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ABSTRACT

Kinodynamic planning algorithms like Rapidly-Exploring Randomized Trees (RRTs) hold the promise of finding
feasible trajectories for rich dynamical systems with complex, non-convex constraints. In practice, these algorithms
perform very well on configuration space planning, but struggle to grow efficiently in systems with dynamics or dif-
ferential constraints. This is due in part to the fact that the conventional proximity metric, Euclidean distance, does
not take into account system dynamics and constraints when identifying which node in the existing tree is capable of
producing children closest to a given point in state space. Here we argue that the RRTs' coverage of state space is
maximized by using a proximity psuedometric proportional to the length, in time, of the quickest possible trajectory
between two points in state space. We derive this minimum-time metric for the double integrator and show that an
affine quadratic regulator (AQR) design can be used to approximate the exact minimum-time proximity pseudometric
at a reasonable computational cost. We demonstrate improved exploration of the state spaces of the double integrator
and simple pendulum when using this pseudometric within the RRT framework. However, for more complex nonlinear
systems, experiments thus far suggest that the AQR-based proximity pseudometric and the conventional metric pro-
duce equivalent coverage of the state space, on average. This drop-off in benefit as system complexity and nonlinearity
increase may be due to the linearization of system dynamics that is required to calculate the AQR-based pseudometric.
Future work includes exploring methods for approximating the exact minimum-time proximity pseudometric that can
reason about dynamics with higher-order terms.
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1 INTRODUCTION

Kinodynamic motion planning algorithms attempt to find feasible trajectories for a dynamical system from a start state

to a goal state while respecting constraints on position, velocity, and/or acceleration. The problem is believed to be

at least PSPACE-hard[8], however a number of randomized algorithms have been proposed[24, 1] which can achieve

fast average-time performance for a large variety of problems[1, 2, 3, 6].

A common theme running through many path-planning algorithms is some notion of proximity in the space in

which trajectories lie. In algorithms that attempt to create roadmaps, paths are found between neighboring nodes. In

the Rapidly Exploring Random Tree (RRT) algorithm, nodes of a tree are grown toward randomly selected goals; only

the node that is closest to the randomly selected goal is expanded [2], [3].

The proximity function that maps two points to a proximity score can be defined however the user sees fit. It does

not need to meet the formal requirements of a metric, such as symmetry. It provides the user with the opportunity to

incorporate his/her prior knowledge about the problem; he/she defines what makes two nodes neighbors in a roadmap,

or what makes a point close enough to a goal state for a path to be considered complete, or to which nodes it is least

costly to steer the system, from some specified initial state (i.e., cost-to-go).

The performance of the RRT, a particularly popular and simple randomized path-planning algorithm that is cur-

rently one of the most promising methods for planning in phase space and for solving other problems with differential

constraints [14], can vary greatly as a function of the definition of proximity [9]. The basic RRT algorithm is shown

in Table 1, and illustrated in Fig. 1. When used to find paths from xing to a specific xgoal, Xgoal is assigned to Xand

for some small percentage of the interations of BUILDRRT. The definition of proximity has its effect by determining

which node the NEAREST-NEIGHBOR function returns for the RRT to extend.

1.1 History

When LaValle and Kuffner first published the RRT algorithm, they explicitly tackled the problem of kinodynamic

planning [2]. Their algorithm planned in state space, a space twice as large as configuration space, including both

positions and velocities of all the degrees of freedom, where obstacles are not only defined by the robot colliding with

itself or its environment but also laws of physical motion and the limits of finite applied forces. While they documented

their randomized motion planning algorithm's successes, they acknowledged that an additional component that would

address remaining barriers to more efficiently exploring state space is a perfect, quickly computable distance pseudo-

metric.1 Note that the degree of coverage of the state space can serve as a surrogate measure for the mean time to find

1 The term pseudometric is used because it allows for asymmetries. If the distance between two points in state space reflects the energy necessary
to drive the system from one state to the other, the distance of state B from A may not be equal to the distance of state A from B.
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Figure 1: Illustration of one iteration of growing an RRT, adapted from [9].

1: procedure BUILD-RRT(xinit)
2: T.init(xinit);
3: fork=1toKdo
4: Xand <- RANDOM..STATEO;
5: EXTEND(T, Xand)

6: end for
7: Return T
8: end procedure
9: procedure EXTEND(T, x)

10: Xnear <- NEAREST.NEIGHBOR(x, T);
11: if NEWSTATE(x, Xnear, Xnew, Unew) then

12: T.add-vertex(xnew);
13: T.add-edge(xnear, Xnew, Unew);

14: end if
15: end procedure

Table 1: The basic algorithm for constructing RRTs, adapted from [9]



a feasible path.

An ideal pseudometric is the optimal cost-to-go function; however, computing the optimal cost-to-go is equivalent,

in difficulty, to solving the original planning problem [9]. Even if an exact psuedometric does not exist, LaValle and

Kuffner argue that approximations will still dramatically improve performance. Ten years after the original RRT

paper, RRTs are still considered a promising method for kinodynamic planning and other problems with differential

constraints [14]. Both distance pseudometric creation and RRT algorithm modification for more effective exploration

of highly constrained and high-dimensional problems' state spaces are areas of active research. This thesis develops

and implements the use of locally linearized systems' optimal cost-to-go functions as proximity heuristics. In the

process of developing the idea, we found that LaValle and Kuffner have mentioned the possibility of using cost-to-

go functions from applying optimal control to linearized systems, as part of a list of many possibilities, including

Lyapunov functions, fitted spline curves, and steering methods [4].

1.2 Calculating Optimal Cost-to-Go

There is literature on how to analytically or numerically solve for the optimal path [12],[13] but applying the methods

to a particular problem often requires mathematical finesse and intuition on the part of the human in the loop. A

separate chapter covers methods of calculating optimal cost-to-go functions, both exact and approximate, when cost is

time.

1.3 Related Terms and Function Types

If an approximate cost-to-go function is known for the goal state which (1) assigns a cost of zero at the goal, (2) assigns

an infinite cost to states from which the goal is unreachable, and (3) has an associated "local operator" that selects

an action at each state that results in a state with a lower cost, then the cost-to-go function is a feasible navigation

function. This function can be greedily descended using the local operator to reach the goal state, making an RRT

unnecessary [5].

Note also that if the cost-to-go function, p, also satisfies the principle of optimality,

p(x) = minE U(x) {l (x, u) + p (f (x, u))} (1)

where 1 (x, u) is the cost of taking action u at state x, then p can also be referred to as an optimal cost-to-go function,

also known as an optimal value function in the value iteration and dynamic programming literature.

The metric (in configuration space) induced by the cost of optimal paths between points, in the context of non-



holonomic motion planning, is also called the nonholonomic, singular, Carnot-Caratheory, or sub-Riemannian metric

[15].

1.4 Existing Pseudometrics

There are a varied of previously published pseudometrics. Note that while some have not been assessed in terms of

state space coverage, a pseudometric that has good published performances in goal-directed path planning will also

help an RRT reach the randomly selected target points that cause the tree to expand and fill the sampled state space

with tree nodes.

Perhaps the most common pseudometric, which is in fact a metric, is that of Euclidean distance between two state

space points as a function of their coordinates in that space:

distance(x,') = a (x1 - X) 2 +#3(x 2 - X) 2 +... +((Xn - x' ) 2, x, x' E (2)

The scaling factors can be used to encode domain knowledge about the relative significance of various state compo-

nents. This metric works well on holonomic systems, in terms of coverage of the sampled space, but performs far

more poorly in state space, which will be demonstrated in the chapter containing experimental results. It encodes no

information about the constrained relationship between position and velocity. In the phase space of a frictionless one-

dimensional brick shown in Fig. 2, points A and B are equidistant from point C with respect to Euclidean distance.

