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Abstract

Specific Absorption Rate (SAR) is a dominant constraint in high field MR, and has
been a topic of much recent interest with developments of parallel transmission sys-
tems (pTx). While real-time estimates of local SAR over large volumes as well as

SAR-constrained pTx RF design are highly desirable goals, it is both difficult to con-
trol and computationally demanding. Steady advances in graphics cards for game
developers have enabled dramatic speedups in computationally heavy tasks for com-
puter graphics, and some of this functionality is applicable for faster numerical SAR

simulation compared to general CPUs.
In this study, we present the use of Compute Unified Device Architecture (CUDA)

enabled graphics cards in Finite Difference Time Domain (FDTD) simulations for
SAR computation. We show that using this framework can speed up computation by
at least an order of magnitude compared to regular CPU computation. This will allow
us to estimate SAR, B1, and E1 fields quickly for instances where SAR estimation for
parallel transmission imaging of individual subjects is necessary, or for optimizing coil
designs based on these estimates. A fast FDTD computation would also significantly
speed up iterative optimizations of coil design over a geometric parameter space.



A description is provided of how FDTD with Uniaxial Perfect Matching Layer
(UPML) boundary conditions was coded on GPUs using the NVIDIA CUDA frame-
work. FDTD equations were CUDA optimized by use of two kernel functions, one for
the E field update equations and another for the B field update equations. FDTD
simulations were compared to an analytical validation case of a dielectric sphere un-
der a current loop. In addition, a description is provided of how SAR computation
was parallelized for the CUDA framework.

Thesis Supervisor: Elfar Adalsteinsson
Title: Associate Professor of Electrical Engineering
Associate Professor of Health Sciences and Technology
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Chapter 1

Introduction

1.1 Motivation

Magnetic Resonance Imaging (MRI) is a useful tool in biomedical imaging that pro-

duces high-resolution images of the internal structure of the human body without the

use of hazardous ionizing radiation [1]. In addition, MRI provides high soft-tissue

contrast to noise ratio (CNR), making it the preferred imaging modality for many

diagnoses [1, 2, 3, 4]. Figure 1-1 shows an example image of a human head slice

obtained through MRI.

The powerful magnetic field BO aligns the nuclear magnetization of hydrogen and

other atoms in water in the body. MRI can be understood as a two-phase experiment.

The first phase is the excitation phase and involves creating magnetic signals in

the subject using radio-frequency (RF) magnetic pulses. The second phase is the

acquisition phase in which magnetic signals are collected and processed. When an

RF pulse is applied briefly, protons alter their alignment with respect to the main

field BO. These changes create magnetic signals that can be detected by receiver coils.

Excitation pulses are tailored to a user's specific needs such that the pulses are not

only short in duration but also spatially-selective, in that only a specific 2-D or 3-D

region can be magnetically excited by the RF pulses, leaving the rest of the excitation

domain untouched.

Excitation pulses can be delivered by an RF transmitting coil built into the scan-



ner. A recent MRI excitation concept, termed "parallel transmission", involves using

an RF excitation coil that is composed of multiple elements that are each capable

of independent and simultaneous transmissions [5, 6, 7, 8, 9, 10]. The advantages of

such an excitation system include

1. Undersampling excitation trajectories in the Fourier domain while maintaining

high fidelity excitation [5, 6, 7, 8, 9, 10]

2. Flexible method of spatially-tailoring excitations [11]

3. Combating increased main field (Bo) and RF (Bf) inhomogeneity at high field

strengths [12, 13]

The study of parallel transmission at high field is limited by safety constraints.

Regulatory limits on specific absorption rate (SAR) defined as the amount of energy

deposited into a mass of biological tissue, limits the types of pulses that can be played

via parallel transmit. High SAR occurs because multiple channels transmit magnetic

energy simultaneously and the resulting superposition of the electric fields conduct

through and deposit energy into tissues. As such, localized spots of extremes in

SAR (known as "hotspots") may occur. These hotspots are regulated by governing

regulations in the United States and in Europe [14, 15, 16]. Averaging over the whole

body (or head) leads to the global SAR.

For instance, the Food and Drug Administration (FDA) regulatory limit for the

ratio of maximum 1-gram local SAR to whole-head SAR for human head model is

2.7 [14]. The International Electrotechnical Commission (IEC) regulator limit for the

ratio of maximum 10-gram local SAR to whole-head SAR is 3.12 [15, 16]. In addition,

there are limits on the absolute value of global SAR and local SAR. The FDA limits

SAR averaged over the whole body (global SAR) over a 15-minute period to 4 W/kg,

averaged over the whole head (global whole-head SAR) over a 10-mintue period to 3

W/kg , and averaged over any gram of tissue (local SAR) in the limbs over a 5-minute

period to 8 W/kg [14]. Thus, the accurate calculation of absolute local and global

SAR is an important problem in parallel transmit applications of MR that, if easily



estimated or computed, can open up different venues of research in parallel transmit

technology.

Ideally, a user should be able to design spatially-selective pulses to play simulta-

neously on a multichannel parallel transmit coil and, at the same time, be able to

discover in real time whether any safety constraints are violated. The goal of this

thesis is to extend the current SAR monitoring system to monitor SAR for parallel

transmit systems.

One way to achieve this goal is to harness the computational power provided by

graphical processors (GPUs) such as those found on graphics cards, which have little

caching duties compared to CPUs and instead have a larger amount of processing

power for purely computational purposes. This thesis discusses a system which uses

graphical processor units (GPUs) to simulate the electromagnetic (EM) fields and to

compute the SAR (both local and global) generated by pulses played on a parallel

transmission coil.

The Finite-Difference Time Domain, or FDTD method, is used to compute the

steady state electric and magnetic fields generated by an RF pulse for each channel

of the parallel transmit system. The FDTD method is an accurate but computation-

ally demanding method for solving EM problems in MRI. Graphical processors are

employed to speed up the algorithm while maintaining an accurate simulation of the

MR setup. This involves using accurate head-tissue models, coil arrays and electrical

components such as those used in the RF amplifier and RF coils. Figures 1-3 and 1-4

show example head and coil models.

Given the fields generated by the FDTD algorithm and the pulses to be played on

the parallel transmit system (pTx), the SAR component calculates the time-averaged

local and global SAR deposited into any N-gram region in the human model being

scanned. These SAR values are strictly constrained and are key to checking the safety

of playing those RF pulses in the pTx system.

Figure 1-2 shows an overview of the different components involved.
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Figure 1-1: Coronal view of the MRI image of a Human Head. Sample
Magnetic Resonance Imaging (MRI) image slices of the human head from a 3T magnet
with timing constants TE = 3.39 ms, TR = 3000 ms, and T1 = 1100 ms.
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Figure 1-2: System architecture a safety simulation system for FDTD sim-
ulation and SAR computation. A detailed diagram showing the interaction be-
tween the simulation inputs, FDTD and SAR components. The end output of this
proposed system is the Global (or Whole-Head) and N-gram SAR values based on
FDTD field inputs and a,(t) pulse inputs for all coils p E 0, 1,-- , P.

