
An analog and digital data acquisition system for
MASSACHUSETS INSTUNon-Intrusive Load Monitoring OF TECHNOLOGY

by AUG 2 4 2010
Zachary Alan Clifford

B.S., Massachusetts Institute of Technology (2008) LIBRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Science and Engineering

at the ARCHIVES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2009

@ Massachusetts Institute of Technology 2009. All rights reserved.

Author

Iparti ent of lectrical Engineering and Computer Science
August 31, 2009

Certified by
Steven B. Leeb

Professor lectrical ineering and Computer Science
Thesis Supervisor

Certified by.
John Cooley

Doctoral Candidate
Thesis Supervisor

Certified by.. .e.............................

James Paris
Doctoral Candidate

Thesis Supervisor

Accepted by

Dr. Christopher J. Terman
Chairman, Department Committee on Graduate Theses

2

An analog and digital data acquisition system for

Non-Intrusive Load Monitoring

by

Zachary Alan Clifford

Submitted to the Department of Electrical Engineering and Computer Science
on August 31, 2009, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Science and Engineering

Abstract

Non-Intrusive Load Monitoring (NILM) is a method for characterizing and monitoring
discrete loads connected to a power distribution system. This can include a ship, a
car, or a utility distribution system. The entire concept is predicated on having
access to digital samples of the current and voltage signals at the distribution point.
This thesis presents a analog to digital converter for this task and a new low-power
inductive current sensor for deployment in a standard circuit breaker box. The current
sensor uses discrete JFET devices to passively transmit data inductively through the
steel door of the circuit breaker.

Thesis Supervisor: Steven B. Leeb
Title: Professor of Electrical Engineering and Computer Science

Thesis Supervisor: John Cooley
Title: Doctoral Candidate

Thesis Supervisor: James Paris
Title: Doctoral Candidate

4

Acknowledgments

I would like to thank Professor Leeb for his guidance and support with this work. I

would also like to acknowledge and thank Jim Paris, John Cooley, and Al-Thaddeus

Avestruz for their oversight and assistance with this work. I also appreciate the

invaluable mechanical support provided by Chris Schantz in building the experiments.

Finally, I would like to acknowledge my fiancee, Bronwyn Edwards for supporting me

in finishing my degree.

6

Contents

1 Introduction

1.1 Overview

1.2 NILM Background

2 NerdJack Analog-to-Digital Frontend

2.1 Part selection

2.2 Software selection

2.3 Hardware development . . .

2.4 Device-side application . . .

2.4.1 Overview

2.4.2 Interrupts

2.4.3 Task Overview . . .

2.4.4 WDTtask

2.4.5 TCP/IP and Ethernet

2.4.6 Samplemanager . . .

2.4.7 Copytask

2.4.8 DSTRM, CMD, and A

2.4.9 Serial

2.5 PC side application

2.6 Testing and Results

2.6.1 Methods

2.6.2 Results

~UTOD

18

21

. 23

. 24

. 25

. 26

. 26

. 28

. 29

. 29

. 30

. 30

. 30

. 3 1

. 3 1

. 32

. 34

. 34

. 3 4

3 Inductively powered current sensor

3.1 Introduction and Motivation . 37

3.2 System Overview . 38

3.3 Breaker Pickup . 39

3.4 JFET Mixer . 45

3.5 Through-door Inductive Link . 49

3.6 Sense and Demodulation Circuit . 54

3.6.1 Power front-end . 54

3.6.2 Analog filter chain . 55

3.6.3 DSP operation . 56

3.6.4 I/Q Demodulation Overview 56

3.7 Test setup and results . 59

3.7.1 Coil design procedure . 63

3.7.2 R esults . 64

3.8 Future Work . 70

3.8.1 Inductive Link Improvements 70

3.8.2 Demodulation Board Improvements 71

3.8.3 DSP Software Improvements 74

4 Conclusions 75

A Microcontroller-based educational tool 77

A.1 BurnIt theory of operation . 77

A.2 Programming the AT89C2051 . 79

A.3 Programming the PIC16F628 . 79

A.4 Programming the GAL22V1O . 79

B Data Acquisition Device Manual 81

B.1 Theory of Operation . 81

B.2 Installing software to use a NerdJack 81

B.2.1 Windows . 82

8

B.2.2 Mac OS X and Linux 82

B.3 Using the NerdJack . 83

B.4 Installing software to program a NerdJack 83

B.4.1 Windows . 84

B.4.2 Mac OS X and Linux . 84

B.5 Programming a NerdJack . 85

B.6 Building a NerdJack . 86

B.7 Pinouts for NerdJack . 86

B.8 Device Overview . 87

B.9 Updating the Firmware . 89

B.10 Building the development environment 90

B.11 Remaking the Windows installer . 90

B.12 Known Issues . 91

B.13 Customizations to the stock Framework 92

B.14 Software Overview . 93

B.14.1 FreeRTOS . 93

B .14.2 lw IP . 93

B.14.3 General Program Structure 93

C NerdJack Analog-to-Digital Converter Schematics and Layout 97

C .1 Schem atic . 97

C .2 Layout .. 104

D BurnIt Schematics and Layout 109

D .1 Schem atic . 109

D .2 Layout . 111

E IQ Demodulator Schematics and Layout 115

E.1 Schem atic . 115

E .2 Layout .. 119

9

F NerdJack Source Code Listing

F.1 Firmware Source Code 127

F.1.1 FreeRTOSConfig.h . 127

F.1.2 conf-eth.h . 129

F.1.3 conflwip-threads.h . 132

F.1.4 externalmem .h . 134

F.1.5 lwipopts.h . 134

F.1.6 DataStream .h . 142

F.1.7 DataStream .c . 144

F.1.8 InitBoard.h . 158

F.1.9 InitBoard.c . 159

F.1.10 ethernet.h . 173

F.1.11 ethernet.c . 175

F.1.12 samplem anagerh . 180

F.1.13 samplemanager.c . 180

F.1.14 serialport.h . 182

F.1.15 serialport.c . 183

F.1.16 wdtreset.h . 187

F.1.17 wdtreset.c . 187

F.1.18 m ainc . 190

F.1.19 version.h . 194

F.2 Ethstream Source . 194

F.2.1 ethstream .h . 194

F.2.2 ethstream .c . 195

F.2.3 nerdjack.h . 209

F.2.4 nerdjack.c 210

F.3 Nerdconfig Source . 224

F.3.1 configData.py . 225

F.3.2 nerdconfig.py . 233

127

G BurnIt Source Code Listing 241

G.1 ATMEGA Firmware 241

G.1.1 2051.h 241

G.1.2 2051.c 242

G.1.3 avrutils.h . 247

G.1.4 avrutils.c . 248

G.1.5 burnitall.c . 249

G .1.6 gal.h . 258

G .1.7 gal.c . 260

G .1.8 pic.h . 275

G .1.9 pic.c . 277

H IQ Demodulator DSP Source Code Listing 291

H.1 Programming the IQ Demodulator DSP 291

H.2 DSP Firmware . 291

H.2.1 mainc . 291

H.2.2 adcDrv2.h . 297

H.2.3 adcDrv2.c . 298

H.2.4 funcs.h . 304

H.2.5 funcs.c . 305

H.2.6 i2cdac.h . 308

H.2.7 i2cdac.c . 310

H.2.8 ocmodules.h . 318

H.2.9 ocmodules.c . 320

H.2.10 traps.c . 322

12

List of Figures

2-1 Block diagram for NerdJack

2-2 Top surface of data acquisition device . . .

2-3 Bottom surface of data acquisition device .

3-1

3-2

3-3

3-4

3-5

3-6

3-7

3-8

3-9

3-10

3-11

3-12

3-13

3-14

3-15

3-16

3-17

3-18

3-19

. 23

. 26

. 27

Current Sensor System Overview . 38

Maxwell 3D model of breaker . 39

FEMM Breaker Pickup . 41

Breaker pickup model . 41

Breaker pickup photograph. 44

JFET Modulator Circuit . 45

JFET Mixer small signal model . 48

Reluctance model of through door transmission 50

Top view of transmission coil configuration 51

Through Door Link Transformer Model 52

Analog filter block diagram . 55

Experimental setup photo . 59

Open door photo 60

Demodulation board photo . 62

Carrier frequency compared to secondary coil resonance 64

60 and 180 Hz 5 A Results . 66

Low Current Experimental Results 67

70 Hz Experimental Results . 68

N oise floors . 69

A-1 BurnIt block diagram

The main micr

Ethernet PHY

External conne

Memory, Powei

First ADC . .

Second ADC .

Top copper lay

Bottom copper

C-9 Top silk layer

C-10 Bottom silk lay

oprocessor 98C-1

C-2

C-3

C-4

C-5

C-6

C-7

C-8

BurnIt Schematic . . .

BurnIt Top Copper . .

BurnIt Bottom Copper

BurnIt Silkscreen . . .

The analog filter stages

DSP and supporting hardware . . .

Power, modulation generators, and

populated)

Top copper layer

Bottom copper layer

Top silk layer

Bottom silk layer

60 Hz notch filter (currently not

.

E-8 Copper layer 2 with ground plane not filled

E-9 Copper layer 3 with power planes not filled

110

112

113

114

116

117

118

120

121

122

123

124

125

. 9 9

ctors . 100

and USB . 101

. 10 2

. 10 3

er without ground plane filled 105

layer without ground plane filled 106

. 10 7

er 108

D-1

D-2

D-3

D-4

E-1

E-2

E-3

E-4

E-5

E-6

E-7

List of Tables

2.1 Priority levels for NerdJack . 29

B.1 Command line arguments to Ethstream 84

B.2 DB15 table pinout . 87

B.3 DB37 connector pinout . 88

16

Chapter 1

Introduction

1.1 Overview

In many industrial and home applications it is useful to monitor an electrical system

for both faults and for energy consumption. One common approach involves attaching

specialized instrumentation to each device to be monitored. However, previous work

with Non-Intrusive Load Monitoring (NILM) has shown that this problem can be

addressed much more simply by adding instrumentation to the power distribution

system rather than each device. A NILM system identifies and monitors individual

loads by measuring the frequency content of transient events in the power distribution

system from a centralized location. Work with this technology was demonstrated in

[13, 3, 5] for shipboard systems. Further experiments with this technology were done

in [7, 11, 6, 14, 9, 5, 3, 10, 2, 8, 121.

The NILM concept is predicated on having access to digital samples of the voltage

and current waveforms at a power distribution center of the system to be monitored.

Chapter 2 presents an analog to digital conversion front-end to be used with NILM.

This device, the "NerdJack", takes as input properly conditioned voltage signals

and outputs the digitized version of these over Ethernet to a personal computer for

processing. This device is meant to be installed in a custom analog front-end to

NILM.

The current signal for the NILM system is typically measured using a magnetic

field sensor wrapped around the utility feed for the subsystem to be monitored. The

previously mentioned converter is meant to interface with such a device. However,

such a sensor may be impractical for some retrofit applications especially in the home

where skilled labor would be required to separate Line and Neutral. This would be

required to deploy a wrap-around magnetic field sensor because such a sensor would

measure no net current if Line and Neutral were not separated. The sensor presented

in Chapter 3 is an alternative to the wrap-around magnetic field sensor. It measures

the current in the utility feed by sensing the resulting magnetic field at the face of

the main circuit breaker in a standard breaker panel, where the Line and Neutral are

already separated. A major challenge that is overcome by the system presented here

is that of communication through the steel breaker panel door, which must be closed

to comply with safety regulations.

Work with the microcontroller used in the analog to digital front-end led to "Bur-

nIt" presented in Appendix A. MIT's Microcontroller Laboratory class educates stu-

dents on the development and usage of microcontroller-based digital systems. Many

microcontrollers can be purchased cheaply or sampled for free for use in personal

projects, but the programming tools for these devices are usually relatively expen-

sive. BurnIt is an inexpensive multiprogrammer created using publicly available al-

gorithms. It is designed to be assembled by the students as part of the class and

used both during the class for lab work and after the class for personal projects. The

design and overall functionality of BurnIt will be detailed in Appendix A.

1.2 NILM Background

The NILM system is generic and can be used to monitor a variety of systems, in-

cluding a home, a ship, a car, or any other system with a power bus and multiple

connected devices. This monitoring is done by examining transients on the electri-

cal line. Previous work has established a collection of "fingerprints" for a variety of

devices, and training the system with new loads is straightforward. NILM explores

transients in the frequency domain using spectral analysis to determine the strength

of the various harmonics of the 60 Hz power delivery fundamental. It also uses phase

relationships to determine whether a load is predominantly capacitive, inductive, or

resistive. It can also understand more complicated loads, such as desktop computers.

With access to the aggregate current and voltage signals, the contribution of each

different load can be separated. This method of diagnostics requires only one sensor

to monitor the health of multiple loads rather than requiring multiple specialized

sensors at each load.

Early experiments using NILM required a system power down and skilled labor

to install the current and voltage sensors. The methods presented in this thesis will

simplify NILM installation and make it more applicable in a wide variety of systems.

20

Chapter 2

NerdJack Analog-to-Digital

Frontend

The NILM requires a relatively inexpensive data acquisition system that can provide

high quality samples of a voltage or current signal. The current prototypes require

up to six analog to digital converters to sample the voltage and current waveforms

of a three phase power system. Fewer channels are required for a home split-phase

system. The system monitors a 60 Hz fundamental power delivery waveform and its

odd harmonics to perform its analysis. In order to capture this information, the data

acquisition system needs to sample its data at approximately 6 kHz.

Previous NILM prototypes used a commercial product, the LabJack UE9, to ac-

complish this task. The LabJack is a printed circuit board meant to be installed into

another system through an edge connector running along its edge. The device carries

a large number of analog to digital converters, digital input/output, and other pe-

ripherals. It is meant to communicate with a host PC via Ethernet for configuration

of its peripherals and for delivery of the sampled data. This device served the needs

of a prototype NILM system, but a device optimized to NILM's needs would deliver

better results and be cheaper to deploy.

The new device presented here, the "NerdJack", replaces the LabJack in the NILM

prototypes. This device had numerous functional requirements to meet to ensure that

it was suitable for replacing the LabJack. The most important requirement was that

it be compatible with the LabJack so that it could fit in the current NILM prototypes

with little to no modification to either the software or the hardware. With that need

met, the device needed to provide either either superior analog to digital conversion

capabilities, lower cost or both.

Defining superior analog-to-digital conversion capabilities helped narrow the de-

vice choices. Sixteen-bit analog-to-digital converters were required to help NILM see

small transient events. Simultaneous sampling would also simplify the NILM algo-

rithms and post processing. Additional channels would allow NILM system expansion

and permit it to monitor more devices or have different filter front-ends. The new

device needed at least 8 channels. Finally a sampling rate of at least 8 kHz was

desired to determine if any additional higher frequency information was beneficial.

The current NILM prototypes are meant to be installed once and forgotten until

they sound an alarm. Therefore, the system as a whole needed to be highly reliable

in the event of network or hardware failure. The device needed to survive network

disconnections of up to 30 seconds without losing data. This requirement demanded

large on-board memory buffers to store data until the network could be restored.

In addition to the basic functional requirements there were substantial practical

limitations on the new device. First, the components should all be hand solderable.

This would simplify prototyping and lead to less expensive production costs in the

future. The device should fit on a two-layer printed circuit board. In addition to

being cheaper than a four layer board, it would allow integration of the functionality

of the design into other two-layer boards without requiring a connection interface or

rerouting the design. This would permit future iterations of NILM to include the

NerdJack functionality without requiring a plug-in card.

The tools and supporting software should be free or inexpensive. This lowers the

cost of the device and limits licensing problems in the future. Using software licensed

under the GNU Public License (GPL) or similar allows the use of many libraries and

support software to speed development. The GPL requires that the source code to

software using it be freely available. The GPL source code distribution requirements

do not pose a problem to this device because it is academic in nature.

USB Programming
Interface

8 channel
Analog to

SPI Bus AVR32UC3AO512
Microcontroller

Recording

computer

RAM to buffer
data

Figure 2-1: Block diagram for NerdJack

The block diagram of the device meeting these functional requirements is given

in Figure 2-1. The basic flow of information follows the marked arrows. The analog-

to-digital converter is connected to the NILM system to be measured. This data

is accepted by the microcontroller and buffered in external RAM. As the network

becomes available, the data is streamed to a waiting personal computer or custom

hardware for processing. The firmware on the microcontroller should be easily in-

stalled using a USB cable for easy deployment.

2.1 Part selection

The aforementioned requirements led to fairly limited choices for the new device. The

device needed to be a microcontroller-based single board computer system, so the

first step was to pick the microcontroller. Ideal microcontrollers for this application

would have peripherals to interface with external memory as well as communicate over

Ethernet. This led to some of the high-end ARM processors and some of the Freescale

ColdFire line of processors. Unfortunately, the devices that had both features tended

to have large pin counts in BGA packaging, making them unsuitable for this project.

The final choice was the new Atmel AVR32 line of processors. These devices were

in pre-release at the time, but they had the needed features in a flat package that

could be soldered by hand. These chips could interface with external memory and had

an Ethernet MAC module in addition to the standard microcontroller communication

features. Best of all, the free GNU C Compiler Collection tools could be used for code

development.

The next step was to select an analog-to-digital converter. The AVR32 microcon-

troller has an on-board analog-to-digital converter, but it is of very limited resolution.

This led to the selection of an external converter with a digital interface to the mi-

crocontroller. This converter needed to be able to capture channels at 16 bits of

accuracy, with either unipolar or bipolar inputs. The Analog Devices AD7656 was

chosen because it could sample six channels on a single chip and communicate with

a microcontroller using a standard SPI bus. A serial interface was important because

the external data bus of the AVR32 used most of its input/output pins. A parallel

interface would have used too many microcontroller pins. In addition, the AD7656

allows multiple AD7656 chips to be connected in a daisy-chain configuration. With

this selection two chips would provide twelve channels of sampling using only one SPI

port on the microcontroller. This solution would still give the needed sampling rate

because the SPI bus can operate at a high clock speed.

2.2 Software selection

The device firmware must manage a variety of different tasks, including operating

the network, communicating with the analog-to-digital converters, and buffering the

data into SDRAM. This led to the selection of a real time operating system and a

networking stack.

After examining a few of the operating systems already ported to AVR32, FreeR-

TOS version 5.0.4 was the best match for the device requirements. It is free, lightweight,

and much simpler than Linux. As configured, FreeRTOS manages a group of paral-

lel prioritized tasks. Much like a full-featured operating system, it ensures that the

highest priority ready task is running at all times. It also manages primitives like

mailboxes and semaphores to allow inter-task communication and cooperation.

The other major library selection is lwIP, the Lightweight Internet Protocol stack

version 1.3.0. This library provides a simple abstraction to the Ethernet interface

using TCP/IP, the standard protocol of the Internet. It implements enough of the

TCP/IP protocol to interface with standard network hardware without requiring too

much processor overhead.

2.3 Hardware development

The EVK1100 evaluation kit from Atmel was used as a starting point for the design.

This small board interfaced SDRAM and Ethernet to the microcontroller as well as

many other peripherals. The AD7656 was then connected to this core module to begin

testing and software development. The final design used the basic EVK1100 schematic

with unnecessary peripherals removed and analog-to-digital converters added. The

design was then rerouted on a two layer board with the same pin-out interface as the

LabJack.

CadSoft's EAGLE layout editor was used to create the custom printed circuit

board using the EVK1100 bill of materials and provided schematic as a starting

point. Careful attention to the power supply decoupling and analog front-end were

required for proper functionality. Additionally, many of the data and address lines

from the SDRAM had to be properly separated from the clock signals on the board.

The final board is pictured in Figures 2-2 and 2-3, while the final schematics are

included in Appendix C. The analog-to-digital converters are connected to both the

screwtab terminals and the DB connectors along the top edge. The Ethernet and USB

connections for data acquisition and firmware programming respectively lie opposite

to the screwtab terminals. The DIP switches set network parameters for the device,

and the LEDs report its status. The device has power regulators that accept bipolar

+/- 12 Volt, common, and +5 Volt power supplies. These regulated supplies are

delivered to the DB connectors to help expand the device. The DB connectors also

hold some digital input/output pins and a UART serial port.

Figure 2-2: Top surface of data acquisition device

2.4 Device-side application

2.4.1 Overview

Most of the complexity of the device is in its onboard firmware. The microcontroller

is programmed via USB with custom firmware once the device is built. The firmware

application on the device is organized into a collection of interacting tasks that coor-

dinate the sampling and transmission of data from the analog-to-digital converters.

All of these tasks are coordinated by FreeRTOS. Each one is a non-terminating rou-

tine with a private stack and priority level from zero to seven. Tasks can ready each

other or be readied by interrupt service routines tied to external events. FreeRTOS

ensures the the highest priority ready task is executing. If multiple tasks of the same

priority are ready, it switches between them in a round-robin style.

Both FreeRTOS and lwIP are included in Atmel's software framework for the

Figure 2-3: Bottom surface of data acquisition device

AVR32. The basic web server demo served as a baseline for development. The

firmware has the same basic structure as the framework, but a new version of FreeR-

TOS version 5.0.4 was added, and numerous changes were made to the driver level

to fix bugs and add needed features. The framework drivers and operating system

configure the resources of the device and provide an API for interacting with it. After

setup, the framework hands control of the device to the application.

After powering the device on, the application initializes the hardware resources

needed for interacting with the ADCs and the Ethernet module and waits for sampling

commands from the PC host. A sampling command tells the device which channels

to sample, the sampling rate, and the range required. This allows the device to trade

dynamic range for accuracy if desired. Sampling continues until the PC requests a

sampling stop or the device depletes its buffer space. Data is delivered to the PC in

real-time, so buffering is only necessary in the event of network congestion. Software

mechanisms are in place to resume interrupted transfers without losing samples using

both the network stack and the features of FreeRTOS.

2.4.2 Interrupts

The scheme for sampling the analog-to-digital converters is a complex interaction

of a few different interrupt service routines. The analog-to-digital converters are

connected to a pulse width modulation generator on the AVR32. This is set to

produce a sampling pulse at the chosen sampling frequency. Because of the daisy-

chain nature of the ADCs, all channels less than the highest desired channel must be

sampled. This sampling pulse causes a BUSY line to become active on the ADCs for

the duration of the sampling. When this line falls, it signals an interrupt handler on

the AVR32 that data is ready for reading.

This interrupt handler loads one of the Direct Memory Access (DMA) modules of

the microcontroller. This module simply requires a source peripheral, a destination

memory address, and the number of bytes to copy. Without CPU interaction it will

copy this information and can use an interrupt to signal completion. The DMA

module in this case transfers dummy data to the ADCs. Because of the nature of

an SPI bus, the "slave" (the ADC) cannot initiate a transfer. When the "master"

writes data to the slave, the slave will simultaneously send data back to the master.

Therefore, the master must write dummy data to the slave to read its data. This DMA

module performs this task every time the ADCs indicate that they have data ready

through the BUSY line. This handler is of the highest supported priority because

it is imperative that reading data begin as soon as data is ready. If there is delay,

the data might not be read before the next sampling pulse arrives. In that event,

the remaining unread data would be lost. Any unpredictability in microcontroller

response time would limit the speed of the device.

There is another interrupt handler tied to a different DMA module that reads in-

formation from the ADCs. The aforementioned module writes data to the ADCs. This

one reads large amounts of data from the ADCs into onboard SRAM in the AVR32.

When it completes a full packet, this interrupt handler reloads the DMA module and

signals the application that a packet is ready. Other tasks in the application then

copy the packet into external SDRAM for buffering and eventual transmission.

Task Name Priority
WDTtask 7
TCP/IP 6
Ethernet 6
samplemanager 5
copytask 4
DSTRM 3
CMD 2
AUTOD 1
Serial 1

Table 2.1: Priority levels for NerdJack

The interrupt service routines are very fast and cannot tightly interact with other

parts of the application. For the second DMA interrupt a custom semaphore imple-

mentation was required for speed. Invoking the FreeRTOS semaphore abstraction led

to very slow preemptive task switching. The "light" semaphore implementation in-

volves a shared global variable between an application task and the interrupt service

routine. Interrupts are disabled before accessing the variable to guard against race

conditions.

