
Augmented Reality on the iPhone Platform

by

MASSACHUSETTS INSTrTUTE

Tze Kwang Chin OF TECHNOLOGY

S.B., C.S. M.I.T. 2008 AUG 2 4 2010

S.B., Mathematics M.I.T. 2008 LIBRARIES

Submitted to the

Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology
ARCHNVES

September, 2009

@2009 Massachusetts Institute of Technology

All rights reserved.

Author
Department of Electrical Engineering and Computer Science

August 21, 2009

Certified by...............................
Eric Klopfer

Associate Professor
Thesis Supervisor

Accepted by
' Dr. Christopher J. Terman

Chairman, Department Committee on Graduate Theses

2

Augmented Reality on the iPhone Platform

by

Tze Kwang Chin

Submitted to the Department of Electrical Engineering and Computer Science
on August 21, 2009, in partial fulfillment of the

requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, I designed and implemented an iPhone implementation of the Outdoor
Augmented Reality client developed by the Schellar Teacher Education Program at
MIT. The work began as a simple port, but it soon became clear that a redesign
of the current system architecture was necessary to provide better cross platform
compatibility, especially in light of the possibility of a future Android implementation
of the game client. I designed a flexible and extensible new architecture that achieves
that purpose. Furthermore, the new architecture also adds more features to the game
such as having basic Al for game characters.

Thesis Supervisor: Eric Klopfer
Title: Associate Professor

4

Acknowledgments

I would like to thank Professor Eric Klopfer for providing the vision and direction

for the Outdoor Augmented Reality project. I would also like to thank Judy Perry

and Josh Sheldon for being fantastic project managers who have kept me on track

as the work progressed from week to week. Many thanks to Lisa Stump as well for

providing invaluable advice and for sharing her experience as senior developer of the

Windows Mobile branch of the project.

THIS PAGE INTENTIONALLY LEFT BLANK

Contents

1 Introduction 17

1.1 Educational Motivation. 17

1.2 Summary of Thesis Content . 18

2 Background 19

2.1 Previous Games . 19

2.2 The OutdoorAr Game Editor . 20

2.3 The iPhone Platform . 21

3 iPhone Implementation 23

3.1 Game Terminology . 23

3.2 Requirements.. 24

3.3 System Architecture Overview . 24

3.4 Game Deployment . 30

3.5 Game Deserialization . 32

3.6 G am eplay . 34

3.7 User Interface . 35

3.7.1 Game Selection . 35

3.7.2 Game Update . 35

3.7.3 Game Options . 38

3.7.4 Primary Game View . 39

3.7.5 Game Object View . 40

3.8 Lessons Learned..... 41

4 The MIT Augmented Reality Framework 43

4.1 M otivation . 43

4.2 Challenges . 43

4.3 Goals 44

4.4 System Architecture 46

4.4.1 Game Ticks 46

4.4.2 Communication between User Interface and Model 47

4.4.3 Entities . 48

4.4.4 Conditions . 49

4.4.5 A ctions . 50

4.4.6 Events . 50

4.4.7 States . 51

4.4.8 Map Coordinates . 52

4.4.9 Players . 52

4.4.10 M edia . 52

4.4.11 R egions . 52

4.4.12 G am e . 53

4.4.13 Location . 53

4.4.14 Game Objects . 53

4.4.15 Game File Format . 57

4.5 Serialization and Deserialization Protocol 58

4.5.1 Serialization . 59

4.5.2 Deserialization . 60

4.5.3 Differences between the old format and the current format . . 61

4.6 User Interface Specifications . 62

4.6.1 Primary User Interface Component 62

4.6.2 Map Component . 62

4.6.3 Game Object Map Component 62

4.6.4 Player Component . 62

4.6.5 Game Object Component . 63

4.6.6 History Component .. 63

4.7 Backwards Compatibility.. 63

4.8 Summary of Changes . 63

4.9 Examples of Possible New Features 64

4.9.1 Location Based Visibility . 64

4.9.2 Visiting Hidden Objects . 64

4.9.3 M oving Objects . 64

4.9.4 Location Based Bump Probability 64

4.9.5 Game Over on Visiting Certain Objects 65

4.9.6 Conditional Interaction with Game Objects 65

4.9.7 Customizable Sound for Triggering 65

5 Conclusion and Future Work 67

THIS PAGE INTENTIONALLY LEFT BLANK

List of Figures

3-1 iPhone Client User Interface Class Hierarchy 26

3-2 iPhone Client Backend Class Hierarchy 27

3-3 Game Selection View . 35

3-4 Game Update View . 36

3-5 Game Update Alert View . 37

3-6 Game Options View . 38

3-7 Primary Game View . 39

3-8 Game Object View . 40

THIS PAGE INTENTIONALLY LEFT BLANK

List of Listings

3.1 Remote Game List Example . 31

3.2 Game List DTD. 31

4.1 ArGameTickListener interface . 46

4.2 ArCondition class . 49

4.3 XML Serialization Format Template 59

4.4 Circular Reference Example . 60

THIS PAGE INTENTIONALLY LEFT BLANK

List of Tables

3.1 UIView subclasses. 28

3.2 UIViewController subclasses . 28

3.3 Data Container Classes . 29

3.4 O ther Classes . 30

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 1

Introduction

In the book Augmented Learning [2], augmented reality (AR) refers to a "combi-

nation of the real and the virtual in any location-specific way, where both real and

virtual information play significant roles". Augmented reality games thus superim-

pose virtual information onto the real world. There are multiple ways in which this

superimposition can be done. However, this thesis will only consider the solution

whereby location aware handheld devices are used to provide the user with location

sensitive data. For example, the device could display a history of MIT when the user

is present at MIT, but when at Harvard a history of Harvard is displayed instead.

It is important to note that the virtual information need not be fact, but can be

fictitious. It is also not limited in scope to descriptive material such as history, but

can also include virtual people and places that can be interacted with on the device.

1.1 Educational Motivation

The purpose of creating augmented reality games is to untether educational simula-

tions from the desktop [3]. By doing so, the players are able to physically participate

in the games, as opposed to being limited to virtual interaction in a desktop environ-

ment. Players can now interact as they usually would in their daily lives; that is, with

body language, facial expressions and multiple other nuances which cannot quite be

communicated on a computer. At the same time, players can simultaneously interact

with objects in the real world and objects in tHie virtual world. The simultaneous

interaction causes players to think differently about the real spaces that they are

playing in, making context and location importait to game play. Augmented reality

games thus provide a unique experience capable of stimulating a greater interest in

learning the educational material that the game hopes to impart.

It is important to clarify that augmented reality games are not single player en-

deavours, though they can be. Teamwork is an important social skill, and these games

hope to promote that. It is conceivable that players are split into teams, where each

team is assigned a handheld, and teammates work together to complete the game's

objectives. It is also possible to have each player receive a handheld, but have each

handheld provide different pieces of information such that group collaboration is re-

quired to understand the bigger picture. There are many more possible scenarios but

we see that there is precedent to enable group communication in these games.