Head Model

w/o White Matter

9 W White Matter

Figure 1-3: Example tissue-segmented Human head model. For FDTD sim-
ulations, a tissue-segmented human head is required to be meshed into the FDTD
grid. Each location r = [x, y, z] of the FDTD grid will have material properties as-
sociated with the tissue present at that location such as electrical conductivity o(r),
relative permittivity e(r), and density p(r). Left: Three slices of a given human head
model shows the different tissues present at each voxel. Each tissue has frequency-
dependent material properties required for FDTD simulation. Right: 3-D rendering
of the sample human head model.
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Figure 1-4: Example coil array model. For FDTD simulations, a coil model is
required to be meshed into the FDTD grid. Each location r = [x, y, z] of the FDTD
grid will have material properties associated with the coil material present at that
location such as electrical conductivity o(r), relative permittivity e(r), and density
p(r). Left: 3-D rendering of a sample human head with a simple coil array structure.
Right: Dimensions of a single coil element.

1.2 Thesis Outline and Contributions

For the rest of the thesis unless otherwise specified, the term "magnetic field" is used

to refer to the magnetic flux density to follow MR naming conventions.

Chapter 2 presents an introduction of the FDTD algorithm along with its struc-

ture. In addition, the Compute-Unified Device Architecture (CUDA) by NVIDIA

[17] is briefly introduced. The chapter explains how the unique Yee cell used for the

FDTD algorithm lends itself to an easily parallelizable problem on the CUDA archi-

tecture. The current status of the FDTD code is presented through comparisons of

its results with a validation case for which an analytical solution is available.

Chapter 3 presents the mathematical foundations required for time-averaged

SAR calculations, along with an overview of the fast-region growth idea that is used

to generate N-gram tissue regions in human models. In addition, a validation case,

the same one in Chap. 2, is used to compare analytical calculations of global and local

SAR to those same calculations provided by the SAR software running on GPUs.

Chapter 4 concludes this thesis with extensions of the work presented in this

thesis, along with possible explanations for discrepancies between the FDTD result

and the analytical solution for the validation test case.

Coil Model SideVie FrontVIew

.11c I 9CM 1m.



Chapter 2

Ei and B1 simulation with the

Finite-Difference Time Domain

(FDTD) Method

2.1 Outline

This chapter presents an introduction of the Finite-Difference Time Domain (FDTD)

algorithm along with its structure. In addition, the Compute-Unified Device Archi-

tecture (CUDA) by NVIDIA [17] is briefly introduced. This chapter explains how

the unique Yee cell used for the FDTD algorithm lends itself as an easily paralleliz-

able problem on the CUDA architecture. The chapter concludes with the current

status of the FDTD code, which is presented through comparisons of its results with

a validation case.

2.2 Theory

Before explaining how CUDA can help with the FDTD algorithm, we first derive

the FDTD equations to better understand the concepts. Consider a region of free-

space which has no electric or magnetic current sources present. The time-dependent

Maxwell's equations that are satisfied in that region are given in the following differ-



Table 2.1: Definition and units of different field variables used in FDTD.

Table 2.2: Material property constants required for FDTD.

ential form:

V - D

OD
at

V - B

VB

=0

=V x H - J

=0

= -V x E-M

(2.1)

(2.2)

(2.3)

(2.4)

Table 2.1 lists all symbols used in the derivation of the FDTD equations.

For all simulation problems, we assume linear, isotropic, and nondispersive mate-

rials are used which means we can relate D to E and B to H as follows.

D = cE = creOE

-4- -4 -4+

B = p H =rpo H

where each constants are defined in Table 2.2.

E Electric Field (V/m)
D Electric Flux Density (C/m2 )
H Magnetic Field (A/m)
B Magnetic Flux Density (T)
J Electric Current Density (A/m 2 )
M Magnetic Current Density (V/m 2)

e Electrical Permittivity (F/ rn)
Er Relative Permittivity
to Free-space Permittivity
y Magnetic Permeability (H / rn)
Pr Relative Permeability

po_ Free-space Permeability



Substituting the constant proportions, we obtain the following Maxwell's curl

equations in linear, isotropic, and nondispersive materials.

OH 1 - 1-
- = - -Vx E-M (2.5)

aE 1 -+ 1-
S = V x H - - J (2.6)

If lossy materials are present, the J and M terms include terms to allow for electric

and magnetic losses that affect E and H fields via conversion between EM energy

to heat energy. In addition, any independent sources in the problem domain are also

included in these terms. Excitation sources during simulations on human models are

introduced into the FDTD domain in this manner.

J= J source + (E

M = Msource + u* H

where a is the electric conductivity in S/m and a* is the magnetic resistivity in U/m.

Maxwell's curl equations then become

OH 1 - -(2.7)
- -- V x E - (Msrce+ a* H)

8t y/y

aE 1 1 (.
- V x H (J source + a E) (2.8)

For MR simulations, we assume no magnetic source is present and instead assume

all sources modeled on each coil only add to the electric field. This way, the vector

components of the curl operators in Cartesian coordinates simplify to:

These equations form the basis of the FDTD algorithm. Yee [18] proposed a cen-

tral difference scheme (accurate to second-order) which could be applied to Maxwell's

equations. Figure 2-1 shows the discretized spatial field components. The arrange-

ment shown allows for both the integral and differential form of Maxwell's equations.

Every E component is surrounded by four surrounding H components, and every H



aHx 1[ y - (_*H1) (2.9)
at P az ay

aHy _ .[aEz 1*H) (2.10)& p xaz (*)
aHlz 1 _ aE~ Y-(o-*Hz) (2.11)

at P y x

aE = - - - (Jurce 1 + Ex) (2.12)&t C ay (9z

at - - - (Jsource, + o-Ey) (2.13)
aEz 1 aHy aH,a- = -"- - (Jsourcez + o-Ez) (2.14)

Ot C ax ay

component is surrounded by four surround E components. This arrangement allows

for the contours required for Faraday's and Ampere's Laws.

2.2.1 Field Update Equations

Given the basic mathematical formulation provided above, we now create the nu-

merical approximation to Maxwell's Equations. To do this, I will first make some

definitions and explain the numerical approximations used to derive FDTD similarly

derived in [19] . Let a spatial point in the FDTD grid be denoted by

(i, j, k) = (iAx, jAy, kAz)

where Ax, Ay, Az are the spatial resolutions along x, y and z respectively. The point

coordinates i, j and k range from 0 to Ni - 1, Nj - 1, and Nk - 1 respectively when

the FDTD grid dimension is Ni x N x Nk.

Also, let the following denote a function of the variables space and time evaluated

at a discrete point in space and in time:

u(iAx, jAy, kAz, nAt) = U7.,)

where Ax, Ay and Az are spatial increments and At is the time increment. The
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Figure 2-1: Cartesian Yee Cell used for FDTD. The Yee cell structure has two
overlapping grids; one corresponding to the electric field components, and another
corresponding to the magnetic field components. Both grids are spaced half an incre-
ment apart from one another. This discrete spacing method satisfies Faraday's Law
and Ampere's Law when the central difference scheme is used.

time step n ranges from 0 to Nt - 1 where Nt is the total number of time steps of

simulation.