2.4.3 Task Overview

FreeRTOS manages a collection of tasks that cooperate to implement the application.

The task priority levels are numbered 0 through 7 with higher numbers having higher

priority. The tasks in priority order are given in Table 2.1. Each one has a private

stack and a specific purpose in the application. An overview of the various cooperating

tasks should clarify application operation.

2.4.4 WDTtask

The WDTtask manages the hardware Watchdog timer (WDT). The watchdog in the

AVR32 is a simple timer that will reset the microcontroller if the timer is allowed to

expire. This serves as a failsafe that should reset the device in the event of a software

failure without requiring manual power cycling. At regular intervals the other tasks

in the application send messages to check in with the watchdog task. The watchdog

task resets the hardware watchdog timer when all other threads it monitors have

checked in. Should all threads not check in for the allotted time, the hardware timer

will reset the device.

2.4.5 TCP/IP and Ethernet

These are necessary for proper functioning of the Ethernet interface and iwIP TCP/IP

stack. The Ethernet monitoring task simply waits to be readied by an interrupt tied

to the Ethernet peripheral "receive" event. It then reads the incoming packet and

passes it upwards to the lwIP stack. The TCP/IP task is responsible for sending and

receiving TCP/IP packets on the Ethernet interface. It handles retransmission of lost

packets and all necessary memory management. When the application calls an lwIP

API function, this routine takes over the processing of that request.

2.4.6 Samplemanager

This coordinates sampling of the ADC channels. When lower levels of the application

wish to start sampling with certain parameters or stop it, a message is sent to this

task. This ensures that race conditions do not develop with multiple parts of the

application trying to alter the ADC parameters simultaneously. Because this task is

the only one able to alter the converters, its internal state variables actually reflect

the sampling parameters. This was necessary because sampling could be altered by

both user requests and network failure. A single interface was required to prevent

race conditions between those two command sources.

2.4.7 Copytask

Copytask was necessary to solve latency problems with external memory. The ap-

plication is supposed to sample data into external SDRAM and then transmit it to

a waiting PC for analysis. Most of this copying from the ADCs is performed using

on-chip DMA hardware described above. The copying task was necessary because

the on-chip DMA hardware has no buffer and data is sampled simultaneously. This

means that all channels of the ADC hardware become ready in bursts, but the DMA

hardware is not designed for burst operation. If multiple channels are selected, a new

16-bit word of data arrives every 16 clock cycles. The SDRAM latency is long because

it is engineered for burst operation, but it becomes unpredictable when the Ethernet

task is taken into account. In the worst case scenario the TCP/IP stack is actively

reading past data from the SDRAM while the DMA controller is trying to write a

burst of data into a different part of SDRAM. The lack of any sort of buffering in

the DMA hardware leads to data loss as these two modules contend for access to the

SDRAM. This problem was solved by using on-chip SRAM as a buffer for the DMA

hardware. The copy task is responsible for moving data from this internal buffer into

external SDRAM. Although this scheme requires more total data movement, this re-

lieves congestion because this copying can take place between data bursts from the

ADC hardware without tight real-time constraints.

2.4.8 DSTRM, CMD, and AUTOD

These three tasks are the network ones that listen on three different ports. The

Command task listens on TCP and accepts single commands to start, stop, and

resume sampling before closing the connection. The Autodetection task listens on a

UDP port and simply replies to datagrams sent on that port. This allows a PC to

use UDP broadcasts to detect the IP address of the device. It can look for replies and

then use the source address of the reply to make this determination. The final task

is the Datastream task. It waits for a TCP connection and then sends data through

that connection as data becomes available.

2.4.9 Serial

Serial uses the USART serial port on the device. This task listens on the standard

Telnet port and simply echoes characters received on that port to the serial port.

Any received characters are similarly echoed to a connected PC. A small amount of

buffer space keeps the device running smoothly. This was added to make interfacing

the system to other digital devices more straightforward.

The lowest priority task is the FreeRTOS Idle task. It performs required mainte-

nance routines for the operating system kernel, but it is otherwise not important to

the functioning of the application.

2.5 PC side application

Utility software for programming the device and reading data from it were devel-

oped to interface with the device. Both of these were developed in parallel with the

hardware to make a full system ready for deployment outside of the laboratory. The

device programmer is a mixture of C and Python, while the data reading program

is purely C. Both were written to be as portable as possible between different PC

operating systems and potentially other embedded systems.

The programming software utilizes fully open source software to perform this task.

The device is equipped with a mini-USB port that allows it to be programmed using

commodity USB cables. AVR32 devices are shipped pre-loaded with a bootloader

that permits in system programming via USB. When the right conditions are met

(in this case a switch on the device is flipped at bootup), the application is not

loaded. Instead, the USB port is activated and ready to communicate using an

Atmel variant of the USB Device Firmware Update protocol. Part of this project

involved contributions to an open-source C utility called "dfu-programmer" to help

implement this protocol in a cross-platform way. Extending the existing programming

utility was much more straightforward that starting over. This utility is better than

the Atmel-provided batchisp program because it can run on Windows, Macintosh,

and other Unix derivatives like Linux. At its core it uses an open source program

called libUSB. This library permits communication with the PC USB port with a very

simple interface that is portable between different operating systems. Because of this

dependence, dfu-programmer can operate on any system that provides a libusb-like

interface. This utility takes as input AVR32 firmware and burns it to the AVR32.

It can also read the firmware image and interpret the settings programmed into the

device.

Around this utility is a simple Python command line package called "nerdconfig".

This package exposes a command-line interface to dfu-programmer that makes pro-

gramming simple for the end-user. This utility burns stock firmware onto the device

and programs it with a unique Ethernet address and serial number. Finally, it con-

figures the IP address the device will assume after initialization. It can determine the

firmware version running on the device and upgrade if necessary.

The serial number, MAC address, and IP settings are recorded to a special section

of memory in the device known as the "User Page". The User Page is a section of

Flash 512 bytes in size that is not erased by the Flash Erase command on the AVR32.

This makes it suitable for configuration and serial number data.

The other PC software component is "ethstream". This command line program is

a modification of an earlier "ljstream" written by Jim Paris for interfacing with the

LabJack. Ethstream interfaces with both devices so that both old and new NILM

hardware will work with the same PC-side software. This program accepts as input

the channels to sample and the rate requested. It then outputs space separated

samples to STDOUT. This allows the output to be easily piped to other programs

for processing or redirected to a file for storage. It has other modes for testing the

device, detecting its IP address, and determining its firmware revision. This software

can also operate on Windows, Macintosh, and other Unix derivatives like Linux.

A manual for the entire system was written and is attached as Appendix B. This

details the usage and construction of the device. The source code to both PC-side

applications and the device firmware is attached as Appendix F.

2.6 Testing and Results

2.6.1 Methods

Testing was an important part of the development process that helped ensure that

the device met specifications.

The intended use of the device places it in a difficult place to physically access.

Software crashes might not be noticed for some time, and manually resetting the

device might not be possible. The device needed to be able to successfully start

acquisition every time it was asked to do so. In any normal failure condition it

needed to reset without human intervention.

To evaluate it a test fixture was created that started ten thousand acquisitions

with random sampling parameters. The device was connected to a resistor ladder

to assert known voltages on each channel. Easy automated tests programmatically

confirmed that the proper channels were being sampled for the correct amount of

time.

Another test involved running the device for a full day with a sine wave on one

channel and the resistor ladder on the others. The sine wave was programmatically

tested to ensure that points were not lost or mixed up in any way with the known

voltages asserted by the resistor ladder.

The device sampled at a variety of speeds under different network conditions to

evaluate its actual sampling rate limitations.

The final test involved using a Matlab code called ADCTest to evaluate the ac-

curacy of the device. This code takes a few periods of a perfect sine wave captured

by the device and analyzes it. It computes the effective bit accuracy of the device by

measuring how closely it follows the reference sine wave.

2.6.2 Results

The device passed both functional tests with the latest revision of firmware by starting

every time in capturing the correct data. It did not crash or mix up channels in

multiple 24 hour tests. It also kept accurate time during that period.

The effective accuracy of the device appears to be 11 bits according to the previ-

ously mentioned Matlab package, but there is reason to believe that it is better than

that. A Wavetek Function Generator Model 182A calibrated on 8/21/92 generated

the reference sine wave. It is unclear whether the observed bit rate is limited by

the resolution of the sensing device or the signal generator. The apparent accuracy

changes with the amplitude and frequency of the sine wave. However, the measured

accuracy in this test was superior to the LabJack used as a reference. Because the

board was designed to the specifications of the ADC manufacturer, it should match

the performance specified by Analog Devices. A new signal generator was not pur-

chased for testing because the new device is already demonstrably better than the

reference device. The new device passes this test.

The sampling rate of the device is constrained by the SPI bus of the microcon-

troller connection to the analog-to-digital converters. The network had to be highly

congested for it to become a performance bottleneck. As such, the sampling speed is

determined by how much data needs to be copied from the analog-to-digital convert-

ers. Data is read out from the converters serially starting with channel zero. Since

each 16 bit sample requires sixteen more periods of the 18 MHz SPI clock, every chan-

nel sampled increases the amount of time required to empty the converter of data.

There is no mechanism for sampling high numbered channels without first reading

out lower channels, so the constraint applies to the highest channel sampled. These

limitations are built in to the PC client to NerdJack to provide warnings to the user

about potential data corruption. These tests showed that the NerdJack could sample

8 channels at 8 kHz comfortably and can sample much faster with fewer channels.

36

Chapter 3

Inductively powered current sensor

3.1 Introduction and Motivation

For NILM to be deployable in wider settings, it would need to be installed without the

help of a trained electrician, and it would need to attach to standard equipment. Elec-

trical current is difficult to probe because any sensor needs to be located "upstream"

of any loads to be measured. Directly measuring the incoming utility connection is

difficult because the connection is inaccessible or at least non-standard among homes

or other systems. Additionally, utility connection bundles usually consist of both the

power and return path connections. This makes inductively measuring the current

difficult because the net current flowing in the bundle is zero in the absence of energy

storage in the home or ground faults.

A small sensor described in this chapter placed inside a standard circuit breaker

panel allows for this measurement. This configuration is advantageous because a

circuit breaker panel and circuit breaker are both very standard devices that are

all constructed similarly. Each breaker also carries line current without the neutral

connection nearby. The sensor consists of two parts both magnetically attached to

the steel door of the breaker panel hereafter referred to as the "inner" component and

the "outer" component. The inner component rests up against the main breaker in

the circuit breaker box to inductively sense the current flowing in the breaker. This

device then modulates the sensed waveform onto a carrier waveform via a novel low-

power JFET mixer. This data is then transmitted through the door to be received by

the external part of the sensor. The outer component inductively powers the internal

device and receives signal from it. All of this is accomplished without drilling any

holes in the steel door.

3.2 System Overview

The sensor shown in Figure 3-1 (a) consists of three main parts: an inductive pickup for

sensing current from the breaker face (Breaker Pickup), an inductive link designed to

transmit power through the steel breaker panel door (Through-door Inductive Link),

and a balanced JFET modulator circuit for transmitting information through that

inductive link (JFET Mixer).

Through-Door Inductive Link

Steel Door

Plastic
Outer Coil Inner Coil Breaker

Drive and _oe _H _ JET

Sense ___lMixer~-

Circuit Breaker
Information __Pickup

s - _ s -_ aLine Connection
N1 Turns N2 Turns

External Internal Breaker

(a) Sensor block diagram (b) Circuit Breaker Cross-
section

Figure 3-1: The current sensor measures magnetic fields at the face of the circuit
breaker and modulates a high frequency carrier signal to transmit that information
through the panel door.

The outer coil in Figure 3-1(a) is driven with a high-frequency sinusoidal carrier

voltage. That voltage couples to the inner coil through the inductive link in Figure

3-1(a) and drives the JFET mixer. The JFET mixer controls the amount of current

drawn from the inner coil according to the low-frequency (60 Hz) current signal mea-

sured by the breaker pickup. The result is a modulation between the high frequency

carrier signal and the low-frequency (60 Hz) signal measured at the breaker face.

The external sense circuit in Figure 3-1(a) monitors the current drawn through the

inductive link to extract the resulting modulated signal. The internal device is fully

powered by the applied carrier, and the entire system works without modification to

the breaker panel or the circuit breaker itself. With the modulated signal available

to the sense circuit external to the door, the current through the main breaker can

be analyzed with the NILM system described above for load identification and power

monitoring [13, 3, 5, 7, 11, 6, 14, 9, 10, 2, 12]. The sense circuit consists of both a

power supply stage to drive the coils and an I/Q demodulation stage to recover the

measured current.

3.3 Breaker Pickup

The current path inside a typical circuit breaker passes by the lower face of the circuit

breaker as illustrated by Figures 3-1(a) and 3-1(b). Therefore the breaker pickup was

designed to focus and measure the magnetic field resulting from current flowing inside

the lower breaker face.

f f

(a) Maxwell 3D model of circuit breaker (b) Maxwell output at plastic breaker face

Figure 3-2: Maxwell 3D model of breaker with field lines drawn at the breaker face.

One figure is from above and the other is angled to show field lines. The extra bar

at the back of the view was added to complete the current path and has no effect on

the field shown.

Ansoft's Maxwell 3D was used to model the current carrying member to identify

the appropriate location of the breaker pickup. The output from this software is shown

in Figures 3-2(a) and 3-2(b). The plane of magnetic field vectors is the plane of the

plastic breaker face. The predominant flow of current through the circuit breaker is

from top to bottom, so the magnetic fields were expected to wrap around the current

carrying member across the breaker face. Rom Figure 3-1(b), this corresponds to a

flux into the page just to the left of the breaker. Maxwell 3D confirmed that this was

the appropriate model of the breaker and that the best position for the pickup was

on top of the breaker where the metal is closest to the breaker face. At that point

the magnetic field is most uniform and strongest.

The free software FEMM (Finite Element Method Magnetics) in its two dimen-

sional mode was used to design the pickup. This software was written by David

Meeker and can be downloaded from http: //www. f emm. inf o/wiki/HomePage. It

can model the fields generated by sources into and out of a two dimensional plane.

The Maxwell 3D model showed that the field at the surface strongly resembles the

field produced by a point current source at the depth of the current carrying member.

In FEMM, the plastic breaker face was modeled as air, and an analysis of the ge-

ometry was conducted. Various pickup shapes were considered to yield the strongest

concentration of magnetic flux in the pickup core. An ideal pickup would focus as

much magnetic flux into itself as possible, so it needed to roughly follow the magnetic

field. FEMM showed that a half toroid of high permeability material placed on the

breaker face was suitable in that it would result in significant flux-focusing in the

material. The output of this program is shown in Figure 3-3. This is a representation

of the breaker and pickup down its long axis.

This flux needed to be efficiently converted to an electrical signal. One possibility

involved a Hall Effect sensor. This was not ideal because such a sensor would require

voltage rails on the inside of the door where power is highly constrained. A coil was

chosen for the sensor because the magnetic flux would directly produce a voltage

signal that could be immediately used in the circuit.

Assuming the pickup coil has N turns of wire, the proposed model of the pickup

Figure 3-3: Finite Element Magnetic Model (FEMM) of magnetic flux through the
breaker. The plastic breaker is ignored because it is not conductive or permeable to
the magnetic flux.

L1, L12

Breaker

Current

N':1

Figure 3-4: Breaker pickup model. The breaker pickup looks like a virtual transformer
around the current to be measured.

is a 1:N' step up transformer with poor coupling shown in Figure 3-4 where N' < N

may be used to model the poor coupling from the breaker current member to the N

turn windings. The current source inside the breaker face is modeled as driving the

single turn of a 1:N' turn virtual transformer. The leakage inductances L11 and L12

of the transformer are expected to be large because a large portion of f the magnetic

path consists of air instead of high [t material.

Looking at the model in Figure 3-4, the breaker pickup is nonlinear across fre-

quency. NILM is interested in harmonics of 60 Hz. The breaker pickup is connected

to stages that measure open circuit voltage and do not load it very much. This means,

according to the proposed model in Figure 3-4, that the output is approximately the

voltage that the current source generates across the magnetizing inductance L, given

in Equation (3.1). In Equation (3.1), L, is the magnetizing inductance, L12 is the sec-

ondary leakage inductance, w is the breaker current frequency and 'in is the breaker

current magnitude.

V xt oc 27rjwL1IJi (3.1)

From this Equation it is clear that Vst is a function of both In and w. This

nonlinearity applies gain to higher harmonics that must be characterized in the full

system. It is clear that a higher L, will lead to higher output voltage. From the

Equation it is also clear that different frequencies will leave

The geometry of the coil fixes the level of leakage in this transformer. Using a

high p material for the toroid and matching the shape of the toroid to the natural

magnetic field lines make N' approach the true N. Increasing the cross sectional area

of the toroid increases the flux it can capture and thereby improves coupling in the

same manner.

Turns on the pickup are related to the turns ratio of the virtual transformer and

the inductance looking into the pickup coil. The coupling is fixed by the geometry

of the pickup and breaker. The easiest way to increase magnetizing inductance is to

simply add more turns. Having a high magnetizing inductance is critical to proper

functioning of the circuit, otherwise, it tends to short out the signal to be measured.

Unfortunately, the desired 60 Hz signal needs a high inductance for the impedance at

that frequency to become appreciable i.e., Z, = wL,1 will be small when w = 27r *60.

Wire selection for the pickup was simplified by later stages of the JFET Mixer.

At 60 Hz skin effect is negligible, and the pickup is not significantly loaded. This

means that a very fine wire gauge can be used because its series resistance will not

impact a voltage measurement of the coil.

Using the proposed virtual transformer model in Figure 3-4 as a design guide,

a Ferroxcube part TX25/15/10-3E6 was used with 1200 turns of 34 AWG magnet

wire. The toroid has a 25 mm outer diameter, a 15 mm inner diameter, and a 10 mm

thickness. This toroid was cut in half on a diamond band saw, and the two halves

were glued together side by side to increase cross sectional area. This toroid has a very

high relative permeability of approximately 10000to [4]. A photograph of this toroid

affixed to the breaker is shown as Figure 3-5. The exposed current carrying member

is partially obscured by electrical tape, but the wound toroid is clearly visible.

The voltage signal from this pickup still is too small to drive the JFET mixer

at small current signal levels. A 1:14.1 step-up audio transformer module was added

between the JFET mixer and the pickup. The audio transformer works at low frequen-

cies and has enough turns that its own magnetizing inductance does not significantly

load down the pickup coils at 60 Hz.

An additional resonant capacitor could be added to the audio step up transformer

to boost signal levels at the cost of distortion. Normally, resonating with a small

inductor at low frequency would require a large capacitor. In this case the inductor

is reflected across the transformer, increasing its apparent impedance by the square

of the turns ratio. This allows for a more reasonable choice of capacitor when added

to the transformer secondary. The capacitor would need to be the appropriate value

to resonate with the parallel combination of the magnetizing inductance of the au-

dio transformer and the reflected inductance of the pickup. This method provides

more voltage gain at the desired 60 Hz signal frequency while attenuating the higher

harmonics that are important to NILM function and introducing a 180 degree phase

Figure 3-5: Breaker pickup photograph.

shift. This was not used in the experimental setup because gain was sufficient without

it. In experiments two .47 pF capacitors were placed in parallel with the secondary

of the transformer, but they were removed as they became unnecessary.

3.4 JFET Mixer

The four-quadrant balanced JFET modulator (mixer), shown in Figure 3-6, was de-

signed to transmit information from the breaker pickup through the inductive link

and out of the breaker panel. This circuit consists of two JFET devices for modula-

tion control and two resistors to improve linearity, but it does not require a DC power

supply.

Imod

SR 1 VSg
Vcarrier I>

R2 -+

Figure 3-6: Adaptive Referencing Balanced two-JFET Modulator circuit enables si-

multaneous powering and modulation with no DC bus required

The JFET mixer can be modeled as a time-varying load on the carrier voltage

source, Varrier in Figure 3-6. In the circuit breaker system of Figure 3-1(a) the carrier

voltage source that drives the JFET mixer is the voltage on the inner coil which

couples from the outer coil. The load presented to Vcarrier in Figure 3-6 varies with the

control signal Vig applied to the JFET gates and leads to a corresponding modulation

of the current Imod. The two-JFET mixer circuit is particularly advantageous for this

application because it requires a minimal amount of circuitry inside the breaker door

and lends itself to a low-cost solution.

An overview of the mode of operation of this circuit is instructive. The JFET is a

normally-on device that requires a negative gate to source voltage V, to turn it off.

It is a symmetric device, meaning that the drain and source are interchangeable. By

convention the source is the side of the JFET at a lower potential than the drain.

This circuit is best examined in half cycles of the carrier supply. On positive half

cycles the lower JFET is fully turned on because the from the breaker pickup, Vig

signal drives its V, positive making its gate voltage much higher than both its drain

and source. This JFET becomes a small on state resistance. Since the currents are

low, the two resistors shown in Figure 3-6 drop little voltage. Most of the carrier

voltage is impressed across the top JFET device. The top JFET then has a negative

voltage applied to its gate due to Vig that causes its current to be controlled by Vig.

Vig from the breaker pickup is a bipolar signal, but this is controlled because the

circuit is self-referencing. The voltage drop across the top resistor R acts to bias Vj 9

because Vg, is equal to Vi, - VR with VR the drop across the top resistor. As long as

R is large enough, VR will always be less than Viq to keep the JFET device controlled.

Approximating V, of the JFET as constant, the current through it then reduces to

vn - V-igVg
R R

On negative half-cycles of the carrier supply, the situation is reversed. In this way

the symmetric nature of the JFET stack permits control during both half cycles of

the applied sinusoid. Square wave multiplication of the two input signals is achieved

because the sign of the mixer current matches the sign of the carrier while the am-

plitude is determined by the breaker pickup. This causes the envelope of the carrier

to track the breaker pickup signal, yielding simple amplitude modulation. Because

there is always some steady current in the system, the carrier is not suppressed. The

signal looks like Equation (3.2) with we the carrier frequency, A the remaining carrier

amplitude, and M the modulation amplitude. Some higher frequency terms appear

after simplification of this expression, but with appropriate demodulation, the higher

harmonics can be filtered away.

R(t) = cos(wet)(A + Mcos(wmt)) (3.2)

The two resistors have been inserted to improve the performance of the mixer.

They limit the steady state current of the mixer and improve the linearity of the

response to the control voltage. This comes at the cost of gain, so an optimum choice

balances those two concerns.

A small signal analysis of the circuit details its gain and design strategy. The

symmetry of the device means that an examination of the circuit during one half

cycle can be applied to its operation on the other one. In this analysis it is assumed

that the voltage applied is well above the saturation voltage of the JFET devices and

that it makes quick zero crossings. Ideally, the applied source should be a square

wave, but a large enough sine wave is sufficient for proper operation.

Assuming a valid steady state voltage VdS is impressed over the JFET and the Vg,

is higher than its pinch-off voltage V, it will admit a current Id. These are set by the

JFET parameters, the two resistors, and the source impedance of the carrier supply.

In a small signal sense, the top JFET device looks like a resistor r, in parallel with a

current source with magnitude gmVgs. The transconductance gm is given in Equation

(3.3) in terms of JFET parameters # and Id. with # a JFET gain parameter. The

output resistance r, as in Figure 3-7 is !+1/A with A the channel length modulation

parameter of the JFET. The bottom JFET device looks like a small Ron resistor. Ron

is assumed to be small compared to R1 and R2.

gmn = (3.3)

Under the assumption that the sum of R 1, R2 , and Ron is much smaller than ro,

simple expressions for the gain of the circuit can be found. The top JFET device is

modeled as a transconductance source in parallel with a resistor ro as shown in Figure

3-7. Looking at the small signal model in Figure 3-7, the transconductance source

of the top JFET device has a value of gmVs = gm(Vig - VRi). VRi is simply the

current delivered through the current source, Iin if current through ro is negligible.

Rearranging terms to solve for i-, the gain G of the circuit, yields the gain from
s ig

control voltage input to current output given in Equation (3.4). This needs to be

'in

ro
gm(Vsig VR1)

Vsig

Figure 3-7: Small signal model for JFET Mixer

maximized within the power constraints of the door and the linearity provided by

having a bigger R1 .