Yet, as observers with a priori knowledge about phase space, we know that the brick at point A is moving toward

point C, while the second instance of the brick, at point B, is moving away from point C. Since the proximity function

determines which branch will be extended toward C, it makes intuitive sense to define proximity so that A is in fact

closer to C than B.

1.4.1 Problem-Specific Pseudometrics

With a simple energy-based pseudometric, an RRT can find a very direct path for an underactuated simple pendulum to

ascend to the unstable upright position, wasting very few tree nodes on spurious paths. The pseudometric is simply the

difference in energy between two states. In the two-dimensional space representing the angular position and velocity

of the pendulum, there is a connected set of states which have the same energy as the goal state. If the pendulum is

frictionless, then once it is driven to a state in that set, it will passively reach the goal state. For energy-conservative

systems in which (1) the goal lies on a set of connected states with the same energy, (2) the dynamics along that

connected set bring that system to the goal state passively, and (3) no other states outside of that connected set have
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Figure 2: Nodes A and B are equidistant to point C with respect to the Euclidean distance metric. Children of A
could be even closer to C with respect to Euclidean distance. However the children of node B, which has positive
velocity, must be to the right of their parent, and therefore cannot get closer to C. In this case, Euclidean distance
fails to distinguish between two branches, one which is clearly the right choice for extending towards C, and the other
which is not.



the same energy, this can be a very effective pseudometric.

[19] applied RRTs to the control of a blimp. The approximation of the ideal metric was designed using knowledge

of the blimp dynamics and the underlying Lie group structure. The blimp is modeled as a general rigid body with

underactuated dynamics. If the moments of inertia are identical and no external forces are applied, then the shortest

distance path between two points given by Hamilton's principle can be found analytically. This metric for the simpler

case is combined, in an unspecified way, with the Euclidean distance between the two points in state space, where the

relative values of the weighting factors on each state component have been determined by intuitive reasoning.

[20] used RRTs to plan dynamic trajectories for helicopters by using cost-to-go functions from the unconstrained

problem to solve for combinations of trim trajectories (maneuvers/motion primitives) in an environment with obstacles.

The cost-to-go calculation was made even more tractable by exploiting the (problem-specific) symmetries and relative

equilibria of helicopters, along with the construction of motion primitives.

1.4.2 Pseudometrics That Do Not Incorporate Problem-Specific Assumptions/Derivations

[21] uses the local first order approximation of cost-to-go, where cost is time, and the calculation is simple enough that

it only requires the Euclidean distance between state space points and evaluations of given system dynamics function.

1.5 Modifications to the RRT Algorithm

There are two major themes that run through the published work on RRT algorithm modifications. These modifications

are designed to make the RRT algorithm less sensitive to the quality of the pseudometric. The first theme is that of

reducing repeated failed expansions of a node. For example, [22] collects collision information online and uses that

to bias search. The probability of extending a given node is modulated by the constraint violation tendency (CVT),

which is defined as the "ratio of the number of trajectories in violation in the explored region to the number of all

possible constructed trajectories." The high-level reasoning behind [21]'s modification is essentially the same, but the

implementation uses a history-based weighting instead of the CVT.

[14] categorizes child nodes into three types: those that are closer to Xrand than their parent, those that are further

from Xrand than their parent but reach into previously unexplored space (receding), and those that are both further

from Xrand than their parent and leading back into already explored space (regressing). The last category is obviously

undesirable; it adds nothing to the tree. The receding type is potentially valuable, since the child node may in fact be

closer to Xrand in terms of a more accurate pseudometric. Both receding and regressing node types are rejected by

the RRT and allowed by the RRT with collision tendency ([22]), so [14] proposes RRT-Blossum, which attempts to

distinguish between the two types, so that receding nodes are added while regressing nodes are ignored.



The second main theme in the work on RRT algorithm modification is adaptively biasing the sampling distribution

towards regions of state space that are reachable by the tree's current set of nodes. [2 1] replaces the traditional uniform

distribution of Xand with a compactly supported Gaussian-based distribution centered around a point in region of

interest. Since this kind of sample biasing can be helpful in some problems, but not all, the degree of biasing (the

standard deviation of the Gaussian) is modulated by how successful the resulting node extensions are. Success, in this

context, is defined as producing a child node with less distance to Xrand than its parent. [7] develops a sample biasing

method he calls reachability-guidance. The Reachability-Guided RRT uses a measure of local reachability. The state

space is sampled uniformly, but samples outside the estimate of the reachable set of the current tree are ignored.

1.6 Problem Formulation

Following the RRT framework, we require the following components:

1. State Space: A 2n-dimensional differentiable manifold, X, that denotes the state space. A state, x E X, is

defined as x = (q, q), for q E C, where C is the n-dimensional configuration space.

2. Metric: A real-valued function, p : X x X --+ [0, oo), which specifies the cost of traveling between pairs of

points in X in accordance with a specified cost function.

3. Boundary Values: zina E X and Xgoai C X.

4. Constraint Satisfaction Detector: A function, D : X -+ {true, false}, which indicates when global con-

straints have been satisfied or violated.

5. Inputs: A set U of inputs containing all inputs that affect the state.

6. Equation of Motion: The dynamics expressed as a differential equation x = f(x, u).

7. Incremental Simulator: A function for generating future states of the agent given the current state, the equa-

tions of motion, a time interval, and u over that time interval.

The primary objective of this work is to develop a metric that increases the capability of the RRT to explore state

space. This breaks down into two subproblems: determining the appropriate cost function for maximum state space

coverage and developing an approximation of the optimal cost-to-go function that can be computed efficiently and

scales well with the number of state variables. The pseudometric will be directly compared to the exact optimal cost-

to-go function when the later function is known, and its impact on the ability of the RRT to explore state space will be

assessed on four different dynamic systems.



2 Minimum-Time Solutions

Finding the trajectory that takes a system between given initial and final conditions in the least amount of time can be

as simple as solving a matrix equation or complex enough to have no known analytical results despite the efforts of

mathematicians and engineers who have attempted to find solutions over the past sixty years. This task is referred to

as a minimum-time optimal control problem.

2.1 Motivation

As explained earlier, our goal is to create RRTs that have greater coverage of the state space than is presently achieved

with a NEARESTNEIGHBOR function based on the Euclidean distance metric. Efficient coverage from the RRTs

comes from the Voronoi bias.

Most RRTs in the existing literature, including the basic RRT algorithm we employ in this work, expand nodes

forward for a fixed At. In order to be efficient in the number of nodes, we would like to solve a minimum-time

problem from each existing node of the tree to the subgoal. Minimum-time solutions are not known for most systems,

but we review here the systems where they are known and discuss their efficiency.

2.2 Continuous Time Systems

The continuous-time double integrator with bounded input is a system that is simple enough to have an analytical

minimum-time solution but complex enough to have a solution "style" that carries through to more general continuous-

time systems. The dynamics and constraints of the system are as follows:

S=u, (3)

B_ < u < B+, (4)

B_ <0< B+ (5)

x is u after integrating twice. The system's state evolution equation is linear, but the limit on actuation introduces a

nonlinearity into the system as a whole. A physical representation of this system is a one-dimensional brick that can

be pushed left or right along a line. x represents the brick's position, and u represents the magnitude and direction of

the force applied to it. If u were unbounded, x could instanteously reach any desired value, and the minimum-time

path is infinitely quick. (The optimal control problem would therefore not be well defined.) Also, unlimited force is

unrealistic.



Even though limits on u introduce a nonlinearity into the system, the mapping of u to x is simple enough that we

can still derive a closed-form expression for the minimum-time path between two arbitrary points in the state space of

x, which is 2D with coordinates x and i, or position and velocity in terms of the physical example of the brick. [12]

presents the minimum time solution for reaching the state space origin (or any other position for which the velocity

is zero, since the system's dynamics are invariant with respect to position). To compare the AQR-based pseudometric

to the exact minimum-time pseudometric, the solution needed to be extended to reaching points in state space with

non-zero velocities.