Then, the first partial space derivative is given by

i+1/2,j,k 2-1/2,j,k

-(iAzx, jAy, kAz) -Un

and the first time partial derivative of u is given by

Ui,j,k - i,j,k

(iaz,~~ jokz n+1/2 - n-1/2
Ot (iAx, jAy, kAz) r n+1/ tot At

These central difference equations are used as a numerical approximation to

the spatial derivatives in equations 2.9 - 2.14. For instance, consider the Ex field-

component's time derivative.

aEx = 1 [aHz Hall
=- - - (Jsourcex + oEx) (2.15)9t e5 ay azI



If we substitute in the central difference, we obtain

E , n+1/2 E n-1/2
i,j+1/2,k+1/2 - Xi,j+1/2,k+1/2

Ei,j+1/2,k+1/2

HzI ij+1,k+1/2-Hz |,j,k+1/2 __ HyIj+1/2 ,k+1-Hy j+1/2,k
Ay Az

- Jsource 1 E isore ,j+1/2,k+1/2 -Oi,j+1/2,k+1/2E xi,j+1/2,k+1/2

We approximate

E %n+1/2 n-1/2

1E n" ~ x|,j+1/2,k+1/2 + Ex|i,j+1/2,k+1/2
x i,j+1/2,k+1/2 2

Using this approximation and then simplifying, we get

At
6Ei,j+1/2,k+1/2

ExIn+1/2 - EIn-1/2k_
Si,j+1/2,k+1,/2 X li,j+1/2,k+1/2

Hz|,"j+1,k+1/ 2 -Hz|i,j,k+1/2 _ Hy ij+1/ 2,k+1-HY1 lij+1/2,k
AY Az

-fsource j k+ E| 2 k/ 2 +E I|,1, 2 2,+1/2SJsourcex i,j+1/2,k+1/2 - OCij+1/2,k+1/2 ( 2 ,

Or,

E |n+1/2
i,j+1/2,k+1/2

1 _ ,j+1/ 2 ,k+1/ 2 At
2
ei,j+1/2,k+1/2

+ (i,j+1/2,k+1/2At2
Ei,,+1/2,k+1/2

E |In-1/2
Si,j+1/2,k+1/2

At[

+ 'Eij+1/2,k+1/2
+ aij+1/2,k+1/2At2 Ei,j+1/2,k+1/2

Hz,j+1,k+1/2 -Hz|,"ij,k+1/2

H, Iiej+1/2,k+1-HYIij+1/ 2 ,k
Az

Jsourcex li,j+1/2,k+1/2



The other field components of the electric field vector E have update equations

that are similarly derived.

1 '-1/2,j+1,k+1/ 2At
2Ej-1/2,j+1,k+1/2 E jn-1/2

_+ 'i1/2,j+1,k+1/2At EyIi-1/2,j+1,k+1/2
2Ei-1/2,j+1,k+1/2 /

H 1/2,j+1,k+1 -Hr -1/2,j+1,k/ At IAz
+ e-1/2,j+1,k+1/2 HIj+lk+1/2 -Hz| -1,j+lk+1/2

+'-1/2,j+1,k+1/2At Ax
2e+-1/2,j+1,k+1/2)

L -sourcey i-1/2,j+1,k+1/2

Ezln+1/2=zi-1/2,j+1/2,k+1

At

Ei1/2,j+1/2,k+1

2L 6-1/2,j+1/2,k+1 /

Oi1/2,j+1/2,k+1 At
2,Ej-1/2, +1/2,k+1 Ez |n-1/2

+ i-1/ 2 j+/ 2 ,k+1 At i-1/2,j+1/2,k+1
2Ei-1/2,j+1/2,k+1 /

Hyj, +1/2,k+1-HY -1,j+1/2,k+1
AX

H i|-1/2,j+1,k+1-H |-1/2,j,k+1
Ay

-Jsourcez i-1/2,j+1/2,k+1 j

By use of Faraday's law and similar substitution of the central difference scheme,

we obtain the field update equations for the magnetic flux field H.

1 - 1-/2,j+1,k+1

11/2,j+1,k+1 HXIl|" J l~~2 s-1/2,j+1,k+1 I Xi 1/2j+1,k+1

2A-1/2,j+1,k+1

At

+ / hi-1/2,j+1,k+1
+ ~
+Oi1/2,j+1,k+1At
2/-i-1/2,j+1,k+1)

- 2;i+1/2,k+1 Ht
2#i,j+1/2,k+1 

H|"
+ 7,+1/2,k+1 t ij+/,~

2,j+1/2,k+1

/ At

+ N,j+1/2,k+1l

j+ %+1/2,k+At
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i+1/2,j+1/2,k+1 z i-1/2,j+1/2,k+1

AX
n+1/2 n+1/2

EX i,+1/2,k+3/2-Ex|4,j+1/2,k+1/2

Az

1 -,,+l,k+1/2At
2Fi,j+1,k+1/2 

H n

+ 1ij+l,k+1/2At H i,j+1,k+1/2
j+1,k+1/2

At

+ /-I',+1,k+1/2

1 + +1,k+1/2
2Ai,j+1,k+1/2

EIn+ 1/2 - xn+1/2
Exi,j+3/2,k+1/ 2 -Ex li,j+1/2,k+1/2

Ay
E n+1/2 ln+1/2
Ei+1/2,j+1,k+1/2-Eyli-1/2,j+1,k+1/2

n+1/2 fn+1/2
Eyli-1/2,j+1,k+3/2-Ey i-1/2,j+l,k+1/2

Az
Ezn+1/2 - zn+1/2
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Table 2.3: Sample tissues along with some material properties measured at the op-
erating frequency of 300 MHz, which corresponds to a main magnetic field BO = 7
Tesla.

Different materials are assigned to each node i, j, k. These

erties that are used for field updates. Table 2.3 gives some of

most common human tissues present in the human model.

materials have prop-

the properties of the

Leapfrog Algorithm [19]

The update equations above are interleaved in space and time. This combination is

known as the leapfrog method because at each half-time step, the E and H field

values are calculated from the spatially neighboring values calculated one half-time

step and one whole-time step prior. This interleaving of field updates is what makes

the FDTD algorithm especially suited for parallel computation.

Stability

Since a second-order central-difference scheme is used to create the algorithm, there

exists a maximum value for the time increment between each discrete time steps. If

the time increment is greater than this maximum allowed value, the FDTD solutions

will diverge. This maximum value depends on the space increments used to create

the FDTD grid. The Courant stability criterion [19, 20] determines this maximum

Fat 0.039 5.634
Nerve 0.418 36.91

Muscle 0.771 58.20
Brain (White Matter) 0.413 43.78
Brain (Gray Matter) 0.692 60.02

Cerebellum 0.973 59.72
Cortical Bone 0.0826 13.44

CerebroSpinalFluid 2.224 72.73
Retina 0.975 58.90
Cornea 1.151 61.38



value and in the 3-dimensional case is given by:

At < (2.16)

where c is speed of light and Ax, Ay, and Az are the Cartesian space increments.

If the spatial resolution is the same Ax = Ay = Az = A, the maximum time step is

Atmax - (2.17)

It is this lower limit on the time resolution that makes this algorithm slow for

problems that require simulation of up to 100, 000 - At time steps.