1.2 Summary of Thesis Content

Chapter 2 will describe previous work done on augmented reality

Chapter 3 will describe the implementation of the Outdoor AR client on the iPhone

Chapter 4 will describe a new framework for Outdoor AR games

Chapter 5 will describe future work for the Outdoor AR platform

Chapter 2

Background

2.1 Previous Games

The first augmented reality game created by MIT's Schellar Teacher Education Pro-

gram (STEP) was Environmental Detectives [4]. Its premise is that there has been

an environmental spill at MIT. The players objective is to locate the source of the

spill, discover why it happened, and to find a way to remedy the situation while also

reporting any potential health and legal risks. The handhelds allowed players to take

water samples at various locations to analyze chemical concentrations, and also to

obtain information by interviewing virtual characters. A time limit was also imposed

on the game, such that players would not be able to collect all the water samples and

interview all the possible characters, forcing them to prioritize. From this we see that

the initial game supported time sensitivity, virtual characters and interaction with

virtual objects.

The followup to Environmental Detectives was Charles River City [1]. In this

game, there has been an outbreak of a myterious illness coinciding with a major

event in the Boston area. Players are assigned roles which provide them with special

capabilities, such as being able to take different types of samples, or receive unique

information. The virtual world changes over time as the disease progresses, which

results in different virtual characters and objects appearing at different points in

time. Moreover, it is possible for players to trigger events. For example, talking to

one virtual character may cause another to appear elsewhere. In short, Charles River

City introduced the notion of time dependence, player roles and cascading events.

Note that both of the above games worked only outdoors since they relied on GPS

data. However, workarounds were developed to enable players to retrieve information

from indoor locations as well. One such idea is the notion of gates and clue codes.

Indoor locations with data are represented by gate objects in the game. In order to

access the information associated with the gate, the player is required to enter a clue

code, which can be found by physically entering the building and looking for the piece

of paper with the clue code on it.

An attempt was made at developing a better indoor solution in the Public Opin-

ions of Science using Information Technologies (POSIT) project. A variation of the

engine was created whereby location was tracked by checking WiFi access point signal

strengths. There was some degree of success in this game, but technical difficulties

such as location inaccuracy led to no further investigation into the idea. However,

the indoor version introduced the notion of centralized state, whereby each device

communicated with a central server such that there was a common virtual world in

which all the players existed. This situation allowed for global events to affect players

simulteneously, and also allowed players to affect each other. For example, if one

player were to pick up an item in some room, that item would no longer be available

to other players that subsequently visit that room.

2.2 The OutdoorAr Game Editor

The development of Environmental Detectives and Charles River City laid the ground-

work for what could be expected of outdoor augmented reality games. With this

paradigm in place, development on an outdoor augmented reality game editor began.

The goal of the project was to "make the process of designing games accessible to

even the least technical users" [5]. This editor significantly simplified the creation of

new games. However, it also introduced a tight coupling between the editor and the

game engine. Both modules need to be updated when new features are implemented.

2.3 The iPhone Platform

All previous games have been developed on the Windows Mobile platform and tar-

geted at Pocket PC (PPC) devices. Prior to Summer 2008. the iPhone was not a

viable platform because its location system used WiFi based positioning using Sky-

hook and cell tower signals, which is not accurate enough for the purpose of our

games. However, the advent of the iPhone 3G that summer changed that because

that version of the iPhone comes bundled with actual GPS support. That feature by

itself does not warrant such a huge shift in development. The two main reasons why

an investigation into the iPhone platform is warranted is because of its technological

capabilities and its commercial success among the target audience of the games.

The iPhone is able to send and receive data over the cellular network, and has a

rich multi-touch user interface. The ability to send and transmit data to arbitrary

destinations over the Internet will allow us to once again have centralized state, like

in the POSIT game. The novel multi-touch interface will also allow us to perform

more complicated gestures that are not possible on PPCs. Furthermore, the touch

interface also replaces the stylus on PPCs, which alleviates part of the learning curve

of using the device. Other features of interest include its camera and accelerometers.

However, these features will not be leveraged by this thesis.

The commercial success of the iPhone among the target audience is greater than

that of Windows Mobile devices, such that even students are starting to have iPhones

themselves. It is desirable to get these games on devices that the students have,

rather than schools having to provide them. This approach provides us with greater

scalability since we can now reach a broader audience.

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 3

iPhone Implementation

3.1 Game Terminology

We will first define some concepts which will be used for this chapter. A role is some

role that a given player plays. A chapter represents a section in the storyline of a

game. A game object is an object on the map, such as an item or a non-playable

character (NPC). The different game object types are represented by a template. A

visible game object is one that appears to the player on the main map. Game objects

are visible under certain conditions - for example, some game object may only be

visible to players with a particular role. When a player gets close enough to a game

object, it is visited and may cause triggers to occur. A trigger causes other game

objects to become visible to the player. When an object is visited, the user may

access that object's media - this is known as an interview. The history is the list of

game objects that the player has already visited. Lastly, a glyph is a colored shape

that represents the game object on the map.

3.2 Requirements

The goal for the iPhone implementation of the Outdoor AR game client was to provide

a subset of the features available on the Windows Mobile game client. The iPhone

client should be able to:

e Read the XML game file format outputted by the game editor

* Support multiple character roles

e Change player location by GPS or by user interaction

e Change the visibility state of objects as the game progresses

o Display game object media

* Display history

The above features were implemented in this thesis as well as:

o A game deployment system for obtaining new games

o A simple game save system for continuing saved games

3.3 System Architecture Overview

The reader should note that all concepts in this section adhere to the standard iPhone

conventions. In particular, the notion of a view and a view controller may differ from

what the reader is used to. In short, a view is responsible for drawing in some region

and a view controller is responsible for managing views.

Much of the architecture was replicated from the existing Windows Mobile code.

The main difference in the iPhone implementation is the choice of using Apple's Core

Data framework to store game files in a SQLite database instead of using an XML file.

The reason for this design choice is performance - the time taken to load the Timelab

2100 game from a SQLite database is an order of magnitude smaller than that taken

to load it from an XML file. The consequence of using Core Data is that the base

class for all objects that can be parsed must inherit from the NSManagedObject class

provided by Core Data.

Figures 3-1 and 3-2 show the class hierarchy for the implementation. Tables 3.1,

3.2, 3.3 and 3.4 summarize the purposes of the various classes in the architecture:

UITableViewController

ArGameOptionTableViewController I ArGameSelectorTableViewController ArGameObjectTableViewController