The major points established in [12]'s derivation for reaching the state space origin are the following:

(1) The minimum-time solution is that the input u will always be "at the rails:" either pinned to the upper or lower

bound on u. (This is also referred to as a bang-bang solution.) It follows, then, that minimum-time solutions are

purely composed of the bang-bang curves, the arcs through state space that the system traverses when u is at its upper

or lower bound. In the case of the brick, these arcs are parabolic about the position (x) axis, and which direction, left

or right, to which they open is determined by the rail to which the input is pinned. Which rail to which u is pinned

also determines whether the system travels upward along the parabolic curve, which happens when u is at its upper

bound, or downward, when at its lower bound. Since the dynamics are not affected by position, these two directional

parabolic curves can be shifted right and left along the x axis and still be valid system trajectories.

(2) The switching curve is composed of all states from which it is possible to reach the goal in the minimum amount

of time possible, but without switching which bound u is pinned to. This switching curve is shown in Figure 3.

All minimum-time trajectories will converge on this switching curve because all minimum-time trajectories will be

slowing down to the zero-velocity, zero-position origin point with u at one of the rails. Minimum-time trajectories can

be broken down into two subtasks: getting to the switching curve in the least possible time and riding the switching

curve into the origin. When the system is below the switching curve, the minimum-time route to the switching

curve follows the upward-directional bang-bang curve. Likewise, when the system is above the switching curve, the

minimum-time route to the switching curve follows the downward-directional bang-bang curve. Switching from the

bang-bang curve that delivers the system to the switching curve to following the switching curve itself always requires

pinning u to the bound it was not previously set to, and the time-optimal path has at most one switch.

Extending this solution to reaching points with non-zero velocity requires a shift in view about the problem (and

possibly a corresponding change in implementation) but the method stays unchanged. The two halves of the switching

curve for a point with non-zero velocity do not meet to form an inflection point at the goal. Instead, they meet at a point,

as illustrated in Fig. 4. The switching curve is no longer able to be represented as a function for which each position

x maps to exactly one velocity x. Earlier we described the first bang-bang curve as being determined by whether the
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Figure 3: Switching curves for goals (shown as red points) that have zero velocity.

system starts above or below the switching curve. Equivalently, we could have described the first bang-bang curve as

being determined by whether the system starts to the right or left of the switching curve, since the switching curves for

goals with zero velocity are monotonically decreasing functions of position (Fig. 3). This second method (left/right

rather than above/below) generalizes to determining the first bang-bang curves for goal points with non-zero velocity,

whose switching curves are no longer functions of position, let alone monotonically decreasing (Fig. 4).

Now that the composition of the minimum-time trajectory between any initial and final point, with zero or non-

zero velocity, has been established, it is possible to calculate the time it takes to traverse this time-optimal path. To do

this, it is necessary to have mathematical descriptions of the system trajectories that sweep through state space when

the input is set to one of its two bounds. When u is set to a constant,

2(t) = 7, (6)

we have a closed form expression for velocity as a function of time,

4 (= Yt + ±init, (7)
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Figure 4: Switching curves for goals (shown as red points) with either zero or nonzero velocity.

and for position as a function of time, -y, and an initial position and velocity,

12
x(t) = 2 + init + Xinit. (8)

By solving Equ. 7 for t and plugging that resulting expression in for t in Equ. 8, we get the family of all possible

system trajectories for constant u:

12

which is a parabola for which (1) the curvature is scaled by the magnitude of -y, (2) the direction of opening (left

or right) is determined by the sign of 7, and (3) the intersection with the position axis is determined by the state

[xin7 it, finit] that the curve is constrained to pass through.

If a point on the curve is the origin, Equ. 9 simplifies to:

-Y - - 0 (10)
2

from which the quadratic relationship between position and velocity is easier to visualize. The dynamics are agnostic



to position, so these curves can be shifted in either direction along the position axis and still be valid. Setting the

left-hand side of Equ. 10 equal to some constant other than zero performs that operation. To shift the curve so that it

intersects a specific state [xd, xd], the constant is set to the value of the left-hand side when [xd, xd] are plugged in for

[x, ].

Above the goal point, [XG, XG], the switching curve will be of the downward type (u = B_) and pass through

[XG, XGI:

B_x - 2 = B_xG - (iG)2
2 2

X > X+G (12)

Below the goal point, the switching curve will be of the upward type (u = B+) and also pass through [XG, xG]:

B+x - (.)2 = B+xG--(-G) (13)
2 2

X < XG (14)

If the initial state is to the right of this switching curve, the optimal policy will be u = B_ then u = B+. The

reverse is true if the initial state is to the left of the switching curve. We'll call these first and second assignments of

u to be -yi and y2, so that the following derivation is general regardless of on which side of the switching curve the

initial point falls. We can now specify the two bang-bang curves that form the time-optimal path, the first curve from

the initial point, [xo, io], to the intersection with the switching curve:

7 1x - (1)2 = Tio - (_o)2 (15)
- 2 - - 2()

and the switching curve to the goal:

7 - ()2 =Y2XG - (G)2 (16)
2 2

By reorganizing the terms and setting them equal to each other, we can solve for the :2 of the intersection point. When

71l > 72, the positive square root is the true i of the intersection point; when 7Ti < 7Y2, the opposite is true. Finally,

the position of the intersection point can be found by substituting the :i of the intersection point into either of the

intersection two curves' equations. We will refer to the intersection point as [xc, ic]-

Now that the intersection point is known, the length it takes to travel each of the two bang-bang curves can be



found by substituting into Equ. 7 and solving for t:

xC - x0ti = ±c)

t2 =(G -S )

(17)

(18)

The time it takes to traverse the minimum-time path is the sum of ti and t 2 , and the policy is to set u to y1 for the first

ti seconds and to Y2 for the second t2 seconds.

2.2.1 More General Results

Switching functions, which provide a visual cookbook for determining the time-optimal path for bounded-input sys-

tems, potentially both nonlinear and linear, can be analytically calculated using the Pontryagin Minimum Principle,

as shown in [28], when the dimension is small. For systems with three or more state variables, it becomes "generally

difficult, if not impossible, to obtain an analytical expression for the switching hypersurface" [27]. The most general

analytical results are described in [26], but only the form of the solution is given, without a method for calculating it.

2.3 Discrete-Time Linear Systems

The methods which give exact solutions for discrete-time (DT) systems are simpler than their counterparts for

continuous-time (CT) systems. The equation that describes the system's evolution as a function of state and input

is:

x[n + 1] = Ax[n] + Bu[n]

The equation that describes the relationship between

system state is:

u[0]

x[n] = A x[] +C u[1

u[n -1

(19)

an initial condition xO, a sequence of inputs, and the resulting

C = B AB ... An-1B]

[1]

(20)



2.3.1 Unrestricted Inputs

The simplest method presented in this chapter is for a DT system with no restrictions on the input. Finding the time

(and the associated sequence of inputs) of the minimum-time trajectory is as straightforward as solving increasingly

large matrix equations.

Algorithm Given x0 and xf as the required initial and final states,

1. Solve

xf - Axo = B u (21)

2. If a solution exists, return the trajectory's length in time steps (1) and the associated steering function (in this

case, scalar) u

3. If no solution exists, solve

x5 -A2XO B AB [] (22)
1 _U[1]

4. If a solution exists, return the trajectory's length in time steps (2) and the associated steering fuction u-

5. Repeat this process, attempting to solve the equation for input sequences of increasingly large duration (n),

terminating when a solution is found

u[O]

xf -A XO [B AB ... An-1 B ] (23)

u[n - 1

Originally, I firmly believed that one only needed to attempt to solve at most N matrix equations, where N is the

number of state variables, but there may actually not be any stopping criterion when it is known that no solution

of any length exists. If the matrix equation has no solution when n = N, then the columns of the square matrix

[B AB ... AN-1B do not span a space that includes the left-hand side of the equation and no additional

columns (part of solving for longer steering functions) will increase that rank and expand the spanned space. However,

if the vector, xf - Anx 0 , on the left-hand side, which also changes as a function of n, can fall into the spanned space



of [B AB ... AN-1B las n increases beyond N, then stopping at n = N is not sufficient and iterations for

n > N are necessary to find a solution, if one exists.

