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Abstract

A large percentage of photos on the Internet cannot be reached by search engines

because of the absence of textual metadata. Such metadata come from description and

tags of the photos by their uploaders. Despite of decades of research, neither model-

based and model-free approaches can provide quality annotation to images. In this

thesis, I present a hybrid annotation pipeline that combines both approaches in hopes

of increasing the accuracy of the resulting annotations. Given an unlabeled image,
the first step is to suggest some words via a trained model optimized for retrieval of

images from text. Though the trained model cannot always provide highly relevant

words, they can be used as initial keywords to query a large web image repository

and obtain text associated with retrieved images. We then use perceptual features

(e.g., color, texture, shape, and local characteristics) to match the retrieved images

with the query photo and use visual similarity to rank the relevance of suggested

annotations for the query photo.
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Chapter 1

Introduction

Due to the popularity of digital cameras and photo-sharing sites, the number of

images on the Internet is growing at a staggering pace. Users of photo-sharing sites

such as Flickr 1 and Picasaweb 2 have uploaded billions of pictures. However, the vast

majority of images publicly available on these sites have little or no textual metadata.

The kind of metadata that matter for search purposes are usually not those provided

automatically by the camera, such as shutter speed and aperture settings, but manual

annotations that tell the story of the photo. Examples of such metadata include title,

caption, tags, and other words found close to an image in the layout of the containing

web page. These words provide clues about the semantics of a picture and can be

used to index an image for retrieval.

The lack of good textual annotations makes it difficult to effectively organize

pictures on the web, because most search engines only allow their users to search for

images by keywords. A typical search engine of web pages first builds an index that

maps words to pages containing those words, much like the index at the end of a

textbook. When a user inputs a string of query keywords, web pages containing a

subset of the keywords are retrieved and ranked. Similarly, a typical image search

engine indexes pictures on the web by textual metadata (filenames, surrounding text,

or tags) and usually completely ignores the visual content of the pictures. When a

ihttp://www.flickr.com
2 http://picasaweb.google.com



user enters a search query, those images in the index whose surrounding text contains

a subset of the query words are retrieved and ranked. When a picture has little or

no textual metadata, as in the case of Picasaweb and Flickr photos, it is effectively

impossible to find.

Content-based image retrieval (CBIR) systems approach the problem of finding

desired images by providing alternative ways for people to search. Instead of entering

text queries, an user uploads a picture, a region of a picture, or a group of pictures as

query. CBIR systems index images not by text but by visual features such as color,

texture, and interest points (corners and edges). The system processes a query image

by extracting visual features from the pixels and returns pictures from its index that

have matching features. CBIR derives its name from the fact that image content is

processed to aid in retrieval. Figure 1-1 shows the interface of a query by example

system developed by Stanford researchers, SIMPLIcity [27]. The example query is a

picture of a dog standing in a grassy field. The search results show visually similar

pictures that also contain grass and animals. However, the main object of the query, a

dog, is missing from most of the results. This example illustrates one of the challenges

to retrieval based on visual characteristics: the query maybe ambiguous about what

is its most prominent object. In this case a refined query, perhaps the outline of the

region containing just the dog, may yield better results. But maybe the user desire

not just any kind of dog but exactly the border collie captured in the query. In this

case the problem with the search results is harder to fix, due to the wide variation

among objects of the same kind. Also, while CBIR is great when users already have

image files available or are capable at sketching what they want, the most prevalent

and convenient way to search remains that of using textual keywords. It is therefore

very useful to have a method to efficiently annotate a large number of web images

with reasonable keywords. This is the problem that automatic image annotation tries

to address.

Automatic image annotation (or image annotation for short) is the computation of

textual metadata for images (i.e. captions and keywords). It involves the discovery of

mappings between the visual features of pictures and textual words, usually through



~ttp:Jfwang14.Ist.psu.eduJcgF4in/zwanQ/regonsearchshow.cg -

S-I M P L- c i ty
Semantics-sensitive Integrated Matching for Picture Libraries

Option 1 -> Image ID or URL Option 2 --> RAndAOe
Option 3 -> Click an image to find similar images

querv 000 3 5609 927 3 22242 9.49 3 6790 10.43 3
50627 9.78 4

58581 11.61 4 21448 11 91 3 13271 11,92 3 26524 12.31 3

Figure 1-1: SIMPLIcity: a query-by-example image retrieval system

machine learning techniques such as classification and probabilistic modeling. Both

image annotation as well as content-based image retrieval have been researched for

over a decade. But due to the large semantic gap [23], advances in this area have

been limited. Effectiveness of techniques depend largely on the corpora. In a narrow

domain of hundreds or a few thousands of classes, challenges of image annotation lie

mainly in building good models that incorporate domain knowledge and generalize

well on new data. In a broad domain such as the Internet, where image properties

and subjects vary considerably across the spectrum, annotation methods benefit more

from searching in the visual feature space on a large scale. Instead of choosing between

a purely model-based and or a purely retrieval-based approach to annotation, we

investigate a pipeline that integrate the two approaches in order to take advantage of

the benefits offered by both.



1.1 Overview of Annotation System

Figure 1-2 shows a diagram of our hybrid annotation framework. There are four

stages in this framework, which will be explained in more detail in the rest of this

thesis:

1. Generate rough initial annotations: Train a discriminative retrieval model

on a large corpus of images with reasonable text. The model we trained was

a linear SVM-like model called PAMIR [12]. To label a new picture, represent

the picture by a vector of features, use the trained weight vector to project

the image from its visual feature space to a term weights vector in the textual

space. Then take the top weighted words from the text vector as crude initial

seed words.

2. Text-based retrieval: The initial annotations are used to retrieve semantically-

related pictures from Google image search. Google image search retrieves up to

1000 results per query, therefore the total number of distinct images in this set

is determined in part by the number of initial annotations generated.

3. Content-based matching: Extract features from the retrieved images and

build a database of feature descriptors for matching. The type of features used

in this step does not have to be the same as in step 1. Run approximate nearest-

neighbors search on the database of feature vectors to find images most visually

similar to the unlabeled picture and output with each matching image similarity

scores.

4. Annotation refinement by label transfer: Aggregate keywords from vi-

sually similar images and use these to refine and rerank the original set of

annotations.



Figure 1-2: Overview of our image annotation pipeline.
1) First we train a discriminative model optimized for image retrieval by text. The
training data is derived from Google Image Search repository. Given an unlabeled
image, this model can suggest some rough initial keywords.
2) These keywords are used to retrieve a small set of images from Google Image
Search, some of which will be semantically related to the unlabeled photo.
3) Nearest-neighbor search for visual similarity matching is done on the retrieved set
to find images similar to the unlabeled image.
4) Labels from similar images are processed to refine the initial annotations.



1.2 Thesis Outline

In this thesis, I describe a hybrid approach for annotating images that combines

both a trained model and content-based retrieval for annotation. Chapter 2 covers

background and related work in image annotation helpful for understanding the de-

velopment of this new system. Chapters 3 through 5 describe in detail each important

stage in the process and associated experiments for evaluation of that stage. Chap-

ter 3 discuss model trained in the initial stage: PAMIR (Passive-Aggressive Model for

Image Retrieval), which was originally created for image search result re-ranking. It

includes some statistics on the training datasets and shows how size of training cor-

pus affects model accuracy. Chapter 4 presents the third stage of the pipeline: visual

similarity matching on a relatively small set of images retrieved by initial annotation

guesses, the visual features chosen and experiments with the features to see how they

perform for matching tasks. Chapter 5 explains how to aggregate tags from matching

images and vote/weight the tags by visual similarity scores. It also presents overall

annotation results that show some improvements to the initial annotations. Finally,

Chapter 6 summarizes the lessons learned and lists some areas for further exploration

in future works.