2.2.2 Uniaxial Perfect Matched Layer (UPML) Absorbing

Boundary Condition

The final component of the FDTD algorithm are boundary conditions. In the past

three decades, there have been major discoveries in effective absorbing boundary

conditions that are used to truncate an unbound simulation region into a finite one

[19, 21]. Berenger's [22] Perfect Matched Layer (PML) is an artificial absorbing

layer which allow all incoming waves from the non-PML FDTD simulation domain to

enter the PML regions unreflected. With no reflections entering back into the FDTD

E H E H

n=0At n=0.5At n=1At n=1.5At

Figure 2-2: Leapfrog Method of Updating Fields at each time increment. The
leapfrog algorithm updates the electric and magnetic field components in a round-
robin manner, because each field component depends on the other fields values at
neighboring spatial locations.
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Figure 2-3: The Uniaxial Perfect Matched Layer. The FDTD grid is at the cen-
ter and all surrounding layers are comprised of UPML absorbing boundary conditions
of depth d and backed with PEC surfaces.

simulation domain, any problem in an infinite setting can be simulated in a finite

grid. Further, such a problem can be easily replicated and simulated on a computer

with finite memory.

Berenger's PML requires E and H fields to be split into E_9, Ez, E,2 and Hey, H., Hz-

The uniaxial formulation of the PML, known as the Uniaxial Perfect Matched Layer

(UPML), is used to prevent field splitting but increases memory requirements. The

following constitutive relationship is used to remove frequency dependence in the

tensor coefficients:

s
Dx = CO rz Ex (2.18)

Sx

Dr = o0 C-Ey (2.19)
sySY

= ECr "Ez (2.20)
Sz

where the tensor coefficients in the UPML region are

Using this relationship and Ampere's Law in the UPML region, we obtain update



equations for the D and E fields. For example, the following is the x component of

the field update for both fields.

DAt+/ 2eO Dx |n-1/2+x
i+1/2,j,k a + yi+1/2,jk + Ky_

At 2o At '2co

H i+1/2,j+1/2,k - Hz|i+1/2,j-1/2,k H +1/2,j,k+1/2 - Hy|i+1/2,j,k-1/2
Ay AZ

E n+1/2 z 2E0 Exn+1/2i+1/2,j,k nZ + EZ:t i+1/2,j,k + __ 0
2c Z+ 0'-AO

LYZ )2E0 Er

Ex At D n+1/2 ( Ox At)Djn-1/2S ) S0 Di+1/2,j,k - - 2<0 Dti+1/2,j k

Similarly, the magnetic fields' equations can be derived using Farady's law.

/- tOY

t 2eo n

a + a) BI|i,j+1/2,k+1/2At 2E6 Z/
Ezln+1/2 - E |n+1/2

zi,j+1,k+1/2 z i,j,k+1/2

( 1
At 2c6

E n+1/2 F li,j+1/2,k
y i,j+1/2,k+1 n+1/2

AZJ

i,j+1/2,k+1/2
( - [ 1 1KZ 2Eo Hx~
Kz + i,j+1/ 2,k+1/ 2 + (z + 0 At rJ

' Aat n1( I OxAat Bj

X + 02co ) ij+1/2,k+1/2 
2co I+1/2,k+1/2

The o- is scaled polynomially to minimize error of reflection

U(x) = ( m ma

where d is the depth of UPML layer and x varies from the boundary between PML

and non-PML FDTD region all the way to the edge of the entire computational

grid, which is composed of a perfect electrical conductor. The parameters that can

be chosen by the user are am,, and m. Typically, m in the range between 3 and

4 is suitable for MR simulations because its reflection error. Berenger [22] studied

for linear and parabolic conductivity gradings (m = 1 and m = 2) and noticed the

B n+1
Bi|,j+1/2,k+1/2



profile with m = 2 had less reflection than m = 1. With a larger m, more reflection

is suppressed [19]. In addition, K also ranges polynomially from 1 at the PML surface

to a maximum value 'sm, at the PML/PEC boundary.

K(x) = + (rm.a, - 1)

For a desired reflection error of R, we can determine o-mm by the following relation:

(m + 1) In [R]
U(max) = re2?rd

where Er is the permittivity at the PML surface, d is the depth of the UPML

layer, and r is a constant. For FDTD simulations for this thesis, a reflection error of

R = 10-4 is used and a cubic grading profile m = 3 with a UPML depth of d = 10

yee cells on all faces of the FDTD grid.

2.2.3 Determination of the Steady-State Solution

In all MR simulations, to obtain accurate electric and magnetic field results, coils are

excited by sinusoid sources that operate at the frequency of the main magnetic field

BO. This frequency of precession of the magnetic moment about the axis of BO is

termed as the Lamor frequency and is given by:

-yBO
S27r

where -y is the proportionality constant characteristic of a given nucleus (with a

magnetic moment). For Hydrogen protons, 7/27r = 42.58 MHz/T, or at 7 T, f ~ 300

MHz.

To determine the field results, we have to run the FDTD calculation until it

reaches steady state with the same frequency. To speed up the process and diminish

any DC charge content in the FDTD domain [20], an excitation source such as

J(r, t) = J(r)(1 - e~ ) sin(27rf t) for t > 0
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Figure 2-4: Plot of Source Excitation waveform. Sample current source wave-
form that is placed into the FDTD domain at the excitation source. The gradual
(exponential term) increase in amplitude of the waveform (in amperes) minimizes
DC error and also allows field to converge faster to steady state.

is used where the w/5 constant allows for the current excitation to reach full strength

within 4 full periods at frequency f. In the case of simulations with MR at BO = 7T,

w = 27rf = 27r -300MHz

e 1.88 x 109 rad/sec

With a w/5 constant in the exponential term, after 4 full periods, the current

source is almost its maximum amplitude

1- 5
w-4T

= 1-e 5

21r f -4T
= 1-e 2-f4

= 1-e- T

87r
= 1-e

~ 0.9934

The steady state solution at each point r = [x, y, z] is the optimal solution to the



following minimization problem.

arg min F(r) - (A(r) + B(r) sin(21rf t + C(r))
A(r),B(r),C(r)

where A(r), B(r) and C(r) are scalars and F(r) is the FDTD field value at each

location r.

To determine the solution steady state, at every point r in the grid, each field

value is recorded for one period T = 1/f or for nperiod = - time steps. Over this

time period, the maximum and minimum values of the field are recorded as well as

the time steps at which these extreme values occurred.

If we denote the maximum field value as Fmax(r) and the minimum field value as

Fmin(r), and the time instants at which these extreme values occured as tmax(r) and

tmin(r) respectively, then

A(r) = Fmax(r) + Fmin(r) (2.21)
2

B (r) =Fmax(r) - Fmin(r) (2.22)
2

C(r) = 2r - tmax- T/4 (2.23)
T

where T is the period of the sinusoid.

With this approximation, a good fit between the steady-state approximation and

the FDTD field output is easily obtained with minimized mean square error. Figure 2-

6 shows the best fit for a few periods of a recorded FDTD field. The downside of this

approach is the large amount of memory required on-board the graphics card to store

the extreme values along with the time instants at which they occur at each position.

Another approach is to perform a running Discrete-Fourier Transform (DFT) but

this might not be accurate if a large time resolution (At) is used.
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Figure 2-5: Example field values reaching steady state with frequency f.
Value of the x component of the electric field, Ex, over recorded time steps n of the
FDTD algorithm at two different points in a sample FDTD simulation. Note the
steady state response oscillates at the source frequency f. The x axis denotes the
number of time steps simulated and the y axis denotes the magnitude of the field
value Ex in V/m.
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Figure 2-6: Determination of Steady-State Amplitude, Phase and DC. Com-
parison of the best fit steady-state solution, as per Equations 2.21-2.23, and the actual
field value measured over FDTD simulation time steps n.