2.3.2 Bounded Inputs

By imposing an additional restriction, i.e., placing bounds on each component of the input vector,

|ui| < 1 (24)

the problem as a whole becomes nonlinear and solveable by linear or quadratic programming instead of simply finding

solutions to matrix equations. Linear and quadratic programming (LP and QP, respectively) techniques operate on

matrix inequalities rather than equalities, but it is not difficult to set the LP or QP up in such a way that equalities,

such as the relationship between current states, actions, and future states, are respected in addition to inequalities like

the input bound above. If we are to consider steering functions that are n time steps long, we replace the equation for

the relationship between current states, actions, and future states

u[O]

xf -Axo [ B AB ... An- 1B (25)

u[n - 1]

with an equivalent set of inequalities that must be simultaneously satisfied:

u[0]

x5 - A'xo B AB ... An- 1 B (26)

u[n - 1]

u[O]

xf - Anxo > B AB ... A"~1B (27)

u[n -1]



Multiplying the second inequality by -1 will allow for stacking the two conditions into one inequality that LP and QP

can be applied to.

Since there appears to be no way to consider steering functions of different lengths without considering matrix

inequalities of different sizes (the same equation cannot be used to test for the existence of steering functions of two

different lengths), it is necessary, just like for DT systems with unbounded inputs, to progressively solve larger and

larger LP/QP problems. Such iterations would only terminate when a solution is found, and could continue indefinitely

without ever finding a solution.

Even though LP and QP optimize different cost functions of the steering vector (solution), the cost function is only

used to determine which steering vector, of all n-long steering vectors, is returned. Since the cost function of interest

to us in this context is purely n, it doesn't matter whether a linear and quadratic cost function is used to determine

which of the smallest, n-long steering vectors is returned as the final solution.

2.3.3 Expanding Slightly beyond Simple Minimum-Time Solutions

The simple matrix-equation-solving approach can only be used to find minimum-time solutions. However, it is possible

to use the LP and QP machinery to find minimal-cost (or at least locally minimized-cost) solutions for systems with

bounded inputs and cost functions beyond just time, such as:

* cTu

* 1+YcTu

within an LP and

" UTQU

" 1+auTQu

* 1 + auTQu + 3cT u

within a QP. As previously mentioned, LP and QP only minimize these cost functions over a steering vector u of fixed

length. Finding the global minimum over multiple n is not guaranteed.

If there are no bounds on the input, then an additional cost function type can be handled, which is quadratic in both

state error and input, such as 1 + axTQX + /T Ru. The discrete form of the Riccati equation can be used to solve

multiple finite-horizon linear quadratic optimal control problems.



2.4 Nonlinear Systems

Minimum-time problems can be solved for nonlinear systems using dynamic programming. [25] develops the ma-

chinery for discrete-time systems with discrete states and actions, which reduces to an algorithm that takes in the S

possible states, the A possible actions, a horizon time, a dynamics function s' = f(s, a, n), an instantaneous cost

g(s, a, n), and a terminal cost h(s). A minimum-time solution would be found by using a terminal cost function

h(s) that is infinite everywhere but the goal and setting the instantaneous cost function to some constant value. The

algorithm gives as output an optimal policy rr* (s, n) and optimal cost-to-go function J (s, n). The solution is exact.

However, as soon as the discrete state condition is changed to continuous state, a function approximator is needed

to store the cost-to-go function, and the solution may no longer be exact.

2.5 Efficiency

These minimum-time solutions were not chosen as foundations for RRT proximity pseudometrics because of com-

putational considerations and scalability issues. The bang-bang solutions for force-limited continuous-time systems

are not efficiently computable for state spaces with a dimensionality greater than two. The solutions for discrete-time

systems only solve for specific point-to-point queries; if used within a pseudometric, the solution would need to be

calculated for each tree node every time a new subgoal, Xand, is sampled from the state space. The solutions for

nonlinear systems also do not scale well with the dimensionality of the state space. Quadratic regulators, which do not

solve minimum-time problems, but which are efficient to compute and which produce solutions for all of state space

simultaneously, are presented as an approximation to the minimum-time solution in the next chapter.



3 DESIGNING THE AQR-BASED PROXIMITY HEURISTIC

There is a class of optimal controllers for linear systems with quadratic cost functions of state and/or action for which

the global exact closed-form cost-to-go to the specified goal state in the dynamic system's phase space can be found

by numerical matrix integration. These controllers are called linear quadratic regulators (LQR), and, as mentioned in

the chapter on relevant literature, LaValle identified the cost-to-go functions of optimal control problems such as these

as promising candidate proximity functions for the NEARESTNEIGHBOR function, even when the system the RRT

is being built on is nonlinear. LaValle suggested this class, and this thesis work develops the idea and explains the

significant design choices made to compose the final proposed proximity function.

Consider a smoothly differentiable, possibly nonlinear system:

= f(x, u), x E R', u E R" (28)

and xrand, a random sample in the phase space produced by the RRT algorithm that is building a tree on this system.

For notational simplicity, we will define a new coordinate system centered about Xrand:

, = X - Xrand. (29)

The RRT algorithm must select a node of the tree to grow towards Xrand, so, in order to get a cost-to-go to Xrand from

each RRT node, we will use a controller that attempts to drive the system to Xrand.

Since, at this time, there is no efficient systematic design approach available for finding optimal controllers for

general nonlinear systems [12], we linearize the general, possibly nonlinear dynamic system, define a quadratic cost

function on state x(t) and action u(t), and solve for the optimal controller of the new system. The cost-to-go function

associated with that optimal controller will be most accurate around the linearization point. We chose Xrand as the

linearization point so that the global optimal cost-to-go could be found once, using the dynamics from linearizing about

the sample goal Xrand, rather than finding the global optimal cost-to-go to Xrand using the dynamics from linearizing

about RRT node i and then repeating that process for each node in the tree.

The linearized system dynamics are defined by the zero and first-order terms of the Taylor expansion of the original

system's dynamics. We have to specify both the state Xrand and the input u being applied at that state to find the

linearized dynamics. However, in practice, u is always set to a zero vector. However, for generality, we will refer to

this specified u as uf.



3.1 The Trouble with Non-Fixed (Unstabilizable) Points

Since fixed points lie on subspaces of the full state space when the dynamic system is not degenerate, the probability

of randomly sampling a fixed point as the next sample goal, (Xrand, uf), when the full state space is being sampled

uniformly, is zero. When (Xand, uf) (the linearization point) is not a fixed point, the zero-order term of the Taylor

expansion of J will not be a zero vector. In this case, while the system is referred to as linearized, the product of the

linearization process will in fact be affine. The derivation that follows mirrors that of an open-loop LQR, but has been

generalized to affine systems, and for that reason, we refer to the resulting controller as an affine quadratic regulator

(AQR).

Under the control of an infinite-horizon LQR designed to drive the linearized system to a fixed point, the system

will converge on that fixed point asymptotically.

An infinite-horizon affine version of LQR cannot exist for non-fixed points, which are unstabilizable and impossi-

ble to approach asymptotically. If the system actually reaches the non-fixed point, the dynamic constraint that defines

a non-fixed point (a combination of state space location and input for which i is non-zero) forces the system to move

away from the non-fixed point it just reached. The assumed smoothness of the dynamics as a function of state and

action allows us to extend this property to the neighborhood around the non-fixed point and conclude that the non-fixed

point cannot be approached asymptotically. The AQR derivation below is an example of a finite-horizon affine version

of LQR.

3.2 Derivation of the Affine Quadratic Regulator

The following series of equalities and approximations shows the derivation of the linearized (affine) system from the

derivative of the state in the new coordinate frame. Note that the constant offset that places the origin of the new

coordinate frame at the coordiates of Xand in the old frame has no effect on the change in state as a function of states

and inputs.