1.3 Contributions

While there have been many methods for processing images, feature extraction, and

learning patterns for associating text and images, designing an annotation system

involves making many choices, such as which methods and features to use, how to

combine the different methods, how to evaluate the system at each step and tune

the parameters. These choices should be guided by an analysis of the trade-offs.

Although this thesis draws heavily upon the works of other researchers, it does make

the following contributions:

1. A new way of combining model-based and search-based methods together into

an annotation pipeline is introduced. Although this thesis presents a specific



model and two specific kinds of features for retrieval, these models and features

can be changed for others easily. It is the pipeline itself: the order that these

components are put together that is novel.

2. This thesis presents methods for tuning the system and evaluating it at each

stage, such as using the coverage rate to choose the number of initial annotations

to output, and using the cumulative number of correct annotations to evaluate

the performance of annotation re-ranking. Separate evaluations of each stage is

important for system tuning because it helps to find those places that have the

most influence on the overall annotation quality.

3. Transfering text from visually similar images has not been investigated much

before. This thesis introduces a method for annotation refinement using infor-

mation found in the search query log. The search query log contains feedback

from users, making its association of image and text more reliable than the

surrounding text. To the best of my knowledge, this source of text has not been

considered in any annotation system before.
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Chapter 2

Background and Related Work

There are two ways to view automatic image annotation. The traditional view treats

annotation as a machine learning problem, with two modeling approaches under this

view: discriminative and generative. The discriminative, or supervised approach

treats annotation as a classification problem, where each label word is a class rep-

resenting either a semantic concept or a specific object. The simplest method is to

train a series of binary classifiers, one for each label, as done by Goh et al. [11]. This

approach is quite successful in limited domains: to detect faces [22], horses [9], to dis-

tinguish cities from landscapes [25] and so forth. Other methods in this camp focus

on multi-label classification [4], where labels are correlated classes and each image

can be assigned more than one class, and training for all classes are done together at

the same time.

The generative approach relies on probabilistic models to learn the co-occurence

relationship between image features and semantic labels. Duygulu et al. [5] adopted

a machine translation model to translate image blobs into label words. Jeon et

al. [13] used a cross-media relevance model (CMRM), which assumes label words

and blobs are conditionally independent given an image. These early works inspired

several other variations such as Continuous-Space Relevance Model (CRM) [15], Dual-

CMRM [18], and Multiple Bernoulli Relevance Model (MBRM) [7]. Li et al. built

the ALIP system [16] by training a Multiresolution Hidden Markov Model for every

semantic concept. At the same time, latent space models from text processing, such



as Latent Semantic Analysis (LSA), Probablistic Latent Semantic Analysis (PLSA),

and Correspondence Latent Dirichlet Allocation (Corr-LDA) have all been applied to

image annotation [20, 1, 3] with varying success. Liu et al. trained the original LDA

model on images represented as discrete bags of words and used the model to infer

the most likely annotations [17]. Because the training time and space usually grow

rapidly with vocabulary size, most model-based approaches limit the vocabulary size

to a few hundred. To the best of our knowledge, the biggest vocabulary has 950 words

and is taken by Carneiro et al. from the Corel 30K stock photos.

While the traditional view of automatic image annotation leans heavily on model

building, recent works have shifted toward data-driven methods [29, 28, 24]. Given

an unlabeled image, the idea of data-driven annotation is to search the Web for a set

of visually similar images. Web images usually have a lot of surrounding text, so they

can be processed and the text transferred as annotations for the unlabeled image.

Although conceptually simple and straightforward, purely data-driven methods can

achieve surprisingly good performance. Torralba et al. [24] compiled a database of

80 million 32 x 32 tiny Web images and demonstrated that using k-nearest neighbor

search, a simple voting scheme, and a WordNet dictionary, the performance for per-

son detection is comparable to the popular Viola-Jones face detector. However, the

data-centric approach encounters two problems. First, it encounters the "semantic

gap" [23] problem head on. Because visually similar images need not be semantically

related, the choice of image features and similarity measure greatly influence the re-

sults. The second problem is scalability. It is non-trivial to search huge collections

of images due to the high-dimensionality of images. Because it is impossible to store

billions of images in memory, accuracy usually becomes the trade-off. The feature

vectors is often reduced by principal components analysis (PCA) to less than 50 and

in some cases reduced further by hashing [28]. Because information is discarded in

the process of compression, the performance of nearest neighbor search also suffers.

The study by Torralba et al. [24] shows that as the dataset grows in size, the number

of approximate nearest neighbors we must examine to guarantee a high probability

of getting a fixed number of exact nearest neighbors also grows. For a dataset of 79



million images, 16, 000 approximate nearest neighbors must be considered to achieve

> 80% probability of including 50 exact nearest neighbors. As the dataset grows,

retrieval recall rate also suffers tremendously.

To overcome the scalability problem, researchers have tried to reduce set of images

on which to do visual similarity matching. Yeh et al. [29] reduce the set by restricting

the domain to university landmark recognition in mobile images. They first perform

content-based search on a small bootstrap set of 2, 000+ landmark images and extract

keywords associated with matched images. Next they perform text search using the

extracted keywords to retrieve a set of images from Google. Finally they cluster the

image results visually to obtain additional words. In [28], Wang et al. assume at least

one keyword is associated with a given image (e.g. folder name) and use that keyword

to retrieve semantically related images from Google. The search results are clustered

and one keyword per cluster is generated as annotation. However, the solution to

finding adequate initial keywords is left as future work.
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Chapter 3

PAMIR

The Passive-Aggressive Model for Image Annotation (PAMIR) [12] was developed by

David Grangier and Samy Bengio. It is a model optimized for the ranking of images

retrieved by textual queries. Inspired by the Ranking SVM [14] for web page re-

ranking, PAMIR trains a maximum-margin classifier that separates relevant pictures

from irrelevant pictures for each query, so that when the given query is performed, all

relevant pictures rank higher than all irrelevant pictures. It finds the classifier with the

largest margin in order to achieve good generalization performance on unseen queries.

In addition, it uses an efficient online Passive-Aggressive algorithm for training, which

has a time complexity that is linear in the number of training instances as opposed

to standard SVM training, which has a time complexity that is at least square in the

number of training instances. On the Corel dataset, a standard benchmark for image

annotation and retrieval, PAMIR was shown to outperform models such as CMRM,

PLSA, and SVM.

The following sections describe PAMIR in detail, and how we use it as the first

stage in the annotation pipeline. The purpose of this stage is to generate a rough

set of initial annotations per picture. While many words in this initial set can be

completely unrelated to the picture, hopefully the model is good enough that the

initial set contains words that an average person would consider descriptive of the

picture semantics. Then retrieval with these initial words as queries would return

semantically related images, which can be used to refine the initial annotations.