G = 9" (3.4)
1 + gmR 1

With this small signal understanding of the JFET mixer, actual JFET devices

can be selected. The two most important device parameters are the 3 and the V,

of the device. Bigger # increases gn. It also increases the zero input Id because the

JFET gate is further away from pinchoff. V is negative in JFET devices. However,

bigger V values require larger V, values to maintain saturation. Operating under the

assumption that gm * R1 << 1 means that the gain is proportional to gm. With some

manipulation and removal of higher order terms, gm is proportional to -V/R 1 .

Further assuming that R,, is smaller than R 1 and R 1 = R 2 , we find that Vi, >

-V(+ 1). As such, a good JFET will have small V, and large /. The power

available is essentially set by the applied carrier from the through-door inductive

link, so the best solution maximally uses this available power with the highest ID

possible while maintaining saturation voltage across the JFETs.

The current setup uses PN4117A JFET devices from Fairchild semiconductor,

and 1.2 kQ resistors to improve linearity. These JFET devices have very small V,

and modest #. These devices have a V between -.6 and -1.8 and a common source

forward transconductance of 70 to 210 mmhos. Modulation behavior was confirmed

experimentally.

3.5 Through-door Inductive Link

The inductive link across the steel door shown in Figure 3-1(a) consists of two resonant

coils wrapped around samarium cobalt magnets with a N1 :N2 turns ratio. These two

coils and the steel door form a magnetic circuit linking the two coils with the steel as a

core material. A transformer model of the system will be developed from a reluctance

model of this magnetic circuit.

The reluctance model of the core was created to better understand the effects

of high leakage and core eddy current losses on the eventual transformer model of

the system. To a first approximation, the reluctance model looks like Figure 3-8.

Reluctance is given in Equation (3.5) where 1 is the magnetic path length and A is

the magnetic area. The MMF generators N 1I, and N2I2 model the two coils. The

reluctances Rcore capture the reluctance of the magnets on each side of the door. Rair

models the flux path through air around the two coils. Reteei captures the steel path

between the coils. Note that the mutual path linking the two coils requires passing

through both Rcore and Rai,, two reluctances that are relatively large. This path is in

parallel with a shunt path consisting of low reluctance steel Rteee. Most of the flux

will flow across this low reluctance parallel path.

R = 1(3.5)
[pA

Rair Rcore Rair

+ N,

Rsteel Reeei

-N2is

Rair core air

Figure 3-8: Reluctance model of through door transmission

In [1] it was shown that the steel becomes less permeable at higher frequencies.

This means that Rteei is strongly frequency dependent. At low frequencies it is a

reluctance in Figure 3-8, but it increases with frequency as the A of steel decreases.

At higher frequencies the eddy currents of the steel have become significant. At

some high frequency the flux is effectively rejected from the steel by eddy currents.

The Rsteie reluctances will become Rai, at that time, and Rcore will increase as the

magnetic core eddy currents reject the flux. There is likely an optimum frequency

where the shielding due to high-frequency eddy currents and low-frequency magnetic

permeability is minimized. At that point the mutual path linking the two coils will

be the most favorable.

Figure 3-9: Top view of transmission coil configuration

One innovation in the coil design involves using powerful magnets to alter the

steel door permeability by partially saturating it. Both coils of the inductive link

are wound around high field strength samarium cobalt magnets shown from above in

Figure 3-9. In the reluctance model of 3-8, this increases Rsteei by making a return

path along the steel door have higher reluctance. This also increases Rcore, but the

thickness of the steel door relative to the radius of the coil is very small.

Neodymium was considered for the core because of its high field strength, but

it did not work because the nickel coating of the magnets led to unacceptably high

losses. The lower conductivity of samarium cobalt and the lower price make it better

as a core material.

Magnet wire

I

V.pr e

zsense

Figure 3-10: Transformer model of the through door inductive link.

The magnets provide a convenient means of securing the device to the steel door,

and they can further decrease the permeability of the steel as mentioned above. This

tends to shift the permeability curve downward allowing a lower operating frequency

for a given value of steel p. A lower frequency is desirable because it leads to less

eddy current loss. From Figure 3-8, the magnets directly increase Rteei for a value

of eddy current loss fixed by the operating frequency.

The dimensions of the coil are important to the reluctance model A coil with

a larger radius should work better because it will increase the inductance directly.

As mentioned before, saturating the steel works because the radius of the coil is

large compared to the thickness of the door. Making the coil radius big makes that

statement even more true. A flatter coil is also better because it makes the mutual

path linking the two coils shorter. Therefore, the coil should be as broad and flat as

is practical.

This reluctance model of the door-coil system was used to motivate a transformer

model of the coil system depicted in Figure 3-10. The loose coupling of the coil

system is captured by having very large leakage inductance terms (Lal and L12) and

a very small magnetizing inductance (L,) because of the significant leakage from the

reluctance model. Core eddy current loss in the door is modeled as a shunt resistor

(R) in parallel with the already small magnetizing inductance. This means that at

high frequencies most of the voltage applied is dropped across the leakage inductance

and is not transferred through the magnetizing inductance. In addition, there is

an interwinding capacitance component C2 that makes the system self-resonant at a

certain frequency. In this electrical transformer model, the ideal frequency discussed

above occurs when the loss resistor impedance matches the magnetizing impedance

at the carrier frequency and is as large as possible.

Finding this operating frequency is a non-trival matter complicated by interrela-

tionships between the door and the coil geometry. The ideal frequency is a function

of the steel material properties, the dimensions of the coils, and the thickness of the

door. Computer modeling of this system to find the ideal frequency is difficult be-

cause the frequency relies on the presence of strong magnets. Saturation of magnetic

core materials is poorly modeled, and the frequency dependence of steel electrical

properties are poorly understood. FEMM and Maxwell 2D were used to gain an

intuitive understanding of the problem, but experimentation was required to find an

empirical solution.

The design and operation of the through-door inductive link must take into ac-

count its intended use. The signal of interest to the sense circuitry of Figure 3-1(a)

is the current drawn by the JFET mixer on the inside of the door. That current is

the high-frequency carrier modulated with the low-frequency (60 Hz with harmonics)

signal sensed from the breaker face. A large turns ratio, 2 from Figure 3-1(a), yieldsN1

a large voltage gain to the inner coil to develop the necessary saturation voltage on

the JFET mixer. Meanwhile a large turns ratio amplifies the current drawn by the

JFET mixer to the outer coil. The turns on the inner coil should consist of as many

turns of wire as can fit of a fine gauge of magnet wire. There is little power on the

inside of the door, so thick wire is unnecessary. The number of turns on the outer coil

is lower-bounded by the current drive capability of the voltage source. It should be

constructed of thick enough wire and wound with enough turns to match the output

impedance of the voltage source driving it.

Because the system only need operate at the carrier frequency, the impedance

problems of driving the coil can be solved through resonance. A high number of turns

inside the door is advantageous for the functioning of the circuit, but it also leads to

high interwinding capacitance parasitics shown in Figure 3-10 as Ci. This parasitic

can be used advantageously by recognizing that it provides a parallel self resonance

on the inside of the door. Driving the system at approximately that frequency yields

more voltage gain on the secondary that helps establish operating voltage on the

JFETs. The addition of a series capacitance on the primary matches the two coils at

the operating frequency for maximum signal transfer. In this way, the high leakage

of the system can be mitigated from each side of the transformer. Additionally, the

capacitor provides a useful sense impedance for measuring the current drawn by the

coils. The resonant capacitor impedance should match the winding impedance for

best measured signal. This is coincident with resonance.

3.6 Sense and Demodulation Circuit

The sense circuit is a DSP-based I/Q demodulation circuit on a printed circuit board.

The schematic and layout for this system are given in Appendix E. It consists of a

power front-end responsible for driving the coils, an analog filter chain responsible

for demodulating the signal, and a DSP for performing post processing and filtering

of the final signal. The signal is then outputted using a DAC for viewing on an

oscilloscope or spectrum analyzer.

3.6.1 Power front-end

The power front-end is a push-pull driver composed of two BJT devices capable of

standing off high voltage and delivering reasonable current. The bases of these BJT

devices are driven using a high voltage decompensated operational amplifier in a

high gain configuration. A square wave at the carrier frequency is AC coupled to

the noninverting input of the amplifier. The operational amplifier then increases the

voltage to a level suitable for driving the push-pull.

The push-pull driver is connected to the series combination of the coil and two

sense impedances. These sense impedances can either be resonant capacitors or sense

resistors depending on signal requirements and willingness to accurately match the

inner coil.

COS(Wmt)

V~ense L ~ i

HPF
/X1 DSP

X LP xl HPF ~ + LPFADC

x10 /x100

sin(wmt) 1.65

Figure 3-11: Block diagram of analog filter chain

The voltage between the two sense impedances is taken as the input to the analog

filter chain. The total sense impedance is matched to the coil system at the carrier

frequency, but the ratio of the two impedances is chosen to deliver acceptable voltage

levels to the analog filters.

3.6.2 Analog filter chain

A block diagram of the operations performed by the chain is given in Figure 3-11. The

analog circuitry requires as input the voltage across the coil sense impedance (Vsense)

and two square waves at the carrier frequency 90 degrees apart in phase. It's output

is the in phase and quadrature component of the input signal (I and Q channels,

or cos(wt) and sin(wt)). All stages of the filter chain operate on +15 voltage rails,

and the final output of the chain is limited to the 0 to 3.3 Volt range of the DSP

analog-to-digital converter.

The input voltage is first high-passed to remove any DC components present in

the sense voltage and center it in the filter chain input stage. This will not damage

the signal because at this stage it is still modulated with the carrier. This signal is

then gained to ensure that it occupies the t15 volt range of the filter chain.

The next stage is I/Q demodulation. Two analog switch bridges are independently

operated with the I and Q waveforms to provide a differential output signal. This

multiplication brings the desired breaker current signal down to baseband, but the

high frequency components are still present. At this point, the remaining stages of

the filter chain are exactly parallel for the I and Q channels.

The differential signal is passed through a third order lowpass RC ladder filter

with a cutoff of 1 kHz, marked as LPF in Figure 3-11, to attenuate high frequency

content. This signal then passes through an instrumentation amplifier with a gain

of 10 (x10 in Figure 3-11) to reference it to the system ground while applying some

gain. This reduces the signal to a DC offset with the 60 Hz data on top of it. The

DC offset is the nonsuppressed carrier demodulated to DC.

The low modulation depth of this system means that gain in the signal chain

is required for suitable SNR at the ADC input. At this point in the filter chain the

carrier has been demodulated to DC, leading to an offset. That offset must be removed

with a highpass filter before gaining the signal (HPF in Figure 3-11). Otherwise, the

offset is gained with the signal and saturates the filter chain. The high pass filter has

a cutoff of 10 Hz, and the DC offset is suppressed. This signal is then passed through

a gain stage with a gain of 100 (x100 in Figure 3-11). At this point, the DC signal

level is wrong for the single-ended analog-to-digital converter. The final step is a level

shifter to add 1.65 volts to the signal (+1.65 in Figure 3-11). This centers the signal

in a 0 to 3.3 Volt range for use in the analog-to-digital converter. A final LPF is used

as an anti-aliasing filter before the input to the ADC (LPF in Figure 3-11).

3.6.3 DSP operation

The device uses a dsPIC33 device to perform digital processing and filtering of the

incoming signals. It is responsible for sampling both the I and Q channels and com-

bining them into a demodulated signal. A brief overview of I/Q demodulation of an

amplitude modulated signal should clarify the operation of the DSP.

3.6.4 I/Q Demodulation Overview

An AM signal looks like Equation (3.6) with we the carrier frequency, A the carrier

amplitude, M the modulation amplitude, wm the modulation frequency, and # an

arbitrary phase offset. M and om are desired. In this device the phase term is

unknown or time varying, so I/Q demodulation is used to detect the signal and cancel

out the phase term. A Phase Locked Loop (PLL) would also have demodulated the

signal by locating the unknown phase and permitting synchronous detection.

M
R(t) = Acos(wct + 4) + 2 (cos((wc + wm)t + #) + cos((wc + wm)t + #)) (3.6)

For the I channel, the signal in Equation (3.6) is multiplied by cos(wct), while the Q

channel is multiplied by sin(wct). Each channel is then low pass filtered to eliminate

high frequency signal components. After using some trigonometric identities and

assuming high frequency terms have been perfectly eliminated by low-pass filtering,

the final signals are given in Equations (3.7) and (3.8).

MA
S cos(-)(cos(Wt) + (3.7)

M A
Q = sin(-#)(--Cos(omt) +) (3.8)

2 2

These two expressions are the output of the multiplier and lowpass circuit. Before

being sampled by the ADC, these are highpass filtered to remove the A offset. One

note here is that assuming 2 is larger than i, these quantities are strictly positive

or negative as determined by #. This is the case for the door system because the

modulation depth is very small.

Squaring these two channels after a high pass filter, adding them, and taking the

square root removes the # terms and recovers the desired signal. However, the cosine

signal has lost sign information in the operation that must be recovered. Both I and Q

will follow the modulated wave and be multiplied by an unknown constant determined

by #. There are two ways of preserving this sign information. One method involves

choosing either the I or Q channel to be the sign reference. The other method involves

adding an offset to both channels to ensure that they are both positive entering the

square root.

The first method is the cleanest method mathematically, but it leads to a problem

when the magnitude of the sign reference is small. In that case, there is uncertainty

about the sign of the output, and noise can cause the signal to rapidly cross this

threshold. It also requires some prior knowledge to know which channel, I or Q, is
the correct sign reference. Having access to the raw I and Q channels before high

pass filtering is sufficient for making this determination, but it requires more ADC

channels or an analog comparator that can provide digital input to the DSP.

The algorithm for using this information involves reasoning about the sign of -#.

I and Q will be either strictly positive or strictly negative because of the large carrier

that has been demodulated to DC. Suppose I and Q are both strictly positive. This

implies that both cos(-#) and sin(-#) are positive, meaning that -# is between

0 and 90 degrees in the first quadrant. After removing the DC offset, the I and Q
channels will be in phase. I will be larger in magnitude if -# is closer to 0 and Q
will be larger if it is closer to 90. Either channel is suitable for a sign reference, so

the larger one should be used because it crosses through zero faster than the other

channel. A similar argument could be applied if both channels are negative and in

agreement.

The problem becomes interesting if one is positive and one is negative. Suppose

I is positive and Q is negative, placing -# in the fourth quadrant. This implies that

cos(-#) is positive and that I is the "true" reference because its sign tracks the true

sign. However, this also implies that Q is of the opposite sign. Again, the larger

channel can be used and the sign flipped if that is the Q channel.

The other method of adding an offset is currently used in the system because it

requires less analog hardware. An overview of the impact of this offset is important

to understand the tradeoffs it involves.

Assume that the I and Q channels have a DC offset added that is different in

each channel. Since this offset is unwanted arbitrary error in the filter chain, it could

be called Oricos(-#) and OQ sin(-#)with 0 and Og chosen appropriately. The

channels become distorted as in Equations (3.10) and (3.10).

I = - COS(-#)(CoS(Wmt) + O) (3.9)
2

Figure 3-12: Entire experimental setup with circuit breaker door closed. The outer

through door coil and demodulation circuitry are visible.

=M

Q = sin(- #)(cos(wmt) + OQ) (3.10)
2

When the expressions in these equations are squared and summed, the offsets

generate cross terms that cause phase-dependent distortion. For this reason, the

DSP should subtract out any offsets prior to squaring the incoming channels. This is

done by median filtering the signal and subtracting out the median from all samples.

The previously mentioned method of adding an offset does lead to unwanted noise

and distortion. It also limits the range of the system to only half of the full bipolar

range. In effect, this method trades high noise at the zero crossings for lower noise

distributed across the entire signal. For now this was done to make cleaner waveforms,

but better software and filter chains should make the sign reference method a better

choice.

3.7 Test setup and results

The experimental setup is an implementation of the system described here. The

entire system is shown in Figure 3-12. A small circuit breaker panel was used with a

circuit breaker resting inside the panel rather than installed properly. This was done

Figure 3-13: Experimental setup with circuit breaker door open. The JFET Mixer,
test circuit breaker, and inner coil are visible.

to allow easy access to the circuit breaker for testing. This breaker was left in the ON

position and connected to a 2 Q resistor and an HP 6834B AC power source. The

source can provide variable frequency current waveforms up to 5 Amperes through

the breaker.

The current pickup was secured to this breaker face with electrical tape with leads

running to a solderless breadboard attached to the inside surface of the steel door.

This was connected to the 14.4:1 step up audio transformer, the Tamura MET-01,

before being connected to the JFET devices. This portion of the setup is shown in

Figure 3-13.

On the same breadboard were two PN4117A JFET devices and two 1.2 kQ resistors

in the configuration described earlier. These were connected to the inside coil.

The inside coil consists of four samarium cobalt magnets of dimension 1/2 inch

by 1/2 inch by 1/4 inch grade 26 MGOe arranged as shown in Figure 3-9. Around

this were 1000 turns of 34 AWG magnet wire and epoxy to hold the structure in

place. The coil was constructed with cardboard on both sides to ease winding, but

cardboard on the side closest to the door was carefully removed after the epoxy cured.

This ensured that the system would be as flat as possible against the door.

A similar coil was made to connect to the other side of the steel door. It was

arranged so that the N and S poles of each magnet were on top of each other. This

coil only has 24 active windings. During development, 1000 turns were place on the

core, but these are not being used now. This coil electrically connects to the printed

circuit board described above.

The solderless breadboard, sideways breaker, and inner coils are all too thick to

allow the steel door to fully close. It is likely that doing so will lower signal levels,

but a new coil design and surface mount components for the breadboard would be

required.

The demodulation board pictured in Figure 3-14 was used to drive the coils and

demodulate the signal. However, the current board did not have a crystal oscillator

installed and is instead operating from an internal RC oscillator. The frequency

delivered from this oscillator could not produce a stable carrier for use in the power

stage or demodulation stage. Instead, the present setup uses an HP 33120A signal

generator to provide double the operating frequency. A dual flip-flop and inverter

provide in phase and quadrature square waves suitable for the demodulator as shown

in the schematics in Appendix E.

The stability of the carrier is of critical importance in this system because of the

low frequency nature of the desired signal. Variations in carrier frequency from DSP

clock jitter overwhelm the desired signal easily. This is why the signal generator was

used instead.

Other changes were made to the schematic in Appendix E. These included:

" The addition of level shifting circuitry

" The adjustment of the high pass filter. The high pass filter was implemented

with a .1 [pF capacitor and a 150k Q resistor. These were changed to 1 pF and

15 k Q respectively. This improved offset at the input to the x100 gain stage in

Figure 3-11.

Figure 3-14: Demodulation board attached to power supply.

62

3.7.1 Coil design procedure

The most complicated part of this system is the through-door inductive link design.

In the current setup, the design was very empirically motivated.

Since an optimum frequency for a given door is unknown and difficult to measure

without a coil, the first step is to wind a coil set with many turns on one coil and

few turns on the other. The next step is to locate the resonance of the coil system by

sweeping the operating frequency. Connecting the primary coil to a signal generator

and sweeping it from approximately 10 kHz to 300 kHz while monitoring the secondary

coil with an oscilloscope worked well. However, adding a ground connection on the

secondary coil by using an oscilloscope changes the circuit model of the through-door

link significantly because the signal generator driving the outer winding is also ground

referenced. This might lead to error in finding the resonance because the real system

has no such direct connection through the door. However, this measurement was

taken to provide an approximate resonant point for the secondary coil. The final step

is to find the impedance of the primary coil at that frequency where the secondary

coil is approximately resonant. This allows for the selection of a series impedance to

match the primary coil for the purposes of measuring the current for demodulation.

This impedance my be resistive or capacitive if resonance is desired. Iteration may

be required to maximize signal output in the true system.

Modifications to this procedure might produce a better coil setup. If the coil

can be connected to the sense circuitry mentioned in Figure 3-1(a), the demodulated

output can be monitored while the frequency is swept. This implies that the DSP of

the demodulation circuit could perform resonance location at startup. The problem

is that the sense impedance must be variable as well to attain good matching between

the coils and that sense impedance. It is an unclear tradeoff whether operating in an

unmatched state or operating away from the secondary resonance is better. To be

sure, the sense impedance and frequency would both need to be swept simultaneously

whilst always ensuring an impedance match at the signal frequency.

Vsec

Wsec

1-2 kHz

Wop Wop

Figure 3-15: Operating point compared to secondary coil resonance. Ideally, the
carrier frequency should be 1-2 kHz away from the resonance of the secondary coil.

3.7.2 Results

The experimental setup described in Section 3.7 was used to determine signal levels

and evaluate the present setup.

Experiments showed that a resonant secondary is sufficient for adequate function-

ing of the system and that the primary need not be resonant. The resonant capacitor

can be replaced with a small current sense resistor. This reduces signal levels, but it

removes the requirement that the two coils be matched. Should the capacitor not be

exactly matched, the two nearby resonant points will distort the signal.

Empirical results from this coil system showed that the coils work best approxi-

mately 1 to 2 kiloHertz off the resonance of the secondary coil on either side of the

wi

resonance as shown in Figure 3-15. In the Figure, w.ec is the resonant frequency of

the secondary coil, and wo, are desirable operating frequencies for the carrier. This

configuration is advantageous because the resonance is variable because it is a com-

plicated function of the door properties and the immediate surroundings. Moving a

hand closer than a foot or two to the door panel affects received signals considerably.

This may be due to moving of the resonant point by changing the capacitance of

the door with the present coils. When off resonance, the gain is still high, but small

changes in the resonant point do not strongly affect the signal. Working on one side

of the resonance also ensures that the rapid phase shift at a resonant point does not

perturb the signal.

Figure 3-16 shows some results from this device at high current levels of 5 Amperes.

From the spectrum plots it is clear that some higher harmonic distortion is present,

but the time domain waveforms appear relatively clean.

Figure 3-17 shows the performance of the system at low current levels of .2 and .1

Amperes. The noise present on these signals is predominantly quantization noise from

the analog-to-digital converters in the block diagram of Figure 3-11 integrated into the

DSP on the schematic in Appendix E. Moreover, due to signal chain problems in the

current board, the final signal covers less than a quarter of the input dynamic range of

the analog-to-digital converter. This means that the small signals are dominated by

quantization error rather than instrumentation noise. This problem could be fixed by

applying more gain to utilize the full dynamic range of the ADCs. This was not done

because of high offset error in the high pass filter stage of Figure 3-11. Gain applied

at that stage would push the desired signal above the input range of the ADCs.

Of particular interest is the magnitude plot at the carrier frequency. The signal

of interest is below the noise floor of the spectrum analyzer, but the I/Q demodu-

lator is capable of recovering the signal anyway. With further improvements to the

demodulator it is likely that even smaller signals will be observable.

Figure 3-18 shows demodulation and processing of a 70 Hz signal. Since 70 Hz

is not among the harmonics of 60 Hz, this shows that the signal being measured is

actually from the current source and not unwanted pickup from the air. The relative

(a) 60 Hz sine wave input

A1-2: 60.546875 Hz Maker 223,938671875 klz
78.416 dB (85.1 dc/Hz) 35.2 dBV (28.21 c1yV/Htz)

140
d~pV

20
dIB/

-60

C nt: 224 kz Spa 1k8z

(c) 60 Hz sine wave magnitude at
carrier frequency

A1-2: 60.15625 Hz Make 60.15625 Hz
1.581 d (17.57 d c/Hz) 113.5 d3V (106.16 3 V-z)

10

30
dV _ - __

enter :230 HzSpn 500 Hz

(e) 60 Hz sine wave magnitude at
baseband

.

..W ... C . .,.,I. , ..-. .. . l. . . . l.. . I .. I.. 1 7

Ch2 5.0V M4.m 12.5kM 00.0psp
A Ch2 , D.DV

(b) 180 Hz sine wave input

A1-2: 180.46875 Hz Marker 223.81875 kl-z
70,677 dB 77.67 dBc/Hz) 42.92 dBpV (35.93 dpV/Hz)

140
d3pV

20
dB/

-60

Center 224 kHz Sp-: 1 k~tz

(d) 180 Hz sine wave magnitude at
carrier frequency

A1-2 -180.859375 Hz Mrke 1680859375 Hz
7.A99 3 (1.36c/H) 116.38 d_ pV (109.39 d7. uVH-)

130

0610

30

(f) 180 Hz sine wave magnitude at
baseband

, , . . , , l..i ..l.., I. . .