.d
= (x(t) - Xrand) =(t) (30)

of of
f(Xanl, Uf) + L (x(t) - Xand) + 6 (U - uf) (31)

=c + A + Bii, A E nn, B E R"nx (32)

We define a quadratic cost on i, plus a constant. Since the constant is inside the integrand, it adds the total length

of a path to the cost of that path, serving as a penalty on paths of longer durations. The relative cost of quick paths and



paths which require little input to follow is determined by the positive definite R.

J(2, to, tf) = 1 + 2i(t)± R(t) dt, R = R > 0, (33)

s.t. z(tf) = 0 (34)

T(to) = z~o (35)

X = At + Bii + c. (36)

While this cost function, J, is parameterized by both to and tf, the linearized dynamics are autonomous, so the cost

function can be re-parameterized with respect to time, without loss of generality, by T, which is t1 - to. That total

trajectory length T can have a significant impact on the cost-to-go from a state to Xrand. Consider a situation where,

just by the passive linearized dynamics alone, the linearized system will arrive at Xrand from some state xi in ti

seconds. Depending on how B maps u to a change in state, it can take a lot of additional control effort to speed or

slow the system's arrival at Xrand.

The optimal control solution for this constrained system can be found using Pontryagin's minimum principle,

which is a necessary condition for optimality. To apply this principle, we must define the Hamiltonian; it is a linear

combination of the integrand of the cost function J and the expression for the change in state as a function of state

and action [12].2 The A(t) is the factor that makes the Hamiltonian a linear combination of terms from the objective

function and the constraints imposed by the dynamics, and it is referred to as the Lagrange multiplier.

1
H(t) = 1 + T (t)RR(t) + A(t) [Az + Bii + c] (37)

2

The Hamiltonian function should be at a minimum or stationary point with respect to changes in the control

function R(t) so we also constrain the derivative of H(t) with respect to R to be zero [12]. If we define L as the

integrand of J, we can more concisely show the specific constraint for our linear quadratic problem.

0 =H -(38)

6L ofT
+ A(t) (39)

- Ri + BT A(t) (40)

2 The change in state, i, as a function of state and action is not time-varying in this case, but the definition of the Hamiltonian is general enough
to handle such a problem specification [25].



This "stationarity condition" and the positive definiteness of R allow us to solve for the optimal control function in

terms of the Lagrange multiplier:

W* = -R-'B T A(t) (41)

We can solve for A(t). A has its own dynamics, as shown in [12]'s Pontryagin's minimum priniciple-based deriva-

tion of the continuous nonlinear optimal controller, and those dynamics are simple enough for linear quadratic prob-

lems that if we know the final value of A, we know A for all time.

The time-varying Lagrange multiplier's dynamics will satisfy

6 H-A= 0 <t<T (42)
6x

Since this is the linear quadratic problem, we can be more specific:

-A= A TA(t), 0O<t <T (43)

so the closed-form solution for A in terms of its final value is

A(t) = eA TF(Tt')A(T) (44)

However, we do not know the final value of A. It's much easier to define boundary conditions in terms of the

system's state, x. In fact, it makes intuitive sense that, since we are interested in the cost incurred by actually reaching

Xrand (with the linearized system), not just minimizing some quadratic function of our distance from Xrand at the end

of the trajectory, we should impose a strict final boundary value condition on x:

x(T) = Xrand (45)

In the coordinate system we prefer:

z(T) = 0 (46)

Of course, this boundary value for 2 will only help us find the boundary value for A if we know the relationship

between ; and A. By substituting the optimal control solution *, which is in terms of A, for ii in the equation



governing the dynamics of z, we get that necessary relation:

(t) = At(t) - BR-1BTeA (T-t)A(T) + c (47)

The relationship between the state and the Lagrange multiplier (Equ. 47) and the dynamics of the Lagrange multiplier

(Equ. 42) together form what is referred to as the Hamiltonian system. With initial and final boundary values for

the state, which are the states at the beginning and end of the trajectory, xo and Xand, we can solve the Hamiltonian

system for A(t).

Since the relationship between the state and Lagrange multiplier is actually between the change in state and the

Lagrange multiplier, we must integrate Equ. 47 before evaluating the relationship at T so that we can impose our state

final boundary value constraint. Integrating Equ. 47 produces

z(t) = eA(t-to)zto - eA(t-r)BRlBT A(r) + eA(t-)cdr (48)
/to0

Now we can evaluate t at T and set it equal to our final boundary value on state, 0:

c(T) = e iAT - eA-TTBR-1BT A(r) + e(T)cdr = 0 (49)

If we substitute in the expression for A in terms of its final value (shown earlier in Equ. 44), we can solve for the

final value of A in terms of the dynamics of the system, the cost on action, and the starting and ending states of the

trajectory. Recall that with this final value of A we know A(t), * (t), and z(t) for the entire optimal trajectory.

( eA(T)o -0 j eA(T- )BRlBT eA (T--r)A(T) + eA(T-)cd = xran (50)

The integral amounts to a symmetric matrix, referred to as the continuous reachability gramian, and the final value of

the Lagrange multiplier multiplied together plus a constant. If we define

P(t) =j e(t -)BR1BTeA-(t) (51)



then

0 = eAT to - P(T)A(T) + j eA(T-)cdr (52)

A(T)=P 1 (T) eATo+ j eA(T-) cdr] (53)

The symmetry of P allows us to invert it. For notational simplicity, we'll define the expression above in brackets as d:

A(T) = P 1 (T)d(2o, T) (54)

While Equ. 51 describes one way of calculating P, [12] asserts that there is a preferable method. My understanding

of this alternate method was enhanced by recognizing the connection between linear quadratic regulators which have

final boundary value constraints on state and linear quadratic regulators developed from cost functions whose only

state error terms are from the state at the final time T. The relationship is easiest to see when the cost functions and

final state constraints, when applicable, are shown side by side.

The linear quadratic regulator which has been discussed thus far has the following cost function and final state

boundary value constraint:

J(zo, T) = 1T [, + li T(t)Ri(t) dt, R = RT > 0, (55)

s.t. 2V(T) = 0. (56)

The cost function of a closely related linear quadratic regulator is the same as above, but with the additional quadratic

term for final state error and with a final state constraint:

J(.o,T) = Q 5 T [1 + 1T (t)Ri(t) dt, R = RT > 0, Q5 =Q > 0 (57)

The optimal cost-to-go functions associated with the solutions to both control problems have the following form:

J*(zo,T) =T+h(.o,T)TS(T)h(:o,T), h(zo,T) C R", S(T)G R""" (58)

When Qf has an infinite determinant, the optimal cost-to-go functions' S(t) are the same. The latter controller's

infinite Qf assigns an infinite cost to all trajectories that do not end at the final desired state, so all the optimal

trajectories will also satisfy the final state constraint of the former controller.



This S(t) is the solution to

-$ = -SBRl'BTS +SA+ ATS, S(T) (59)

which is a matrix Riccati equation and bilinear in S. When Qf does not have an infinite determinant, S(t) for all t < T

can be found by integrating the dynamics of S backwards in time from S(T) at T. However, when the determinant of

Qf is oc and integrating backwards from infinity is impractical, we instead solve for S-1 by integrating the dynamics

of S-1 backwards in time from the corresponding final boundary value, S- (T), which is 0. Using the matrix relation

S -S- S- [25], the dynamics of S- is

S'-I(t) = AS- 1 (t) + S-1(t)A T - BR~lBT (60)

This is a Lyapunov equation, and linear in S-1. 3 The solution S-1 is equivalent to P- 1 , and the method described

above for calculating it is used in the code developed for this thesis, instead of the original definition of P- 1 .