ArMapViewController

UlViewController

ArGameObjectViewController ArGameUpdateViewController

UIView

ArGameObjectView ArGameObjectMapView ArGameLoadAlertView ArinfoObjectView

Figure 3-1: iPhone Client User Interface Class Hierarchy

ArGlyphViewArMapView

ArGameDescription

OutdoorArAppDelegate

ArGameManager

ArOarParser

ArUtility

ArGameFileManager

Figure 3-2: iPhone Client Backend Class Hierarchy

Class Description

ArGameLoadAlertView Asks user whether or not to load the saved

game

ArGameObjectView Displays an ArTemplatedObject

ArGameObjectMapView Displays a game object on the map screen

ArGlyphView Displays a glyph shape

ArInfoObjectView Displays the contents of an ArInfoObject

ArMapView Displays the map

Table 3.1: UlView subclasses

Class Description

ArGameObjectViewController Controller for ArGameObjectView

ArGameOptionTableViewController Presents game options

ArGameSelectorTableViewController Presents available games

ArGameUpdateViewController Presents available updates

ArMapViewController Controller for ArMapView

Table 3.2: UlViewController subclasses

Class Description

ArBaseAction Base class for actions

ArBaseCondition Base class for conditions

ArChapter Stores information about a game chapter

ArCondition Stores multiple conditions

ArEntity Base class for id-based objects

ArGame Stores information about the game

ArGameObject Stores information about a game object

ArInfoAction An action that represents an interview

ArInfoObject Stores ArInfoPages

ArInfoPage Stores interview information

ArLatLong Stores latitude and longitude coordinates

ArLocation Stores game coordinates

ArMapCoordinates Stores latitude and longitude information for

a map

ArMedia Stores information about media files

ArPointObject A game object located at a point

ArRegion Stores information about a game region

ArRole Stores information about a game role

ArRoleCondition A condition that is met for a particular role

ArShapeGlyph Stores information about glyph color

ArTemplatedObject Stores information about a templated game

object

ArTimeCondition A condition that is met for a particular chap-

ter

ArTriggerEvent Represents an event that triggers visibility

Table 3.3: Data Container Classes

Class Description

ArDownloadConnection Used to asynchronously download a single file

ArGameDescription Provides a short description of a game

ArGameFileManager Manages the game files

ArGameManager Manages the active game and retrieves GPS

information

ArOarParser Performs deserialization of the game file

ArParseableObject Base class for all objects parseable from the

game file

ArUtility Utility class that provides convenience func-

tions

OutdoorArAppDelegate Application delegate for the client

Table 3.4: Other Classes

3.4 Game Deployment

As mentioned before, a new feature added to the iPhone client is the ability to

retrieve new games that are available. This feature was not previously developed on

the Windows Mobile client because games could be transfered directly to Windows

Mobile devices via ActiveSync, whereby game files could be directly copied to the

device's filesystem. However, no such mechanism exists for the iPhone, which does

not expose its filesystem in the same manner as Windows Mobile devices. Hence, the

development of a game deployment system is necessary.

Game deployment is done by maintaining an XML file at a predetermined remote

location that stores information about the games available for download. We shall

refer to this XML file as the remote game list. The children of the root element of

the remote game list are game descriptions that specify name, game id, oar file, last

modified and file url. Listing 3.1 shows an example of a remote game list, and Listing

3.2 shows its associated DTD.

Listing 3.1: Remote Game List Example

<!EMENT

<!ELJMENr

<!EFIEMENr

<!IEMENT

<!EIEVENr

<!EMNENr

<!IENMENr

ArGameList (GameInfo) *>

GameInfo (Name, GameId, OarFile , LastModified , FileUrl)>

Name (#KCDATA)>

GameId (WPKDATA)>

OarFile (#KCDATA)>

LastModified ('CKDATA)>

F ile U rI (#KCDATA)>

Listing 3.2: Game List DTD

<?xml version="1.0" encoding=" UTF-8"? >

<!DOCIYPE ArGameList SYSIEM "outdoor-ar-gamelist . dtd">

<ArGameList>

<GameInfo>

<Name>Timelab2100 Outdoor</Name>

<GameId>aa343384 -24e4 -4742-9c65-f5217fadc3aa</GameId>

<OarFile>timelab2100 .oar</ OarFile>

<LastModified>6-27-2009 11:16 pm</ LastModified>

<FileUrl>http: //education . mit .edu/timelab2100 . zip</FileUrl>

</GameInfo>

<GameInfo>

<Name>Timelab2100 Indoor</Name>

<Gameld>aa343384 -24e4 -4742-9c65 -f5217fadc3ab</Gameld>

<OarFile>time1ab2100-indoor . oar</OarFile>

<LastModified>6-27-2009 11:16 pm</LastModified>

<FileUrl>http: //education .mit. edu/ timelab2l0Oindoor. zip</FileUrl>

</GameInfo>

</ArGameList>

Observe that the file url points to a zip file. A game consists of a oar file containing

game information and also all the various media files used by the game, which can

include audio files, video files and documents in the form of HTML and plain text.

We choose to distribute a game via a single archive instead of many individual files to

avoid the overhead of having to create a new connection for each file. This strategy

is particularly effective when a game contains many files. For example, the Timelab

2100 game has 224 files and the total time taken to download its files individually is

an order of magnitude greater than that taken to download and unarchive the single

zip file.

After a given game is downloaded and unarchived, it is deserialized and converted

into a Core Data storage format. Next, it is added to the local game list file which

stores descriptions of all the games available on the local filesystem. The local game

list is in the same format as the remote game list and conforms to the same DTD.

The local storage is managed by the ArGameFileManager class.

3.5 Game Deserialization

As mentioned in the previous section, a game's information is contained in an oar file.

This file is really an XML file generated by using the .NET XML serialization library.

Since we cannot utilize .NET methods on the iPhone, it is necessary to implement a

parser that will read that XML and create the appropriate objects.

The parser is implemented in a manner that is class independent. Individual

serializable classes do not have to provide specialized parsing code - rather, they

will inherit the appropriate methods from the class ArParseable Object which parse

the game file's XML correctly. This behavior is achieved by using game file format

information stored in the application bundle's property list, the NSXMLParser class

provided by the iPhone SDK, and reflection.

The game file format information mentioned above is a mapping from the element

names in the game file to the actual names of classes and fields of the data structures

that those elements represent. The OarParserConfig property of the property list

contains a list of two dictionaries called ElementToClass and ClassConfig. The Ele-

mentToClass dictionary stores a map between element names and class names. The

ClassConfig dictionary stores a map from class name to a list containing a dictionary

called FieldInfo and a list called IgnoredElements. The FieldInfo dictionary stores a

map from element name to field name and field type, whereas the IgnoredElements

list stores the list of elements that should be ignored for the class.

Given a class name, we can use reflection to dynamically create an instance of

that class. Given the field name and type, we can dynamically obtain the method

used to set the field of that class. Hence, reflection coupled with the game file format

information allows us to translate the element names in the game file to instances of

the objects they represent.

The NSXMLParser is event based, which means that we are notified when new

tags are encountered and it is our responsibility to provide callbacks to handle each

event type. In particular, we need to provide a delegate that implements methods to

call when the start of an element is found, characters are found, and when the end of

an element is found. These methods are implemented in the ArParseable Object class

and the parser's delegate is always set to be some instance of an ArParseable Object.

Also, an ArParseable Object keeps two important fields - its parent delegate (the object

that previously set this object to be the parser's delegate) and a string buffer.

When the start of an element is found, we instantiate the appropriate class asso-

ciated with that element and set that object to be the parser's delegate. Also we set

the parent delegate of the newly instantiated object to be the current object. Lastly,

we set the relevant field of the current object to be the newly instantiated object.

However, if the class is actually a primitive type then we just set our string buffer to

be empty without changing delegates.

Upon finding characters, we add those characters to our string buffer.

When the end of an element is found, we look up the appropriate class associated

with that element. If it is a primitive type we convert the contents of our string buffer

to that type and we set the appropriate field of the current object. If the type is the

same as that of the current object it must be the end tag for this object, so we set

the parser's delegate to be the current object's parent delegate.

The special case that occurs is the start and end of serialization whereby we make

use of the fact that the root element of the game file XML is an instance of ArGame.

The parser's delegate is first set to be an instance of ArGame which does not have a

parent delegate.

3.6 Gameplay

Gameplay is driven by GPS update events. The ArGameManager is responsible for

subscribing to those events and to update the current location. Whenever the location

is updated, the player's distance to all game objects is calculated. If the player is

close enough to a game object, it is triggered.