3.1 Image representation

PAMIR's approach to image representation is similar to most other annotation sys-

tems: each picture is represented as a bag of local descriptors. First, a picture is

divided into overlapping 64 x 64 pixel blocks. Smaller images may have fewer blocks

and an upper limit of 77 blocks per image is enforced. Then, a Local Binary Pat-

terns (LBP) [21] histogram and a color histogram are extracted from each block,

concatenated to form one block descriptor. The color histogram is obtained by first

building an RGB color codebook. The number of bins of the histogram is the size

of the color codebook, and each pixel is binned to the closest codebook color. Local

Binary Pattern is a simple yet powerful local texture descriptor that is gray scale and

rotation invariant. The pattern used in PAMIR is LBP, 2 , an example of which is

shown in Figure 3-1. For each pixel in the block, its intensity level is compared with 8

neighboring pixels spread evenly on a circle of radius 2. Results of the 8 comparisons

form an 8-bit binary sequence starting with the neighbor directly to the right of the

center pixel. A 1 in the sequence represents the case where the neighbor's intensity

is higher (the pixel appears lighter) than the center pixel and a 0 otherwise. Since

there are 28 = 256 possible 8-bit sequences, a LBP histogram would naturally have

256 bins. However, sequences like 11000001 and 00000111 can actually be derived

from the same pixel in the same picture simply by rotating the picture. To achieve

rotation invariance, some 8-bit sequences can be considered equivalent and grouped

into the same bin. Indeed, Ojala et. al. [21] showed that sequences with more than

two 0/1 transitions can be put into one bin with little change in performance. In

PAMIR, the total number of bins in the LBP histogram is reduced to 59.

As mentioned before, the LBP histogram and color histogram are concatenated

to form one descriptor per block, and each image contains many blocks (up to 77).

The next step involves discretizing the block descriptors from all training images

into a codebook of "visterms", or visual words, using k-means clustering. While

this "visterm kernel" approach is not the only way to represent images, it is shown

in [12] to outperform many other picture kernels for PAMIR training, and so we do



0 11000001

Example Neighborhood Converted to 8-bit
for LBP, 2  sequence

Figure 3-1: LBPs,2 example. The gray scale intensity of the center pixel is compared
with the intensities of its 8 neighbors at a distance 2 pixels away and result is converted
to an 8-bit binary sequence

not consider the others here. Once we have a codebook or dictionary of visual words,

each picture can now be represented as a bag of words just like a text document. More

concretely, we can represent a picture as a sparse vector p E RC, where C is the size

of the codebook. Component i of p represents the ith visterm in the codebook. The

value of component i is the normalized term frequency-inverse document frequency

(tf-idf) of the ith visterm. Tf-idf is a measure widely used in text-mining to assign an

importance weight to a word in a document. It is defined as the following:

tf ,- idf (
Pi = -' (3.1)

k=1 (tfp,k -idf k)2

The term frequency (tfy,j) is the the number of times the ith visual word appears

in the picture p. The more times this word appears, the more important it is in

describing the picture, and therefore the higher its weight should be. The inverse

document frequency (idfi) is -log(ri), where ri is the fraction of training corpus

images containing the ith visual word. If a word occurs in a large fraction of training

corpus images, then it is not as useful for distinguishing the images apart. An example

from text documents is the word "the", which occurs many times in most documents

but has very little meaning. Therefore the higher the document frequency, the lower



should be the word's weight, which justifies multiplying idf and tf together. Lastly,

the visterm vector is normalized to be unit length so that bigger pictures with more

blocks and therefore more visterms do not weigh unfairly high in the training process.

The bottom of the fraction in Equation 3.1 is the normalization constant.

3.2 Query Representation

Similar to an image, a query is treated as a bag of words and represented also with

a sparse term vector. The dimension of the query vector is the size of the textual

dictionary, T, as determined by the training corpus. The weight for each term in the

vector is similar to the normalized tf-idf used for visterm vectors explained in the

previous section. But instead of term frequency, a binary value indicating the word's

presence or absence in the query is multiplied with the idf. This is because in natural

language, if a word appears multiple times in a query, it usually doesn't change the

meaning of the query too much; but for pictures, the repetition of a patch will likely

yield a very different interpretation, so term frequency should be kept to incorporate

as much information as possible.

3.3 Model T r-aining

Given a query represented by a term vector q E RT, a set of relevant pictures p+

and irrelevant pictures p- E RC, the goal of PAMIR is to train a scoring function F"

so that all relevant images are ranked higher than all irrelevant images. The goal is

expressed by the following equation:

VP+ te -, Fs(q, p+) > F. (q, p-) (3.2)

In the simplest case, PAMIR trains a linear model W, a T x P matrix of param-



eters, and uses the product qTWp as the relevance score:

- Pi
- wi

F.(q, p) = qi q2 qT P2 (3.3)

- WT -

-Pc
w-

From Equation 3.3, we can see that the matrix of model parameters W projects a

picture vector from the visual feature space into the textual space. The relevance

score then is just the inner product between the projected picture and query.

To understand training better, it helps to rewrite W by concatenating its rows

together into a single row vector of length TP:

w = [Wi W 2  - WT]

Similarly,we can combine a query vector q and a picture vector p into a single row

vector -(q, p) of length TP:

'(q, p) = [qip q2 p qp)

One can verify that the dot product of the new row vectors, w -7(q, p), is exactly

the relevance score F, (q, p). Written this way, the relevance score can be interpreted

as the projection of y(q, p) on w. The difference between the scores of two pictures

pi and P2 can be simply written as w - y(q, Ap), where Ap = P1 - P2.

Each training data point of PAMIR is a triple (q, p+, p-). Finding the w that

satisfy Equation 3.2 with the maximum margin, while also allowing for overlapping

class distributions is equivalent to solving the following optimization problem:

M

min ||wI| 2  + CZ[& (3.4)
i=



with the constraints Vi, 1 < i < M:

W - (qj, Apj) ' 1 - (j Api = p+ - p-
(i > 0

where M is the total number of training instances; (j are slack variables that allow for

some training data points to fall within the margin or misclassified; and C controls

the trade-off between the accuracy on the training set and the margin width. The

training algorithm starts with w0 = 0 and goes through n iterations as specified by

the user. In the ith iteration, w' is updated with the following equations:

Wi = W i- 1 + Tivi (3.5)

vi = y(qi, Api) (3.6)

Sminc, max(0, 1 - wi- -vi) (37)

In each iteration, the amount by which the weight vector changes depends on the

aggressiveness parameter c and the margin of the ih training instances with the

previous weight vector. The number of iterations controls the fit. Setting the value

of n too high will likely result in overfitting and poor generalization on test data

while setting it too low may not get the best classifier. Both parameters c and

n are found by cross-validation, a way to estimate model performance and reduce

chances of overfitting. For cross-validation, the training corpus is divided into a

model construction set and a validation set. The model is trained using the model

construction set and tested on the validation set. To tune the parameters, we train

many models using different combinations of paremeter values (c, n) on the model

construction set. The combination of parameter values that give the lowest error

on the validation set are chosen and the model is retrained using the entire training

corpus and the chosen parameters. To ensure that the validation set and the model

construction set have similar properties, training corpus points must be partitioned

randomly (e.g. a coin flip to determine to which set a point belongs).



3.4 Training Corpus

PAMIR's training algorithm takes as inputs triples of the form (q, p+, p-). These

triples actually come from a very sparse binary relevance matrix R with rows repre-

senting queries and columns corresponding to pictures, where Rj = 1 if picture j is

relevant to query i and R, 3 = 0 otherwise. The training data derives from Google

image search's query logs, which contains for each query, a list of retrieved pictures

and the number of clicks each picture got within a window of time.

