular and precise. Etching in HF will produce much

better results, but it has not been possible in time for this work.

5.2 Monochromatic cavity stabilization

If the mirrors reflect 99% of the power, the width of a transverse cavity resonance will

be approximately 1 nm, therefore the optical separation between the mirrors should



be stable within 1 A of a resonance. It is impossible to achieve this kind of stability

purely passively, therefore a feedback system was developed to control one of the

cavity mirrors, moved by a piezo stack.

The control signal was supplemented with a high frequency sinusoidal signal (10

kHz) which produced small oscillations around the operating point. A photodetector

collected the output of the second mirror, and the output signal was used to measure

the small signal gain at the operating point by homodyne detection of the 10 kHz

signal. The local small signal gain (i.e. the gain of the HF signal) is proportional to

the slope of the resonance peak, and in particular will be zero at the maximum, and

vary linearly around it.

Using the small signal gain as the error signal, it is possible to stabilize the cavity

with a lead compensator. The stabilized cavity was tested successfully with higher

reflectance mirrors, which produced resonant peaks about 2.5 A wide, so this simple

stabilization scheme is able to keep the optical pathlength between the mirrors stable

to within a fraction of an angstrom.

By operating the cavity off confocal, it was possible to separate and photograph

the Laguerre-gaussian modes, shown in figure 5-2. Slight angular variations are due

to the fact the some high-order angular modes get excited due to the alignment which

is not perfect. The distortion of the pattern is due to perspective, since the camera

was capturing the scene at an angle.



Figure 5-2: Pictures of the LGo,o to LG9 ,0 and LG12 ,O modes.



Chapter 6

Conclusions

The proposed cavity design appears to be very promising when applied to HHG. The

power enhancement offered by the resonator, together with the very high intensity

gain from the mirrors to the focus, provide a practical way to create pulses in the

intensity regime needed for HHG without the need of additional amplification.

While some aspects have not been taken in consideration in this work, such as

a way of introducing the gas jet in the middle of the mode and the effects due to

perturbative nonlinearities, it appears that they should not pose a major problem in

the realization of such a system.

Despite the unusual mode shape, it is possible to achieve coupling efficiencies

of more than 50% from a standard gaussian beam by using a fairly simple optical

setup. The theoretical expressions derived for the size of the mirrors required for

high gain and single mode operation show that the required system size is quite

small. Furthermore, I demonstrated a practical way to construct the needed mirrors.

The phase matching considerations suggest that it is possible to generate octave

spanning frequency combs in the EUV and soft X-ray region of the spectrum, with

immediate applications in frequency metrology and in the generation of attosecond

pulses.

Aside from HHG, this cavity is able to create a really intense light field from

relatively inexpensive sources, and so it could find other uses in the case where strong

fields are requires, such as in laser electron acceleration.
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