3.7 User Interface

This section describes the various screens that are presented to the user.

3.7.1 Game Selection

During game selection, the user is presented with the list of games that have been

downloaded to the iPhone. Also, there is an option to check for updates which checks

the remote game list for new games. Figure 3-3 shows this screen.

(a) No Games Available (b) Two Games Available

Figure 3-3: Game Selection View

3.7.2 Game Update

The game update screen presents the user with available new games and update

progress. The user may check select some number of these for download. Figure 3-4

shows this screen. When the update is complete an alert is presented to the user, as

shown in Figure 3-5.

(a) Two Games Available

(c) Inflate in Progress (d) Parse in Progress

Figure 3-4: Game Update View

(b) Download in Progress

Figure 3-5: Game Update Alert View

3.7.3 Game Options

The game options view presents the user with the options associated with the game.

The options available in this client's implementation are role selection and gps mode.

Figure 3-6 shows the view in question.

Figure 3-6: Game Options View

3.7.4 Primary Game View

The primary game view comprises of a tab bar that switches between the map view

and the history view, as shown in Figure 3-7.

(a) Map View - GPS (b) Map View - Manual (c) History View

Figure 3-7: Primary Game View

Map View

The map view is scrollable and zoomable, and displays the player's current position as

a blue dot, similar to that used in the Maps application on the iPhone. The player's

current role is displayed on the navigation bar. Also, it displays the visitable game

objects on the map as glyph shapes. When a player gets close enough to a glyph, it

enlarges to make it apparent to the player that the location is nearby and visitable.

Lastly, in the case where GPS is not enabled, directional buttons are provided which

can be tapped to manually change the player's location.

History View

The history view displays a list of the game objects that the player has previously

visited. The player may review the information associated with those objects again

by tapping the relevant object names.

3.7.5 Game Object View

The game object view displays the name and description of the game object, as well

as the information associated with interviewing the object. A segmented control

controls what is currently shown to the player. Note that the information is stored

as HTML, so we are actually rendering HTML using the UIWebView class on the

information page. Figure 3-8 shows this view.

(a) Name and Description (b) Info

Figure 3-8: Game Object View

3.8 Lessons Learned

The primary difficulty encountered while porting the game client to the iPhone was

the replication of the previous client's framework. While it would be possible to

simply perform a direct copy of the system architecture to obtain all of its strengths,

doing so would also mean that we inherit all of its weaknesses. These weaknesses exist

not only because the original client was not written with cross platform compatibility

in mind, but also because the game code has undergone numerous iterations in which

different paradigms were adopted, resulting in a rather confusing system.

Rather than spending time to compensate for those weaknesses and developing

workarounds, it is better to spend some time to rethink the existing architecture. For

example, in the case of game deserialization it is better to create our own protocol

for serializing objects rather than having to parse XML generated by the .NET XML

serialization library. Given that the architecture requires some amount of redesign to

better support cross platform development, it is also an opportune time to unify all

of the ideas and experiences gained from the previous iterations of the game client

and integrate that into a cohesive architecture.

With the experience gained from having to develop an iPhone implementation

of a game client, I designed a new architecture that better supports cross platform

development, and also addresses some issues with the current architecture. This

architecture is outlined in Chapter 4.

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 4

The MIT Augmented Reality

Framework

In this chapter we will describe a new framework for augmented reality games. This

framework has been implemented in part in Java, but as of the time of writing is not

fully implemented in either the Windows Mobile client or the iPhone client. As such,

there has been limited testing for considerations such as performance, but no major

changes to the described framework are anticipated.

4.1 Motivation

The main purpose for developing a new core framework is to create an architecture

that is easily portable to other platforms, while stripping away legacy code from our

system. At the same time, we want to develop a single design specification that will

be adhered to for all platforms since such a document does not currently exist.

4.2 Challenges

The major challenge in creating cross platform support is the maintenance of the

project's code base. We cannot assume that the code for the different platforms can

be written in the same language and compiled for the correct platform. This point

should be clear by observing that the iPhone SDK mandates the use of Objective-C,

Windows Mobile mandates the use of C# and Android mandates the use of Java. We

should thus assume that to some extent we will have to maintain separate code for each

of the platforms we support. Hence, we are faced with the task of simply keeping the

maintenance work for our supported platforms to a bare minimum, especially when

we wish to add new functionality.

The other challenge in this endeavor is the format, generation and deployment of

the developed games. The same game file format should be readable by all platforms,

the generation of the game files should account for platform specific settings and the

method by which games are distributed to each platform should be user-friendly.

Lastly, given that there has been a lot of development on the WIndows Mobile

platform already which has been released to the public, we also need to address the

question of backwards compatibility and also the question of how to minimize the

impact of the framework migration with respect to preserving as much of the current

ideas and concepts as possible.

4.3 Goals

The new framework should meet the following requirements:

1. Flexible and Extensible

2. Decoupled from User Interface

Flexibility and extensibility is stressed in this design because we wish to avoid

as much as possible having to change any core functionality. A large change in

one platform translates to a large change in other platforms, which causes much

unnecessary work if it can be avoided. It is much preferable to allow for new features

to be added simply by extending the existing framework. However, the cost of adding

flexibility and extensibility to any given framework is that of complexity. We have to

ensure that the system is still easy to use despite any added complexity. Furthermore,

we need to ensure that the system performance does not suffer due to the new design.

It is important that we implement this framework in a manner that is decoupled

from the user interface because it is a definite fact that the user interface code for all

platform implementations will be different. As such, the backend cannot rely in any

manner on the particular version of the user interface that is being used. Therefore,

the game client needs to be driven by classes that have already been defined in the

backend. There should be almost no game logic in the user interface code. Rather,

the user interface is used to interact with the backend.

4.4 System Architecture

4.4.1 Game Ticks

The new system is driven not only by GPS updates, but also by what we term

game ticks. Game ticks model the passage of time in this system. The reason for

including game ticks in the new system is so that we can implement state specific

behavior, where state can change as time passes. For example, game ticks allow us

to implement basic artificial intelligence (AI) for NPCs using finite state machines,

which is discussed in a later section. It also enables us to maintain a set of global

events that will fire when certain conditions are met.

The above features were requested in some fashion by the users of the current

client which is why they are being implemented in this iteration. They could have

been implemented in a way that does not require game ticks. We would instead make

use of separate threads that update the relevant subsystems at some fixed interval.

The problem with using multiple threads in that fashion is that we are not guaranteed

that all objects are updated at the same time. By using game ticks, a single thread

drives all the objects that require updates, which mean that their state is updated at

roughly the same time and is consistent with one another.

The class responsible for generating game ticks is ArGameManager. Classes that

need to receive game ticks should implement the ArGameTickListener interface,

which is shown in Listing 4.1.

public interface ArGameTickListener{

public void t ick (long t) ;

Listing 4.1: ArGameTickListener interface

Game ticks are propagated throughout the system in an indirect manner. We make

use of the fact that the ArGame class is used as a container for all the other com-

ponents of a game. Whenever a component that implements ArGame TickListener is

added to the game, the ArGame should also add it to a list of ArGame TickListener

objects. Now, we have ArGame implement the ArGame TickListener interface. On

each game tick, it calls the tick function of each object in its list of ArGame Tick-

Listener objects. If one of the objects in that list has as a field another object that

implements the interface, it should propagate the tick to that object when its own

tick is called (in addition to doing whatever it does on each game tick). Lastly, each

time the ArGameManager generates a tick, it just calls the tick function of the active

instance of ArGame.