A picture can be deemed relevant to a query if its click number exceeds a certain

threshold, which may be different for each query due to varying levels of query pop-

ularity. Alternatively, the percentage of total clicks instead of actual number may be

more accurate. One factor that makes the query logs noisy is that users seldom look

at every item in the search result, so pictures listed in the first few result pages are

much more likely to get clicks than pictures listed in later pages, regardless of actual

relevance, simply because few people look at the later picture. This is complicated by

the fact that some queries return hundreds of pages of results all of which contain rel-

evant pictures, while others return less than ten pages only a couple of which contain

anything relevant. Given clickthrough data aggregated across millions of users, it is

hard to determine for a picture with few clicks whether the dominant cause was its

lower ranking or irrelevance. While high quality data for training does influence the

outcome, it is not a focus of this project. Fortunately, the PAMIR learning algorithm

can handle noisy nonlinearly separable training data natively to some extent with the

slack variables.

After processing the clickthrough logs to retain only English queries and safe

search content (i.e. eliminating queries and results for nude pictures), the training

corpus consist of 2.2 million images from the search results of 140K queries. The

dictionary for the queries contains 21K stemmed words.



3.5 Computing and Evaluating Initial Annotations

Once we train a PAMIR model W, we can project any picture from the visual space

p E R0 into a term weights vector q' = Wp in the textual space. The simplest way

to make use of q' for annotation is to take the top N words with the highest weights

in q' as initial annotations for the picture, since these terms contribute the most to

the relevance score of a picture.

The parameter N should be chosen with care since the next stages of the pipeline

will use these words to retrieve 1000N images from Google image search and perform

visual similarity matching on the retrieved images. If N is too small, then none of

the initial annotations may be relevant to the picture, and retrieval for semantically

related photos is mostly useless. If N is big, several hundred for example, then a

picture is highly likely to get at least one relevant annotation. But the larger N is,

the slower and more work needed to refine annotations by similarity matching later.

Furthermore, similarity matching depends on a visual features index that must fit

entirely inside a computer's memory during matching. There is an upper limit to

the amount of memory on one commodity machine, and by extension there is an

upper limit on the value of of N, which is on the order of a few tens. Therefore,

finding a good value for N involves making a trade-off between the accuracy of initial

annotations and the accuracy of the visual matching stage.

To choose a reasonable N, we randomly sampled 50 public photos from Picasaweb

albums and 50 photos from the Corel 5K dataset. Since the two sets are small and

the Picasaweb photos have no ground truth labels, we manually examined the top 20

annotations for each photo, and recorded the number of photos that have at least one

good annotation. We define the coverage rate to be the percent of unlabeled image

having at least one good annotation generated by PAMIR. A curve of the coverage

rate against the number of predicted annotations is shown below in Figure 3-2.

The curve is convex: rising quickly at first and flattens as the number of anno-

tations increases. The point that seems optimal is around 11. Beyond the top 11

words, the coverage rate improves only marginally with additional words, at the cost
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Figure 3-2: PAMIR initial annotation coverage rates for Picasaweb and Corel photos.

of more resources for similarity computation later. We choose to output 11 initial

annotations for all later experiments. Because the sample size is very small and we

evaluated correctness manually, the coverage rate is an overestimate of the actual

coverage rate if we were able to calculate it on the entire Picasaweb and Corel 5K

datasets. At N = 11, it is 74% for the Picasaweb sample and 63% for the Corel

sample.

3.5.1 Evaluation Metrics

We use two metrics to evaluate the quality of initial annotation, listed in Table 3.1 for

convenience. One metric is the coverage rate as mentioned before. We believe that at

this stage in the pipeline, the coverage rate is a reasonable measure of quality, because

in the next stage these initial seed words help to retrieve more images semantically

similar to the unlabeled picture. If we can produce at least one relevant initial seed

word for a large number of pictures, then retrieval and refinement steps are more

likely to be useful.

To compare the quality of the initial annotations against that of the final anno-

tations, a second metric is needed: the number of correct annotations is a straight-

forward choice. Evaluation of correctness can be done either completely manually



Evaluation Description
metrics
coverage rate Percent of pictures with at least one correct annotation

avrg. no. correct Average number of correct annotations per image for
annotations those images with at least one good annotation

total no. correct Total number of correct annotations on the test set
annotations

Table 3.1: Annotation quality metrics

or automatically on a test set with manual ground truth annotations. Whether the

refinement stages are useful can be measured by the amount of increase in the number

of correct annotations from the initial stage.

To better evaluate the quality of initial annotations, we selected a larger dataset

of web images with quality ground truth annotations. This dataset consist of 1, 617

photos from the Google Image Labeler game 1. The Google Image Labeler is a version

of the ESP game 2 licensed by Google, which harnesses the power of humans to label

images. The game matches two random players as partners and shows them a series

of photos. The players cannot communicate other than keep typing words to describe

the current image. Only when they both agree on the same label for it can they

get points and move on to the next image. This setup ensures that players type

reasonable tags for each picture. The game draws pictures from the Google Image

Search repository. We filter the Image Labeler dataset further by retaining only

pictures having at least 30 tags, resulting in 1, 617 pictures. This will be refered to as

the Image Labeler dataset, although it represent only a tiny portion of the complete

Labeler dataset. We consider all words associated with a Labeler image to be ground

truth, even if they have not been matched on by any pair of players, because they

are produced by humans.

On this Image Labeler dataset, the coverage rate and average number of correct

annotations are computed automatically. We stemmed both PAMIR and the Labeler

1http://images.google.com/imagelabeler/
2http://www.espgame.org/gwap/, for more information, see [26]



words before matching them. This takes care of plurals and ending changes for most

words. A PAMIR annotation is considered correct if it matches a ground truth word

exactly. We only count exact matches and leave out potential correct annotations

from synonyms. This requirement may be a little stringent but it is the simplest to

implement. Compared to manual evaluation, this gives a very conservative estimate

of annotation quality. We found on this dataset the coverage rate is around 42.5%.

Out of the total of 17, 787 words generated by PAMIR, 1, 871 words are correct. The

average number of correct annotations for images with at least one correct annotation

is 2.5. While this result seems low, it is a lower bound on the actual numbers, and

serves as our starting point.
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Chapter 4

Visual Similarity Matching

The previous chapter described how to generate some initial annotations of N words

with PAMIR for each unlabeled picture pi. With these annotations as queries, text-

based image retrieval is performed to collect a small set of 1000N pictures from Google

image search, where N is the number of queries and is set to 11 for all experiments.

This chapter presents the next step: the processing of the retrieved set to find pictures

most visually similar to original picture pi.

Image matching starts by extracting features from unlabeled pictures and building

them into a database of descriptors. The database should use an indexing structure

that's efficient for k-nearest neighbor (k-NN) search in high dimensions. Then for

each retrieved image ri, having on the order of several hundred keypoints and asso-

ciated feature descriptors, feature matching finds the nearest neighbors for all of ri's

features. The pictures in the database with the highest number of matching features

are selected for geometric verification, which attempts to find an affine warp from

ri to its matches. If the affine warp results in a large error, the match is discarded.

When all retrieved images have been matched this way, we get a relevance matrix

that records the similarity scores between unlabeled pictures and retrieved images.