Now A(t) has not just been defined in terms of known (given) quantities; we have identified the preferred method

of its calculation, and since * (t) and t(t) are defined in terms of A(t), they are also known in terms of originally given

quantities. However, the quantity upon which the AQR-based pseudometric will be based is the cost-to-go between xO

and xf. By plugging ii* into the cost function, we get the following:

J*(,T) = 1+ u*T(t)Rt*(t) dt (61)

= T + r-- j dT(zo, T )P-1 (T) e(T -)BR-1 R [-R-1 BT eA (T-*)P-(T)d(zo, T) (62)

= T + j dT(2 0 ,T)P-1(T) eA(T-)BR-1BTeA (T-t) P 1 (T) d(zo, T) (63)

= T+ d T(2o, T)P-1(T)d(2o, T) (64)

2

Finally, since the cost of traveling along the optimal trajectory from zo to the origin of our state coordinate system in

T units of time is highly dependent on T, we search for the horizon time with the least cost

T= argminTJ*(zo,T), 0 <T < Tmax (65)

J*(. 0 , T*) is the distance when traveling from XO to Xand according to the AQR-based pseudometric.

3This can be solved explicity, rather than with numerical integration [25].



3.3 Computational Efficiency

The user must choose some maximum T by considering the possibility of the lowest J* (t, T) for a given : occurring

at a longer T and the additional computation time of finding J* (:, T) for longer T. The additional computation of

considering longer T is made more efficient by observing that both P and d can be solved recursively by integrating

backwards from the final conditions. As explained earlier, P- is integrated backwards in time from 0, and can be

integrated backwards indefinitely to find the cost for any T. d is the sum of eATz and an integral over the entire length

of the time horizon T; therefore d for a given zo and T can be expressed as

d(?o,T)=r(T)+eAT o (66)

As J* (o, T) is computed for longer and longer T, r can be updated from the r of the previous (shorter) T using the

differential equation whose solution is the integral term in the original definition of d:

r(t) = Ar(t) + c, r(0) = 0 (67)

As P-1 integrated from its final conditions and a time horizon of 0 backwards to find P-1 for longer and longer T, r

can simultaneously be integrated to find r(T) for longer and longer T.

And while there is a distinct T* for each 2o, P- 1 and r are valid across all zo. The computation of J*(: 0 , T*) is

done by first calculating P- 1 and r via integration from 0 to Tmax. Then, for each chosen increment of T, we produce

a d(zi, T) from r(T) for each node, where zt is the ith node in the RRT of p nodes. A new matrix, D(T), is formed;

its p columns are the p node's d(zt, T). J* (,, T) can then be computed for all nodes simultaneously by computing

T [1 1 ... 1] + D(T)P- (T)D(T). Finding the T* for each node is trivial and efficient.

To further increase computational efficiency, we rely on the fact that the subroutine that returns the closest node

with respect to this AQR-based pseudometric does not need to evaluate all the nodes in the RRT to determine its output

with certainty. Since J(2, T) is a quadratic form in terms of d plus an offset, it can be broken down into a sum of

squares

1
J(2, T) = T + d T(o, T)P (Td(zo, T) (68)2

1
= T + I[AC2 + &c + ... + AC2] (69)

where ci is the projection of d(zo, T) onto the orthonormal axis associated with the eigenvalue Ai. Assume AL is the



largest eigenvalue. If ALc2 for some node i is greater than the entire sum of squares, [Aic + A2 ci + ... + Ac2] for

another node, j, in the tree, then the total J for node i at T is also guaranteed to be greather than the total J for node

j at T.

Since the matrix multiplication involved in calculating D(T)P-4(T)D(T) can become a computational bottleneck

when trees have many nodes (producing very wide D(T)), this fact about the relative costs of nodes can be used to

identify which nodes' total costs cannot be the least of all the nodes of the tree before their d becomes another column

in D(T). For each T, we want to identify the node which will enable us to eliminate the greatest number of nodes

from consideration, but without a lot of computation. If we limit ourselves to computing only one Aici per node before

deciding which node's total J(T) will serve as a threshold for eliminating other nodes, then it makes sense to calculate

ALCL at T for all p nodes, choose the node with the smallest ALCL at T, calculate its total J(T) and call it C, and not

add any nodes' d vector to D(T) whose AL4c at T is greater than C. The total J(T) of nodes whose d does become a

column of D(T) will be calculated. Note that whether or not a node's total J(T) is calculated for some time horizon

T1 does not affect whether or not its total J(T) is calculated for a different time horizon T2. Overall, this reduces the

time to find the node in the tree with the least distance to Xand (J* (T*)) with respect to the AQR-based psuedometric.

3.4 The Shape of the AQR and AQR-based Pseudometric Cost-to-Go Functions

When the linearization point is a fixed point, the cost-to-go, as a function of state, for that linearized system under

control of the AQR will be quadratic bowl. 4 The same shape of the cost-to-go function results from the infinite horizon

LQR solution.

For the case of a linearization point (Xrand, Uf) that is not a fixed point, the c term of the linearized dynamics

shifts the location of the center of the AQR's quadratic cost-to-go function bowl, as can be seen by examining Equ. 69.

The minimum-cost state, which is the center of the quadratic bowl of cost, is the state in which the passive dynamics

of the linearized system will bring the system back to Xrand in exactly T units of time. As T is changed, the principal

axes, eigenvalues, center location, and magnitude offset of J(2, T) change.

Finding J* (.z, T*) for each z enables the AQR-based pseudometric to approximate the discontinuities in cost-to-

go to a nonfixed point that exists for exact minimum-time pseudometrics, even though the AQR-based pseudometric

is composed entirely of a state by state minimization over T of magnitude-offset quadratic bowls.

4 AQR and finite-horizon LQR are equivalent due to the linearization point being a fixed point.
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3.5 Justifications for the Parameter Choices of the AQR-based Pseudometric

The AQR-based pseudometric has a hard final constraint on state, equivalent to a Qf with an infinite determinant, and

no state error term zTQT within the cost J's integral, equivalent to a Q with a determinant of zero in a closed-loop

LQR. The quickest paths are not necessarily also the closest in terms of the weighted squared Euclidean distance that

the incremental state error term zTQt accumulates; this is an argument for not including that incremental state error

term. However, if the term is included, the RRT will be biased toward expanding nodes whose optimal trajectories

spend greater amounts of time near the sample goal Xand in terms of the weighted squared Euclidean distance,

which might subsequently bias the RRT toward expanding nodes which themselves are closer to Xand in terms of

the weighted squared Euclidean distance. This injects the influence of the Euclidean distance metric that we earlier

rejected, but also biases the RRT toward expanding nodes for which the linearized dynamics (and therefore the cost-to-

go), which are only locally accurate, are more accurate. Ultimately, Q was chosen to be a zero matrix; the arguments

for and against this choice are both reasonable, so the tie-breaker was that eliminating the incremental state error term

reduces the number of parameters to tune.

Since the exact minimum-time proximity to xand can have discontinuities, such as cliffs, that run through Xand

and assign states of equal final state error ztTQ 1 I to significantly different distances to Xand, it makes sense not to

again minimize some weighted squared Euclidean distance when it is possible to enforce that at least the linearized

system arrives not near but at Xand.

R remains as the sole tunable parameter, and based on personal experience, the accuracy of the minimum-time

pseuodmetric approximation is increased when the magnitude of the elements of a diagonalized R are proportional to

the severity of the bounds set on the input. LQR and AQR cannot take explicit input bounds into account; penalizing

high-magnitude actions is the closest related possible option.



4 INTERPRETING VORONOI DIAGRAMS AND PROXIMITY MAPS

Every new sampled point (Xrand) is mapped back to the nearest node to it in the RRT (xner) so that xnear can be

expanded towards Xrand. Since the sampled space is sampled uniformly with respect to the Euclidean distance, the

probability of expanding node i in the RRT is proportional to the Euclidean area of the Voronoi region of node i, where

the Voronoi region contains all points closer to node i than any other RRT node. This is referred to as the Voronoi bias,

the bias RRTs have towards exploring places not yet visited. Regions on the frontier of the tree and regions where little

exploration has occurred contain the fewest nodes; the farther apart the nodes are in a region, the larger their Voronoi

regions and the more likely they are to be nearest of all RRT nodes to Xrand and expanded.