We perform the propagation in this manner instead of having classes directly

subscribe to the game manager to avoid a strong coupling between the listeners and

the game manager.

4.4.2 Communication between User Interface and Model

The question that arises now is how the user interface is notified when something

changes in our backend model. This is solved in this system by the use of a mediator

class which we will call ArEventManager along with an interface called ArEventLis-

tener.

The ArEventListener interface defines a single method called onEventFire that

takes an Object and an ArEventType as its arguments. The ArEventManager class is

a singleton that maintains a mapping between a particular event type as defined in the

ArEventType enumeration and a list of ArEventListener objects that are interested

in that event type. It has subscribe and unsubcribe methods that take as arguments

an ArEventListener and an ArEvent Type. It also has a fireEvent method that takes

as arguments an Object and an ArEvent Type. When the fireEvent method is called,

all the listeners for the provided event are notified and passed the same object and

event type.

When something of interest changes in the model, the ArEventManager's fireEvent

method is called with the appropriate arguments. For example, when an NPC has

changed its location, the fireEvent method is called with the NPC game object and

ArEventType.LOCATION_ UPDATE as arguments. The user interface component

responsible for drawing the NPC should implement the ArEventListener interface

and subscribe to the location update event type. Then, it will be notified when the

location has changed and will be able to redraw itself in the right position.

In this system, some care must be taken when subscribing to events to avoid

performance issues. Consider the scenario where the game map is represented by

some user interface component, and the game objects on the map are represented

by some other user interface component that is a child of the map component in the

component hierarchy. If the game object map components each subscribe to location

update events, we'd have a problem on our hands.

Imagine that there are a hundred such game object map components. Say one of

the underlying game objects moved. The ArEventManager now calls the onEventFire

method of all of the hundred game object map components, but only one of them

actually moves. We have now 99 wasted function calls. Instead, the map component

should be the one to subscribe to the event manager. When the location change

event occurs, the map component is notified. It then uses the object argument of the

onEventFire method to retrieve the associated map component. That component's

onEventFire method is now called, and the game object component redraws itself.

This system is sufficient because in practice there will be few listeners but many

event sources. The user interface components that subscribe for a particular event

should know how to handle that event correctly and are passed sufficient information

to do so because the originator of the event is provided. Some other examples of

changes that cause an event to propagate through the event manager are visibility

changes, region changes, game victory, game failure and players visiting game objects.

4.4.3 Entities

Game entities inherit from the abstract ArEntity class. Entities are id based objects

in the game, not to be confused with non-player characters and items. For example,

an instance of ArMedia is considered to be an entity. Ids are unique to each instance of

an ArEntity - no two entities should share the same id. The primary use of entity ids

is to differentiate between two equal ArEntity subclasses. For example, two monsters

could have the exact same parameters, and can only be differentiated by their unique

ids.

4.4.4 Conditions

Conditions are objects that check if some game condition has been met by a player

and subclass the abstract class ArCondition, which is shown in Listing 4.2.

public abstract class ArCondition extends ArSerializable {

protected Ar Condition ();

public abstract boolean isConditionMet (ArPlayer player);

}

Listing 4.2: ArCondition class

Some convenience classes are provided in the framework that provide common

functionality. For example, ArTrueCondition implements the abstract method by al-

ways returning true. Similarly, ArFalseCondition implements the abstract method by

always returning false. The other two convenience classes of note are ArOrCondition

and ArAndCondition, each of which maintain a list of ArCondition objects. As their

names imply, the ArOrCondition's method will return true if any of its contained

conditions returns true, and the ArAndCondition's method will return true if all of

its contained conditions returns true.

Other conditions of note that are provided by this framework are ArRole Condition,

ArChapterCondition and ArProbabilityCondition. An ArRoleCondition object stores

a reference to an ArRole object and its condition is met when the player's role is equal

to the stored role. Likewise an ArChapterCondition stores a reference to an ArChapter

and its condition is met when the active chapter is equal to the stored chapter. On

the other hand, an ArProbabilityCondition stores a float p and its condition is met

with probability p. These various classes demonstrate how flexible a condition can

actually be. Also, these classes are lightweight since only references or primitive types

are ever stored.

4.4.5 Actions

Actions are ways in which a player may interact with some game object, and inherit

from the ArAction class. An action has a name, description and some condition that

must be met before a player can execute it. The name refers to what is displayed to

the user when the actions are listed, and the description describes the effect of the

action. Some actions may be performed repeatedly, others may only be performed

once. Once an action has been completed, it cannot be executed again unless the

repeatable flag of the action is set to true.

An example of an action is an ArInterviewAction. Its default name and description

are 'Interview' and the empty string respectively. This action is repeatable because

after interviewing an NPC, we may wish to revisit the NPC to interview it again.

Although the execution condition may default to being an Ar True Condition, it could

also be that the the action is only executable if the player is of a particular role.

An ArInterviewAction also contains the information that is displayed to the player

during the interview, which is some form of media.

4.4.6 Events

In a previous section we defined ArEventManager and ArEventListener. We are now

going to define another class called ArEvent, which can be thought of as a container

for some event type. An ArEvent is similar to an ArAction. It has a condition that

must be met before it can occur and may occur repeatedly. We say that the ArEvent

is a container because the event type will not be fired before the ArEvent's condition

is met.

To illustrate, we shall consider how to fire a game won event when the game is won

by achieving some condition. Where should that condition be checked? Although

we could hardcode that into the game manager such that it checks that condition

each game tick, it is a rather inelegant solution. What we do instead is subclass

ArEvent to create ArWinEvent. The stored event type of an ArWinEvent object is

ArEvent Type. WIN, and the event condition is the win condition. This ArWinEvent

is stored in a list in an ArGame object called the global event list. On each game

tick, the objects in that list are checked to see if they can be fired. If so, then they

are. Once the win condition is met, the ArWinEvent's fireEvent method is called,

which then calls the ArEventManager's fireEvent method, which then notifies the

appropriate listeners and the game ends with a victory.

4.4.7 States

Al is implemented by constructing a hierarchical finite state machine using two classes

- ArState and ArStateMachine, which both implement the ArGameTickListener in-

terface. An ArStateMachine contains a set of ArState objects and keeps track of

the current state. On each game tick, the state machine forwards the tick to the

current state. Hence, the behavior exhibited by the state machine on each game tick

depends on the behavior of the current state. State transitions are handled by the

ArState objects themselves. When a state transition occurs, the state object calls the

setCurrentState method of its ArStateMachine.

A new state machine with a given set of states should be implemented for each

behavior desired. However, it is possible to reuse existing state machines. To do

so, we create a new state that maintains a reference to not only the parent state

machine, but also to the state machine whose behavior we are reusing. When the

parent state machine calls the state's tick, the state forwards that tick to its enclosed

state machine (provided no state transitions occur). In this manner, the new state

emulates the behavior of its enclosed state machine.

For example, say we have a state machine that causes an NPC to patrol between

certain waypoints, but will cause the NPC to stop if a player is nearby. The two

states that belong to this state machine are Patrol and Idle. During the Patrol state

a state transition occurs to the Idle state if a player is nearby. During the Idle state

a state transition occurs to the Patrol state if a player is not nearby.