2.3 Implementation on GPUs

Now that we understand how each voxel in the FDTD domain is updated based solely

on neighboring field values at a preceding time instant, we consider the benefits of

parallel processing this in a synchronous manner. The FDTD algorithm has been of

special interest recently because of the recent improvements in computational pro-

cessors and parallel computation. The FDTD algorithm is well-suited for parallel

computation because of its ingenious choice of field nodes, which allow Maxwell's

equations to be satisfied at any time instant based solely on neighboring field values

in space and preceding field values in time.

2.3.1 Compute-Unified Device Architecture (CUDA)

Recent interest in the use of graphics cards to computational purposes has spawned

many commercial and research-based projects that allow users of Graphical Process-

ing Units (GPUs), such as those found on any commercial graphics cards, to harness

GPUs' low-overhead easily-scalable raw computational power. The Compute-Unified

Device Architecture (CUDA) by NVIDIA [17] is one such freely available software

framework that provides an abstraction layer with which users can easily code their

problem and allow the CUDA device drivers to then automatically and efficiently

load their code onto CUDA-supported NVIDIA graphics cards.

This framework does not need the user to program GPUs through any special

graphics APIs, but instead allows the user to simply code in C and CUDA does the

rest of the work.

Threads and Blocks

Whenever a function is called, CUDA creates grids composed of many blocks that

can be arranged in up to three dimensions. Each block is an additional level of

abstraction in that they can be decomposed into an array of threads. This additional

level of abstraction has features such as fast-access shared memory that each thread

can share. Figure 2-7 shows an overview of the parallel architecture available for



Figure 2-7: Thread Architecture of the Compute-Unified Device Architec-
ture (CUDA) framework. CUDA provides two layers of abstraction for parallel
computation. The advantage of using multithreaded blocks rather than simply using
a grid composed of an array of blocks is that blocks have shared memory which allows
fast-access low-overhead memory for each thread in the block to share synchronously.
Though this shared memory is small in size, it is nevertheless useful for many parallel
computation problems.

users.

All CUDA needs is parallelized ANSI-C code with which the CUDA compiler

and drivers can link and process it onto GPU memory. To parallelize a function, it is

declared as a __global_ function, which means both CPU memory and GPU memory

can access and run that function. It can also be declared as a function accessible only

by GPU protocols by declaring it as a __device_ function. In addition, you pass in

arguments declaring the size of the grid array and the block array. There are limits on

the dimensions of both arrays which vary according to the model of the NVIDIA(R)

graphics card in use [17].

FDTD on CUDA

Since FDTD is parallelizable in space, the CUDA architecture can easily be employed,

where each node of each conformal grid (E(r), E,(r), E,(r), D,(r), D,(r), D,(r),



H.(r), H,(r), Hz(r) and B-(r), By(r), B2(r)) is loaded onto the graphics card as a

grid of field values and each block computes the updated values in the leapfrog man-

ner described in Section 2.2.1.

As a result, two kernels (parallelized functions that run solely on GPUs) are

required. The first kernel, call it UpdateHandB kernel, will update H and B field

values at time instant t = 0. The second kernel, call it UpdateDandEkernel, is then

run to update the D and E field values at time instant t = 0.5At . This cycle is then

repeated for each time instant as a way to implement the leapfrog style of updating

the fields.

This parallelization allows for simultaneous computation of each field at every

spatial point for a given time instant. The runtime algorithm is therefore linear only

in the number of time steps, which can be a problem since the Courant stability

criterion limits the lower bound of the time resolution.

In addition, the FDTD simulation time will be very long for simulating over

multiple cycles of a sinusoid current source until every point in the grid has reached

steady-state. In addition, if a very fine spatial resolution is used, such as an MR

application that requires the use of a finely-segmented human head tissue model, the

FDTD algorithm will require a large amount of memory on the graphics card. This

may be limited by the model and type of graphics card in use. As such, it may not

be possible to run FDTD field updates at every spatial location r in a single cycle if

the memory requirement for storing the entire FDTD grid exceeds the capabilities of

the graphics card.

Still, the FDTD algorithm can be scaled across multiple graphics cards very easily.

The parallelization of the FDTD grid will depend on the details of the EM problem.

For SAR simulations, a system with multiple graphics cards, each card with a large

base of memory, will allow for simulation results to be faster, more accurate and at a

higher resolution. This type of system will require more power and on-board memory.



FDTD-main (head-model, coil-model, FDTD-parameters)
for elements in coil-model

do for maxtimesteps
updateBandHkernel (head-model, coil-model, source)

updateDandEkernel (head-model, coil-model, source)

save steady-state-fields

Figure 2-8: The above pseudocode is the basic FDTD algorithm used for simulations.
The head model and the coil model is input into the FDTD algorithm and so are the
source waveforms and source locations. These sources are independently implemented
in the kernel updateDandE.kernel.

2.4 Validation

The results of any FDTD software, especially one that is used for determining medical

device safety, needs to be validated with analytical cases. This provides evidence of

accuracy and allow for measurement of how much numerical error is accumulated due

to the discretization of the FDTD grid (called "staircasing errors" because of using a

rectangular Yee grid cell).

Validation of FDTD code written for the purposes of this thesis was made with

a well-known EM problem, which has an implementable solution. The solution was

implemented in Matlab @(2007a, The MathWorks, Natick, MA), which has special

functions like the spherical Bessel and Hankel functions easily available [20].

2.4.1 Current Loop over Lossy Sphere

One approximation of a coil next to human body part, such as the human head, is

the current loop over a homogenous sphere with specific dielectric and conductivity

properties (Er, Ur) that mimic human tissue. Figure 2-9 shows the setup of the ana-

lytical problem. The sphere is of radius a, the coil is of radius b, the distance between

the centers of the sphere and the coil is d, and c = v/b2 + d2 .

The analytical values of the fields inside the sphere can be solved by use of the

Debye potential along with the method of separation of variables [20]. In spherical
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Figure 2-9: Validation case. Validation test case: Lossy Sphere (o, er) under a
current loop coil. Dimensions: a = 0.090 m, b = 0.060 m, and d = 0.120 m with

a current of I = 1 A. Dielectric materials tested: Air (Er = 1,- = 0) and Muscle

(Er = 58.20, o- = 0.771).

coordinates, they are:

EO = - (anj(kr) (2.24)
n=1

inf

Hr = . ann(n + 1)jn(kr)P(cos9) (2.25)
iwyuo r n=1

inf
H0 ar OP(cs6O (2.26)

Z a [rj (kr) + jn(kr) aPn(cos6)&6 (2.27)

where k = pe= ko /c and e = Er + iUr/WEO, jn(kr) is the n-th spherical

Bessel function, and Pn(cos 6) is the Legendre polynomial. The constant an is

iwfi po/coIb2 2n+1 h$) (koc)P'(cos0o)
= a2 c 2n(n +1) kj' (ka)h' (koa) - kojn(ka)j ' (koa)

where h) (kr) is the n-th order spherical Hankel function of the first kind.

All other field components are zero due to the cylindrical symmetry of the problem.

For this test case, Table 2.4 describes the parameters of the simulation that were run.