While the samples of space (Xrand) are spread uniformly through the sampled space with respect to the Euclidean

distance, the NEARESTNEIGHBOR function is free to use any measure of distance. Each measure of distance

defines its own set of Voronoi regions. By determining the Voronoi regions, the distance metric also determines what

regions of the sampled space are least explored, and which children of an expanded xner have brought the RRT closer

to that less explored space.

The classic demonstration of RRTs' effectiveness for exploring spaces comes from running the RRT algorithm

on a holonomic system and using a NEAREST-NEIGHBOR function that returns the node with the least Euclidean

distance. LaValle's early RRT papers show this classic example, with the Voronoi regions overlaid. This thesis

focuses on defining and implementing a NEARESTNEIGHBOR function that, when used with the standard RRT

algorithm shown in Table 1, produces trees on nonholonomic systems that most faithfully reproduce the coverage

of trees produced by RRTs with Euclidean-distance-based NEAREST-NEIGHBOR functions running on holonomic

systems. Half of this chapter looks at this goal from the perspective of Voronoi biases imposed by various definitions

of the NEAREST-NEIGHBOR function; the other half looks at this goal from the the perspective of gradients of the

various (pseudo) distance metrics the NEAREST-NEIGHBOR function can use.

In Fig. 6(d), it is possible to see that, regardless of the velocity of a state with the same position as node i in the

RRT, which in this toy RRT are all stationary, the Euclidean distance metric identifies node i as the closest of the

RRT's nodes. Expressed in another way, when the NEAREST-NEIGHBOR function relies on Euclidean distance, the

RRT algorithm will try to expand a stationary node towards any state with the same position, regardless of its velocity.

Such a path from a stationary to high-velocity state at the same position requires moving far enough away from that

position so that it can move back toward the end position while building up to the end velocity. This corresponds to a

spiral in the phase space, which can be visualized directly overtop of the Voronoi diagrams. The more restrictive the

bounds on the force that can be applied to the brick, the wider the narrowest feasible trajectory (which happens to be
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generatable by a bang-bang minimum-time controller) will be in phase space.

Note that points along any feasible path between the stationary and high-velocity end states (Xrand) may be farther

in Euclidean distance from the end state than the stationary starting node, as shown in Fig. 7. In contrast, by definition,

if the cost is trajectory length in time, the exact optimal cost-to-go function evaluated along the minimum-time path

decreases monotonically. We can confirm this visually in Fig. 8.

While variants of the RRT algorithm exist, the version used in this thesis (Table 1) does not add that whole path

to the tree at once; the feasible paths are unknown. Instead, the child(ren) of the nearest node in the RRT (xnear) are

a small incremental step away from their parent, and the child that is farthest down the gradient of the same (psuedo)

distance metric used by NEARESTNEIGHBOR, i.e., closer to Xrand, is added to the tree.

When the (pseudo) distance metric evaluated along the feasible paths from xner to Xrand is not monotonically

decreasing, this simple method for adding nodes will be inefficient at best and ineffectual at worst. (This is presumably

why so many papers and theses have proposed algorithmic modifications to the RRT.) Fig. 9 shows how the AQR-based

proximity function approximates the exact solution for this system's dynamics and constraints, so that its gradient

along the path more closely resembles that of the monotonically decreasing exact solution than that of the Euclidean

distance. The sharp increase in cost at the end of the trajectory, when the system is extremely close to the goal, is

caused by poorly conditioned matrices at very short finite horizons of the AQR-based proximity calculation. This is

not expected to have any significant effect on RRT growth.

In the Voronoi diagrams, we cannot see how close states are to each other, or whether or not the proximity to an end

state would decrease monotonically along a feasible path, but we can see which node of an RRT will be considered

closest to, and therfore expanded toward, any xrand and how well that corresponds to what node of the RRT from

which it is actually least costly to reach Xrand.

This can be made more concrete by examining Fig. 6(c). It shows, by the color of each point, exactly which node

in the RRT is closest, with respect to the minimum-time cost. By definition, the optimal minimum-time path will

not pass out of the Voronoi region it starts in, and will end at the RRT node associated with the region. The Voronoi

region of the center stationary RRT node includes the stationary states whose positions are closer to it than to the two

stationary RRT nodes that flank it to the left and right. It also includes the states with non-zero velocities from which

it is possible, with enough force exerted against the direction of motion, to reach zero velocity at the center stationary

RRT nodes' position. The same is true about the Voronoi regions for the stationary RRT nodes to either side of the

center RRT node, which are also flanked on the left and right by stationary RRT nodes. The Voronoi regions of the left-

and right-most RRT nodes are much larger. Those nodes are, as indicated by the Voronoi bias imposed by the exact

cost-to-go pseudometric, on the frontier of the tree, since the probability of one of these nodes being xnear for the
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next Xrand is, as explained earlier, proportional to the size of their (large) Voronoi regions. The quickest way to reach

those outer edges of the sampled space is from the left- and right-most RRT nodes, so the exact cost-to-go distance

pseudometric appears to fulfill the earlier stated goal of reproducing the tendency of Euclidean-distance-guided RRTs

running on holonomic systems to explore places not yet visited. As can be seen in Figs. 6(b) and 6(d), the Voronoi

regions built from the AQR-based proximity function approximate those regions built from the exact minimum-time

cost-to-go pseudometric far better than those built from the Euclidean distance. Figs. 10 and 11 show that this is true

for a variety of (toy) sets of tree nodes.
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Figure 10: Voronoi Diagrams for a 5-node tree on the force-limited brick system.
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5 EXPERIMENTS

Since we developed our pseudometric with a specific, measurable performance index in mind, i.e., state space cover-

age, the design of experiments was straightforward. Note that [21] also used this technique to quantitatively compare

planning algorithms' effectiveness.

For each dynamic system, we build two RRTs. The parameters of the system and the RRT-building algorithm are

held constant, except for the distance pseudometric, so that any resulting differences in state space coverage between

the trees can be attributed solely to the choice of psuedometric. The two trees do not receive identical random Xand to

grow towards, and due to this inherent randomness, the reported results are the averages of repeated trials. While RRTs

can be biased to grow towards a particular point, these RRTs have no goal-bias, since we are interested in creating

trees whose branches reach out into all regions of the sampled state space.

5.1 Measuring Coverage

The RRT algorithm attempts to grow the tree towards random samples (Xand) which are taken from some finite-

volume subset of the infinitely large phase space. This sampled space was divided into bins. The percentage of

populated bins is our measure of coverage. For two-dimensional state spaces, a lOx1O grid of identically sized bins

was used. For four-dimensional state spaces, a 6x6x6x6 grid of identically sized bins was used. (That amounts to 1296

bins in total to cover the space.)

5.2 The Dynamic Systems

RRTs were grown on four different dynamic systems: the brick, pendulum, cartpole, and acrobot. All four systems

have bounds on the force/torque that can be applied. The brick moves along a single dimension without friction; it is

equivalent to a double integrator. The pendulum is a point-mass on a massless rod attached to an actuated pivot point,

and is also undamped. Trees are grown from a root node where the pendulum is at its stable equilibrium. The cartpole

is the same classic system that control textbooks address. It is a pendulum attached to a brick, with no actuation at

the pivot point of the pendulum. The entire system is driven by forces applied to the brick. Trees were also grown

from a root node where the pendulum is at its stable equilibrium. The acrobot is a double (two-link) pendulum with

actuation only at the joint between the two links, and trees were grown from a root node where the system is at its

stable equilibrium. The green "X" indicates the location of the tree root (xint), and the axes of the plot are set such

that only the sampled region of state space (the region from which Xand is uniformly, randomly drawn) is visible.