This information is used in the next step to refine the initial annotations.



4.1 SIFT

We tried two kinds of features for similarity matching. The first features is the

LBP+color histograms used in PAMIR training which was presented in Section 3.1.

We tried a second feature for matching: SIFT [19], a distinctive local feature widely

used computer vision for matching objects and aligning scenes in images. SIFT

features are scale and rotation invariant, so that shrinking the picture doesn't affect

feature detection. In addition, SIFT is also partially invariant to illumination and

viewpoint changes, affine distortions, occlusion and noise. These properties make

SIFT suitable for matching images on the web, which vary greatly in quality, lighting,

and viewpoint. This chapter mainly focuses on explaining image similarity matching

with SIFT, because matching images with LBP is similar but simpler.

The extraction of SIFT features begins with finding candidate keypoints, which

are local maxima/minima in the difference of Gaussian versions (DoG) of the original

image at various scales. The original image is converted to gray-scale first, because

keypoint detection only searches for peaks in gray-scale intensity values. Generating

DoG images involves successively down-sampling the original image by a factor of

2 in both the x and the y directions. The down-sampling method is simple block-

averaging: the value of a pixel in the shrunken image is the average of the pixel

values in a 2 x 2 block in the original image. Each down-sampling step produces

an octave, in which the original image is convolved with many Gaussians having

scales between o and 2-. The scale o is the width of the 2D Gaussian function

G(x, y, o-) = 1e-(X 2 +y 2 )/2,2. Because a continuous 2D Gaussian function has very

small non-zero values covering the entire image, it is not efficient to compute its

convolution with the image. In practice a truncated and discretized Gaussian kernel

is used for smoothing. The kernel is a square grid with side length F6ol, and the

value of each cell in the grid is the value of the continuous Gaussian function sampled

at the center of the cell. Table 4.1 shows an example of a 5 x 5 Gaussian kernel

with o = 0.7746. Finally, the Gaussian-blurred images of adjacent scales in the same

octave are subtracted to produce DoG images. This pyramid process is illustrated



Table 4.1: An example 5

0.0003 0.0041 0.0095 0.0041 0.0003
0.0041 0.0502 0.1154 0.0502 0.0041
0.0095 0.1154 0.2656 0.1154 0.0095
0.0041 0.0502 0.1154 0.0502 0.0041
0.0003 0.0041 0.0095 0.0041 0.0003

in Figure 4-1 and an example showing how an

given in Figure 4-2.

image looks like after this process is

Scale
(next
octave)

Scale
(first
octave)

Gaussian

Difference of
Gaussian (DOG)

Figure 4-1: A pyramid of difference of Gaussians images for SIFT, taken from Lowe,
2004 [19]

The candidate keypoints are the local extrema of DoG images. They are found by

comparing each pixel in the DoG image to its 26 neighboring pixels: 8 neighbors in the

current image, and 9 neighbors in each of the two DoG images with adjacent scales.

Once a candidate keypoint has been identified, a polynomial fit of its neighborhood

intensities is done to determine a more accurate location of the local extrema. This is

known as keypoint localization. If the interpolated intensity at this location has a low

magnitude (low contrast), the point is discarded because it is unstable. In addition,

points lying along edges are also discarded for the same reason. The remaining

candidate keypoints are assigned a scale and an orientation. The scale is just the

x 5 Gaussian filter with o- = 0.7746



Range: J 0.11, 0.1311
Dims: [959, 20441

Figure 4-2: An example of Gaussian and difference of Gaussian images, taken from
Estrada's SIFT tutorial [6]

scale of the DoG image. The orientation of a keypoint is the dominant direction in

a 36-bin histogram of gradients in the keypoint's neighborhood. If more than one

directions are dominant, for example, if there are multiple peaks of similar heights

in the gradient histogram, another keypoint at the same location is created with the

other dominant direction as its orientation.

Finally, a SIFT descriptor is computed for each keypoint. The descriptor is basi-

cally a histogram of weighted gradient orientations. The common choice is to use 8

orientations. The descriptor is computed from a local square patch of 16 x 16 pixels

centered at the keypoint and with sides parallel to the keypoint orientation. This

patch is smoothed by a Gaussian with o equal to half of the patch width, so that

gradients closer to the center have higher weights. This patch is further divided into

16 blocks of 4 x 4 pixels, each accumulating an 8-bin histogram. The descriptor is



formed by concatenating the 16 histograms together to form a 16 x 8 = 128 dimen-

sional vector. To make the descriptor robust against changes in illumination, this

vector is normalized to unit-length, and each bin is thresholded to prevent too much

influence from any one dimension.

In our system, the SIFT descriptors are further compressed down to 40 dimen-

sions by Principal Component Analysis (PCA). PCA transforms the feature space

into a new orthogonal space, where the first dimension contribute the most to the

data's variance, followed by the second dimension, and so on. The dimensions that

contribute the least to the variance can be discarded because they carry the least

amount of information for distinguishing the datapoints apart.

4.2 Feature Index and Matching

After extracting SIFT features from all unlabeled pictures, we store the features

descriptors into a database and build an index on this database to facilitate matching.

The index data structure we use is the kd-tree, a binary search tree that partitions the

feature space with orthogonal hyperplanes. The reason for using the kd-tree is that

feature matching relies on nearest neighbor search, and a kd-tree allows much more

efficiently NN lookups than brute force linear scan. The distance d(u, v) between

any pair of keypoint descriptors u and v for nearest neighbor search is the Euclidean

distance: d(u, v) = ZE= IIU, - vIl 2.

4.2.1 Nearest Neighbor Search on a kd-tree

The kd-tree is built recursively, first by picking a dimension, s, on which to split

the datapoints. The standard way is to pick the component of the vector in the

direction of highest variance on the current remaining points. Then a pivot point is

chosen, which is the datapoint that has the median value m in the splitting dimension.

Choosing the pivot to be the median ensures that the kd-tree is balanced. The pivot

is made into the root node storing the values s and m, and the remaining points are

split evenly in halves, to be turned into subtrees. All datapoints in the left subtree



have s-dimension value less than the root, and all points in the right subtree have

values greater than the root. The previous steps are repeated in each half, using a

different dimension for splitting. This process continues until all points have been

inserted into the tree, and takes O(nlogrn) time, where n is the number of points.

An example of a 2-dimensional kd-tree is showing in Figure 4-3.

Figure 4-3: An example of the kd-tree in two dimensions. (a) Visualizing a kd-tree
partitioned space. (b) kd-tree in binary tree form, with dashed lines indicating the
splitting plane at each level.
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Nearest neighbor search on a kd-tree proceeds by first traversing all the way to

the leaf node containing the query point, and saving the distance between the query

and this leaf node as the current best distance db. The algorithm then backtracks to

the parent node and checks if the distance between the query and this node is less

than db. If it is, the current best is replaced. If not, there may be no points closer

than the current best in the other branch, and we can prune that branch. This can

be decided by checking whether the hypersphere centered at the query with radius

db intersects the splitting hyperplane containing the parent node. If it does, we must

check the other branch. If not, that branch can be pruned and we can backtrack

to a higher level. This procedure is repeated until all points have been examined or

pruned.