Table 2.4: Parameters of the Validation Test Case and FDTD simulation setup.
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Figure 2-10: Sphere grid.

The source excitation was the most difficult part to model as there are many ways

to model a simple current loop with current I. One way to implement a current

loop coil would be as a concatenation of current sources spanning the circumference

of the coil. This was, in effect, a thin-wire approximation to the coil with current

sources at every d 1 length element along the coil. At each voxel around the coil,

the appropriate E field component (same direction as 0 1) was updated with an

additional current source term. For instance, E, field component was updated with

a Jy, = I sin (21rfnAt) term.

The validation case was broken into two cases: one with a sphere made of air

(current loop in free space), and another with a sphere made of homogenous muscle

AX 0.003 m
Ay 0.003 m
Az 0.003 m
At 5E-12 s
Nx 256
Nu 256
.Nz 256

UPML depth d 10
Reflection Error R 1E-4

a 0.090 m
b 0.060 m
d 0.120 m
I 1 Amp

Sphere Center (0,0,0)
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Figure 2-11: This image shows one slice (z vs. x) of the analytical solution for |Ej
(magnitude) inside a sphere with air medium. The units are V/m for 1 A played on
the coil at 300 MHz.

tissue. In the muscle sphere case, the FDTD results did not properly conform with

the analytical solution. The results were off by factors of magnitude ranging from

0.6 to 10. In the case of air, the FDTD results had field gradients similar to the

analytical case but were off by a constant factor of about 1.25. Since the results in

the muscle case were off by factors that were not constant, like in the case of the air

sphere, the error in FDTD was more sever in dielectric case. The figure below show

these results.



Figure 2-12: This image shows one slice (z vs. x) of the analytical solution for IBX
(magnitude) and LBx (phase in radians) inside a sphere with air medium. The units
are in Tesla for 1 A played on the coil at 300 MHz.
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Figure 2-13: This image shows one slice (z vs. x) of the analytical solution for IB2|
(magnitude) and LBz (phase in radians) inside a sphere with air medium. The units
are in Tesla for 1 A played on the coil at 300 MHz.
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Figure 2-14: This image shows three slices (z vs. x at y = 0, z vs. y at x = 0, and

y vs. x at z = 0) of the FDTD solution for I E (magnitude) for a sphere with air
medium. The units are V/m for 1 A played on the coil at 300 MHz.
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Figure 2-15: This image shows three slices (z vs. x at y = 0, z vs. y at x = 0, and

y vs. x at z = 0) of the FDTD solution for I (magnitude) and B (phase in
radians) for a sphere with air medium. The units are in Tesla for 1 A played on the
coil at 300 MHz.
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Figure 2-16: This image shows three slices (z vs. x, z vs. y, and y vs. x) of the
FDTD solution for |By| (magnitude) and ZBy (phase in radians) for a sphere with
air medium. The units are in Tesla for 1 A played on the coil at 300 MHz.
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Figure 2-17: This image shows three slices (z vs. x at y = 0, z vs. y at x = 0, and
y vs. x at z = 0) of the FDTD solution for |B| (magnitude) and LBz (phase in
radians) for a sphere with air medium. The units are in Tesla for 1 A played on the
coil at 300 MHz.
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Figure 2-18: This image shows one slice (z vs. x) of the analytical solution for |El

(magnitude) inside a sphere with muscle medium. The units are V/m for 1 A played
on the coil at 300 MHz.

Figure 2-19: This image shows one slice (z vs. x) of the analytical solution for

(magnitude) and LBx (phase in radians) inside a sphere with muscle medium.
units are in Tesla for 1 A played on the coil at 300 MHz.
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Figure 2-20: This image shows one slice (z vs. x) of the analytical solution for IBI
(magnitude) and LB, (phase in radians) inside a sphere with muscle medium. The
units are in Tesla for 1 A played on the coil at 300 MHz.

................... ......... .................. . V, A 4 .- . ..................... ...................................................... .... ................ . .



006 ams aim

4012 4M0012

4W2 41W2 W2

4132 .0132 4132

41M 4W124012 Ons %IDS ULM 4132 462 4012 006 032 013 0 4132 4 2 1 0.10 01 01

a 10 M2 32 40 s o 70 W s 1

Figure 2-21: This image shows three slices (z vs. x at y = 0, z vs. y at x = 0, and y

vs. x at z = 0) of the FDTD solution for IE (magnitude) for a sphere with muscle
medium. The units are V/m for 1 A played on the coil at 300 MHz.

Table 2.5: Timing results of FDTD simulation on two different graphics card models.

Card Model On-board Memory FDTD Run-time
NVIDIA GeForce 9800 GX2 512 MB/GPU and 2 GPUs 25 min

NVIDIA Tesla C1060 4GB 6.3 min

2.5 Preliminary Results

FDTD simulations were run on two different graphics cards, the NVIDIA GeForce

9800 GX2 and the NVIDIA Tesla C1060. The NVIDIA GeForce 9800 GX2 has two

GPUs on board and each GPU has on-board memory of 512 MB. The NVIDIA Tesla

C1060 is specially made for use by CUDA for computational simulations. It has

4 GB memory on-board which allows for larger MR FDTD simulations. Table 2.5

shows the run-time for FDTD simulation of this sphere test case. The speed-up in

computation with a NVIDIA Tesla C1060 is approximately 4 fold compared to the

NVIDIA GeForce 9800 GX2 model. This is expected because of the additional amount

of memory available (which allows storing all fields on board) and the additional

amount of processing cores (about twice as much than the 9800 GX2 model). The

CPU runtime of the FDTD code was approximately 600 minutes (which is 100 times

slower than the runtime of the NVIDIA Tesla model and around 25 times slower than

the runtime of the NVIDIA GeForce 9800 GX2 model).
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Figure 2-22: This image shows three slices (z vs. x at y = 0, z vs. y at x = 0, and
y vs. x at z = 0) of the FDTD solution for IB2| (magnitude) and LBx (phase in
radians) for a sphere with muscle medium. The units are in Tesla for 1 A played on
the coil at 300 MHz.
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2-23: This image shows three slices (z
solution for |Bi (magnitude) and LB,
medium. The units are in Tesla for 1 A
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Figure 2-24: This image shows three slices (z vs. x at y = 0, z vs. y at x = 0, and

y vs. x at z = 0) of the FDTD solution for |BzI (magnitude) and LBz (phase in
radians) for a sphere with muscle medium. The units are in Tesla for 1 A played on
the coil at 300 MHz.

Figure 2-25: Normalized comparisons of magnitude of FDTD fields and analytical
solutions (inside the sphere) to Bx (left) and B, (right) along the z axis and (x =
0.009, y = 0). These results match well inside the sphere (of air) though the un-
normalized values are off by a factor of 1.25.



Figure 2-26: Normalized comparison of FDTD field IEIFDTD (left) and |EAlnayutical
(right) along the z axis and (x = 0.009, y = 0). These results do not match well inside
the sphere (of air).
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Chapter 3

Specific Absorption Rate (SAR)

Simulation

Specific Absorption Rate (SAR) is a dominant constraint in high field MR, and has

been a topic of much recent interest with developments of parallel transmission sys-

tems (pTx). While real-time estimates of local SAR over large volumes as well as

SAR-constrained pTx RF design are highly desirable goals, it is both difficult to con-

trol and computationally heavy. The CUDA framework, introduced in Chapter 2,

has enabled dramatic speed-ups in computationally heavy tasks for computer graph-

ics, and some of this functionality is applicable for faster numerical SAR simulation

compared to general CPUs. In this study, we present the use of Compute Unified De-

vice Architecture (CUDA) enabled graphics cards in Finite Difference Time Domain

(FDTD) simulations for SAR computation.