Chl 500mnY % M 4.0m 12.5ks/ 80.0ps/p
A Ch2 / ODY

(g) 60 Hz sine wave demodulated (h) 180 Hz sine wave demodulated
output output

Figure 3-16: Experimental results. The system is capable of measuring current signals
and reconstructing them outside the door. The 60 Hz and 180 Hz input signals were 5
Amps in amplitude. The input signal is the voltage across a 2 Q resistor and captures
the input current.

66

..........

..........

..............-

M4.0ms25k/ 80,psp

A Ch2 / 1.4Y
Ch1 50DmV %

(a) 60 Hz .2 A sine wave input

et-2 605 24875 k Span: 2233 7 i- k

at carrier frequency

(e) 60 Hz .2 A sine wave magnitude
at barrebandqunc

[1-: (1.76 dc/Hz) 8 C M 2 COWH)

d~pV

10
dB/

30

(e) 60 Hz .2 A sine wave magnitude
at baseband

(g) 60 Hz .2 A sine wave demodu- (h) 60 Hz .1
lated output lated output

. . . . i. l. l a .. . - I . . - - i s.. .

Ch2 Somw % MC M4n12 3kSa 80"p

A &h2 / -30D m

(b) 60 Hz .1 A sine wave input

Ai2:260-5468755 Ft36 22 M38671875 "8
1- (B112.07<Bc/Hz) 8.2 B 153 d fN)Hz

(d) 60 Hz .1 A sine wave magnitude
at carrier frequency

(f) 60 Hz .1 A sine wave magnitude
at baseband

~!II1~IIiI~I~IIIi; ,Ij~'~! I '1
A sine wave demodu-

Figure 3-17: Experimental results at low current levels. The system is capable of

measuring current signals and reconstructing them outside the door. Even signals as

small as 100 mA can be resolved. The input signal is the voltage across a 2 Q resistor
and captures the input current.

67

......I , ,|.
Chl 10"yy M 4,n- 123k5A 80.0*

J. 1 11 .41

. . , 1 .. , .. , ... 1 , . l . . . ', ., , , .| . . . '

Lh 5.L 0- w M 0s2 M B.0p"14

(a) 70 Hz .2 A sine wave input

A 61170 (7035 701 Ft _ M___ 22.1366 (33.15 6 '71- 1 Hz Marker: 1%3z)3, 255 pUV/Hz)

140

o6pV

dB/

-60
670r:0224 kz Span, I

(c) 70 Hz 2 A sine wave output fre-
quency magnitude

AI-2, -770125 Ft7k7070 3125 M
13.1626 70.15 3-Hz) - re : .73 0 6d (103.74 dBuV/z)

10/
30

lenter 250 Hz Span: 500 HI

(e) 70 Hz 2 A sine wave output fre-
quency magnitude

. . . . l . .. l l . , . .,.. , l.. .1 l. . . . '

A Ch2 , 0.DV

Ch2 5.DV M w M4.0ms12.5kS/s 80.0p&*pt

(b) 70 Hz 1 A sine wave input

A1-2: 7.7125 Hz Marker 2239162 ku 9SV/z39706 4.3o0 __ -t 26. 103612 (19.2 36317706 _
140oUpV

20._ ___
dB/

-60

(d) 70 Hz 1 A sine wave output fre-
quency magnitude

Al-2: 2770312FtM6 7.015U
15312 (26.53 C H-fz) Marker 70 3q d (97.36 d3pV/z)

do

10
d3/

lenter 250 Hz Span 500 Hz

(f) 70 Hz 1 A sine wave output fre-
quency magnitude

I I I I

, ,
-. 2 6.. . . , , , I 1 ,

Chl 50DmV % M 4.0m712.5ks/s 8.0psp

A Ch2 , 0.DV

(g) 70 Hz 2 A sine wave demodu- (h) 70 Hz 1 A sine wave demodu-
lated output lated output

Figure 3-18: 70 Hz experimental results. The system is capable of measuring current
signals and reconstructing them outside the door. Both 2 A and 1 A 70 Hz signals
can be resolved. These show that the measured signal is the one being generated and
not pickup from the air. The input signal is the voltage across a 2 Q resistor and
captures the input current.

68

...................

.

..................

..

...

absence of 60 Hz pickup from air implies that the 60 Hz signals measured before have

very small pickup from air.

(a) System output with zero input

00.2: 7073103 Ft NW :23 9 270 5 M0-t
01 0 124 '116.11 c/Hz) M 4rk : 9 V (-2.54 V/Hz)

40

601

p _Ce 224 kz

(c) Carrier frequency with zero in-
put

51-2 (655 c/Hft) 6 V37c 583 pVH)

10

30

(e) Baseband spectrum with zero
input

Chl 1mmy M M4.0nis12 _1She BKl0pD 1

(b) Oscilloscope noise floor

1-2 21 29.21 4czf) 6.4 2'L' V0 H z)

-60

(d) Spectrum Analyzer noise floor
at carrier frequency. The center ar-
tifact is not real.

A1-2 -70I703125 iMker: 70.703 412 pVH
7777 d1 (81.77, 0bcf4L 10.4 BL(3. ft -

MV

10

-6 : _

(f) Spectrum analyzer noise floor
at baseband

Figure 3-19: Noise floor of instrumentation. The left column are system outputs with
no current signal to illustrate system noise levels. The right column are shots with
the input ports of the test equipment shorted together to illustrate instrumentation
noise floor.

Figure 3-19 shows the noise floor measured at the output of the DAC for instru-

mentation and demodulation circuitry shown in the schematic in Appendix E. The

noise floor of the oscilloscope is substantially lower than the quantization noise of

the demodulation circuitry. However, the noise floor of the spectrum analyzer is well

above the noise floor of the demodulation circuitry at the carrier frequency.

3.8 Future Work

Although the current experimental setup shows promise, there are some areas that

could be altered to improve the operation and noise level of the device. These can

be grouped into a few main categories, including demodulation board improvements,

DSP software changes, and inductive link improvements.

3.8.1 Inductive Link Improvements

More work needs to be done to understand the steel door frequency dependent prop-

erties. As mentioned before, the door relationship between magnetic permeability

and conductivity is complicated and the current operating frequency is likely not the

optimum one.

One experiment might involve making a reference coil setup with a very high

resonant point. Parallel capacitors could be added to the inner coil to shift the

resonant point down. At each resonant point the outer coil could be matched with an

appropriate sense impedance and connected to the demodulator. Signal levels could

be measured at each point and compared to find the optimum door frequency.

There are multiple related problems with this approach. First, lower frequencies

will result in lower coil impedance. This results in higher current requirements. This

increases the power demand of the system and might overdrive the thin magnet wire

used in the coils. Operating at a lower frequency requires placing more windings on

the primary coil to increase its impedance and lower the current draw. This in turn

reduces the turns ratio discussed previously and might harm overall functioning of

the system.

Another more complex experiment could be created to find the appropriate natural

door frequency. If an ideal wideband Hall Effect magnetic field sensor were available,

it could directly detect magnetic field strength inside the door. A coil could be placed

on the outside and swept across frequency to find the maximum field inside the door.

Next, an inner could be designed to self-resonate at this frequency. Finally an outer

coil could be designed to present an impedance at this frequency that is suitable for

driving the system. A matched Zsense could then be placed in series with it.

The inductive link also needs to be rebuilt to be mechanically more stable and

physically thin enough to fit inside the door. In addition, it could be made broader

to improve coupling as discussed earlier.

If these changes drastically alter the coils as they appear to the JFET mixer,

different JFET devices with higher # and higher current might be beneficial.

3.8.2 Demodulation Board Improvements

The analog processing chain of the demodulation board works, but there are numerous

ways that it could be improved. The current board is a first revision, so an exhaustive

list of problems might include:

* Add level shifting circuitry. This is currently present on a solderless breadboard

and should be copied to the printed circuit board. Both I and Q channels need

this module between the gain stage and the anti-aliasing filter at the input to

the DSP ADCs.

" Substitute OP97 for LT1028 op amp for lower input bias current.

* Change 10 Q R48 to 200 Q to limit shoot-through current on analog switches.

Without these resistors feedthrough at the carrier frequency is injected every

time the switches change state.

" Add a similar resistor to the input to the other analog switch so each channel

is balanced.

* Add a similar resistor to the ground connection of each analog switch to balance

them. When balanced the operational amplifier driver does not see discontin-

uous impedance even during switching. This should completely suppress the

feedthrough.

" Change the highpass filter at C39 and R42 to 1 pF and 15kQ to reduce input bias

current effects. The LT1028 has relatively large bias current that is currently

drawn across the 150k resistor. This leads to substantial offset voltage that is

then gained.

" Ensure that the other input to that op amp is matched in impedance. This

is less important, but it ensures that input bias current effects are canceled

because the bias current on each channel is drawn across the same impedance

values.

* Make similar changes to C45 and R43.

" Change the resistors at R44, R45, R46, R47 to have gain of 1000. This is at

the main gain stage of the filter chain after the carrier has been filtered away

and the modulated signal needs to be recovered. This should fix the ADC input

range properly so that the full dynamic range is utilized.

" Correct the footprints for the BNC connectors, U2 and C6. The ground holes

are too small.

" Add traces from the raw I and Q channel output to the DSP before highpass

filtering. As described earlier, this permits the software to find a sign reference.

This signal would need buffering to ensure that the ADCs on the DSP do not

disturb the carrier. It will need level shifting. Another possibility is to locate

an analog comparator and set one reference to ground. Assuming its output is

digital, it could be connected directly to the DSP and not require more analog-

to-digital conversion.

* Separate the ground plane into three parts, a high power part for coil drive

current, an analog part, and a digital part.

" Consider a larger input range. The current system is powered from bipolar

15 Volt power supplies, but the incoming signal is only a Volt peak to peak.

Changing the signal path to tolerate this range would be advantageous, and it

would likely only require changes to the AD620 instrumentation amplifier gains.

Since this is set by a single resistor, a few different ones could be ordered and

experimented with, though a full scale input signal should only require a gain

of 1 at that point. In the current system that gain was increased to 10 because

of the small amplitude input signal.

* Physically separate the coil drive circuitry from the signal chain input.

" Use a crystal oscillator to drive the DSP and determine if it is stable enough

for usage as a carrier. The current board has space for an oscillator to the DSP,

but it is not installed. The DSP on board RC oscillator and PLL have enough

frequency jitter that the DSP cannot directly provide a drive frequency for the

analog filter chain and coil drive circuitry. A crystal oscillator might fix this.

The other option might be to purchase a powered oscillator to drive the coils

at fixed frequency directly.

" Add silkscreen indicators showing the pinouts of the various connectors. Some

of them are missing.

* Add silkscreen indicators for the polarity of the polarized capacitors and diodes.

This makes assembly easier.

" The "5k" resistors marked on the silkscreen are actually 6.28k. The silkscreen

should be changed because 5k is not a standard size.

" Shrink the board by a few square inches to qualify for 4PCB's specials.

Another possibility to investigate is demodulation to an intermediate frequency

with analog circuitry followed by digital demodulation to baseband. This is difficult

and requires the use of a notch filter capable of removing the carrier while leaving

60 Hz data undisturbed. However, this method removes the need for a highpass

filter. This is beneficial because of superior settling time of notch filters compared to

highpass ones. Space was left on the board for this idea, but it should be removed if

the idea is not pursued.

3.8.3 DSP Software Improvements

Currently there is no filtering done in the digital domain on the DSP. Experiments

have shown that this system distorts incoming waveforms. Higher harmonics of 60

Hz pass through the system with a larger amplitude and different phase. This would

make composite waveforms with more than one frequency look very different. The

DSP could be improved to add a filter stage to help invert this characteristic. First

the properties of the door system would be measured experimentally to aid in this

effort. If the filter is complicated, DSP assembly language could be used to increase

speed.

An important change involves the sign uncertainty of this system. The current

method of arbitrarily choosing the I channel as a sign reference works, but it is not a

general solution, and a more complex software scheme could reduce sign uncertainty.

The idea is to have access to the raw I and Q channels after multiplication and

lowpassing but before highpassing.

Chapter 4

Conclusions

This thesis presented multiple improvements to the experimental NILM system. With

these improvements NILM should be able to realize higher resolution leading to better

load discrimination. The new current sensor will also allow for simple installation in

any system that has a standard circuit breaker.

The NerdJack device has been presented to be of lower cost and of higher accuracy

than the LabJack upon which it is based. Some of these devices have been built

and deployed in experimental NILM installations. Other researchers are working to

understand the features that can be resolved with the new device.

Because NerdJack's channels are simultaneously sampled, acquiring more channels

with it does not inherently reduce the sampling rate and alignment of other channels.

The increased number of channels available in this way have led to additional NILM

developments. The system will soon be outfitted with channels that have 60 Hz notch

filters. This allows the primary to be suppressed so that the signal can be gained.

This allows the higher harmonics of 60 Hz to be visible to the instrumentation and

the NILM algorithms. The implications of this additional information are still being

explored.

This thesis has also presented a novel through-door current sensor. This device

can successfully measure 100 mA signals inside the breaker and deliver this informa-

tion through a solid steel plate using approximately 7.5 Watts of power. Possible

improvements have been presented that should increase the sensitivity of the device,

decrease the power requirements, or both.

Energy monitoring by device is an important means of reducing energy usage.

Earlier methods required sensors at each device to be monitored. This device shows

promise as a single device that is easily installed and can monitor an entire power

distribution system. Further work should make the system smaller and cheaper while

giving it a more polished appearance. A final system should ideally incorporate NILM

technology with the sensor and an appropriate interface for power monitoring. The

system could be outfitted with WiFi to deliver power usage data in realtime to a

specialized display or to a general purpose personal computer program.

Appendix A

Microcontroller-based educational

tool

One spin-off project of the digital data acquisition device was an educational tool

called "BurnIt". One of the popular laboratory classes at MIT helps students build

microcontroller-based digital and analog systems using a loaned laboratory kit and

single board computer. Unfortunately, the equipment required to program microcon-

troller systems has a substantial up-front cost. This erects an unnecessary barrier to

experimentation both during and after taking the class. Using a similar chip to the

one used in the data acquisition system, a programming device inexpensive enough to

give away to graduates of the class was built. This device allows students to continue

learning about microcontroller systems after the class by actually building them.

A.1 Burnlt theory of operation

BurnIt is meant to program the various microcontrollers used in MIT's 6.115 micro-

controller laboratory. These include the Lattice GAL22V1O, the Microchip PIC16F627-

8 series, and the Atmel AT89C2051. The class mostly uses an Intel 8051 based single

board computer, so the 2051 was chosen to be familiar to the students. The class

also includes a module on the language C. The PIC microcontroller is programmed in

that language and is included for that purpose. The class briefly covers programmable

Figure A-1: BurnIt block diagram

logic devices, so the 22V10 serves as an introduction to that. These chips were chosen

because the compiling tools are freely available, they serve a purpose in the class, and

the programming algorithms are either published by the company or otherwise widely

known.

The main components of BurnIt are an Atmel Atmega644 microcontroller, a se-

rial port, and a zero insertion force (ZIF) socket. This AVR-based device is pre-

programmed with firmware to interact with both the serial port and a chip inserted

in the ZIF socket. The chip to be programmed is placed into the ZIF socket. When

powered on, the Atmega firmware checks the state of a DP3T three position switch

to decide which chip is present in the ZIF socket. The Atmega then uses the serial

port to interact with a computer running a terminal emulator program. The user

can then interact with the device through terminal emulation to download code to

BurnIt or read code from the inserted chip. BurnIt presents a simple menu to the

user tailored to the chip in the ZIF socket. The user issues single letter commands to

the device to control it. The object files for all three chips are plaintext suitable for

transmission over a serial port using standard file sending mechanisms.

"BurnIt" needed to be easy to build, easy to use, and useful at the same time.

It also needed to be robust against student error. This led to a design involving a

handful of components soldered to a small two layer printed circuit board. All parts

were through-hole parts to make them easy to install for first time solderers. The

device can be powered using an inexpensive generic power supply because it includes

its own power regulators. The remaining pieces of BurnIt allow it to assert the high

voltages required for programming various chips. They also do the proper voltage

level shifting to interact with a PC serial port.

The schematics and layout for Burnlt are included in Appendix D. The firmware

for BurnIt is present in Appendix G.

A.2 Programming the AT89C2051

The most important chip programmable by BurnIt is the 2051 because of its usefulness

to students. This chip is a 5 Volt part, but it requires 12 Volts to be asserted to a

specific pin to start its programming mode. At some points in the programming

algorithm this pin also needs to have 5V asserted on it. Because the Atmega is

incapable of supplying this high voltage, some extra circuitry was required to assert

both 12V, 5V, and OV while still protecting the Atmega I/O pins. The final solution

was an open collector buffer with two diodes and a pullup resistor.

The 2051 requires parallel programming, so most of the Atmega digital I/O lines

must be connected to the lines of the 2051. Effectively, all 8 bits of every byte are

asserted on every clock cycle to the device and bytes are transmitted sequentially.

A.3 Programming the PIC16F628

This chip is substantially easier to program because it was designed for in-system

programming. Only four wires are actually required to program the device, and

data is clocked into it serially. There is no requirement for high voltage to start

programming mode. This section of the code was borrowed heavily from jimpic by

Jim Paris. Jimpic was the original method for programming the chips available to

students in the class.

A.4 Programming the GAL22V1O

The programming algorithm for the GAL22V1O was not available from the manu-

facturer, but other hobbyists had reverse engineered the algorithm. BurnIt uses the

ideas from GALBlast to program the chip. This chip is difficult to program because

it requires variable timing and and high voltage.

Appendix B

Data Acquisition Device Manual

B.1 Theory of Operation

The NerdJack device is an Atmel AVR32UC3A0512-based microcontroller system

integrating Ethernet capabilities with Analog Devices AD7656 analog to digital con-

verters. It is responsible for digitizing analog signals and transmitting them to a

waiting computer system for analysis and processing. It is capable of delivering 16

bit samples of bipolar + 10 or t 5 volt signals. Channels number from 0-11, and each

half (0-5 and 6-11) can have their range individually configured. The data can be

sampled up to 100 kHz, with the maximum throughput depending on the number of

channels sampled and the network conditions. There are software warnings in place

if too high of a rate is attempted.

B.2 Installing software to use a NerdJack

The software requirements for NerdJack are very simple. Software for programming

the device is somewhat more involved, but it should not be necessary for basic Nerd-

Jack usage.

All software for NerdJack is available in the LEES Subversion repository at:

https://bucket .mit . edu/svn/nilm/acquisition/nerdjack

Throughout this document files will be referenced based on where they are located

in the repository directory structure. However, a checkout of the repository from 8-

27-09 is present in /home/zacharyc/nerdj ack/ on bucket . mit . edu. This directory

is accessible to any user of bucket.

B.2.1 Windows

There is a file called "ethstream. exe" located under . /installer/utils. This file

should be copied to the Windows machine. A decent location might be

C:\Program Files\NerdJack\

Another decent place might be the same directory the older ljstream was in-

stalled under. The file should then be added to the PATH of the machine. From the

Windows Control Panel, open System Properties. Select the Advanced tab and

click the Environment Variables button. In the lower box of System Environment

Variables, edit PATH. Add the path to your ethstream. exe to the beginning of the

PATH followed by a semicolon like so:

C:\Program Files\NerdJack;rest of path

Now you can open a command prompt by selecting Run... from the Start menu.

Type "cmd" in the box and press OK. Now you can type "ethstream" to connect to

the NerdJack.

An alternative to the above instructions involves running the installer from:

./installer/installNerdJack.exe

This file installs programming tools and ethstream automatically.

B.2.2 Mac OS X and Linux

Binaries are available for these platforms, but you are likely to have more luck com-

piling Ethstream from source. Linux generally has gcc and make installed already.

Under OS X you should install the developer tools from the installation DVD.

The code is located in ./ethstream in the repository. It should be copied to the

computer.

Type the following command in the main directory of ethstream:

make && sudo make install

This will install the program to the system path in /usr/local/bin

B.3 Using the NerdJack

After software installation, all necessary utilities should be present on the system.

Turn on the NerdJack with DIP switch 4 in the OFF position. The other three

switches select between the seven configured IP settings and DHCP. They can be

interpreted as binary numbers (i.e. configuration 0 is all switches off, configuration 4

is just switch 3 ON, etc.). Position 7 is DHCP. This DHCP implementation seems to

work in LEES, but it may be missing some features.

After the unit is powered on and connected to the network, simply type "ethstream

-N" followed by your desired command line options to retrieve data. Typing "ethstream

-- help" explains the options. Typing "ethstream -X" gives example usage. The

output from ethstream can be piped to other programs using standard stream redi-

rections. The data is emitted as space separated numbers with each sample on a

separate line.

Ethstream is almost fully compatible with the older lj stream that communicated

with the LabJack. The most important options are summarized in Table B.1.

B.4 Installing software to program a NerdJack

If the user wishes to change the serial number, the TCP/IP settings, or the Ethernet

MAC address of the NerdJack, programming software must be installed. This is also

necessary to upgrade the firmware on NerdJack in the future.

Short Optio
-a
-n

-d
-R

-C
-r
-c
-H
-1

n Long Option
-address string
-numchannels n
-detect
-range a,b

-channels a,b,c
-rate hz
-convert
-converthex
-lines num

Table B.1: Command

Description
host/address of UE9 (192.168.1.209)
sample the first N ADC channels (2)
Detect NerdJack IP address
Set range on NerdJack for channels 0-5,6-11
to either 5 or 10 (10,10)
sample channels a, b, and c
sample each channel at this rate (8000.0)
convert output to volts
convert output to hex
if set, output this many lines and quit

line arguments to Ethstream

B.4.1 Windows

There is a Windows installer in the subversion repository to install NerdJack pro-

gramming tools located at . /installer/installNerdJack.exe

Run this installer, and it will automatically install the binary image, the program-

ming tools, and the USB drivers.

Now "nerdconf ig" should be in your system path and usable from the command

line.

B.4.2 Mac OS X and Linux

Because of the wide variety of Unix systems, it will probably be necessary to install

the software from source, though some binary packages can be made available. In

order to use the tools, both Python 2.6 and libusb 0. 1. 12 must be installed.

Download those packages and follow the appropriate installation instructions.

They can probably be installed from the package manager of the Linux disribution.

After those libraries are installed, dfu-programmer must be installed. The latest re-

lease from the repository should be used. It is located in ./dfu-programmer/. Newer

releases from upstream might fix problems. The current version works with almost

all firmware installs, but an off-by-one error in it is unable to program certain FLASH

locations according to a list of fixes applied to the code upstream. The newer version

claims to fix this but has been untested for lack of a good failing test case on the

current version.

Copy the source distribution to th local machine. Simply navigate to its directory

and type, "./configure && make && make install"

Next the nerdconfig tools should be installed. It is a standard Python distutils

package in . /nerdconf ig/

It should be installed by typing "sudo python setup.py install" from the

package directory.

Assuming your system paths are configured appropriately, "nerdconf ig. py" should

be in your path. Occasionally the Python "scripts" path is not included in the sys-

tem path, so it should be added if necessary.

B.5 Programming a NerdJack

Programming a NerdJack requires a power supply and a USB cable. It can be any

standard USB to mini-USB cable for the purposes of programming. A cable from a

digital camera works well. The fourth DIP switch on the NerdJack should be flipped

to its programming position (ON).

Connect the NerdJack to the PC and power it on. The operating system should

detect the device and may give some notification. On Windows open a command

prompt and type "nerdconf ig". Unix users should use "nerdconf ig. py". This util-

ity will detect the NerdJack and print out its current TCP/IP settings, serial number,

and MAC address. If the NerdJack is blank, it will configure the NerdJack with stan-

dard IP settings, a random MAC address, and the stock NerdJack firmware. Typing

"nerdconf ig -- help" should print a list of options that nerdconfig understands.

"nerdconf ig -R" should print the firmware revision on the attached NerdJack.