While the kd-tree is very efficient for exact k-NN search in low-dimensions, the



number of lookups increases exponentially with the number of data dimensions k, so

that the performance is not much better than linear scan when k > 20. To shorten

the search time, we settle for approximate nearest neighbors instead, by using the

Best Bin First (BBF) search strategy [2]. This strategy limits the number of nodes

examined and the order in which they are examined, so that it returns the exact

nearest neighbor the vast majority of the times and very close neighbors the rest of

the times. It does so with the help of a priority queue, whose size is set by the user (we

set it to 200). At each node, the branch not taken is added to the queue along with

its distance to the query, which is the minimum distance between the query point

and the splitting hyperplane at the node. Upon backtracking, the node with the least

distance to the query is examined first. To reduce the number of false matches, the

distance ratio between the closest and the second-closest neighbors must be less than

a certain threshold (0.8 is the default for SIFT). Matches with a ratio greater than

this threshold have a high probability of being false matches.

4.3 Image Matching and Verification with SIFT

For each retrieved image ri, feature matching traverses the database of keypoint

descriptors and finds the nearest neighbor for each keypoint in ri. Associated with

the neighbor is a link to the unlabeled image Uk containing it. The number of links

between Uk and ri is stored in a table and updated as more features are matched.

Once all retrieved images have been processed this way, we can take those images

that have the highest number of matched features to a given Uk and determine how

similar those images really are to Uk. Because there may be many false matches,

we want to verify that keypoint matches are geometrically consistent. To this end,

we attempt to find an affine transformation from Uk to each potential image match.

The number of matched features that fit a transformation closely are its consensus

set. If two images contain similar objects and scence, then we would expect to find a

transform with a large consensus set; if we couldn't find such a transform, then it's

unlikely that the two images are related or similar.



4.3.1 Affine Transform for Verification

Affine transforms are linear transforms followed by translation. They preserve the

collinearity and the ratio of distances between points on a line. Under affine transform,

point x1 in one image is mapped to a point x' in another image as follows:

x1 anl a 12 tx x 1

1 a21 a22 ty y1 (4.1)
1 0 0 11 1

H

We can rewrite Equation 4.1 so that all the unknown parameters of the transform

matrix H are in one column vector h:

x1 y1 0 0 1 0 a11  x

0 0 x1 yi 0 1 a 12  Y1

X2  Y2 0 0 1 0 a 21  2 (4.2)
0 0 x 2 Y2 0 1 a 22  Y2

A h b

Finding a solution for h requires a minimum of 3 point-to-point correspondences. The

least squares solution is

h = [AT A]-'A T b (4.3)

Two image can have a large number of putative correspondences, some of which

are bad matches/outliers and should not be used to estimate the transform matrix.

However, we do not know which correpondences are outliers and which ones are inliers.

So the problem is finding both the set of inliers (good correspondences) and an affine

transformation simultaneously. This can be done with iterative algorithm RAndom

SAmple Consensus (RANSAC) [8].

In each iteration of RANSAC, the algorithm first selects a random sample of s cor-



respondences (s >= 3) from all putative correspondences. An affine transform from

this sample is calculated according to Equation 4.3. Having obtained a transform, the

size of its consensus set can be found by counting number of putative correpondences

that fit this transform to within a threshold error. The error of an affine transform

for a point x and its correspondence R is the transfer error:

e = d(R, Hx)2

The threshold for this error is dependent on application and adjusted empirically.

At the end of each iteration, the fraction of inliers can be updated as necessary

based on the maximum size of the consensus set found so far. Knowing the fraction

of inliers and given a fixed sample size s, the number of iterations L to run this

algorithm is determined to ensure a high probability of generating a good transform.

At the end of all iterations, if the largest consensus set is less than a given threshold,

then the image match may be rejected as a false match. Otherwise, the transform

that produced the biggest consensus set is recalculated using all correspondences in

the consensus set to generate the final transform. The similarity between the two

images is based in part on the least squared error of this final transform.

4.4 Image Matching with LBP+color features

Matching images with the LBP+color descriptors is much simpler compared to match-

ing with SIFT descriptors. Recall from Section 3.1 that each image is represented

as a term-frequency vector of visterms, which come from the k-means clustering of

LBP+color histograms. Because there is only one vector per image, no geometric

verification is necessary. We can use the same feature indexing structure, the kd-

tree, to store the LBP+color visterm vectors. Image matching is the same as feature

matching for SIFT, by k-NN search. However, whereas SIFT features are compared

using the Euclidean distance between descriptors, LBP+color vectors are compared

by their cosine similarity, a measure that is frequently used in text mining to match



the tf-idf vectors of documents. The cosine similarity between two LBP+color visterm

frequency vectors a and b is defined as:

sim(a, b) =

where ||all = V/a -a. The cosine similarity is basically the cosine of the angle between

the vectors a and b.

Since the tf-idf vectors have no negative-valued components, the cosine similarity

takes values in the range [0, 1]. A similarity value of 1 means that the two images

represented by a and b are the most visually similar, while a value of 0 means that

they are the least similar.

4.5 Feature Evaluation

We evaluate each stage of our annotation pipeline individually so that it is easier to

see where the performance bottleneck is and where we should spend the most effort

in making adjustments to the system. At the visual matching stage, there are two

important questions we want to answer. First, how good does the matching ability

of SIFT compare with that of LBP+color? These are two very different features,

and they play a large role in retrieval quality. If we can determine that one feature

is significantly better than the other or if both yield similar results, then a lot of

effort can be saved by extracting only the better feature. On the other hand, if the

features complement each other under different settings, then it is worth our time to

investigate a way to combine them.

The second question we want to answer is, how is the retrieval performance of

visually similar images influenced by the size of the image features index and the

number of noisy/irrelevant images in the index? We would like the matching to

be robust to noise, because the initial annotations generated by PAMIR has a low

average number of correct annotations per image. This means that the image by text-

retrieval stage (stage 2) returns noisy mixtures of relevant and irrelevant images that



visual similarity matching must then filter. If matching has a high precision despite

the noise, then we do not need to spend too much time improving the previous steps.

If this turns out not to be the case, then we need better models for generating the

initial annotations.

4.5.1 Metrics

We use precision and recall to measure the quality of visual similarity matching, and

they are defined as follows:

precision =
number of relevant images retrieved

total number of images retrieved

recall = number of relevant images retrieved
total number of relevant images in the index

I - image index
S - relevant/similar image s
R - retrieved images

Figure 4-4: A Venn diagram to illustrate precision and recall

These two metrics are very commonly used in information retrieval, and they

are appropriate here because visual similarity matching is essentially content-based

retrieval. Figure 4-4 gives an example to better illustrate precision and recall. In

this example, precision is Isfgl , and recall is ISn R As mentioned before, it isR1 'SI



important that the matching has high precision. We would also like the recall rate

to be reasonably high, because the next stage gathers the labels of visually similar

images to improve the initial annotations, and more similar images yield better text.

However, precision and recall often go in opposite directions: when one goes up, the

other tend to go down. The higher the precision, the harder it is to find all similar

images from a database in the presence of noise, hence the lower the recall and vice

versa. For LBP+color feature, we can adjust the values of precision and recall directly

by returning more neighbors from the index. Obviously if we returned all images in

the index, the recall would be 100% but the precision would then be extremely low.

For SIFT features, we cannot control directly the number of similar images retrieved.

We can only indirectly influence these values by changing the threshold error of the

affine transform step. The higher the allowable error, the higher the recall rate and

the lower the precision.