Now say we want to create another state machine whereby in addition to patrolling

and stopping for players, the NPC should attack any nearby enemies. We don't want

to redefine new Patrol and Idle classes for this new state machine. Instead, we enclose

the previous machine in a new state called PatrolStateMachineState. If this were the

sole state of our new state machine, it would behave exactly like the previous state

machine. However, we are adding a new Attack state. In the PatrolStateMachineS-

tate's tick function, we transition to the attack state if an enemy is nearby. In the

Attack state's tick function, we transition to the PatrolStateMachine if no enemies

are nearby. Hence, our new state machine reused our old state machine to create a

combination of behavior.

4.4.8 Map Coordinates

An ArMapCoordinates object stores xy-coordinates as well as a region.

4.4.9 Players

A player object contains data about the player's team, role, current location and

history.

4.4.10 Media

Media objects inherit from ArEntity and contain information about some media file.

This media may be an image, HTML, audio or video file. They are marked with the

content type and also the local file path.

4.4.11 Regions

An ArRegion stores information about a given region. This information includes the

image path and dimensions for the image representing the region, the latitude and

longitude coordinates for the boundaries of that region, the game coordinate bounds,

the game objects in that region and a flag to indicate whether or not the region is

indoors.

4.4.12 Game

An ArGame is a container for all the elements of a game. These elements include

the entities, global events, roles, chapters, players, regions, game name, game id and

game description.

4.4.13 Location

Locations on the map are represented by subclasses of ArLocation, not to be confused

with ArMapCoordinates. Locations store some set of ArMap Coordinates which can

be queried to see if the player is in its hotspot or nudge zone. They can also be

queried for map coordinates, though what is returned may vary depending on the

purpose of the subclass.

The simplest example of an ArLocation is an ArPointLocation, whose hotspot

and nudge zones are simply circles of some radius around the point it represents.

The returned map coordinates is simply the coordinates of the point. A location

could also be area based. For example, ArPolygonalLocation represents a location

described by a polygon with more than 2 vertices, whose hotspot and nudge zones

correspond to area enclosed by the polygon. In this case, we could define the returned

map coordinates to be the centroid of the polygon. For convenience, we also define

ArLocationEverywhere and ArLocationNowhere as sentinels for those cases.

4.4.14 Game Objects

Game objects are objects that the player can interact with in the game and are

instances of ArGameObject. Game objects contain the following information:

1. A location that represents where the object is located

2. A condition that must be met for the object to be unlocked

3. A condition that must be met for the object to be visible

4. An optional additional condition for the object to be visitable

5. An optional additional condition for the object to be nudgeable

6. A list of actions that can be performed on or with the object

7. A state machine that handles the object's state

8. A property list that contains information used by the UI drawing code

We now define clearly the concepts of Visibility, Visitability and Nudgeability.

When an object is visible, it is viewable to the player and meets its visibility condition.

When an object is visitable by a player, the player must both be in the hotspot zone

of the object's location and must meet the additional visit condition. Similarly, when

an object is nudgeable by a player, the player must both be in the nudge zone of

the object's location and must meet the additional nudge condition. Some invariants

must always hold - a visible object must be visitable and a visitable object must be

nudgeable. Note that the converse does not hold in both cases. A visitable object

might be invisible, and a nudgeable object might not be visitable. As an example, a

treasure chest is invisible, but we may stumble across it.

Visibility

On the previous iteration of the Outdoor AR client, visibility was implemented as

an amalgam of a visible flag and visibility conditions, as opposed to only using the

visibility condition. We will now discuss the merits and pitfalls of the two approaches.

In the approach where we use the combination of the flag and the condition,

the flag has three states - ForceVisible, ForceHidden and Default. The default flag

specifies to check the visibility condition object, and the other flags specifies to force

visibility or invisibility. The force visibility flags are used when an object causes

another object to become visible. This approach saves a good amount of function

calls since we need only compare the fields, and not evaluate conditions to check

visibility. However, it leads us to question why we use a visibility condition at all, if

we merely toggle a flag. in fact, we could simply always ignore the visibility condition,

and set the visibility flag as required.

The issue with using a flag is that we can get ourselves into a situation where it

is unclear whether or not a object should be visible given that triggering an object

changes the visibility state of other objects. Consider the following scenario:

" Visiting A causes B1 and B2 to become visible.

" Visiting BI causes D to become visible.

" Visiting B2 causes C to be come visible.

" Visiting C causes D to become invisible.

" A and D are initially visible.

The result of visiting A,B1,B2,C and of visiting A,B2,C,B1 are not in fact the

same. What we probably wanted to say is that D is visible as long as C has not

been visited, which can be easily represented as a condition. We could in fact use the

default visibility flag which uses the condition flag, but then now we'd have a group

of objects whereby it quickly gets confusing which object is causing what to become

visible.

The alternative approach simply uses condition objects for checking visibility all

the time. The conditions can be arbitrarily complex - the condition could be that

the player has visited objects A and B, but not C. However not each condition object

needs contain the entire history of the player's visitations. For example, if B is visible

only if A is visible, and C is visible only if B is visible, then it is implicit that A must

be visited for a player to visit C. One could argue that in this situation we need to

remember what the player has visited, but the user interface is already keeping track

of this because visited objects are drawn differently.

The downside of this approach is the added function calls and the danger of many

condition objects floating around in memory. For example, if a hundred objects are

visible only if object A has been visited, then we might have a nasty situation where

we have a hundred equivalent condition objects. For this reason, conditions should

be implemented using the flyweight design pattern, where we would share the one

condition object that represents the condition that A has been visited. This strategy

will drastically reduce the memory footprint of using condition objects.

Note however in this approach we can now do away with visibility events. Visiting

an object will now not cause others to be visible directly - rather, visiting an object

causes the visibility condition of other objects to be met. Prom the user's point of

view however, it is still pretty much the same thing.

Lastly, we address the issue of when visibility is checked. This new model of

approaching visibility allows for visibility to be dynamic - it is no longer the case

that visibility can only change after visiting a game object. Visibility is now checked

periodically during a game tick. A game object checks its visibility during a game tick

if a certain amount of time has passed since the last visibility check. If the visibility

changed, a visibility change event is fired. Note that this duration does not have to

be fixed - it can be a random number in some range. The performance implication of

checking visibility periodically is as of yet unknown and may be platform independent.

However, it is not expected a large performance hit will result with the strategy

outlined above.

Locked Objects

Until an object's password condition is met, the user can only view it's name and

description but may not otherwise interact with it. Password conditions are special

in the sense that passwords are dependent on the game state. For example, we may

have a different password for each player role to access the same object. We are not

restricted to having such a role condition - we may also want to add other conditions

such as being in a particular chapter, and the player having visited a particular object

beforehand. All of this information is written into a single ArPasswordCondition

object that is then assigned to the relevant game object.

There are two types of locked objects - those that appear on the map that the

user is able to visit, and those that do not appear on the map but will appear when

the user enters a code on some other screen. Dealing with the former case is simple

enough - the password condition is simply checked when the player visits the object

in question. Dealing with the latter however is tricky for the reason that we may

want behaviors other than visiting objects after typing in a particular code. For that

reason, we support the latter type of game objects via some indirection.