After programming the device or changing its settings, be sure to flip the pro-

gramming DIP switch back to the OFF position before use.

B.6 Building a NerdJack

In the subversion repository there is a section for NerdJack schematics in:

./schematics/NerdJackv4/

These have been processed and configured for use with 4PCB's board manufac-

turing service. The board is a small two-layer PCB. In the same directory there

is a bill of materials with Digi-Key part numbers for all parts that can be bought

there. Some pieces (in particular the Ethernet jack), are available from Mouser. The

silkscreen on the board and the part designators in the BOM should be sufficient for

building the device. A letter is enclosed in ./documents/ suitable for delivering to

Proxy Manufacturing.

B.7 Pinouts for NerdJack

The NerdJack device has a few connectors with important pinouts. The main one is

the Molex power connector. The silkscreen labels the four pins as -12 Volts, +12

Volts, +5 Volts, and GND. This is the pin order from left to right.

On one edge of the board is the prototyping connector for connecting the analog

channels. This section can be populated either with header or two-level screw termi-

nals. If populated with screw tabs, the upper level tabs are all shorted together and

connected to the analog ground plane. The lower 12 tabs are connected to the analog

channels 0 to 11 on the NerdJack. They are sequential starting from the side marked

CHO. If populated with header, the back pins are connected to AGND, and the front

pins are connected to the channels in sequence from CHO. In effect, they are oriented

identically to the screw tab connector.

On the top edge of the board there is a DB15 and a DB37 connector. The pins

are numbered in the standard way for DB connectors with Pin 1 for each connector

closest to the left side of the board toward the Ethernet connector. On DB connectors

the pins are numbered sequentially from there on the wider part of the connector.

Numbering then continues from the same side as pin one. For example, the two

Pin Label AVR32 pin
1 3.3 Volts Output N/A
4 CS1 PA14
5 MOSI1 PA16
6 TCA1 PB25
8 GND N/A
11 GND N/A
12 SCK1 PA15
13 MISO1 PA17
14 TC_B1 PB26

Table B.2: DB15 table pinout

leftmost pins on the DB15 connector are 1 and 8, while the rightmost ones are 8 and

15.

Unmentioned pins are unconnected. The DB15 connector breaks out SPI port 1

from the AVR32 and the Timer Counter pins Al and B1. The table mentions the

function and the AVR32 name of each pin. The pinout for the DB15 connector is

given in B.7.

The DB37 connector breaks out a USART serial port and the analog channels.

Its pinout is given in Table B.7.

The last connector is the JTAG connector between the two DB connectors. This is

meant to mate with the JTAG ICE MKII programming device from Atmel. The pin

numbering is labeled on the board and does match the programming tool. Because

of the USB bootloader, this should not be required unless debugging operations are

needed in the future.

B.8 Device Overview

The NerdJack device consists of both hardware and firmware components. From a

hardware perspective, it has two AD7656 analog to digital converters connected to the

SPI bus of the AT32UC3A0512 microcontroller. These devices are controlled through

various control signals supplied by the microcontroller, and they deliver data via their

SPI port. The microcontroller has a 256 Mbit SDRAM peripheral to allow it to buffer

Label
GND
USARTTXD
GND
GND
CHI
CH9
CH7
CH5
CH3
CHI
GND
USARTRXD
3.3 Volts Out
Analog GND
CH1O
CH8
CH6
CH4
CH2
CHO

AVR32 pin
N/A
PA1
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A
PAO
N/A
N/A
N/A
N/A
N/A
N/A
N/A
N/A

Table B.3: DB37 connector pinout

Pin
1
2
8
10
13
14
15
16
17
18
19
20
27
30
32
33
34
35
36
37

samples in the event of network congestion. Whenever it is unable to send data, it will

continue sampling into its buffer until the connection is formally terminated or the

buffer is overflowed. The device also has an Ethernet subsystem to deliver data. This

port can be connected to any LAN or directly to a computer using standard TCP/IP.

It's IP settings are configurable using DIP switches on the board, and the meaning

of those DIP switches can be configured during firmware programming. Finally, it

exposes a JTAG port and USB port for firmware installation.

The firmware uses a custom combination of lwIP 1.3, a lightweight TCP/IP stack,

and FreeRTOS 5.0.4, a free realtime operating system. The application itself makes

use of interrupts to sample the ADCs, pull data off of them, and deliver data to the

Ethernet port. FreeRTOS helps ensure that the system meets realtime constraints.

The software itself is built on Atmel's Software Framework 1.4.0 and relies on it

for drivers that access the hardware. The entire package is compiled using Atmel's

customized version of the GNU GCC toolchain and is written in C using Newlib.

The computer software component of the NerdJack consists of the utilities to

retrieve data from the NerdJack and install its firmware. The primary method for

installing this firmware is through the USB port. There is a Python 2.6 program

"nerdconf ig" that is responsible for programming the device and altering its IP

configuration. Internally it uses libusb in conjunction with dfu-programmer. This

utility is available for any platform supported by libusb. Another program called

"ethstream" is reponsible for communicating with the device for data acquisition.

It can configure which channels to sample and the sampling parameters. It will

then display the sampled data to STDOUT so that it can be embedded in larger data

processing programs.

B.9 Updating the Firmware

For day-to-day usage, this should not be necessary, but in the future a firmware

change may be useful. To do this, a development environment must be set up.

B.10 Building the development environment

First the necessary tools should be installed. From Atmel's home page, the GNU GCC

Toolchain for AVR32 should be downloaded. They have binary distributions for a

few platforms and a source distribution available. I have had trouble making some of

their code compile on an unsupported platform, but the problems may be fixed in the

future. Atmel provides documentation for installing those pieces. Since Linux is not

used on the NerdJack, the compiler should be set up for standalone operation with

Newlib as the C library. These are also available from bucket .mit .edu in zacharyc's

home directory under nerdjacksupport.

A newer version of the Atmel Software Framework for the UC3A should also be

downloaded if required. This will allow for newer drivers in case they are required

or useful. For the most part, the framework files can be imported directly into

this project assuming no API changes were made. All of the application code is

under MAIN and depends on the config.mk file in the project root. Some fixes were

applied to the MACB driver and to the SDRAM controller driver. In particular, the

Framework's version of FreeRTOS is incompatible with the current version, so some

changes will be necessary should a driver update be desired. The Framework also did

a poor job implementing the portable layer for lwIP, so that should not be changed

without good reason. The standard Makefile was also changed to allow the firmware

to be versioned.

From there, a standard Makefile manages the configuration of the project, and

nerdconfig.py can be used to program the device. Nerdconfig.py depends on an ex-

ternal Python package "intelhex," but this is included in the distribution.

B.11 Remaking the Windows installer

This is harder than it should be. Windows is required for making the Windows

installer, though it is not too difficult.

The Windows machine will need Python 2.6, NSIS Installer, and py2exe for

Python 2.6 installed.

The first step after installing the prerequisites is to have binary copies of the

various executables. You need df u-programmer. exe, and ethstream. exe. These

can be cross-compiled using MinGW from a Unix platform or done in Windows with

the MinGW environment. See the README files in those directories for cross-compilation

suggestions.

These need to be placed in the appropriate place before beginning. The source

code in subversion already has a binary copy of libusb-win32 included. The two

executables need to be placed in utils under the nerdconf ig tree. The hex file of

the NerdJack firmware should be placed under extras, and any desired changes to

default IP settings should altered in "default. csv".

Now, navigate to the nerdconf ig directory and run "python setup. py py2exe".

This will generate the executable and support files under "dist". Copy this folder

into the "installer" directory. Now just right click the "nerdj ack. nsi" script and

compile it using NSIS. This will produce a bundled installer in the directory for your

usage.

B.12 Known Issues

There are some problems with the NerdJack that need to be recognized.

First, autodetection is overly simplistic. In general, UDP broadcasts do not prop-

agate through routers. As such it might not be delivered if the NerdJack is in a

different subnet. If there are multiple NerdJacks on the local network, the first one

to respond to probing will be accessed.

Next, throughput is much degraded when high channels are used. When high

channels are used, the lower ones must be read first. This means that sampling

channel 11 is much slower than sampling channel 0. For highest throughput, sample

a continuous block of the lowest channels.

The NerdJack cannot sample at arbitrary frequencies. It uses a 66 MHz system

clock. It can only sample at divisions of this clock. This means that there may be

desired frequencies that it cannot do. A warning will be displayed and NerdJack will

sample the valid frequency closest to the requested one.

B.13 Customizations to the stock Framework

A few changes were made to the stock Framework.

First, FreeRTOS was manually updated beyond the old framework version. This

was done because some of the V5.0 API was very useful and required no changes to

the portable layer. The version in the framework was part of the older 4.7 FreeR-

TOS. The main change was that some of the functions called from ISRs changed

their type signatures. These have been fixed in the MACB driver, and they may

need repair in the future if the framework is updated. Also, the portable layer's

portENTERCRITICAL macro was changed. The old implementation disabled all inter-

rupts. However, the Atmel MACB driver sits in a "critical" region for the entire time

it is sending a packet. The new implementation only disables interrupts zero to one.

The MACB interrupt was demoted in priority to one. This was done because the

interrupt handler responsible for initiating transfers from the ADCs is an incredibly

simple routine that must be done even in a critical region. This is safe because that

interrupt has no direct interaction with FreeRTOS or any running task.

Second, lwIP's portable layer was repaired. The Framework layer had a problem

with a race condition that Atmel has not yet accepted upstream. When Atmel up-

dated lwIP in the framework from 1.2 to 1.3, they did not implement the API changes

to their drivers.

Finally, the stock ethernet interface driver was moved into MAIN and altered.

A new version could be integrated from a newer framework. This was necessary

because the framework version hardcodes a MAC address and TCP/IP settings. The

new version examines the Flash User page to determine these values. It also uses the

DIP switches during bootup for configuration.

B.14 Software Overview

B.14.1 FreeRTOS

This is a free real time operating system kernel used in the NerdJack. It allows mul-

tiple simultaneous tasks to share a processor. It provides a scheduler and priority

system to ensure that the highest priority "ready" task is always running. In addi-

tion, there are queue and semaphore primitives to manage intertask communication.

Because of this, adding new functionality to the NerdJack should be relatively easy

as long as the priority structure of the NerdJack is not perturbed too much.

B.14.2 iwIP

This is the LightWeight IP stack used in the NerdJack. It has a full-featured custom

API as well as an interface to the standard BSD Sockets API. It can allow so-called

"raw"l connections, but these are not used in the NerdJack. The stack itself is highly

configurable through "lwipopts .h" to control which features are compiled in as well

as how its memory should be used. It is presently configured to have a lot of buffer

space for sending packets.

The NerdJack program can retransmit packets independent of the lwIP stack, but

it uses the error handling of the stack when possible.

B.14.3 General Program Structure

The program has an interrupt-driven structure that can make following its flow dif-

ficult. It relies on a few different Tasks that are readied by each other and external

interrupts.

During bootup a few tasks are started, including a "datastream" server, an "au-

todetect" server, a "command" server, a "sample manager", a watchdog timer reset-

ter, and the underlying lwIP stack. Interrupts are attached to the PDCA controller

and the analog to digital converter ready signals. A brief description of the tasks

should be helpful.

The Autodetect server is available for autodetection of the NerdJack. It listens on

a specific UDP port and simply responds to any packets it receives on that port. This

permits the computer software to perform a UDP broadcast on that port to find the

IP address of the NerdJack. The watchdog timer resetter simply resets the watchdog

timer on a regular basis. If the NerdJack crashes, this should reboot it.

The Datastream server is responsible for delivering data in tandem with the Com-

mand server. When a TCP connection is opened on the appropriate port to the

command server, it expects a command word. This should tell it the range, the

desired channels, and the sampling rate. It then uses this to configure the ADCs

and start sampling. The command server can also rewind sampling to retransmit

old packets that might have been lost. The samplemanager task is responsible for

actually configuring the ADCs. This was done to centralize access to the ADCs so

that different tasks could easily cooperate on them.

The ADCs are internally grouped into channel pairs that are each connected to

PWM generators in the AVR32 microcontroller. These generators are configured to

the desired sampling frequency by the Sample Manager task, and the desired channel

groups are activated. Because these generators are independent of the CPU, they

should be as accurate as the crystal clock on the NerdJack board.

The ADCs signal the end of a conversion by lowering their BUSY line. This is

connected to an interrupt on the AVR32 that is connected to the DMA controller.

This high priority interrupt simply starts the DMA transfer for data from the SPI

port to the next available spot in RAM. DMA simply copies data from one part of

memory to another without CPU intervention required. It can signal the CPU when

the transfer is complete.

When the DMA controller is finished with its transfer, another interrupt is fired.

This interrupt reloads the DMA channels and determines whether a full Ethernet

packet of data is ready. If it is, it uses a semaphore to wake the packet maker task.

The packet maker task reads data from the scratchpad used by the DMA controller

and assembles it into a packet suitable for Ethernet transmission. The semaphore used

here is not a standard FreeRTOS semaphore. Instead it is a crude implementation

of a semaphore involving enabling and disabling interrupts before accessing a shared

variable with the interrupt handler. This was done so that the DMA interrupt could

be of higher priority than FreeRTOS. Because the Ethernet driver starves the OS of

processing time during heavy load, data was being missed. This way the interrupt

can be of higher priority without using the FreeRTOS mechanism for readying the

packet maker task. It was also necessary to have the DMA dump to internal SRAM.

The packet maker task copies data to the external SDRAM. Finally, the Datastream

task copies it back. This excessive data movement was done because the external

SDRAM is too slow to meet the realtime constraints of incoming data. It is fast

enough for the application, but its latency is too long.

Because the channels are sampled in groups of two, it might be the case that

unwanted channels were sampled. The personal computer must receive and discard

unwanted data. This turned out to be more reliable than having the NerdJack selec-

tively send data. If only sequential channels starting form zero are sampled, there is

no wasted bandwidth because the data is written directly into packet form from the

DMA controller.

When the datastream task receives the semaphore from the packetmaker task, it

delivers the assembled packet to lwIP for transmission. This task proceeds indefinitely

until the TCP connection is closed.

Another function is the serial server. The NerdJack can accept Telnet connections

and transmit characters out its serial port. It can also echo received characters to the

Telnet terminal. This is not presently used for anything other than demonstration

purposes.

96

Appendix C

NerdJack Analog-to-Digital

Converter Schematics and Layout

C.1 Schematic

The next six pages contain the schematics for this device produced from CadSoft's

EAGLE layout program.

CN - - cC

Lu < M . CD D

j r>YO zz o - O & o-

DM PAM~lrCM~)Pl 2 D
PA?13ULPA2 - o a- cL - - - c- - -aa a-EL a .0-1_ PX2 4

m PA3 PX3 10 7

> A 44 12 DR
COPA4 PX4

PA5 PX5 24 05
pB 41 DAG >S 26 04P A 41 p 3 pP 4 0 2 3

PA7 PX7
48 PAl PXo 33 2

8PA9 PX9CSn 48 PA1 0 PX1 0 8 DnPAl1 Px11 40 1
PA12 PX12 42
PA13 PX13
PA14 PX14 46 u
PAl5 PX15
PAl6 AT32UC3A0512 PX16 61 33n li
PAl7 PX17

62 PA18 PX18 65 A1
64 PAl9 PX19 67

PA20 PX20 69 A
73 PA21 PX21 j9 A13 uv

PA22 PX22 9
PA23 PX23

EP 76 PA24 PX24
7 PA25 PX25 92ND

PA26 PX26 101 AOQUT
PA27 PX27

60 PA28 PX28 105 AO
122 PA29 PX29 107 A5
123 PA30 PX30 110 A4

PX31 112 A T
PC52 114 A2 Op 2R7n33n22u132 PC4 11

)-LJn15 P4PX34 120 [Q 0 (2ND (2ND
124 PC3 PX34 135

PC2 PX356 PC PX36 137
5PC PX37 140 DDOUT

PX38 142 D12
R5 VBUS PX39 144 011 L=t 6 J b ' 1 -aL-

56

-WA DM
R4 39 DP TCK 129 TCK T n 27n 27n 2u

U TDO 130 TO
23 RESET N -Nm TDI 131 T01 £3Q - V T

- TS 128 TMS _L S5 _L 5 _L;2 L 5> 1 U UW w wn TMS
c' V3 81 VDDANA' w 0' DC' J '- 1"i Isr

00000oo 00000000 000,l~l,00000 I T33 'Tn 33on 33n Tlifl0nADVREF 0 L1 L1 1) 1) 1
+ ~62 AVE0 00000 ZOOQ

1 1
r

63AGND 1 ooo M n z 0000 zzzzzzzz o) -
GND

*93 +-V3
C TITLE: nerdjackC \> /

01

Document Number: RV:

__-Date: 7/08/2009 II:30:49a Sheet: 1/6

Figure C-1: The main microprocessor

Figure C-2: Ethernet PHY

X2
>A 1 ,9
+2 10

3 11
C 4 C 12
MOS 5 L 13 GND

7 15

a
GND

X1

J11(20 USR RXD

1 2 -CHO _L AP U X1 21
-3 4- CH1 GND 3 22 -- = CH2 4 23

CH 5 27 B-.----
0 1

I
- - 9 10 m - -C 46 25

- - 11 12 CH 57 2

13 14 H6O >
15 1 m-- 28

--- =17 18 CHO G 10 29
=C B1192 H9-I , 30

21 22 -H10 GND 12 ' 31
23 24 H11 3 0

1 ~1 34 C6
C616 35 C4

za6 CH17 36 C2
CD CH118 37 C0

1 2 -CHO
f 3 4 CH1 GND

5F L6 CH2
7 8 -- CH3

9L 10CH4
1 12CH5

13 4 CH6
15 16 CH7
17 18 CH
19 0 CH4
1 12 CH

13-14 OHS
15 1 W 01+

23 24 CH11

,2 TITLE: nerdjack

< Document Number: REU:

Date: 7/08/2009 11:30:49a Sheet: 3/6

Figure C-3: External connectors

A7 23

AA.A 24J

A4 25 j

30
AR 31

AA 32

All 34

A13
A14 b

A17 21

DOvMn 156

4.7k CS1N 193

GND DK

Al D01
A2 DQ2
A3 DQ3
A4 004
AS 006
As D06
A7 DQ7
AB
A9 DOB
A10 DQ9
All 0 010
A12 DQ1

DQ112
BAD 0013
BAl DQ14

D015
DQML
DQMH VDD1

VDD02
-WE V0003
-CAS VDD04
-RAS VOl
NCS V002

VDD3
CKE
CLK VSS1

VSS2
VSS3

VSS01

NC VSSO4

2 Q ID[O..15]
4 n

13 n

42 n

SO

3

4

27

54

12
6

Q2

22p 22p

GND

SHIED SHIELD1

.7u .7u' 00 00 3nT3 3 n HEL ELD3SHIELD3 S 4IILD
SH ELD4

GND

MolexWaldem USB AB 56579-0576
GND

_1-
NN

JATA 1 2
JTAS
JTAG M 5 6 RSETEVT 8

JT1 GND

T y O

GND

a

GND
C
a:4

TITLE: nerdjack

Document Number: REV:

Date: 7/08/2009 ii:30:49a ISheet: 4/6

Figure C-4: Memory, Power and USB

EDO * EC

U37T

3 VIN VOUT 2 +

_.C45
00 TAB 1

C46

uF

TITLE: nerdjack

Document Number: REU:

rDate: 7/08/2009 11:30:49a Sheet: 5/6

Figure C-5: First ADC

2 -STEJY AVCC4 40
GDDGND2 AVCC3 0

JE]+ VCC V3 7-
RANGE AGND3 B T, lOn
RESET AGND2
- /10 0 W/B V2

O30 VSS AVCC2 35 -p
3 VDD AVCC 33SMC2CAGND vi 3

000n

(D

TITLE: nerdjack

Document Number: REV:

Date: 7/08/2009 ii:30:49a Sheet: 6/6

Figure C-6: Second ADC

C.2 Layout

The next four pages contain images of the two layer circuit board for the data acqui-

sition device. The copper layers omit the ground plane for clarity, and all vias are

shown on all images.

104

105

Figure C-8: Bottom copper layer without ground plane filled

Figure C-9: Top silk layer

0 o o
0

g
o

 -

o
0

on
0(

0
~

og

'C
oA

0
1

6
U

0

A
 0

0

0
0

H
,

V
1
o

O
as

 o

1

0
0

m

so
oc

_
*

O
'*

0
00

]-
V

_0

IS

IC

,

_
~

L
)a

4

-
0o

o-

0 o

o
T

B
K

o

0
0

0
00

0
TC

0

0
0

0
"

T
9K

03

3
0

0
W

O
K

0

0

*

0
o

0
0

0
0

0
00

0 0

0
0

0
0

0
0

g

9
i

0C
 a

~

0
00

0

0
0

o
o
o
a

o
u

0
0
0

0
0

00
00

00

0
0

b

0
O

 00
 C

 o

0
0

0

0
0

0
0

0
0

00

0
 0

00

0

0
0

00

00
**

0

0
0

0

0 0
0

0 *
0

0
0
.

0
0

66
s

a
m

c3
0

0

C
0 00

0~
 0

 0
 0

0
0

0
o

o 0
0

00 n
0

0n
O

0

0
0
0
0

0
0-

0

0
0
0

0
0

0

0
0

0
0

0
00

0
=

0

0
o

Q
0

0

0
0

0
0

0

0
00

0
~0

0

00

O
e

0
0

0
o

0
.

In

0
00

0

A
A

0

o
c!

0

o
(v a

0

0
0

0
0

0
0

0
0

0
0

U
R

0

T
nL 00

0
0

0
0

0

~D
o

*
0o

o

0
0

n

-
0

0

|
oa~

 .
.

+-
 o

v
i0

e 1
P

S
0

0
o

00
o

0
0

-
oC

+

+

+
N

-

"-

o
T

n
c
6

o
cu

 g
o

T
n
T

o

o
C

IS
a

o

o

o
o

o

o

o

o

o

o0

0

0o

O

O
0

0
cO 0

0

0
0

0
0

00
+

0

Q
o

-+

0O

Q
o

0
0 a
oO

+0

o
o

O

oO

*
*

04
O

0
0
0
0

a

0

o

o

o
o

o

o

o

o

0

0
O

10
8

O
0

0

-

T
8

G
co

T
O

0

0

K
0
7
*

0

o
0

Q
~. 0 0 H
A C 0 H
A

H
A 0 S 0

3

Appendix D

BurnIt Schematics and Layout

D.1 Schematic

The following page shows the BurnIt schematic.

109

LEES
BurnIt

Zachary C1 i f fur -d 29/2008

Figure D-1: BurnIt Schematic

D.2 Layout

The following pages show the Burnlt PCB layout.

111

cq1

0-0 0-

0 00

OMO O0 0000 O 00000

00 00000 0

C:\Documents and Settings\Zach\Desktop\burnit.pcb (Top layer)

Figure D-2: BurnIt Top Copper

C:\Documents and Settings\Zach\Desktop\burnit.pcb (Bottom layer)

Figure D-3: BurnIt Bottom Copper

0
0 0 0

0 0 0

0

LM78

TF
04

0

IIO

12
0

L-
3
cu.

22uF

ci+

S0 0

,0-

200 ohm 0

-]F-e

.luF 0

(Y 0

+ n

P *N

LED

10K ohm

10K ohm

6.115 BurnIt All V1.0
Gift of Professor Leeb,
Steve Whittaker,
& Zach Clifford 2

S
S
S
S
S
S
S

.luF

1

-U-

-w 0@

P 12
.3

0 0

0 Diodes

MAX233

2V10 2051 PIC

C:\Documents and Settings\Zach\Desktop\burnit.pcb (Silkscreen & pads)

Figure D-4: BurnIt Silkscreen

*0

0 0
*040

* 0
* 0

0

24

*

0
y

Appendix E

IQ Demodulator Schematics and

Layout

E.1 Schematic

The next three pages contain the schematics for the I/Q Demodulation circuit and

power driving circuitry produced from CadSoft's EAGLE layout program.

115

COILS IN INPUTGAIN
X2-2

C3 >2

FLTESTPOlI 015KCT

1.59k N I
RA

Dc 1 -R13 + << .