4.5.2 Evaluation Datasets

In order to automate the calculation of precision and recall, we need a ground truth

dataset. For our experiments, we manually collected 800 images from Google Image

Search using the following queries: apple, beach, Beijing, bird, butterfly, clouds,

clownfish, Japan, liberty, lighthouse, Louvre, Paris, sunset, tiger, tree. Many of the

queries are ambiguous semantically or has high intra-class variation, so we split these

queries into categories. At first there are a total of 38 categories. After eliminating

the ones that have too few images (less than 4) and merging back the ones that turned

out to be not distinctive enough, 26 categories are left. Table 4.2 shows the queries,

the categories, and an example image for each category.



Table 4.2: Examples of ground truth images with queries

and categories

Categories: id, brief description, and example images

1. apple0 2. applel

logo fruit

beach

4. beach

Beijing

5. beijingO

Tiananmen

8. birdO

animal

6. beijing1

Great Wall

7. beijing3

Temple of

Heaven

9. bird2

diagram

10.butterflyO

Continued on next page

Query

apple

3. apple2

iphone

bird

butterfly



Table 4.2 - continued from previous page

Query Categories: id, description, and example images

clouds

11. clouds

clownfish

12.clownfishO 13.clownfishl 14.clownfish2

orange black drawing

Japan

15. japanO

flag

16. japan1

map

liberty

17.libertyO

lighthouse

18.lighthouse

Louvre r....- - -

19. Louvre

Continued on next page



Table 4.2 - continued from previous page

Query Categories: id, description, and example images

Paris pA

20. paris1 21. paris2 22. paris3 23. paris4

Eiffel Tower
Arch of Tri-

umph
Paris Hilton

24. sunsetO

tiger

25. tigerO

tree

26. tree0

To study how the size of image index and the percent of irrelevant images affects

precision and recall, we test retrieval performance on three datasets of increasing

sizes. The first dataset consists of the ground truth images only. This roughly corre-

spond to the situation where initial words predicted by PAMIR is 100% accurate, so

retrieval using those initial annotations as keywords should return the fewest number

of irrelevant images. The second dataset consist of a mixture of the 800 ground truth

images and 10K randomly selected pictures from Google Image Search. This roughly

correspond to the situation where 10% of initial annotations are good. The third

dataset consist of a mixture of the ground truth with 45K random pictures. The

sunset

map



number of images in each dataset and the number of keypoints in the SIFT features

index are summarized in Table 4.3.

Table 4.3: Evaluation data statistics

Dataset no. images total no. keypoints
dataset1 800 348, 000
dataset2 10,800 3,780,000
dataset3 45, 800 17, 400, 000

For each category, we randomly pick a few pictures in the ground truth as query

for visual similarity matching against the entire database. Since we know the category

that the query image falls into, we can record the number of similar images retrieved

that come from the same category in the ground truth. Usually the query image itself

is also retrieved but we do not count it when calculating recall and precision.

4.5.3 Results

Table 4.4 shows the matching precision and recall using SIFT feature on the three

datasets.

Table 4.4: Precision and recall for SIFT

Dataset dataset1 dataset2 dataset3
recall 12.6% 11.7% 9.18%

precision 95.3% 94.1% 93.7%

The results confirm that SIFT features are highly distinctive and yield very high

matching precision. As we increase the size of the index, both recall and precision

decrease as expected. But even on the largest dataset, SIFT does very well. These

numbers are obtained by setting the affine transform error threshold to 3 pixels. We

also tried setting the threshold to 0.5, 10, and 20 pixels, but setting it to 3 resulted

in the best retrieval performance.

Figure 4-5 shows the precision and recall curve on dataset1 using the LBP+color

feature for matching. Whereas it is hard to make a curve for SIFT, it is easy to



do so for LBP+color because we can directly control the number of similar images

retrieved. The curve is created by varying the number of retrieved images from 1 to

12. When only one similar image is returned, the recall is the lowest but the precision

is the highest. On the other extreme is when we return 12 images, for which precision

is the lowest but recall is highest. The optimal point seems to be when we set the

number of images retrieved to 9, for which the precision is 38% and the recall is 17%.

0.5
0

0.4 --

0.35

0 0.1 0.2 0.3 0.4 0.5
Recall

Figure 4-5: Precision-recall curve for matching with LBP+color feature

We can see from Figure 4-5 that at the same recall rate, LBP+color has a much

lower precision than SIFT (41% vs. 95%), so SIFT may seem to be the clear win-

ner here. However, in our experiments, we were not able to get more than 13% of

recall rate on any dataset when matching with SIFT. Indeed, for many queries such

as "clouds" and "sunset", matching with SIFT retrieves no images at all, which is

no good if the next stage depends on the visually similar images for annotation re-

finement. Figure 4-6 shows the side-by-side comparison of the recall rates of SIFT

and LBP+color for each category of query image. The numbers are calculated on

dataset2. For LBP+color matching, we retrieve 10 images for each query. The cate-

gory IDs are given in Table 4.2.



1 -

0.9-

0.8 - m SIFT
U LBP+color

0.7 -

0.6-

~0.5 5

0.4 -

0.3

0.2 -

0.1

1 4 7 10 13 16 19 22 25

Category ID

Figure 4-6: Comparison of SIFT and LBP+color recall by category

Clearly, SIFT and LBP+color perform well in different categories. SIFT is better

suited to matching rigid shapes. In the ground truth, SIFT has the highest recall

in the categories 3- "iphone" (62%) and 7- "Temple of Heaven" (60%). LBP+Color is

better for matching images that have nonrigid objects and more color and texture,

and it has the highest recall in the categories 4- "beach", 8- "bird", 11- "clouds". These

results suggest that a combination of both features may achieve better matching

quality. For the rest of the experiments, we use LBP+color for matching, because it

is simpler to control the number of similar images retrieved.



Chapter 5

Annotation Refinement

Annotation refinement is the last stage in our pipeline. To recap the previous steps

leading to this stage, in the first stage, we predict initial annotations for an unla-

beled image using a discriminative model, PAMIR. In the second stage, we use the

initial annotations as keywords to retrieve images from Google Image Search. These

retrieved images all have some associated text because they have been indexed for

search. The third stage involves filtering the retrieved images to retain only the ones

that are visually similar to the unlabeled image. Now in this last stage, the retained

images, their similarity scores to the unlabeled image, and their associated text are

processed to refine the initial annotations. There are two areas for refinement: 1) we

can expand the initial set of PAMIR annotations by transfering labels from similar

images. 2) we can re-rank the initial annotations so that correct annotations come

before incorrect ones. In this chapter, we investigate both areas for improvement,

and present some preliminary experimental results.

There are two sources of text associated with images retrieved from Google Image

Search: 1) surrounding text and 2) query log. The surrounding text consist of words

shown on the same web page as the image. These words are assigned weights when

the image is first crawled and added to Google's search index. The weights are either

assigned by heuristics or by a fitted model, and are mainly dependent on the word's

physical distance to the image in the web page's layout. The higher the weight of

a word, the more relevant the word is to the image. The second source of text, the



query log, contains information such as which queries returned a particular image,

and the fraction of clicks that image got under each query. The higher the click

fraction, the more relevant the query words are to the image. Both query log words

and surrounding text of an image to the unlabeled image are examined for ways to

improve the initial annotations.

5.1 Expansion of Initial Annotations

To expand the initial annotations, we transfer the labels from visually similar images

to the unlabeled image. The transferred labels may be ranked by voting. The simplest

voting scheme is one where each retrieved image gets equal vote. If m of the retrieved

images have the word 1 in their surrounding text, then the label 1 gets m votes.