The solution is to use an ArVisitEvent which maintains a reference to the game

object in question and has as its event condition the relevant password condition.

This event is added to the global event list and is set to be repeatable. Once the

user enters a matching password the event is fired. Note that it may be possible that

more than one event may be fired as a result of entering one code - the user interface

should deal with this as appropriate.

Game Object Property List

This list is a map between property names and property values, and is primarily used

to store user interface information. Two game objects of the same class may need

to be displayed differently. They may have different shapes for example. The user

interface code knows about the right keys, and looks up the right values. To draw a

game object, it would look up the shape property and draw the right shape.

Subclassing ArGameObject

ArGameObject is marked final and not subclassable. Any new capability that is de-

sired for a game object should be added directly into the class. Note that a capability

is different from a behavior. An example of a capability is having a game object

being able to contain other game objects, as in the case of a bag. An example of a

behavior is a game object patrolling between waypoints. As seen before, behavior is

implemented by state machines and can vary. However, the capabilities of a game

object is always fixed.

4.4.15 Game File Format

The game file will be an XML document whose root element has a child representing

the serialized form of an ArGame instance. This is sufficient because all game in-

formation should be contained in the ArGame object. A DTD is not required, since

badly formed XML will simply cause the deserialization process to fail.

4.5 Serialization and Deserialization Protocol

As mentioned before, all implementations of the MIT AR client on the various plat-

forms need to implement the same serialization and deserialization protocol in order

for them to read the same game files. For this reason, we need to design our own

protocol instead of relying on language specific serialization. Clearly, it would be in-

convenient to deserialize a serialized Java object in say Objective-C. One might argue

that it saves work to simply adhere to one language's serialization protocol. If we do

so, we need only worry about implementing serialization and deserialization methods

on all platforms except the platform whose language was chosen. However, this idea

is dangerous because then we are forced to implement virtually all functionality de-

scribed by that protocol in question, which is a large task and much more than what

is actually needed. Furthermore, we would then have to make changes to our own

implementation each time that particular protocol is modified, which may happen as

the language evolves over time.

All the objects stored in the game file should extend the ArSerializable class,

which provides an interface for the serializing the object's value to and from either

an XML string or a byte stream. Subclasses must meet the following requirements:

A subclass must have a visible default public constructor It is possible that

we will not have all the information required to directly fill all fields of the object

in question immediately upon deserialization, depending on the type of XML

parser that is being used. It is unreasonable to use a DOM based parser because

of memory issues so it is likely that a stream-based or an event-based parser

will be used in most platform implementations. We wish to first instantiate a

blank copy of an object, and fill in the requisite fields as we encounter them

during the deserialization process.

A subclass must have getters and setters for all fields to be serialized Not

all of the fields for a class may have public access so getters and setters are re-

(Iuired for these. The naming convention for getters and setters should adhere

to the standard convention of getFieldName() and setFieldName(. Boolean

fields should have a getter names isFieldName(. The reason for the standard-

ized naming convention is to enable support for reflection on platforms where it

is available. Also, fields that should not be serialized must be marked in some

fashion - this can be done in an external file by providing a map between classes

and unserialized fields, or simply by adding a transient keyword if it is available.

4.5.1 Serialization

The serialization process is relatively straightforward. The only complexity during

serialization is dealing with object references, which need to be preserved. There

may also be cycles in the object graph, and care needs to be taken not to end up

in an infinite loop during serialization. To solve this problem, we assign a unique id

to each object during serialization and store the object to id pair in a map. Before

attempting to serialize an object, we check that map to see if an id has already been

assigned. If so, then we do not attempt to serialize the object again, but rather we

write a reference representation instead of the full object representation. Primitive

types will not be assigned ids. Here we will only describe XML serialization, since the

byte stream serialization protocol is an feature for future implementations. Listing

4.3 shows a template for the serialization format.

<$Class id='$id'>

<$Field [[id= '$id ') ref='$refld ']>$Value</$Field>

</$Class>

Listing 4.3: XML Serialization Format Template

The serialized XML string of an object will begin with a tag containing its class

name. Inherited classes shall write the most specific class, and not provide names of

superclasses. The attributes that may be present in the start tag are id and ref. A

ref attribute signifies that the object has already been previously serialized and is the

same as the object represented by the node with the id attribute of the same value.

Serializable fields of the object are represented by child elements of the object's

node. The element names are simply the field names themselves. If the field value

is an object, the element will have either an id or ref attribute, and will have child

elements representing its fields if any. Lists are dealt with in a special way - the child

elements of a list node are named by their class type. Note that the class type for

each field an be inferred from the class type of its enclosing class, which is why it is

not included in the XML. Also, fields whose values are null are ignored.

We will now discuss an example to demonstrate id usage. Say we have an object

of type Foo with a field named bar of type Bar and an object of type Bar with a field

named foo of type Foo, and these objects point to each other. The result of serializing

the object of type Foo is shown in Listing 4.4:

<Foo id='O'>

<bar id='1'>

<foo ref='O'/>

</bar>

</Foo>

Listing 4.4: Circular Reference Example

Note how the cycle is broken, and note how the reference representation contains

only a reference attribute with no child elements.

4.5.2 Deserialization

Deserialization occurs in the exact reverse of serialization - we store a map from id to

object. If the id is present in the map we retrieve the object from the map. Otherwise,

we instantiate a new object of the specified class and deserialize the object fully. For

the example in Listing 4.4, we'd encounter a Foo type, and note that we have not

seen an object for id 0. We then instantiate an empty Foo object and store it in our

map. Now we encounter a Bar object that belongs to the field named bar in Foo

with id 1. We instantiate an empty Bar object and store it in our map. Now we

encounter a Foo object again, but this time the id is in our map, so we simply set the

field named foo to be the object mapped to by the id 0. Note that that Foo object is

not fully initialized yet at this point of time. Now we are done deserializing the Bar

object, so we set the field of the Foo object. Lastly, we encounter the Foo end tag so

deserialization is complete.

One scenario that may happen upon deserialization is that we may be attempting

to deserialize an old version of the serialized output. For example, say that a class

Foo had a field bar before, but in a newer version of the class the field bar has been

removed. When we attempt to deserialize this old file, we will encounter a child

element named bar, but this is no longer in the class. In scenarios such as these,

the deserializer will provide a warning, ignore the said element and its children, but

continue parsing the rest of the file. In the converse scenario where there are fewer

child elements than there are serializable fields in the class, the fields that were not

found are assumed to take default values as defined by the default constructor.

4.5.3 Differences between the old format and the current for-

mat

The old serialization format was simply the default XML output of the .NET serial-

ization library. While this format is similar to the one outlined in previous sections, it

has some differences. It does not support object references, and led to some amount of

object clutter since the same object could be serialized twice and after deserialization

we obtain two equal objects instead of the one object that existed before. Also, empty

fields were serialized when these could simply be ignored. Lastly, derived types have

tags that contain both the name of the derived type and the base type, when this is

not required. To summarize, the new serialization format supports object references

and has less string clutter, leading to smaller game files and faster deserialization.

4.6 User Interface Specifications

It is not possible to fully describe how the user interface code should be implemented

because it is highly platform specific. For example, drawing and repainting are com-

pletely different when interacting with the UlKit on the iPhone, and with Swing on

Java. However, we will sketch out the behavior of the basic components of the UI

system in the following subsections. This specification is not exhaustive and can be

changed to accommodate the specific platform implementation.