T LF356

GND GND 7

S0

- R51

s o g
GND uF

DEMODULA

?TESTPOINTSO501 5KCT
10 SENSE SEN§EAa IfnFLAnn n

R49

R50

A 10

T uF
GND

TESTPOINTSO5015KC
IRA67 81

R68
IN

UNUSEDU

GAIN

e 620

GND

TION
1 IN2 16JPF _ C31SFNRFSW 2 D1 D2 15SFNSFW GND

A 31 2 14R 1uF
4 3 S 1 S 2 1V

V GNU VD 12
65 34 33 1 +

) 7 D4 D3 10
GN M IN4 IN3 § GNU

GND GND

1 INI IN2 6 4SIFNSFW 2 D 02 15

3 52 14
>YSS YOU 13

6 GNU YL 12
3 S 3 10 +

D4 D3 10 GND

GND IN3 GND >

HPF . GAIN

LLTESTPO N -a B5KCT TO AD

R4 IDEM TESTPOINTSO5015KCT

IGAIN
IDEMODGAIN I

0)LF35656 - 5

GND G 4 GND u uF

lT1uF1

GND
1.59k

19

1uF

LPF
O CHANNEL

1.59k 1.59k 1.59k
DA PaA pA - fAp

R3 C 77fLC0F
1.59k .N 1.59k 15k

R4 R5 R8

GNU Tiu

ov,

L+ GAIN HPF GI

14TESTPOINTS0501AKCJ TESTPOIN' $25K 9 TOAUC
AW OEM U TESTPOINTSO5515KCT

u6F R40
OTIN

GNAUN

z c 0 *6-0 DEMODGAIN
ONOTINco 0) LF356 If5-4V

GND UNUED G.1uF

15~9 GND = 53
1uF GND GN .1uF

GND

TITLE: outerboard

Document Number: PEU:

Date: A/30/09R 9:33 PM
Date 8/3/09 :33 M I!himnt! I1/q

Figure E-1: The analog filter stages

G N3U0

GNID

I CHANNEL
LPF

IA A1.59k 1 .59k 1 .59k

5k1 uF .luF, .1uF
1.9 1.59k 1.59k

28
uF T ND

??JC29

T uF
GND

F
GND

AC18

T uF

GND

SI-lalSCSW

Sheet:
1/3

40

TuF
GND

£PQ41

IuF
GND

442 443

IuF TuF

GNU GND

4 36 2.t37
TluF TuF

GND GND

436
TuF

GND

DAC6573

GNUU 4 GND

UART

- ? CllTA

+ .1uF

JTWA42IND

TITLE: outerboard

Document Number: REU:

Date: 8/30/09 9:33 PM |Sheet: 2/3

Figure E-2: DSP and supporting hardware

22-23-2021
- X2-1

TO COILS

GND

POWER STAGE

I AND Q GENERATION

4-40STANDOFF4-40STANDOFF4-40STANDOFF4-40STANDOFF
U$6 U$5 U$2 U$1 jP1

_ _ _ _ _ _ _ _ __C26 C21 4DM0 4/u ONO>a

C23f C2 GN 47uF 47u
GND 1U .11F

H I PWR 04 -u .u GND

GND C

HI PWR IN

SY3 4j- 32 49 2
2 ON fJ7F~UPNE V.FUFGNt47uF u4 N .uF . uN

GND L
PWR T GNO T GND

LO PWR IN

_OUAD $TESTPOINTSO5015KCT
GND

- - IN OUT 0,

3Y - GND + ADJ gTy +
TESTPOINTSO5015KC|T C1

LD117ADT-TR
GND

34

.1u
4uF

GND GND

NF
1uF

GND GND

3.3 VREG

uFTD
0 ND

UNUSED 0 NOTCH FILTER

G 57 58
GON uF T uF

GND AF2N60Q10

UNUSED I NOTCH FILTER

C59;kC60
GN uF T uF

'- GND

AF2N60Q10

GND GND IDEMOD

UNUSED BNC CONNECTIONS

JP5

GND

JP6

GND

TITLE: auterboard

Oacument Number: PEU:

Date: 8/30/08 8:33 PM Sheet: 3/3

Figure E-3: Power, modulation generators, and 60 Hz notch filter (currently not populated)

E.2 Layout

The next six pages contain images of the four layer circuit board for the demodulation

and drive circuit board. The copper layers omit the filled planes for clarity, and all

vias are shown on all images.

119

Figure E-4: Top copper layer

0 0 0

00
00

o 0 0

0

0 L~

0 0 0 IeI-

Ca 004

0 00

02 Oat d

0 0 0 0

0a 4 0

o0o o O a

Figure E-5: Bottom copper layer

0 0

N 0

O
N

D
 o

 0
5I

N

I7
u

F

C
32

1.
59

k
5

E
3B

 1.
5
9
k
R

4
7
6
b
U

P

m
R

1 6

00
Q

E
O
D

u
r

A

6

C
53

R

R
0
2
6

N

L
T

iB
12

8
.i
u
F

O

06
6E

0
4
0
0

~ 0
1

0
~

R
6
6

,1
5

I
R

0
5

4
8
R

6
9

t
6
0
6
T
7

0

0
0

0

-
N

0
.iu

F

V

0
=p

F
D

A
C

57
30

40
k

6
i0

q
2
F

I
r_

0

3

B
U

Z
ci

0

.iu

U
F

4

k2
R

U
12

)
o
0

-

0
L

i N
E1

g"
t

0
aD

.u
F

=

o

.F

C
5
5
0
 Iu

G

A
I

i.
9
k
R

4
4

U
7

1G
A

IN

c
5
6

H

R
I5

C

j1
.5

8

E
N

G
P

E
e
s

E

/iM

4

E
S

S
C

39

P
%

r

lI
P

4
9

?
)

S
P

S

R
5
0

tu
F

so

~ 5

5
0

0
dB

 A
ZF

I

0
IR

A
W

P

72
.
i
u
F

O
R

I.

0

0a

a
F

o

-

~f
lg

~
&

0
 0

0
7
4
A
I
~
1
5
t
4

Q

0
a

0

IS
O

m
 N

W
E

'

S
n C

L n

0
.I

U
F

R
29

02

000 q

o
3

oO
N

03
6

12
2

o
0

e0

rr

0

0

0
0

0
2

0

0

0

0

0

0

0

0

(2

0

00

0
0

0
Iw

o
C

0u

u
.

0G
t

15

0 (*)
0

0

0

09

0
00

o
o2

0
0

0

0
0

0
0
0
 0

22V

"
'it-

0I
m

K
jtE

0
 20

0O
D

00

0
A

nzab

e

0
0

5M4 00@
 0 ol

123

0
0

0
0

0

0

0
00

0~
00

04
~

n
0 0

coco cocoa coca 0 0 0 0

0 0

0 D D 0

DD
00

D-

D DD D
62~ dD

0

0 0 0

0 0s

0

0D..
0 -O 0 0

- -- - -0----- -- - ---- -- ---- ----- 0 ----- C --- ----------

0

9 0 0 0 0

0 0

0D0% a c C

E- D

Figure E-8: Copper layer 2 with ground plane not filled

0 cocoa 00000 coca 0.

0 D0 0 D.

13 I

0D

e13 13

13 I
13 D

13 I

.. .~j
1

..................... W...........--............--..--.............................

a D 0

13 a a

... ..-..-..- -....1.........---- ---...-..-...

Dn

13a D D D3 1 0

.... ... 0 ---- --- 13 13... 8- a.m D D C 1

c.0 00 ~
0 0 000

00
130 13 0 0D D

L D... D D D.. D

Fiur E-9 Cope lae ihpwrlnsntfle

126

Appendix F

NerdJack Source Code Listing

F.1 Firmware Source Code

This section contains the source code for the parts of the Data Acquisition Device that
were modified from Atmel's Software Framework. Operating System files and drivers
are not included in order to save printing space. These can be downloaded from
Atmel's website. The included program uses the Software Framework version 1.4.0
and compiles using Atmel's modified GCC toolchain version 2.2.1. The framework
was updated to have FreeRTOS 5.0.4 and lwIP 1.3.0. Minor changes were made to
the driver layer to fix bugs and to match the new API of FreeRTOS 5.

F.1.1 FreeRTOSConfig.h

/* This header file is part of the ATMEL AVR32-SoftwareFramework-1.2.1ES-AT32UC3A
Release */

7* This file is prepared for Doxygen automatic documentation generation.*/
7*! \file

*

* \brief FreeRTOS and iwIP example for AVR32 UC3.
*

* - Compiler: IAR EWAVR32 and GNU GCCfor AVR32
* - Supported devices: All AVR32 devices can be used.
* - AppNote:

*

* \author Atmel Corporation: http://www.atmel.com \n
Support and FAQ: http://support.atmel.no/

*

/* Copyright (c) 2007, Atmel Corporation All rights reserved.
*

* Redistribution and use in source and binary forms, with or without

127

* modification, are permitted provided that the following conditions are met:
*

* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*

* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution .
*

* 3. The name of ATMEL may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*

* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR
IMPLIED

* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF

* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY
AND

* SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY
DIRECT,

* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*7

#ifndef FREERTOSCONFIGH
#define FREERTOSCONFIGAH

#include "board.h"

* Application specific definitions.
*

* These definitions should be adjusted for your particular hardware and
* application requirements.
*

* THESE PARAMETERS ARE DESCRIBED WITHIN THE 'CONFIGURATION' SECTION
OF THE

* FreeRTOS API DOCUMENTATION AVAILABLE ON THE FreeRTOS.org WEB SITE.
--

#define configUSEPREEMPTION 1
#define configUSEIDLEHOOK 0
#define configUSETICK-HOOK 0
#define configCPUCLOCKHZ (66000000) /* Hz clk gen */

128

#define configPBACLOCK-HZ (66000000)
#define configTICKRATEHZ ((portTickType) 1000)
#define configMAXPRIORITIES ((unsigned portBASE-TYPE) 8)
#define configMINIMALSTACKSIZE ((unsigned portSHORT) 256)
/* configTOTALHEAPSIZE is not used when heap_3.c is used. *7
#define configTOTALHEAPSIZE ((sizet) (1024*25))
#define configMAXTASKNAMELEN (20)
#define configUSE-TRACEFACILITY 0
#define configUSE_16_BITTICKS 0
#define configIDLESHOULDYIELD 1

/* Co-routine definitions. */
#define configUSECOROUTINES 0
#define configMAX-COROUTINEPRIORITIES (0)

/* Set the following definitions to 1 to include the API function, or zero
to exclude the API function. */

#define INCLUDE-vTaskPrioritySet 1
#define INCLUDE_uxTaskPriorityGet 1
#define INCLUDE-vTaskDelete 1
#define INCLUDE-vTaskCleanUpResources 0
#define INCLUDE-vTaskSuspend 1
#define INCLUDE-vTaskDelayUntil 1
#define INCLUDE-vTaskDelay 1
#define INCLUDE-xTaskGetCurrentTaskHandle 1
#define INCLUDE-xTaskGetSchedulerState 0

/* configTICKUSETC is a boolean indicating whether to use a Timer Counter
for the tick generation. Timer Counter will generate an accurate Tick;
otherwise the CPU will generate a tick but with time drift.
config TICKTCCHANNEL is the TC channel. *7

#define configTICKUSETC 0

/* configHEAPINIT is a boolean indicating whether to initialize the heap with
OxA5 in order to be able to determine the maximal heap consumption. */

#define configHEAPINIT 0
#define configUSE-COUNTINGSEMAPHORES 1
#define configUSE-MUTEXES 1

#endif /* FREERTOSCONFIGH *

F.1.2 conf-eth.h

/* This header file is part of the ATMEL AVR32-SoftwareFramework-AT32UC3A-1.4.0
Release */

7* This file is prepared for Doxygen automatic documentation generation.*/
7*! \file

* \brief Ethernet module configuration file .

129

*

* This file contains the possible external configuration of the Ethernet module.
*

- Compiler: JAR EWAVR32 and GNU GCC for AVR32
- Supported devices: All AVR32 devices can be used.
- AppNote:

*

\author Atmel Corporation: http://www.atmel.com \n
Support and FAQ: http://support.atmel.no/

*

/* Copyright (C) 2006-2008, Atmel Corporation All rights reserved.

* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*

* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*

* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution .
*

* 3. The name of ATMEL may not be used to endorse or promote products derived
* from this software without specific prior written permission.

* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR
IMPLIED

* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF

* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY
AND

* SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY
DIRECT,

* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef _CONFETHH_
#define _CONFETHH_

#include "arch/cc.h"

130

/*! Phy Address (set through strap options) */
#define ETHERNETCONFPHYADDR OxO
#define ETHERNETCONFPHYID 0x20005C90

/*! Number of receive buffers. Max ethernet frame size is 1526. A Rx buffer is
128 Bytes long. So 12 Rx buffers are necessary to store one max sized frame.
Multiply that by 2 for performance. */
#define ETHERNET_CONF_NB_RX_BUFFERS 24

/*! USERMILINTERFACE must be defined as 1 to use an RMII interface, or 0
to use an MII interface. */
#define ETHERNETCONFUSERMILINTERFACE 1

/*! Number of Transmit buffers */
#define ETHERNETCONFNBTXBUFFERS 10

/*! Size of each Transmit buffer. */
#define ETHERNETCONFTXBUFFERSIZE 512

/*! Clock definition - PBB clock */
#define ETHERNETCONFSYSTEMCLOCK 66000000
/*! Use Auto Negociation to get speed and duplex */
#define ETHERNET-CONFANENABLE 1

7*! Do not use auto cross capability. Unused because not supported by the DP83848
phy on the EVK1100. */

#define ETHERNET-CONFAUTOCROSSENABLE 0
/*! use direct cable */
#define ETHERNETCONFCROSSEDLINK 0

/*! Base address of the flash user page */
#define USERPAGEBASEADDR 0x80800000

7*! This is the structure of data in the FLASH user page
* It will line up with the data there.
*/

typedef struct __attribute_ ((_-packed__))

{
u32_t ipaddr [7];
u32t netmask[7];
u32t gateway[7];
u8t mac[3];
u8t serialnum [6];

} userpagedata;

/* ethernet default parameters *7
*! \ brief MAC address definition.
* The MAC address must be unique on the network.
* The lower three are set by the DIP switch settings from the User Page.

*7
#define ETHERNET-CONF-ETHADDRO OxO
#define ETHERNETCONFETHADDR1 0x04

131

#define ETHERNETCONFETHADDR2 0x25

#endif

F.1.3 conflwipthreads.h

/* This header file is part of the ATMEL AVR32-SoftwareFramework-AT32UC3A-1.4.0
Release */

/*This file is prepared for Doxygen automatic documentation generation.*/
/*! \file **

*

* \brief lwIP core & application threads configuration file .
*

* This file contains the possible external configuration of the Ethernet module.
*

* - Compiler: JAR EWAVR32 and GNU GCC for AVR32
* - Supported devices: All AVR32 devices can be used.
* - AppNote:

*

* \author Atmel Corporation: http://www.atmel.com \n
Support and FAQ: http://support.atmel.no/

*

/* Copyright (C) 2006-2008, Atmel Corporation All rights reserved.

* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*

* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*

* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution .

* 3. The name of ATMEL may not be used to endorse or promote products derived
* from this software without specific prior written permission.

* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR
IMPLIED

* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF

* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY
AND

* SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY
DIRECT,

* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES;

132

* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND

* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT

* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF

* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef _CONFLWIPTHREADS-H_
#define _CONFLWIPTHREADSH_

/*! define stack size for DataStream server task */
#define ethDATASTREAMSERVERSTACKSIZE configMINIMAL-STACKSIZE

//#define lwipBASIC-WEBSERVERSTACKSIZE configMINIMALSTACK-SIZE

/*! define stack size for lwIP task */
#define lwipINTERFACESTACKSIZE 512

/*! define stack size for netif task */
#define netifINTERFACETASKSTACKSIZE 256

#define ethWDTTASKSTACK-SIZE configMINIMALSTACKSIZE

#define packSTACKSIZE configMINIMALSTACKSIZE

#define COMMANDSTACKSIZE configMINIMALSTACK-SIZE

#define AUTOD-STACKSIZE configMINIMALSTACKSIZE

#define packPriority 4

#define ethWDTTASKPRIORITY (configMAXPRIORITIES - 1)
#define COMMANDPRIORITY (tskIDLEPRIORITY + 2)
#define SAMPLEMANAGERPRIORITY (tskIDLEPRIORITY + 5)
#define AUTODPRIORITY (tskIDLEPRIORITY + 1)

7*! define DataStream server priority */
#define ethDATASTREAMSERVERPRIORITY (tskIDLEPRIORITY + 3)

///#define lwipBASICWEB-SERVERPRIORITY (tskIDLEPRIORITY + 1)

/*! define lwIP task priority */
#define lwipINTERFACETASKPRIORITY (configMAXPRIORITIES - 2)

/*! define netif task priority */
#define netifINTERFACETASKPRIORITY (configMAXPRIORITIES - 2)

/*! Number of threads that can be started with sys-thread-new() in lwip *7
#define SYSTHREAD-MAX 8

133

#endif // #ifndef _CONFLWIP-THREADSH_

F.1.4 externalmem.h

/*.\ file externalmem.h */
#ifndef EXTERNALMEMH_
#define EXTERNALMEMH_

7*!Location in memory where packets are stored *7
#define ADC-SAMPLESTART OxDOOOOOOO
#define ADCSAMPLEEND OxD1FFFFFF

7*!Location of the SDRAM in the memory space *7
#define SDRAMSTART OxDOOOOOOO
#define SDRAMEND OxD1FFFFFF

#endif /*EXTERNALMEMH_

F.1.5 lwipopts.h

/* This header file is part of the ATMEL AVR32-SoftwareFramework-AT32UC3A-1.4.0
Release */

7* This file has been prepared for Doxygen automatic documentation generation.*/
7*! \file

* \brief lwIP configuration for AVR32 UC3.

* - Compiler: GNU GCC for AVR32
* - Supported devices: All AVR32 devices can be used.
* - AppNote:

* \author Atmel Corporation: http://www.atmel.com \n
Support and FAQ: http://support.atmel.no/

/* Copyright (C) 2006-2008, Atmel Corporation All rights reserved.
*

* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*

* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution .
*

* 3. The name of ATMEL may not be used to endorse or promote products derived

134

* from this software without specific prior written permission.
*

* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR

IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY

AND
* SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY

DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*7

#ifndef _LWIPOPTSH-_
#define _LWIPOPTS-H_

/* Include user defined options first *7
#include "conf-lwipthreads.h"

/*! Turn off debugging mode */
#define LWIPNOASSERT 1

/* These two control is reclaimer functions should be compiled
in. Should always be turned on (1). *7

#define MEMRECLAIM 1
#define MEMPRECLAIM 1

/* Platform specific locking */

7*
* enable SYSLIGHTWEIGHT-PROT in lwipopts.h if you want inter-task protection

* for certain critical regions during buffer allocation, deallocation and memory

* allocation and deallocation.
*/

#define SYSLIGHTWEIGHT-PROT 1

/* ---------- Memory options ----------- *

/* MEM-ALIGNMENT: should be set to the alignment of the CPU for which

lwIP is compiled. 4 byte alignment -> define MEMALIGNMENT to 4, 2

byte alignment -> define MEMALIGNMENT to 2. */

135

#define MEMALIGNMENT 4

/* MEMSIZE: the size of the heap memory. If the application will send
a lot of data that needs to be copied, this should be set high. */
#define MEMSIZE 12 * 1024

/* MEMPNUMPBUF: the number of memp struct pbufs. If the application
sends a lot of data out of ROM (or other static memory), this
should be set high. */

#define MEMPNUMPBUF 6

#define LWIP.RAW 0
/* Number of raw connection PCBs *7
#define MEMPNUMRAW-PCB 0

/* - --------- UDP options ------ -- */
#define LWIP-UDP 1
#define UDPTTL 255

/* MEMPNUMUDPPCB: the number of UDP protocol control blocks. One
per active UDP "connection". *7

#define MEMP-NUMUDPPCB 2

/* MEMPNUMTCP-PCB: the number of simultaneously active TCP connections. *
#define MEMP.NUMTCPPCB 4
/* MEMPNUMTCPPCBLISTEN: the number of listening TCP connections. */
#define MEMP-NUMTCPPCB-LISTEN 4
/* MEMPNUMTCPSEG: the number of simultaneously queued TCP segments. *7
#define MEMPNUMTCP-SEG 24
/* MEMPNUM-SYSTIMEOUT: the number of simultaneously active timeouts. *7
#define MEMPNUMSYS-TIMEOUT 9

/* The following four are used only with the sequential/sockets API and can be
set to 0 if the application only will use the raw APL *7

/* MEMP-NUMNETBUF: the number of struct netbufs. *7
#define MEMPNUMNETBUF 3
/* MEMPNUMNETCONN: the number of struct netconns. *7
#define MEMPNUMNETCONN 6

/* ---------- Pbuf options ---- ------ *
/* PBUFPOOLSIZE: the number of buffers in the pbuf pool. This is for data
* reception, not data sending */

#define PBUFPOOLSIZE 3

/* PBUFPOOLBUFSIZE: the size of each pbuf in the pbuf pool. *7

#define PBUFPOOLBUFSIZE 500

/* PBUFLINKHLEN: the number of bytes that should be allocated for a
link level header. */

#define PBUFLINKHLEN 16

136

* -- TCP options - --- *

#define LWIPTCP 1
#define TCP-TTL 255
/* TCP receive window. */
#define TCPWND 1460
/* Controls if TCP should queue segments that arrive out of

order. Define to 0 if your device is low on memory. *7
#define TCPQUEUEOOSEQ 1

/* TCP Maximum segment size. */
#define TCPMSS 1460

/* TCP sender buffer space (bytes). *7
#define TCPSNDBUF 7*1460

/* This defines when the buffer is "low" */

#define TCPSNDLOWAT 6* 1460

/* TCP sender buffer space (pbufs). This must be at least =2 *

TCPSNDBUFTCP-MSS for things to work. */

#define TCPSNDQUEUELEN 2 * TCPSNDBUF/TCPMSS

/* Maximum number of retransmissions of data segments. *7
#define TCPMAXRTX 12

/* Maximum number of retransmissions of SYN segments. *7
#define TCPSYNMAXRTX 4

/* Limiting retransmits and making the timers
* faster allows dead connections to die quickly *7

7/#define TCPTMRINTERVAL 100

/* Enable receive timeout processing so that we can have nonblocking

* receive calls

*/
//#define LWIPSO-RCVTIMEO 1

* DEFA ULTRAWRECVMBOXSIZE: The mailbox size for the incoming packets on a

* NETCONNRAW. The queue size value itself is platform-dependent, but is passed

* to sys-mbox-new() when the recvmbox is created.
*/

#define DEFAULTRAWRECVMBOXSIZE 6

* DEFA ULT_UDPRECVMBOXSIZE: The mailbox size for the incoming packets on a

* NETCONN_ UDP. The queue size value itself is platform-dependent, but is passed

* to sys-mbox-new() when the recvmbox is created.

*/
#define DEFAULTUDPRECVMBOXSIZE 6

137

* DEFA ULTTCPRECVMBOXSIZE: The mailbox size for the incoming packets on a
* NETCONNTCP. The queue size value itself is platform-dependent, but is passed
* to sys-mbox-new() when the recvmbox is created.
*7

#define DEFAULTTCPRECVMBOXSIZE 6

* DEFA ULTACCEPTMBOXSIZE: The mailbox size for the incoming connections.
* The queue size value itself is platform- dependent, but is passed to
* sys-mbox-new() when the acceptmbox is created.
*/

#define DEFAULTACCEPTMBOXSIZE 6

/* - --------- ARP options ---- --- -- *
#define ARPTABLE-SIZE 10
#define ARPQUEUEING 0

7*- -- ------ IP options ------ -- *7
/* Define IPFORWARD to 1 if you wish to have the ability to forward

IP packets across network interfaces. If you are going to run lwIP
on a device with only one network interface, define this to 0. *7

#define IPFORWARD 0

/* If defined to 1, IP options are allowed (but not parsed). If
defined to 0, all packets with IP options are dropped. *7

#define IPOPTIONS 1

/* ----- ---- ICMP options --- ----- -- *
#define ICMPTTL 255

/* - --------- DHCP options --- ----- -- *
/* Define LWIPDHCP to 1 if you want DHCP configuration of

interfaces. DHCP is not implemented in lwIP 0.5.1, however, so
turning this on does currently not work. *7

#define LWIPDHCP 1

/* 1 if you want to do an ARP check on the offered address

(recommended). */
#define DHCPDOESARPCHECK 1

7*

-Thread option--------------

*7

* TCPIPTHREADNAME: The name assigned to the main tcpip thread.
*/

#define TCPIPTHREADNAME "TCP/IP"

* TCPIP-T HREADSTACKSIZE: The stack size used by the main tcpip thread.