5.3 Determining Parameter Settings

The RRT algorithm's, dynamic systems' and the psuedometrics' settings may all have a significant effect on the results.

For example, it is possible that large sections of the sampled state space will not be reachable without first traveling

through unsampled regions of space, which the RRT is unlikely to do, given that, by definition, no Xrand sample

goals will be in those regions. All 27r radians of each joint angle were sampled, and the sample intervals for linear

displacements and both linear and angular velocities were arbitrarily set.

In the Euclidean distance metric, the squared differences between two states along each axis are equally weighted.

Theoretically, scaling factors could be introduced and optimized based on empirical data, but this is not customary in

the literature.

The AQR-based psuedometric has two parameters: the maximum considered horizon for the finite-time AQR opti-

mal control problem and R, the penalty factor for applying force/torque in the AQR cost function. The pseudometric-

defined distance between Xrand and nodes in the existing tree is calculated once per node added to the tree, and the

maximum horizon can be set large enough to make the repeated computations of the psuedometric impractical. How-

ever, setting the maximum horizon to a very short length of time will inflate the cost of states that are, for example,

(1) intuitively quite close to the sample goal, Xrand, because the system dynamics will take the system at that state

straight to it and (2) only able to reach the sample goal with a trajectory longer than the maximum considered hori-

zon. For systems with nonlinear dynamics, a shorter maximum horizon may actually lead to improved RRT coverage,

since considering longer trajectories may bias the system toward expanding nodes that are farther away from the lin-

earization point, Xrand, and the further the nodes are from the linearization point, the less accurate the pseudometric's

estimate of true cost (distance) will be. For these experiments, the maximum considered finite horizon length was

arbitrarily set to 5 seconds. However, R, the penalty factor for applying force/torque, was varied in order to find the

value which produced the greatest coverage.

The dynamic systems' parameters are the masses and lengths of the various virtual components and the

force/torque bounds. The masses and lengths were left unchanged. The force/torque bounds were set to be rela-

tively unconstraining. For example, the bounds for the pendulum were set such that there was enough available torque

to push the pendulum from its stable equilibrium (hanging downward) to its unstable equilibrium (inverted) directly,

without needing to swing it back and forth first while pumping energy into it. The AQR-based pseudometric does not

reason about force/torque bounds, so it was hypothesized that if most or all of state space could be reached without

forces/torques exceeding the bounds, the pseduometric would be a better approximation of the true minimum-time

pseudometric.

The next step was to build RRTs with various R values, differing by orders of magnitude (1, 0.1, 0.01...), in order



to find an R at which coverage was at a local maximum. This was done for each system independently, so that the R

setting could be system-specific. I then checked whether or not the trajectories for the linearized system, created by

the AQR-based pseudometric but not used in the RRT in these experiments, violated the (possibly nonlinear) system's

force/torque bounds. This was done to further understand the relationship between the AQR-based pseudometric's

parameters and RRT coverage, and had no influence on the R used in final tests, which was the R that maximized

coverage in the previous step. Finally, RRTs, with system-specifc R values, were grown on each system, multiple

times with each distance pseudometric, so that the average coverage of the RRTs could be compared as a function of

pseudometric.

Sometimes it was clear from watching the growing RRTs that coverage was not being measured at an appropriate

point during tree growth. For example, for the simple pendulum example in the results that follow, the state space

can be almost completely covered by a 1000-node tree, regardless of the metric used. How well the RRT reaches out

and explores state space while using a particular distance psuedometric is, at least for that system, better assessed by

measuring the coverage of the RRTs earlier in the growth process, when they have fewer nodes. Likewise, for the

more dynamically complicated, high-dimensional systems like the acrobot, the difference in coverage between RRTs

using different distance psuedometrics may not be apparent until there are many more nodes in the trees so that the

RRTs that, given their distance psuedometric, are able to steer themselves to new unexplored regions of state space

have the opportunity to do so.

5.4 Brick

The brick system is unique among the four dynamic systems considered, and for two reasons. First, ignoring the

bounds on the force that can be applied, its dynamics are linear. There is no need for linearization in order to apply the

AQR-based pseudometric, which eliminates one source of error. Second, the true minimum-time trajectory between

any two points is known; the corresponding minimum-time pseudometric returns the length, in time, of the node that

can reach a given state in the least amount of time. The AQR-based pseudometric is intended to approximate the true

minimum-time pseudometric. We have already compared maps of the distances they assign to a mesh of points around

a given goal. In this chapter, we can see how well the AQR-based pseudometric approximates the true minimum-time

pseudometric in terms of state space coverage.

The axes of the figures in Figure 12 are set such that only sampled space from which Xrand is randomly uniformly

drawn is visible, and it is perhaps most readily apparent that the exact minimum-time pseudometric leads to a very

uniform coverage of the entire sampled space. We can also see that coverage of the RRT using the AQR-based

approximation of the minimum-time pseudometric reaches almost as much of the sampled space. Finally, we can see
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that the Euclidean-based RRT is not able to explore the upper left and lower right quadrants of state space as well as

the RRTs using the other pseudometrics. This can be explained by the fact that many of the Xand in the upper left

and lower right quadrants were closest in Euclidean distance to the branches representing states where the system is

constrained by its dynamics to continue moving away, not toward, that Xrand.

5.5 Pendulum

In Figure 14, it is clear that the RRT with the AQR-based pseudometric is able to reach a greater percentage of the state

space than the RRT with the Euclidean metric. This comparison holds true over repeated trials, as shown in Figure 15.

5.6 Cartpole

In Figure 16, there is no clear difference between the coverage of the RRTs using the two different distance pseudo-

metrics. Figure 17 confirms this lack of differentiation.

Tripling the size of the trees does not change the relative performance of the RRTs using these two pseudometrics.

5.7 Acrobot

In Figure 18, there appears to be some advantage to using the AQR-based distance psuedometric, in terms of coverage.

However, it is not possible to know this from the figure because information is lost when the four-dimensional space

is projected onto two two-dimensional graphs. Figure 19 shows that on average, there is no significant difference in

coverage.
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6 DISCUSSION

6.1 Trends Across Systems

It is impossible to make sweeping statements about the value of the AQR-based pseudometric based on just four

dynamic systems, but trends can be discussed, and perhaps verified in future work. There appears to be a negative cor-

relation between the complexity/nonlinearity of a system's dynamics and the benefit of using the AQR-based distance

pseudometric over the Euclidean distance. This makes intuitive sense since, for systems with more complex, nonlinear

dynamics, the accuracy of the cost-to-go (distance) estimates of the AQR-based pseudometric will degrade faster as a

function of distance to the linearization point.

There are several other factors that may have also made coverage results on the higher-dimensional, more complex,

nonlinear systems less differentiable. Perhaps it is necessary to sample a larger region of state space because regions

of the currently sampled state space are unreachable without first branching out into currently unsampled state space.

It may also be necessary to optimize the maximum considered finite horizon time with respect to coverage.

A more subtle trend, which may or may not be a coincidence, is that the coverage of any given RRT grown using

the AQR-based pseudometric may be less variable than when using the Euclidean metric. This is suggested by the fact

that the standard deviation of coverage across repeated trials was less, for three out of the four dynamic systems, when

using the AQR-based pseudometric compared to the Euclidean metric. (For the fourth dynamic system, the standard

deviations were about the same.)

6.2 Future Work

Since we observe a drop-off in benefit as system complexity and nonlinearity increase, future work could include ex-

ploring methods for approximating the exact minimum-time proximity pseudometric which can reason about dynamics

with higher-order terms.

The results presented in this thesis are focused solely on quantifying the impact of the AQR-based pseudometric

on RRTs' coverage of state space. However, there may be other advantages to using this pseudometric as well. AQR's

cost function allows for the user to bias the RRT towards solutions which require low input energy. Growing an RRT

with this bias may not lead to the greatest coverage, but may in of itself be of interest to the research community.
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