4.6.1 Primary User Interface Component

The main user interface component contains a tab controller that allows the user

to switch between the main map and the history list. Other tabs may be present

depending on the type of game that is being played. For example, if a game has

global codes, there will be a tab containing a keypad where the user can enter codes.

4.6.2 Map Component

The map component is responsible for constructing the appropriate views for all

the game objects in the game and placing them at the right coordinates. It should

subscribe to the events for visibility change, player visits, location changes and region

changes.

4.6.3 Game Object Map Component

This component aggregates a game object component, drawing the object based on

information in the game object's property list. This component is a child of the map

component in the component hierarchy.

4.6.4 Player Component

This component aggregates an ArPlayer instance and draws it on the map. It is a

child of the map component in the component hierarchy.

4.6.5 Game Object Component

This component is used when a game object is visited by a player. It displays the

name, description, and actions for that object. It should be able to change itself in

the right way depending on what action is selected. For example, when a interview

action is selected, it displays the interview content for the object.

4.6.6 History Component

The history view wraps around an ArPlayer instance and shows the player's history.

4.7 Backwards Compatibility

Unfortunately, the new framework is sufficiently different that a direct translation

between the old and the new models will not be easy. In particular, reading old game

files is not possible in this current framework. To provide support for old games, a

compatibility layer will have to be introduced at the deserialization stage that will

translate old game files correctly in the new framework. Such a layer can indeed

be constructed because the old features of the games are still preserved in this new

framework. The mapping between the two different sets of code is for the most part

one to one, but there are cases where some complications will arise. For example,

since we are using references instead of object ids in the new system, we will need to

convert all the object ids to references when attempting to convert an old game file

to the new format.

However, the actual user interface does not have to change. The underlying model

has changed but all the concepts are preserved. The user interface will still look the

same to players, but the user interface code now interacts differently with the backend.

4.8 Summary of Changes

The main changes to the framework are listed below:

1. Game file format

2. Dynamic visibility

3. Customizable conditions, events and actions

4. AI for game objects

5. Decoupling of user interface and model

4.9 Examples of Possible New Features

In this section, we will describe new functionality that is enabled by this framework.

4.9.1 Location Based Visibility

Upon entering a certain area of a map, certain objects may be shown or hidden.

This can be easily implemented by first subclassing ArCondition to create a class Ar-

LocationCondition which contains ArPolygonalLocation object. The condition should

return true if the player is in the hotspot of that location, and false otherwise. An

object then sets this ArLocationCondition as its visibility condition.

4.9.2 Visiting Hidden Objects

This is a trivial result of the new approach to handling visibility.

4.9.3 Moving Objects

This is a trivial result of using our state machine.

4.9.4 Location Based Bump Probability

A player's location in a certain area of a map results in some likelihood of visiting

certain objects. We implement this behavior for each object as follows - we first set the

location of the object to be ArLocationEverywhere such that the player is always in its

hotspot and nudge zone. Then, we set the additional visit and nudge condition of the

object to be an instance of an ArAndCondition containing an ArProbabilityCondition

and an ArLocationCondition whose condition is met when the player is in the hotspot

of the area in question.

4.9.5 Game Over on Visiting Certain Objects

We implement this by subclassing ArEvent to create an ArGameOverEvent. The

condition for that event will then be that the player has visited the object in question.

The user interface should listen to the ArGameOverEvent and respond as required.

4.9.6 Conditional Interaction with Game Objects

An example of such a feature would be interacting with a dragon NPC. If the player

possesses a sword, then the player may choose to defeat the dragon. Upon defeating

the dragon, there is now an option to grab the treasure that the dragon is guarding.

This behavior can be implemented by first subclassing ArAction to create ArSimple-

Action. We create two instances of this action - the first action's condition is set to

be a subclass of ArCondition called ArInventory Condition, which checks to see if a

given object is in the player's inventory. The second action's condition is set to be a

subclass of ArCondition called ArActionCompletedCondition which aggregrates the

first action and whose condition is met when the first action has been completed.

4.9.7 Customizable Sound for Triggering

This is implemented by checking the appropriate property of the property list object

that each game object contains.

THIS PAGE INTENTIONALLY LEFT BLANK

Chapter 5

Conclusion and Future Work

In this thesis I started out with implementing a basic game client for the iPhone that

supported a subset of the functionality of the Windows Mobile client. At the same

time, I defined a means for deploying games via an archived format and a remote

game list.

Based on the experience of developing that client, I designed a new architecture

that allows greater flexibility and extensibility, while providing several new features.

At the same time, this architecture should be easily portable to other platforms

because it is user interface independent. The work in migrating to different platforms

will primarily be that of designing the particular user interface for that platform.

The new framework has certain implications for the game editor. Although the

framework itself is flexible, the game editor should not expose that flexibility to the

game designer. For example, the game editor is not capable of creating new actions

- it can simply present the game designer a list of actions that can be taken, as well

as the parameters of that action. Likewise, the game designer is only presented with

a set of events that can be used.

The next steps for the project involve migrating the current code base to the new

framework. A branch of the project should be created whereby the new framework

will be developed and integrated with existing code. This is relevant only to the

Windows Mobile code - the iPhone client can simply be reimplemented given that

much of the work on it has been preliminary. Upon completion, this branch can then

be merged with the main development of the project.

The first step of the development should be to write the backend code for the

.NET platform, which is shared by both the game editor and the gane client. Once

that is done, the game editor's user interface code should be updated to interact with

the new backend. At this point, we will have a game editor capable of creating games

in the new file format. This will be useful in testing the revised implementation of the

game client which reads that new file format. Next, we update the user interface code

of the game client similarly to interact with the new backend. We should now have

a functional version of the game client on the Windows Mobile platform that utilizes

the new framework. On the iPhone side of things, development will occur similarly -

the backend will be completed first, and then the user interface code updated.

Once implementation is complete, some tests should be conducted to measure the

performance of this new design. Adjustments to the framework should be unnecessary

provided the right optimizations have been made. However, in the unlikely event that

the performance is still poor, the manner in which game ticks are handled should be

rethought, since that is where most of the processing time is spent. Lastly, the new

game features that can now be implemented with this framework can be added to the

games.

Bibliography

[1] Priscilla Cheung. "Charles River City: An Educational Augmented Reality Sim-

ulation Pocket PC Game." Massachusetts Institute of Technology, 2003.

[2] Eric Klopfer. "Augmented Learning." The MIT Press, 2008.

[3] Eric Klopfer, Judy Perry, Kurt Squire and Ming-Fong Jan. "Collaborative Learn-

ing through Augmented Reality Role Playing." Proceedings of Th 2005 Confer-

ence on Computer Support For Collaborative Learning: Learning 2005: the Next

10 Years! (Taipei, Taiwan, May 30 - June 04, 2005). Computer Support for

Collaborative Learning. International Society of the Learning Sciences, 311-315.

[4] Eric Klopfer, Kurt Squire and Henry Jenkins. "Environmental Detectives: PDAs

as a window into a virtual simulated world." Wireless and Mobile Technologies in

Education, 2002. Proceedings. IEEE International Workshop on pp. 95-98, 2002

[5] Benjamin Arthur Schmeckpeper. "Outdoor Augmented Reality n-th Game Edit-

ing Suite." Massachusetts Institute of Technology, 2007.