138

* The stack size value itself is platform-dependent, but is passed to

* sys-thread-new() when the thread is created.
*7

#define TCPIPTHREADSTACKSIZE lwipINTERFACESTACK-SIZE

* TCPIPTHREADPRIO: The priority assigned to the main tcpip thread.

* The priority value itself is platform- dependent, but is passed to

* sys-thread-new() when the thread is created.

*7
#define TCPIPT'HREADPRIO lwipINTERFACETASK-PRIORITY

* TCPIPMBOXSIZE: The mailbox size for the tcpip thread messages
* The queue size value itself is platform- dependent, but is passed to

* sys-mbox-new() when tcpip-init is called.
*7

#define TCPIP-MBOXSIZE 6

* SLIPIFTHREADNAME: The name assigned to the slipifiloop thread.

*/
#define SLIPIFTHREADNAME " slipif"

* SLIP_ THREADSTA CKSIZE: The stack size used by the slipif-loop thread.

* The stack size value itself is platform- dependent, but is passed to

* sys-thread-new() when the thread is created.
*7

#define SLIPIFTHREADSTACKSIZE configMINIMALSTACKSIZE

* SLIPIFTHREADPRIO: The priority assigned to the slipif-loop thread.

* The priority value itself is platform- dependent, but is passed to

* sys-thread-new() when the thread is created.
*/

#define SLIPIF.THREADPRIO 1

* PPPTHREADNAME: The name assigned to the pppMain thread.

*/
#define PPPTHREAD-NAME

* PPPTHREADSTACKSIZE: The stack size used by the pppMain thread.

* The stack size value itself is platform- dependent, but is passed to

* sys-thread-new() when the thread is created.
*7

#define PPPTHREADSTACKSIZE configMINIMAL-STACKSIZE

* PPPTHREADPRIO: The priority assigned to the pppMain thread.

* The priority value itself is platform- dependent, but is passed to

* sys-thread-new() when the thread is created.

139

"pppMain"

*/
#define PPPTHREAD.PRIO 1

* DEFAULT-THREADNAME: The name assigned to any other iwIP thread.
*/

#define DEFAULTTHREADNAME "iwIP"

* DEFAULTTHREADSTACKSIZE: The stack size used by any other iwIP thread.
* The stack size value itself is platform- dependent, but is passed to
* sys-thread-new() when the thread is created.
*/

#define DEFAULTTHREADSTACKSIZE configMINIMALSTACKSIZE

* DEFA ULT_ THREAD-PRIO: The priority assigned to any other lwIP thread.
* The priority value itself is platform- dependent, but is passed to
* sys-thread-new() when the thread is created.
*7

#define DEFAULTTHREADPRIO 1

/*! Use the thread- safe NETIF API for controlling the interface */
#define LWIPNETIFAPI 1

7*---------- Statistics options ----------
//#define LWIPSTATS 0

//#define LWIPSTATSDISPLAY 0

#if LWIPSTATS
#define LINKSTATS 1
#define IPSTATS 1
#define ICMPSTATS 1
#define UDPSTATS 1
#define TCPSTATS 1
#define MEM-STATS 1
#define MEMP-STATS 1
#define PBUFSTATS 1
#define SYSSTATS 1
#endif /* STATS */

/* ---------- Lwip Debug options ------------ *

/* Disable debugging */

#undef LWIPDEBUG

#define DBGTYPESON Oxff

140

#define ETHARPDEBUG

#define NETIFDEBUG

#define PBUF-DEBUG

#define APILIBDEBUG

#define APLMSGDEBUG

#define SOCKETSDEBUG

#define ICMPDEBUG

#define INETDEBUG

#define IP.DEBUG

#define IPREASSDEBUG

#define RAWDEBUG

#define MEMDEBUG

#define MEMPDEBUG

#define SYS-DEBUG

#define TCPDEBUG

#define TCPINPUTDEBUG

#define TCPFRDEBUG

#define TCP-RTO-DEBUG

#define TCPCWNDDEBUG

#define TCPWNDDEBUG

#define TCPOUTPUTDEBUG

#define TCP-RST-DEBUG

#define TCPQLENDEBUG

#define UDPDEBUG

#define TCPIPDEBUG

#define DBGMINLEVEL

#endif /* __LWIPOPTSH /

DBGOFF

DBGOFF

DBGON

DBGOFF

DBGON

DBGOFF

DBGOFF

DBG-OFF

DBGOFF

DBGOFF

DBG-OFF

DBG-OFF

DBGOFF

DBGOFF

DBGON

DBGOFF

DBGOFF

DBGOFF

DBGOFF

DBGOFF

DBGOFF

DBG-OFF

DBG.OFF

DBGOFF

DBGOFF

LWIP-DBGLEVEL-SEVERE

141

F.1.6 DataStream.h

/* This file has been prepared for Doxygen automatic documentation generation.*/
7*! \file

*

* \brief Basic WEB Server for AVR32 UC3.

* - Compiler: GNU GCC for AVR32
* - Supported devices: All AVR32 devices can be used.
* - AppNote:

* \author Atmel Corporation: http://www.atmel.com \n
Support and FAQ: http://support.atmel.no/

/* Copyright (c) 2007, Atmel Corporation All rights reserved.

* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*

* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution .
*

* 3. The name of ATMEL may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*

* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR
IMPLIED

* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF

* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY
AND

* SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY
DIRECT,

* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

142

#ifndef DATASTREAMH
#define DATASTREAMH

#include "portmacro.h"

/*! The maximum number of samples in a packet. There might be less if the
* channels sampled does not evenly divide into it
*7

#define NUMSAMPLESPER-PACKET 726

7*! \brief The structure of an ethernet packet
*

* Note that an Ethernet MTU is 1500. With TCP/IP headers, I can fit 1460
* bytes of data. This packet is being designed to fit in one unfragmented
* TCP/IP segment.
* The header is 12 bytes long. There will be 724 samples per packet. The first
* sample should be channel 1. Any left over will just be junk to be ignored
*/

typedef struct _attribute_ ((_packed_))

{
unsigned char headerone;
unsigned char headertwo;
unsigned short packetNumber;
unsigned short adcused;
unsigned short packetsready;
signed short data{NUMSAMPLES-PERPACKET];

} dataPacket;

#define SIZEOFPACKET 1460
#define HEADERLENGTH 8

7*! The address of the base packet. Thay can be thought of as an array spanning
* the external SDRAM
*7

#define basePacket ((dataPacket *) ADCSAMPLESTART)

#define NUMPACKETS (ADCSAMPLEEND - ADCSAMPLESTART) / (
sizeof(dataPacket))

extern xSemaphoreHandle PacketReadySemaphore;

extern volatile int ADCReadySemaphore;

extern dataPacket PacketStore[8];

7*! \brief Reset the Datastream task
*

* This should be called only when DataStream is stopped
*/

void resetDataStream (void);

void StartCopyTask (void);

143

7*! \brief Datastream server main task
*

* \param pvParameters Input. Not Used.
*

portTASKFUNCTIONPROTO (vDataStreamServer, pvParameters);

7*! \brief Command server main task
*7

portTASKFUNCTIONPROTO (vCommandServer, pvParameters);

7*! \ brief Autodetection server main task
*/

portTASKFUNCTIONPROTO (vAutodetectServer, pvParameters);

portTASK-FUNCTIONPROTO (copyDataTask, pvParameters);

#endif

F.1.7 DataStream.c

/* This file has been prepared for Doxygen automatic documentation generation.*/
7*! \file

* \brief Basic WEB Server for AVR32 UC3.

- Compiler: GNU GCC for AVR32
- Supported devices: All AVR32 devices can be used.
- AppNote:

\author Atmel Corporation: http://www.atmel.com \n
Support and FAQ: http://support.atmel.no/

/* Copyright (c) 2007, Atmel Corporation All rights reserved.

* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*

* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.

* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution .
*

* 3. The name of ATMEL may not be used to endorse or promote products derived
* from this software without specific prior written permission.

144

* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR

IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY

AND
* SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY

DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

,*/

* Ths code was taken from Basic WEB sources and modified by Zachary Clifford

* <zacharyc@mit.edu> for use in the ethernet data acquisition hardware at LEES.
*

* This file implements a server for starting data capture and sending it

* to a client. The client sends "GET" followed by three hex digits representing

* the channels to sample to the command port, followed by a 0, 1, 2, or 3 to indicate

* what the range setting should be for each ADC. Data can be captured from the data

* port. Autodetection is also provided, as well as other commands.
*

* Data stops sending when there is an error. Usually this is from the client

* resetting the TCP/IP connection.
*

* */

/* Standard includes. *7
#include <stdio.h>
#include <string.h>
#include <stdint.h>

#include "conf-eth.h"

/* Scheduler includes. *7
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"

/* Demo includes. */
#include "portmacro.h"

/* lwIP includes. */
#include "lwipopts.h"
#include "lwip/api.h"
#include "lwip/tcpip.h"

145

#include "lwip/memp.h"
#include "lwip/stats.h"
#include "lwip/opt.h"
#include "lwip/arch.h"
#include "lwip/sys.h"
#include "netif/loopif.h"
#include "lwip/sockets.h"

/* ethernet includes */
#include "ethernet.h"

#include "externalmem.h"
#include "samplemanager.h"
#include "InitBoard.h"
#include "gpio.h"
#include "wdtreset.h"
#include "DataStream.h"
#include "usart.h"
#include "version.h"

/*! The port on which we listen for datastream. *7
#define DataStreamPORT (49155)

/*! The Autodetection port */
#define AutodetectPORT (49156)

/*! The command port */
#define Command-PORT (49157)

/*! Function to process the current connection */
static void parseCommand (int ISocket);

dataPacket PacketStore[8];

/*! Semaphore indicates when we're streaming *7
static xSemaphoreHandle streamActive;

7*! Queue that signals the Datastream task to stop streaming
* Its messages are never examined
*/

static xQueueHandle stopstream;

/*! How many fully assembled packets awaiting transmission *7
xSemaphoreHandle PacketReadySemaphore;

volatile int ADCReadySemaphore = 0;

/*! The packet that we are currently reading to the Ethernet buffer *7
static unsigned short tcpipPacketRead = 0;

/*! The 16 bit packet count to append to the current packet *7

146

static unsigned short currentCount = 0;

static int packetStoreIndex = 0;
static int copyPacket = 0;

/*! The structure of a GET request to start sampling *7
typedef struct -attribute_ ((_packed_))

{
unsigned long period;
unsigned short channelbit;
unsigned char precision;
unsigned char prescaler;

} getPacket;

7*! \brief Resets the Datastream task.
*

* Should be called only when datastream is not running. Use the streamactive
* and stopstream members for this
*/

void
resetDataStream (void)

{

currentCount = 0;

tcpipPacketRead = 0;

copyPacket = 0;

packetStoreIndex 0;

while (xSemaphoreTake (PacketReadySemaphore, 1) == pdTRUE);

//Interrupts are always disabled when this function is called
ADCReadySemaphore = 0;

}

7*!
* \brief Autodetection server task.
*

* Listens for incoming UDP packets on the appropriate port and responds.

* This allows the device to be identified by broadcasts.

*/
portTASKFUNCTION (vAutodetectServer, pv:Parameters)
{

int ISocket;
int IDataLen, IRecvLen, IFromLen;
struct sockaddr-in sLocalAddr, sFromAddr;
char Data[5] = "HERE"; //< Buffer of data to send

char incomingData[10];

// Set up port

147

// Network order in info; host order in server:

for (;;)

// Create socket
ISocket = socket (AF-INET, SOCKDGRAM, 0);
if (lSocket < 0)

{
return;

}
int opt = 1;
setsockopt (lSocket, SOLSOCKET, SOBROADCAST, &opt, sizeof (int));

memset ((char *) &sLocalAddr, 0, sizeof (sLocalAddr));
sLocalAddr.sinifamily = AFINET;
sLocalAddr.sinlen = sizeof (sLocalAddr);
sLocalAddr.sin-addr.s-addr = INADDRANY;
sLocalAddr.sin-port = DataStreamPORT;

if (bind (ISocket, (struct sockaddr *) &sLocalAddr, sizeof (sLocalAddr))
< 0)

{
7/ Problem setting up my end
close (lSocket);
return;

}

lRecvLen sizeof (incomingData);
iFromLen = sizeof (sFromAddr);

IDataLen recvfrom (ISocket, incomingData, lRecvLen, 0,
(struct sockaddr *) &sFromAddr,
(socklen-t *) & iFromLen);

if (IDataLen < 0)
{

//Problem receiving data. Do nothing

}
else

{
sFromAddr.sin-port = AutodetectPORT;
sendto (lSocket, Data, 5, 0, (struct sockaddr *) &sFromAddr,

sizeof (struct sockaddr));

}
close (ISocket);

}
}

void
StartCopyTask (void)

{

xTaskCreate (copyDataTask, (const signed portCHAR * const) "SAMP",

148

packSTACKSIZE, NULL, packPriority, (xTaskHandle *) NULL);

}

/*! \brief DataStream server main task
* check for incoming connection and process it
*

* \param pvParameters Input. Not Used.
*

*7
portTASKFUNCTION (vDataStreamServer, pv]Parameters)

{
int bytesSent;
int ISocket, lconnection;
int lFromLen;
struct sockaddr-in sFromAddr, sLocalAddr;
//char message = DSTREAMOK; //!< Message to WDT reset task

char stopmessage;

PacketReadySemaphore = xSemaphoreCreateCounting (NUMPACKETS, 0);

/* Create a new tcp connection handle */
ISocket = socket (PFINET, SOCKSTREAM, 0);

/struct timeval tv;

/tv. tv-sec = 1; /* 1 Secs Timeout *7

/7 setsockopt (lSocket, SOLSOCKET, SORCVTIMEO, (struct timeval *) etv,
/7 sizeof (struct timeval));

memset ((char *) &sLocalAddr, 0, sizeof (sLocalAddr));
sLocalAddr.sin-family = PFJNET;
sLocalAddr.sin-len = sizeof (sLocalAddr);
sLocalAddr.sin-addr.s-addr = INADDRANY;
sLocalAddr.sin-port = DataStreamPORT;

if (bind (lSocket, (struct sockaddr *) &sLocalAddr, sizeof (sLocalAddr)) <
0)

{
// Problem setting up my end
close (lSocket);
return;

I

if (listen (lSocket, 0) < 0)

{
// Problem setting up my end
close (lSocket);
return;

I

streamActive = xSemaphoreCreateMutex 0;
stopstream = xQueueCreate (5, 1);

149

gpio-enable-gpio-pin (LED1_PIN);

char gotstop = 0;

/* Loop forever *7
for (;;)

{
/Make sure the LED is off going into the accept call
gpio-set-gpio-pin (LED1-PIN);

/* Wait for a first connection. *7
Iconnection =

accept (ISocket, (struct sockaddr *) &sFromAddr,
(socklent *) & lFromLen);

/Tell WDT that the TCPIP task is OK
//xQueueSend (watchdogMbox, &message, 0);

//Since we're using a timeout, we might not actually have a connection
if (iconnection > 0)

{

/Clear the stop queue in case it has junk in it
while (xQueueReceive (stopstream, &stopmessage, 1) == pdTRUE);

/Take the semaphore to notify that we're starting a stream
/This mutex lets other tasks know if we're streaming. It also stops
//streaming from happening should configuration be happening
xSemaphoreTake (streamActive, portMAX-DELAY);

//Turn on the LED now that we have taken the connection
gpio-clr-gpio-pin (LED1-PIN);
while (1)

{
/Go to sleep until Packet is ready.
/Give it a 1 second timeout to reset the watchdog timer.

gotstop = 0;
while (pdTRUE !=

xSemaphoreTake (PacketReadySemaphore,
portTICKRATEMS * 1000))

//100))

/Tell WDT that the TCPIP task is OK
//xQueueSend (watchdogMbox, &message, 0);

/Take this time to check for a stop message
if (xQueueReceive (stopstream, &stopmessage, 1) pdTRUE)

{
/We got a stop message

gotstop = 1;
break;

}
}

150

if (gotstop)

{
gotstop = 0;
break;

}
/Tell WDT that the TCPIP task is OK again
//xQueueSend (watchdogMbox, &message, 0);

/Fill in header data
basePacket[tcpipPacketRead].headerone = OxFO;
basePacket[tcpipPacketRead].headertwo = OxAA;

//Don't put currentCount in here. It's already done in the ISR

basePacket[tcpipPacketRead].adcused = 0;
//!< This is leftover from earlier implementation
basePacket[tcpipPacketRead].packetsready =

htons (uxQueueMessagesWaiting (PacketReadySemaphore));

currentCount++;

bytesSent =
send (iconnection, &basePacket[tcpipPacketRead],

SIZEOFPACKET, 0);

/We want to increment this regardless of the success of the transmit
//Buffers need to stay consistent if we're to resend data successfully later
tcpipPacketRead++;
if (tcpipPacketRead == NUMPACKETS)
{

tcpipPacketRead = 0;
}

if (bytesSent != SIZEOFPACKET)

/There was some error, so break out and close the connection
//Usually this means the PC closed the connection on us
/Clear the stop queue in case it has junk in it
while (xQueueReceive (stopstream, &stopmessage, 1) ==

pdTRUE);
break;

}
/Take this time to check for a stop message
if (xQueueReceive (stopstream, &stopmessage, 1) pdTRUE)

{
/We got a stop message
break;

}

}
close (iconnection);
xSemaphoreGive (streamActive);

151

/* end if new connection */

} /* end infinite loop *7
close (lSocket);

}

7*! \brief Starts the Command server.

* This listens on a port to accept commands to start, stop, or rewind
* sampling. It is higher priority than other sampling tasks so that
* they can be controlled properly
*7

portTASKFUNCTION (vCommandServer, pvParameters)

{

int iSocket, lconnection;
int iFromLen;
struct sockaddr-in sFromAddr, sLocalAddr;
//char message = CMDOK; //!< Message to WDT reset task

/* Create a new tcp connection handle *7
ISocket = socket (PFINET, SOCKSTREAM, 0);
memset ((char *) &sLocalAddr, 0, sizeof (sLocalAddr));
sLocalAddr.sin-family = PFINET;
sLocalAddr.sin-len = sizeof (sLocalAddr);
sLocalAddr.sin-addr.s-addr = INADDRANY;
sLocalAddr.sin-port = CommandPORT;

/struct timeval tv;

/tv. tv-sec = 1; /* 1 Secs Timeout *7

//setsockopt (lSocket, SOL-SOCKET, SO-RCVTIMEO, (struct timeval *) tIv,
/7 sizeof (struct timeval));

if (bind (ISocket, (struct sockaddr *) &sLocalAddr, sizeof (sLocalAddr)) <
0)

{
// Problem setting up my end
close (ISocket);
return;

}

if (listen (iSocket, 0) < 0)

{
7/ Problem setting up my end
close (lSocket);
return;

}

/* Loop forever *7
for (;;)

{

152

/* Wait for a connection. *7
Iconnection =

accept (lSocket, (struct sockaddr *) &sFromAddr,
(socklen-t *) & iFromLen);

/Tell WDT that the CommandServer task is OK
//xQueueSend (watchdogMbox, &message, 0);

if (lconnection > 0)
{

parseCommand (Iconnection);

} /* end if new connection *7

} /* end infinite loop *7
close (lSocket);

}

* \brief Copy data task
*

* Task to copy data from fast SRAM on chip to off- chip SDRAM
*/

portTASKFUNCTION (copyDataTask, pvParaimeters)

{

int gotflag = 0;

while (1)

{
gotflag = 0;
while (1)

{
/We have to yield a bit to give other tasks a chance to run

taskYIELDO;

/This is a basic semaphore implementation
/Using FreeRTOS semaphores was not fast enough
portDISABLEINTERRUPTS ();
if (ADCReadySemaphore > 8)

{
gotflag = 2;

}
else if (ADCReadySemaphore > 0)

{
ADCReadySemaphore = ADCReadySemaphore - 1;
gotflag = 1;

}
portENABLEINTERRUPTS 0;
if (gotflag == 1)

{
break;

}
if (gotflag == 2)

{

153

SendStopMessage 0;
gotflag = 0;

}
//Yield here if no flag
vTaskDelay (1);

}

memcpy (basePacket + copyPacket, PacketStore + packetStoreIndex,
SIZEOFPACKET);

/Now signal the transmitter.
if (xSemaphoreGive (PacketReadySemaphore) != pdTRUE)

{
/We can't give any more because the pipeline is stalled
//Terminate sampling
SendStopMessage ();

}

//Now update internal counters

packetStoreIndex++;
copyPacket++;

if (copyPacket == NUMPACKETS)

{
copyPacket = 0;

}

if (packetStoreIndex == 8)
{

packetStorelndex = 0;
}

}
}

/*!\ brief Converts ASCII to hex
*

* Utility function to convert an ASCII 0-9, A-F or a-f into
* a hex representation. Returns 255 on invalid input

static unsigned char
atohex (unsigned char input)
{

if (input < Ox40 && input >= 0x30)

return input - 0x30;
}

if (input <= 0x46 && input > 0x40)
{

return input - 0x37;
}

if (input <= 0x66 && input > 0x60)
{

return input - 0x47;

154

}
return 255;

}

/*! \brief parse the incoming request
* Take appropriate action based on it
*

* \param lSocket Input. The socket to use to send and receive data.
*

*/

static void
parseCommand (int ISocket)
{

int IDataLen;
char pcRxString[9];
getPacket thisGetPacket;

/* We expect to immediately get a command data. */
IDataLen = recv (ISocket, pcRxString, 4, 0);

if (IDataLen > 0)
{

if (!strncmp (pcRxString, "TEST", 4))

{
7/It was a Test. Just reply with "WORKING"
send (lSocket, "WORKING", 7, 0);

}

if (!strncmp (pcRxString, "VERS", 4))

{
/Give our version string without the NERD: tag

send (ISocket, versionstr +6,strlen(versionstr)-6,0);
uint32-t config0_reg; // ConfigO register
uint8-t procId; // Processor ID
uint8_t procRev; /7 Processor revision
uint8_t archRev; 7/ Architecture revision

uint32t did-reg; // Device ID register
uint8t revNum; /7 Revision number
uintl6t prodNum; // Product number
uintl6t manId; // Manufacturer ID
char str [100];

config0_reg = Get-system-register(AVR32_CONFIGO);
procId = (configO-reg & AVR32_CONFIGOPROCESSORIDMASK) >>

AVR32_CONFIGOPROCESSORIDOFFSET;
procRev = (config0_reg & AVR32_CONFIG0-PROCESSORREVISIONMASK) >

AVR32_CONFIGO-PROCESSORREVISIONOFFSET;
archRev = (config0_reg & AVR32-CONFIGOARMASK) >>

AVR32_CONFIG0_AROFFSET;
sprintf (str, "Processor jD-=-%d,-Processor-Rev-=-%d,-Architecture-Rev-=-

%d\r\n", procId, procRev, archRev);

155

send (ISocket, str , strlen (str),0);

did-reg Get-debug-register(AVR32-DID);
revNum (did-reg & AVR32_DIDRN.MASK) >> AVR32_DIDRNOFFSET;
prodNum = (did-reg & AVR32_DID-PNMASK) >> AVR32_DIDPNOFFSET;
manId = (did-reg & AVR32_DIDMIDMASK) >> AVR32_DIDMIDOFFSET;
sprintf (str, "Revision-Number-=-%d,-Product-Number-=-%x,-Manufacturer-ID-=