However, this voting scheme does not take advantage of all the information we have

about the retrieved images. For example, each retrieved image has a matching score

that indicates how similar it is to the unlabeled picture. For LBP+color, this matching

score is the cosine distance between two visterm-frequency vectors. For SIFT, the

matching score depends on the number of good keypoint matches. In both cases,

the higher the score, the more similar a retrieved image is to the unlabeled image.

Naturally, the labels transferred from the most similar images should have a bigger

weight in voting than those taken from the least similar images. Also, each word in

the text of retrieved images has its own weight (click fraction or layout distance),

that indicates how relevant the label is to the retrieved image. So more relevant

labels should also have bigger weights in voting. We choose to weight the votes for

a transferred label 1 by the product of the retrieved image's similarity score and 1's

original weight. For example, if a retrieved image r has similarity score s, and a word

l in its surrounding text has a weight of t, then r's vote for the word l is st. We sum

the votes for each transferred label from all retrieved images and rank them by the

total votes, and keep only the top 20 words as added annotations. Because the query

log and surrounding text words have very different weights, we kept the labels from

these two sources separated. Figure 5-1 shows the results of label transfer.



beach (3032302), hydrogen (59),
sea(1234443), beach(48), surf
surf (332860), (29), pismo (29),
bmw (330892), bmw (29),
cars (153484),

disney (8901316), tower (103), torre
world (1763712), (45), magic (44),
castle (1463247), kingdom (44),
tokyo (1214795), disney (44),
magic (1206419).

naio X1os 14), nyarangeaij.5),
images (1316646), serrata(55),
halo 3 (717049), spreading (35),
pictures (226756), beauty (27),
flowers (164757), paniculata(24),

spirea(31270), spirea(68),
muligens (24),
buespirea(24), jpg
(20), garden(12),

coal (434534), teach (24), slone
miner (109303), (24), miner (24),
coal miner (21333), coal (24), virginia

mining (6966), (20),
sea(4935),

Figure 5-1: Label transfer results: the unlabeled images are shown in the first column.
The retrieved images are shown in the rest of the columns in the same row. Trans-
ferred labels from the query log are shown in the first column under the unlabeled
image, and the labels from the surrounding text of similar images are shown in the
second column. The numbers inside the parenthesis are the sum of weighted votes
rounded to the nearest integer.



5.2 Re-ranking of Initial Annotations

Instead of transfering all labels from similar images to the unlabeled image, we can

use the labels from similar images to promote the ranking of that label in the initial

annotations. On the Image Labeler dataset, we retrieve 30 visually similar images for

each unlabeled image. Labels from similar images are ignored if they do not occur in

the initial annotations at all. If they do occur in the initial annotations, the number

of similar images containing that word is used as the vote for that word. Clearly, re-

ranking of initial annotations alone will not introduce more correct annotations, and

so will not improve the coverage rate or accuracy of the initial annotations. However,

it does improve the quality of annotation presented to the user by pushing more

relevant words to the top of the list.

Figure 5-2 shows the cumulative number of correct annotations at each ranking

position in the list of annotations output by the system. PAMIR produced a total of

1871 correct initial annotations for the Image Labeler dataset (recall that we choose

the top 11 words for each picture as initial annotations and rank these words by there

PAMIR score, which is the dot product of the model W and the visterm vector p).

The straight line in Figure 5-2 represents the situation where the correct annotations

are randomly and uniformly distributed across all positions in the ranking, so that at

each position, we would expect to see 1871/11 = 170 correct labels generated. In this

situation, there would be a cumulative total of 170r correct labels at the position r in

the ranking. The dashed line plots the cumulative total correct annotations for the

initial PAMIR output. Compared to the random case, PAMIR output ranks more

correct words in earlier positions. The top line is the curve of the cumulative total

after re-ranking, which shows an improvement over PAMIR's initial annotations, in

the ranking of correct annotations in earlier positions.
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Chapter 6

Conclusions and Future Work

In this thesis, I have presented the a pipeline for image annotation, which relies a

discriminative model for annotation and content-based retrieval for annotation re-

finement. I have described how to put the various stages together and how to tune

and evaluate the effectiveness of each stage. This project is still in early exploratory

phase and a lot of additional work can be done to improve it further. This chapter

lists many directions for future work and concludes this thesis.

6.1 Adapting PAMIR to Annotation

As the Chapter 3 discussed, the learning goal of PAMIR is to find a classifier that

ranks relevant pictures higher than irrelevant pictures given a text query. The goal of

annotation, on the other hand, is to rank words given a picture, so that relevant words

score higher than irrelevant words. While the two goals are very similar, the model

trained for the first goal is not optimized for the second goal. However, we can re-

train a model optimized for the second goal by simply tweaking the input to PAMIR's

training algorithm: swapping the roles of query and picture vectors, or transposing

the relevance matrix R will do the trick. The new training instances would be triples

(p, q+, q-), and the update equations would remain the same, except Equation 3.6

should be changed to vi = -y(pi, Aq), where -y(p, q) = [piq p2q ... pcq].

The model re-trained from the new inputs would optimize the margin between



relevant annotation and irrelevant annotation given each image, and should therefore

generate better initial annotations.

In addition to training the model with a new goal, it would also be helpful to clean

the vocabulary of the training corpus. PAMIR's vocabulary is derived from actual

user search queries. However, these may be too diverse and too specific for annotation

purposes. For example, it would be better to change the query "hydrangea panicu-

lata" to simply "flower" or "plant". We can eliminate rare words with WordNet, for

example by going up one level of definition for more generality.

6.2 Improvements to Image Matching

While model building can to a certain extent make up for the lack of high quality

image features, retrieval performance will always benefit directly from the use of better

features. More research in this area is well worth the effort. Without groundbreaking

new features, a simple way to improve existing features is to combine them. As noted

in Section 4.5.3, a simple weighting scheme may be enough to get improved retrieval

performance. A more systematice way for combining multiple features was proposed

in [10], which learns a distance function for comparing features combinations.

In addition to feature improvement, we also need to evaluate retrieval with a stan-

dard dataset. The ground truth images we collected is not a benchmark. Therefore,

we cannot really compare our results against other researchers' results. Our dataset

may be too small and two easy. A benchmark set such as the Caltech101 or the

LabelMe dataset should be used in the future.

6.3 Fusion of transfered labels

Because we use two sources of text for label transfer, one from query logs, and one

from surrounding text, it would be desirable to have a strategy to effectively combine

both sources of text and rank them together, despite the differences in the properties

of these two sources of text. A possible strategy is to assign weights to each source



heuristically: a higher weight should probably be given to query log words than

surrounding text, since the query click data is harder to manipulate. Ultimately, the

optimal weight assignment function should be learned by training from large amounts

of data.

6.4 Conclusion

Finally, there have been many methods now for processing images, learning patterns,

classifying data. In designing an annotation system such as this one, which com-

bines so many methods from diverse fields, one has to make many choices which are

hopefully guided by an analysis of the trade-offs. In this project, the model chosen

for annotation and the features used for retrieval has been mainly determined based

on the availability of good exisiting implementations and the current trends in this

area which may not be long-lasting. Therefore, it would be desirable to take a more

principled approach for choosing which methods to use in each stage.
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