Specific Absorption Rate (SAR) is defined as the average rate of energy deposited

into a region of human tissue over a period of time due to the application of one

or multiple radio-frequency (RF) excitation pulses. The instantaneous SAR at any

point r = [x, y, z] is computed as

SAR(r) = 2p(r) E
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where -(r) is the electrical conductivity, p(r) is the density of the material at point

r, and E is the electric field.

The overall goal of this system is to provide SAR information for a user defined

set of RF pulses and coil/head model. For multi-channel transmit MRI applications,

the SAR computation needs to be fast and accurate. With the use of GPUs, the

runtime of this computation can faster by a factor of 7 than the same computation

performed on a CPU. The CPU computation runtime is reasonably fast ([23] gives

the CPU computation runtime at approximately 73 seconds whereas SAR on GPUs

can be done as fast as 12 seconds). But, using GPUs to compute SAR can have

many benefits in the long run. For instance, the efficiency and usefulness of GPU

computation increases with a larger problem size (up to some ceiling limit determined

by how much memory is on the graphics card). So, when FDTD simulations will need

to be capable of handling EM problems at a very high spatial resolution, the SAR

computation will be linear in volume of the model grid on CPUs. This is because the

higher resolution model will now be made up of 100s of millions of voxels versus just

millions of voxels. The GPU run-time for higher resolution models will not increase

in runtime if the memory on the graphics card is sufficient to hold the model. If the

memory is not sufficient to run SAR computations at each voxel in a parallel fashion,

the model grid can be broken into smaller domains and the SAR for each domain can

be computed using GPUs. The runtime will then be linear in the number of domains.

The inputs to the SAR computation are the RF pulses and the FDTD-simulated

EM fields for the coil and human body part under consideration. As explained in

Chapter 2, the electromagnetic fields generated by the application of radio-frequency

(RF) excitation pulses are simulated with the use of the FDTD method on a seg-

mented human model. The next step in the SAR computation is to compute the

time-averaged SAR for all 1-g and 10-g cubic mass tissues.

With the speed acquired by use of GPUs, the SAR system can be used to test

different RF pulses on different types of coil arrays. In addition, it will allow us

to estimate SAR, B1, and E1 fields quickly for instances where SAR estimation for

parallel transmission imaging of individual subjects (if head models are reshaped to



fit the subject) is necessary, or for optimizing coil designs based on these estimates.

For example, designers can quickly see how changing coil dimensions affects SAR.

3.1 Point SAR

Let us define "point SAR" as the time-average SAR at every voxel r = [x, y, z] in a

given human model due to the parallel transmission of RF pulses a1 (t), -- , ap(t) in

volts through a P-channel system. This SAR value is not a regulated constraint for

MRI safety but is important for the calculation N-gram SAR and Global SAR, both

of which are federally regulated.

Assume all RF pulses are sampled uniformly in time with a sampling period of

At resulting in P pulses with maximum Nt RF time samples. Let L be the duration of

each pulse, i.e. L = NtAt. Further, assume we know E,(r) = [Ep,(r), Ep,(r), E,,2(r)],

which is the three-dimensional electric field in V/m that arises at r when a unit volt

tuned to the Lamor frequency is driven through coil p E 0, 1, --- , P - 1. This steady

state solution is the electric field (V/m) that results from a unit volt RF pulse played

at the Lamor frequency on channel p.

We calculate point SAR (W/kg) at r by superimposing the square of the mag-

nitude of the electric field produced by each RF pulse and then time averaging this

quantity over the duration of the pulse. This time averaged value is weighted with

the conductivity and density [24]. Mathematically, we write point SAR as:

SAR(r) = IE(r, t) ||2dt (3.1)
2p(r) L Jo )

=1- f | |Ep,(r, t)12 + |Ep,(r, t)12 + EP,(r, t)|2dt (3.2)
2p(r)L Jo

where p(r) and o(r) are the density (kg/m 3 ) and conductivity (S/m) of the tissue

at location r, and E(r, t) is the superposition of the electric fields created by each

channel's RF pulse, i.e. a,(t):



P

E(r, t) = Eap(t)E(r). (3.3)
p= 1

If we use numeric integration, we obtain:

oa(r) Nt-i
SAR(r) ~ p(r) - |E(r, nAt) 2 (3.4)

2p(r) Nt 
34

(r) 1 Nt-1 P (35

2p(r t || E ap(nAt)Ep(r) | (3.5)
0 p=1

3.2 Global and N-gram SAR

3.2.1 Global SAR

After obtaining point SAR at each r in the human model being scanned, global SAR

is obtained by averaging all these point SAR values. This global SAR is constrained

by the FDA and IEC [14, 15, 16]. This global SAR value is also used in the calculation

of the local to global SAR ratio, which is also constrained. For instance, the Food

and Drug Administration (FDA) regulatory limit for the ratio of maximum 1-gram

local SAR to whole-head SAR for human head model is 2.7 [14]. The International

Electrotechnical Commission (IEC) regulator limit for the ratio of maximum 10-gram

local SAR to whole-head SAR is 3.12 [15, 16]. In addition, there are limits on the

absolute value of global SAR and local SAR. The FDA limits SAR averaged over the

whole body (global SAR) over a 15-minute period to 4 W/kg, averaged over the whole

head (global whole-head SAR) over a 10-mintue period to 3 W/kg, and averaged over

any gram of tissue (local SAR) in the limbs over a 5-minute period to 8 W/kg [14].

3.2.2 N-gram SAR

Local N-gram SAR at each r is calculated by first finding N-gram cubes around r

and then averaging the point SAR(r) for all voxels in that N-gram cube [25, 24].



Depending on the regulatory agency (FDA or IEC), N = 1 or 10 g. To find this N-

gram cube around each r, a fast region growth algorithm is used for implementation

on graphical processors. This fast region growth has low memory constraints and is

more feasible than a brute force method [23].

The main idea behind the algorithm is to first form a predetermined list of spatial

position offsets from a center voxel in order of distance from the center. This pre-

determined set of offsets is the same for every voxel. To find the N-gram region, we

find the shortest subset of this set of offsets such that the total mass of all the voxels

determined by these offsets is approximately N. Mathematically, given the mass at

each r and the shortest prefix of the list of offsets I , we require the total mass from

each of these offsets to be N:

Z mass(ri) ~ N grams,
ie4r

and so the N-gram SAR at r is given by:

SARN ~ > = ,SAR(ri) (3.6)S ARN I
iEInr

where |In| is the number of offsets used to find the N-gram region.

The only issue with this algorithm is that the cubic region centered at a voxel redge

near the edge of the head model at the tissue-air boundary may not be exact because

of the zero mass of air voxels, but this error is negligible [24] because each of these

edge voxels redge is used in the cubic regions of other neighboring edge voxels. Note

that the N-gram SAR computation averages only SAR values in tissue and hence

would not count air voxels at the tissue-air boundary.



N grams

Figure 3-1: Region Growth for N-gram Cubes. Regions of tissue around a center
voxel at different time points during the region growth algorithm. This algorithm is
applied in a parallel fashion to each voxel r inside the human model. Each voxel
surrounding the center voxel are at the top of the list of all offset indices because that
list is ordered by distance to the center voxel.

3.3 Implementation

The CUDA architecture introduced in Chap. 2 can be used for even faster (an order of

magnitude faster) computation of N-gram SAR compared to the same computation

performed on a CPU. As shown in the previous section, the set of offsets used in

region growth is predetermined and the calculation of N-gram SAR at each voxel r is

independent of the calculation N-gram SAR in any other voxel. This easily allows for

a parallelized version of SAR computation where an independent thread calculates

the N-gram SAR for a given voxel.



In addition, the linear dependence of runtime in Nt (due to the numeric integra-

tion) can be avoided with following matrix manipulation [24]:

Nt-iE
n=o

||E(r,t) ||

Nt-1

S: [ai(nAt

N-1
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where AH denotes the conjugate transpose of matrix A, e* is the conjugate of e, and

r is "cross-correlation" coefficient matrix that provides the weighting coefficients for

the square of the magnitude of E using the RF pulses ai (t) ... ap(t).

CUDA can be used to parallelize this computation across all voxels

thread performs a computation for a corresponding voxel.

r, where each

3.4 Validation

The validation of this SAR computation can be made with the same case used in the

validation of the FDTD code: a lossy sphere with a loop current. Keltner et al [26]

provides analytical values for both the local and global SAR across an entire sphere

made of homogenous but lossy material. We assume the pulse is composed of only

one time sample of value 1 V to simplify calculations.

[E t1a* (nAt)ai (ndt) E t1a* (nAt)a2(nAt)

E1,x(r) E1,v(r) E1,z(r)

E2,x (r) E2,y (r) E2,z (r)

LEP,x(r) Epy(r) Epz(r)_

EH(r)TE(r)



We are given that the electric field inside the sphere is:

EO = - Eanj(kr)Pn(COSG) (3.7)

E, = 0 (3.8)

Eo = 0 (3.9)

The global SAR is then given by

SAR = (3.10)
pV

where P is the total power deposited into the sphere, p is the density of the sphere,

and V is the volume of the sphere. The total power deposited is given by

P = -JdV E (r,, -E*(r, 0,#) (3.11)
2

The global SAR for the test case of a = 0.090 m, b = 0.060 m, and d = 0.120 m

with the sphere being of muscle properties (o- =, p = at 300 MHz) is 2.786 W/kg in

both the analytical case as well as the CUDA-implemented code.

The solution for N-gram SAR can also be solved analytically. Let p be the density

of the sphere in kg/m 3. Then, a tissue cube of dimension d where

d (= - 1 3

will have a mass of exactly N-grams. The N-gram SAR is then the integral of point

SAR in the volume of that cube divided by the volume of the cube Vube = d3

Figure 3-2 shows the analytical as well as the CUDA-implemented N-gram SAR

calculation for N = 1 g and 10 g.



Figure 3-2: Analytical solution for point
of 3 x 3 x 3mm 3 . Two slices (z vs. x at
units on both plots are W/kg.

SAR computed at each voxel at a resolution
y = 0 and y vs. x at z = 0) are shown. The
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Chapter 4

Summary and Recommendations

4.1 FDTD

This thesis introduced the use of graphical processors via the CUDA framework and

how it could be used to speed up the runtime of the Finite-Difference Time Domain

method for EM simulations in MRI. The following are my achievements made during

the course of this thesis project.

1. FDTD code has been implemented on GPUs to estimate electric and magnetic

fields given an input head model, coil model and source waveform. This includes

implementation of absorbing boundary conditions, specifically the Uniaxial Per-

fect Matched Layer (UPML), to allow for MR simulations in an unbounded do-

main and implementation of steady-state field detection to solve for amplitude,

phase and DC content in all fields at all voxels in the domain.

2. Validation of the FDTD code was attempted with an analytical case (sphere

with current loop) but results are still off by an order of magnitude at most.

3. The code was compared in run-time between different graphics card models

to see how model specifications such as on-board memory and number of core

processors affects runtime. In addition, comparisons were made of run-time on

the CPU and on the graphics cards.



The following are recommendations of the next tasks that should be performed.

1. Validate implementation of the absorbing boundary condition, UPML, as de-

scribed below. The effectiveness of UPML is dependent on its sensitive material

gradient property which varies according to the distance of the PML layer to

the boundary between the FDTD non-PML grid and the PML layers.

2. Implement and test different models for the current loop in the validation case.

This source implementation can be done in many ways. The current loop could

be represented as a thin wire with current sources at every voxel (as was de-

scribed in the thesis) or it could mean simulating a cooper loop with a gap

voltage feed. In addition, the same validation case should be run on com-

mercial FDTD simulation software, such as xFDTD @(7.0, REMCOM, State

College, PA) to compare with FDTD results from the GPU implementation.

3. Implement the source using the Method-of-Moments (MoM) or with the integral

formulation of FDTD. A hybrid MoM/FDTD strategy is well suited in the

modeling of complex materials, especially curved models which are ill-suited for

a grid-based FDTD.

The validation of UPML is done with a simple EM test case. We first assume

an empty FDTD grid with UPML boundaries. In this scenario, a finite-duration

current source is injected into the FDTD domain. This current source could be a

differentiated Gaussian pulse of the form

J(t) = Jo - (t - to) -e-

where JO, to, and T are constant parameters. Note that even though this current source

is infinite in duration, the magnitude decays quickly to zero and can be approximated

as such after a short time depending on the parameters.

The FDTD algorithm is then run while at the same time the following reflection

error is calculated at any one given spatial point E(r) in comparison with a reference



computation Eref (r):

|E(r) - Eref (r)|Maximum Relative Error = max ( E(r) J

where Emax(r) is the maximum amplitude of the reference field at r over the total

time steps of the simulation. This maximum relative error can be compared with the

theoretical error of reflection R.

4.2 SAR Computation

This thesis also introduced the use of GPUs to faster compute the SAR compared to

CPUs. The system designed to do this takes in as input the FDTD output from the

simulation results for a particular MR setup. It uses FDTD results for E fields along

with RF pulses provided by a user to compute the SAR values.

The following are my achievements on SAR computation:

1. SAR calculation (N-gram and Whole-Head/Global SAR) has been implemented

via the CUDA framework. The speedup that resulted from the GPU implemen-

tation versus the CPU implementation was approximately 7 fold.

2. N-gram SAR was implemented using the fast-region growth [25, 23, 24] algo-

rithm

3. All SAR calculations are performed in a parallel manner for each voxel, and

run-time increases only when the model domain becomes too large in terms of

memory to be handled by the graphics card in use. For example, the NVIDIA

Tesla C1060 card model has 4 GB memory on-board, which limits the model size

to be at most about 200 million voxels. Still, this is better than the CPU im-

plementation that performs these SAR calculations sequentially voxel by voxel.

A good use for this SAR tool could be experimenting with different RF coil arrays,

coil parameters and RF design. It can provide insight into how changing geometric



and material parameters, such as coil radius, number of elements, or type of elements,

can affect SAR.
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