%x\r\n", revNum, prodNum, manId);
send (ISocket, str , strlen (str),0)

}
if (!strncmp (pcRxString, "SETC", 4))

{
//We are trying to resend lost packets
//Next two bytes tell what packet we want

//First ensure that Datastream is stopped
if (xSemaphoreTake (streamActive, 1) == pdFALSE)

char message = 0;
xQueueSend (stopstream, &message, portMAXDELAY);
xSemaphoreTake (streamActive, portMAXDELAY);

}

IDataLen = recv (lSocket, pcRxString, 5, 0);
unsigned short desiredCount = atohex (pcRxString[0]) * 10000 +

atohex (pcRxString[1]) * 1000 +
atohex (pcRxString[2]) * 100 +
atohex (pcRxString[3]) * 10 + atohex (pcRxString[4]);

//We are using the status of the sampling LED to tell if we're still
now

if (gpio-get-pin-value (LED2_PIN) == 1)

//The LED is off, so we're not sampling If we're reset, there
//If we stopped because of a full buffer, the earlier data is
//Ignore the request and tell the PC to deal with it. It can

proceed.
send (lSocket, "NO", 3, 0);
close (iSocket);
xSemaphoreGive (streamActive);
return;

}

//currentCount is the next count to be sent
//It is the count in the current tcpipPacketRead pointer
//because that pointer also points to the next packet to send
signed long change = 0;
int i;

change = currentCount - desiredCount;
/If it 's negative, we need to wrap around modulo UINT16-MAX
if (change < 0)

c
change =change + UINT16-MAX + 1;

is
go
d(

sampling right

no data
ne.
ecide how to

156

}
/Now change holds how many positions to rewind tcpipPacketRead
signed long temptcpipPacketRead;

temptcpipPacketRead = tcpipPacketRead - change;

/If this is negative, wrap it around modulo NUMPACKETS
if (temptcpipPacketRead < 0)

I
temptcpipPacketRead = temptcpipPacketRead + NUMPACKETS;

}

/We needed the +1 above because packet numbers range from 0 to UINT16_MAX

//We do not need it here because packet indexes range from 0 to NUMPACKETS - 1

if (basePacket[temptcpipPacketRead].packetNumber != desiredCount)

{
/We already lost the data. Tell the PC and do nothing

send (lSocket, "NO", 3, 0);
close (lSocket);
xSemaphoreGive (streamActive);
return;

}

/We've still got the data. Update counters and proceed

tcpipPacketRead = temptcpipPacketRead;

/Fix the current count so that the DataStream packet header will be right

currentCount = desiredCount;

for (i = 0; i < change; i++)

{
xSemaphoreGive (PacketReadySemaphore);

}
/Allow datastream to start up again

xSemaphoreGive (streamActive);
}

/GET command
if (!strncmp (pcRxString, "GETD", 4))

{
IDataLen

recv (lSocket, &thisGetPacket, sizeof (thisGetPacket), 0);

//After GET the next four chars are a bitmask of the channel pairs to send

unsigned short channels ntohs (tlisGetPacket.channelbit);
unsigned char precision = thisGetPacket.precision;
unsigned long period = ntohl (thisGetPacket.period);

//Ensure the ADCs and Datastream are really stopped
if (xSemaphoreTake (streamActive, 1) == pdFALSE)

{

157

char message = 0;
xQueueSend (stopstream, &message, portMAXDELAY);
xSemaphoreTake (streamActive, portMAXDELAY);

}

SendStopMessage ();
tcpipPacketRead = 0;

//Configure the ADC with this information and start sampling
//This is passed off to the SampleManager task for thread safety.
/Because the samplemanager is of a higher priority, sending the

//message will block this task until the ADCs are ready
SendStartMessage (channels, precision, period);

//Now permit the Datastream to run again
xSemaphoreGive (streamActive);

}

/STOP command
if (!strncmp (pcRxString, "STOP", 4))

{
//Stop datastream first

if (xSemaphoreTake (streamActive, 1) == pdFALSE)
{

char message = 0;
xQueueSend (stopstream, &message, portMAXDELAY);
xSemaphoreTake (streamActive, portMAXDELAY);

}
SendStopMessage ();
tcpipPacketRead = 0;
xSemaphoreGive (streamActive);

}

send (lSocket, "OK", 3, 0);
}

close (lSocket);
}

F.1.8 InitBoard.h

/*.\ file Initboard. h */
#ifndef INITBOARDH_
#define INITBOARDH_

#define LED1_PIN AVR32_PINPB30
#define LED2_PIN AVR32_PINPB31

#ifdef INCLUDE-POST
void POSTLEDs (void);

158

int POST-SDRAM (void);
#endif

void SetupADCSPI (void);

void SetupADCTimer (unsigned short channels, unsigned char precision,
unsigned long period);

void StopADC (void);

extern volatile int transfer-not-finish;

#endif /*INITBOARDH */

F.1.9 Initfloard.c

/** \file InitBoard.c
* \brief Initializes board peripherals
*

* It helps set up the timer interrupt for sampling
* ADCs.
*

*7

/* Environment include files.
#include <stdlib.h>
#include <string.h>
#include <avr32/io.h>
#include <stdint.h>

/* Scheduler include files . *7
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"

#include "gpio.h"

#include "pwm.h"

#include "pdca.h"
#include "pm.h"
#include "eic.h"
#include "InitBoard.h"
#include "spi.h"
#include "usart.h"

#include "externalmem.h"
#include "samplemanager.h"
#include "DataStream.h"

#include "board.h"
#include "sdramc.h"

'159

#include "rtc.h"

#include "debug.h"

7*! \brief The address in memory currently being filled
*

* Starts at 1 because the PDCA reload counter is at 1
*7

static unsigned long fillingPacket = 1;
static unsigned long thisPacket = 0;

/*! The actual number of channels we sampled *7
static unsigned char numchannelsSampled = 0;

/*! Number of data points in a packet. Might be different if
* number of channels does not divide evenly into a packet
*7

static unsigned short num-data-per-packet = 726;

static unsigned short packet-number = 0;

7*! \brief Tests for PWM silicon bug
*

* The current AVR32 PWM hardware resets to OxOO01 instead of OxOOO
* In case it is fixed in the future, this routine tests the module.
* It returns 1 if the bug is present and 0 if not
*7

static int testPWMReset (void);

/*! Holds output of testPWMReset for later usage */
static int buggyPWM = 0;

7* ! \brief Setup information for ADC DMA transfer to ADC
*

* Needs size information to be filled in before use
*7

static pdca-channel-optionst PDCAOPTIONSSPITX {
. addr = (unsigned int) 0x00000000, // memory address. It 's a dummy
.pid = AVR32_PDCAPIDSPIO-TX, //Transmit to ADC
.r-addr = 0, 77 next memory address
. rsize = 0, 77 next transfer counter
. transfer-size = PDCATRANSFERSIZEHALFWORD, // select size of the transfer

7*! \brief Setup information for ADC DMA transfer from ADC
*

* Needs size information to be filled in before use
*7

static pdca-channel-optionst PDCAOPTIONS = {
.addr = PacketStore[0].data,
.pid = AVR32_PDCAPIDSPIORX, //Incoming data from SPI
.r-addr = PacketStore[1].data,
. transfer-size = PDCATRANSFERSIZEHALFWORD, // select size of the transfer
// because each transfer is 2 bytes)

160

7*! \brief The PDCA interrupt handler.

* The handler to reload the PDCA settings after each time the buffer fills
* This corresponds to a whole Ethernet packet
*/

#if _GNUC_
attribute ((_interrupt))

#elif _ICCAVR32__
#pragma handler = AVR32-PDCAIRQGROUP, 0

_interrupt
#endif

static void
pdca-intliandler (void)
I

//Stamp the ID number on this packet before calling the transmitter
/thisPacket is one less than packetNumber, but it's a separate variable so that

7/we can avoid the modulus mess with fillingPacket
PacketStore[thisPacket]. packetNumber = packet-number;
packet-number++;

thisPacket++;
if (thisPacket == 8)

{
thisPacket = 0;

}

fillingPacket ++;
if (fillingPacket == 8)

{
fillingPacket = 0;

}

/This is my makeshift semaphore. The FreeRTOS one was too slow.
ADCReadySemaphore = ADCReadySemaphore + 1;

pdca-reload-channel (0, PacketStore[fillingPacket]. data,
num-data-per-packet);

}

7*! \brief The ADC "BUSY" interrupt handler.
*

* This starts the SPI transfer to get data from the ADC. It is the highest
* priority, and it is essential that it be serviced fast.
*7

#if _GNUC__
_-attribute-- ((-_interrupt_-)

#endif
static void adc-busy-handler (void)

{
eic-clear-interrupt-line (&AVR32_EIC, EXTINT7);

161

/We need to detect if we're out of sync with packets
/if the amount remaining in pdca modulo the number of channels sampled
/is not 0, we have trouble. Grab and dump the remaining channels to get back
//in sync.
if (pdca-getiload-size (0) % numchannelsSampled == 0)
{

pdcaiload-channel (1, (void *) OxOOOOOOOO, numchannelsSampled);
}

else

f
/Trouble

pdcaiload-channel (1, (void *) OxOOOOO,
pdca-getiload-size (0) % numchannelsSampled);

}

//Re-initialize channel 1 to send dummy data to the ADC
pdca-enable (1);

}

#if (INCLUDEPOST == 1)
/*! \brief Blink the LEDs in a distinctive pattern.

*

* This gives a quick visual verification that something is working.
* It delays bootup so is usually disabled

void
POST-LEDs (void)

{
unsigned long volatile currentRTC;

//Turn on each LED for one second
gpio-enable-gpio-pin (LED1_PIN);
gpio-enable-gpio-pin (LED2_PIN);

gpio-clrgpio-pin (LED1_PIN);
gpio-set-gpio-pin (LED2-PIN);

/Now use the RTC to delay for a bit.

currentRTC = rtcget-value (&AVR32_RTC);
while (currentRTC + 1 >= rtc-get-value (&AVR32_RTC));

gpioclrgpio-pin (LED2_PIN);

currentRTC = rtc-get-value (&AVR32_RTC);
while (currentRTC + 1 >= rtcget-value (&AVR32_RTC));
gpioset-gpio-pin (LED1_PIN);

currentRTC = rtcget-value (&AVR32_RTC);
while (currentRTC + 1 >= rtcget-value (&AVR32_RTC));

162

gpio-set-gpio-pin (LED2_PIN);

currentRTC = rtcget-value (&AVR32_RTC);
while (currentRTC + 1 >= rtcget-value (&AVR32_RTC));

}
typedef uintl6t datum; /* Set the data bus width to 32 bits. *7

7*! \brief Perform memory test on the data bus
*/

datum
memTestDataBus (volatile datum * address)

{
datum pattern;

7*
* Perform a walking 1's test at the given address.

*7

for (pattern = 1; pattern != 0; pattern <<= 1)
{

7*
* Write the test pattern.
*7

*address = pattern;
7*
* Read it back (immediately is okay for this test).
*/

if (*address != pattern)

{
return (pattern);

}
}

return (0);
} /* memTestDataBus() *7

7*! \brief perform memory test on address bus
*7

datum *

memTestAddressBus (volatile datum * baseAddress, unsigned long nBytes)

{
unsigned long addressMask = ((nBytes / sizeof (datum)) - 1);
unsigned long offset;
unsigned long testOffset;
datum pattern = (datum) OxAAAAAAAA;
datum antipattern = (datum) 0x55555555;

7*
* Write the default pattern at each of the power-of-two offsets.

*7
for (offset = 1; (offset & addressMask) != 0; offset <<= 1)

{
baseAddress~offset] = pattern;

163

* Check for address bits stuck high.
*7

testOffset = 0;
baseAddress[testOffset] = antipattern;

for (offset = 1; (offset & addressMask) != 0; offset <<= 1)
{

if (baseAddress[offset] != pattern)

{
return ((datum *) & baseAddress[offset]);

}
}

baseAddress[testOffset] = pattern;

7*
* Check for address bits stuck low or shorted.
*/

for (testOffset = 1; (testOffset & addressMask) != 0; testOffset <<= 1)
{

baseAddress[testOffset] = antipattern;
for (offset = sizeof (datum); (offset & addressMask) != 0; offset <<= 1)

{
if ((baseAddress[offset] != pattern) && (offset != testOffset))

{
return ((datum *) & baseAddress[testOffset]);

}
}

baseAddress[testOffset] = pattern;
}

return (NULL);

} /* memTestAddressBus() *7

7*! \brief Test the entire SDRAM device
*7

datum *

memTestDevice (datum volatile *baseAddress, unsigned long nBytes)

{
unsigned long offset;
unsigned long nWords = nBytes / sizeof (datum);
datum pattern;
datum antipattern;

7*
* Fill memory with a known pattern.
*/

164

for (pattern = 1, offset 0; offset < nWords; pattern++, offset++)

{
baseAddress[offset] pattern;

}

7*
* Check each location and invert it for the second pass.

*7

for (pattern = 1, offset = 0; offset < nWords; pattern++, offset++)

{

if (baseAddress[offset] != pattern)

{
return ((datum *) & baseAddress[offset]);

}
antipattern = ~pattern;
baseAddress[offset] = antipattern;

}

7*
* Check each location for the inverted pattern and zero it.

*/

for (pattern = 1, offset = 0; offset < nWords; pattern++, offset++)

{
antipattern = ~pattern;
if (baseAddress[offset] != antipattern)

{
return ((datum *) & baseAddress[offset]);

}
baseAddress[offset] 0;

}

return (NULL);

} /* memTestDevice() *7

7*! \brief Run all memory tests in sequence.
*

* Illuminate LEDs to indicate problems
*/

int
POSTSDRAM (void)

{
gpio-set-gpio-pin (LEDlPIN);

#define BASEADDRESS (volatile datum *) SDRAMSTART
#define NUMBYTES (32 * 1024 * 1024)

datum *errorLocation;
int busBitError;
int i = 0;

165

busBitError = memTestDataBus (BASEADDRESS);

if (busBitError != 0)

{
for (i = 1; i < busBitError; i <<= 1)

{
//If necessary to debug a data bit, uncomment this line
//POSTLEDs(;

}
gpio-clr-gpio-pin (LED2_PIN);
gpio-set-gpio-pin (LED1_PIN);
return (-1);

}

errorLocation = memTestAddressBus (BASEADDRESS, NUMBYTES);

if (errorLocation != NULL)
{

gpio-clr-gpio-pin (LED1PIN);
gpio-set-gpio-pin (LED2_PIN);
return (-1);

}

errorLocation = memTestDevice (BASEADDRESS, NUMBYTES);
if (errorLocation != NULL)

{
gpio-clr-gpio-pin (LED1PIN);
gpio-clr-gpio-pin (LED2-PIN);
return (-1);

}

return (0);
}
#endif

7*! \brief Configures the SPI bus to talk to the ADC.
*

* Initializes the interrupts and SPI bus for use. Should be called once
* before any sampling occurs.
*/

void
SetupADCSPI (void)
{

static const spi-options-t spiOptions {
//! The SPI channel to set up.
.reg = 0,
//! Preferred baudrate for the SPI.
//Internally will hit this or round up to next bit of PBA
/The ADCs can do 18 MHz, but PBA is running at 66 MHz.
/This means that the baudrate can be 16.5 MHz.
//I limit it to a lower level to increase reliability
.baudrate = 16500000,
//! Number of bits in each character (8 to 16).

166

.bits = 16,
7/! Delay before first clock pulse after selecting slave
/7! (in PBA periods, or 32 x TPBA with FDIV set).
.spck-delay = 4, //! Delay between each transfer/character
//! (in PBA periods, or 32 x TPBA with FDIV set).
.trans-delay = 4,
//! Sets this chip to stay active after last transfer to it.

.stay-act = 0,
//! Which SPI mode to use when transmitting.
.spi-mode = 2,
/7! Disables the mode fault detection.
7/! With this bit cleared, the SPI master mode will disable itself if another

7/! master tries to address it.
.modfdis = 0

/Map to assign SPI pins to SPI controller
static const gpio-map-t ADCSPIGPIOMAP {

{AVR32_SPI0_SCK_0-0_PIN, AVR32_SPISCK_0-0_FUNCTION}, // SPI Clock.

{AVR32_SPI0_MISO_0_0_PIN, AVR32_SPIOMISO_0-0_FUNCTION}, // MISO.

{AVR32-SPI-MOSI_0_0_PIN, AVR32-SPI-MOSI_0_0_FUNCTION}, /7 MOSL

{AVR32-SPI0_NPCS_0_0_PIN, AVR32-SPIONPCS-0_0_FUNCTION} /7 Chip Select NPCS.

};

// Assign I/Os to SPI
gpio-enable-module (ADCSPI.GPIOMAP,

sizeof (ADCSPIGPIOMAP) /
sizeof (ADC-SPI.GPIO-MAP[0]));

7/ Initialize as master
spi-initMaster (&AVR32_SPIO, &spiOptions);

/7 Set selection mode: variable-ps, pcs-decode, delay
spi-selectionMode (&AVR32-SPIO, 0, 0, 5);

/7 setup chip registers
spi-setupChipReg (&AVR32-SPI0, &spiOptions, 66000000); /766 MHz going to this device

from PBA
/7 Enable SPI
spi-enable (&AVR32-SPIO);

// Select the ADC. Since it is the only peripheral, it can just stay selected.

spi-selectChip (&AVR32_SPI, 0);

7/Options for External Interrupt Controller
static const eic-optionst eic-options = {

// Enable edge-triggered interrupt.
.eic-mode = EICMODEEDGETRIGGERED,
// Interrupt will trigger on falling edge.

eic-edge = EIC-EDGEFALLINGEDGE,
// Initialize in synchronous mode : interrupt is synchronized to the clock

.eic-async = EICSYNCHMODE,
7/ Set the interrupt line number.
. eic-line = EXTINT7,

167

. eic-filter = EIC-FILTERENABLED,

/Give pin to External Interrupt Controller
gpio-enable-module-pin (AVR32_EICEXTINT_7_PIN,

AVR32_EICEXTINT_7-FUNCTION);

/The following is OK because interrupts are disabled

7/Note: FreeRTOS tick is at INTO priority.
/My interrupts must be that priority to use FreeRTOS
/API calls without special handling.

INTC-register-interrupt ((_intihandler) & pdca-int-handler,
AVR32_PDCA_IRQ_0, AVR32_INTCINT2);

/The ADC sample interrupt is extremely important to do on schedule.

//Since the interrupt
7/just modifies a peripheral, it can fire even in so-called " critical"
/regions. This is because
/it will never cause a context change and has no effect on FreeRTOS.
/portENTER- CRITICAL has been modified so this interrupt is NEVER masked.
INTCregister-interrupt ((_int-handler) & adc-busylhandler,

AVR32_EIC_IRQ-7, AVR32-INTCINT3);

eic-init (&AVR32_EIC, &eic-options, 1);

eic-enableline (&AVR32_EIC, eic-options.eicline);
eic-enable-interruptline (&AVR32_EIC, eic-options.eic-line);

//Finally test the PWM module for bugginess
buggyPWM = testPWMReset 0;

}
7*! \ brief Test for buggy PWM silicon

*

* Determines whether this chip suffers from the reset to 0x0001 instead of
* 0x0000 bug.

*7
static int
testPWMReset (void)

{
int retval;

pwmoptt pwmopt; /7 PWM option config.
avr32-pwmchannelt pwmchannel; /7 One channel config.

// PWM controller configuration.
pwmopt.diva = AVR32_PWM_DIVACLKOFF;
pwmopt.divb = AVR32_PWM_DIVBCLK-OFF;
pwmopt.prea = AVR32_PWMPREA-MCK;
pwm-opt.preb = AVR32_PWMPREBMCK;

168

pwm-init (&pwmopt);

pwm-channel.CMR.calg = PWMMODEILEFTALIGNED; // Channel mode.

pwm-channel.CMR.cpol = PWMPOLARITYLOW; // Channel polarity.

pwm-channel.CMR.cpd PWMUPDATEDUTY; // Not used the first time.

pwm-channel.CMR.cpre = AVR32_PWMCMRCPREMCKDIV_16; // Channel prescaler.

pwm-channel.cdty = 1; 77 Channel duty cycle, should be < CPRD.

pwmchannel.cprd = 5; 77 Channel period.
pwm-channel.cupd = 0; /7 Channel update is not used here.

pwm-channel-init (1, &pwmchannel);

volatile avr32-pwmt *pwm = &AVR32_PWM;

pwm-start-channels (0x02); // Start appropriate channels (ch 1)

/Now we monitor for the rollover problem

/Wait until the counter has passed the 0 and 1 points
while (pwm-->channel[1].ccnt == OxOOOO);

while (pwm- >channel[1].ccnt OxOOO);

/Now we wait for the rollover
while (1)

{
if (pwm->channel[1].cent OxOOOO)

{
/No bug.
retval = 0;
break;

}
if (pwm->channel[1].ccnt OxOOO)

{
//Bug present
retval = 1;
break;

}
}

pwm-stop-channels (0x002);

return retval;

}

7*! \ brief Starts ADC sampling

* This starts the ADC sample timer and begins gathering samples. It needs

* information on which channels to sample and how fast.

*7
void
SetupADCTimer (unsigned short channels, unsigned char precision,

unsigned long period)

-169

unsigned short sampledchannelmask = 0;
unsigned short desiredchannelmask = 0;
unsigned short num-groups-per-packet = 726;
taskDISABLEINTERRUPTS ();
desiredchannelmask = channels;

//Enable the RESET to the ADC
gpio-enable-gpio-pin (AVR32_PINPB29);

//Enable the RANGE to the ADC
gpio-enable-gpio-pin (AVR32_PIN-PB17);
gpio-enable-gpio-pin (AVR32_PINPB23);

//Pull RESET HIGH for ADC
gpio-set-gpio-pin (AVR32_PINPB29);

//Now set the RANGE pin

if (precision & Oxi)

{
gpio-set-gpio-pin (AVR32_PIN-PB17);

}
else

{
gpio-clr-gpio-pin (AVR32_PINPB17);

/Lower it for maximum range

if (precision & 0x2)

gpio-set-gpio-pin (AVR32_PINPB23);

}
else

{
gpio-clr-gpio-pin (AVR32-PINPB23);

}
//All channels lower than the highest channel
sampledchannelmask = (desiredchannelmask &

(desiredchannelmask & 0x02 ? 0x03 0)
(desiredchannelmask & 0x04 ? 0x07: 0)
(desiredchannelmask & 0x08 ? OxOF 0) |
(desiredchannelmask & OxO1O ? Ox1F : 0) |
(desiredchannelmask & 0x020 ? 0x03F : 0) I
(desiredchannelmask & 0x040 ? 0x07F 0)
(desiredchannelmask & 0x080 ? OxOFF 0)
(desiredchannelmask & 0x0100 ? Ox1FF 0)
(desiredchannelmask & 0x0200 ? 0x3FF 0)
(desiredchannelmask & 0x0400 ? 0x7FF 0)
(desiredchannelmask & 0x0800 ? 0xFFF : 0);

numchannelsSampled = (sampledchannelmask &

(sampledchannelmask & 0x02 ? 1: 0) +
(sampledchannelmask & 0x04 ? 1: 0) +
(sampledchannelmask & 0x08 ? 1: 0) +

get sampled.
Ox01 ? Ox1 : 0)

OxO ? 1 : 0) +

170

(sampledchannelmask & 0x10 ? 1 0) +
(sampledchannelmask & 0x20 ? 1 0) +

(sampledchannelmask & 0x40 ? 1 0) +
(sampledchannelmask & 0x80 ? 1 0) +

(sampledchannelmask & 0x100 ? 1 0) +

(sampledchannelmask & 0x200 ? 1: 0) +

(sampledchannelmask & 0x400 ? 1 0) +

(sampledchannelmask & 0x800 ? 1: 0);

num-groups-per-packet = NUMSAMPLESPERPACKET / numchannelsSampled;
num-data-per-packet = num-groups-per-packet * numchannelsSampled;

resetDataStream ();

PDCAOPTIONSSPI-TX.size = numchannelsSampled;
pdca-init-channel (1, &PDCAOPTIONSSPI-TX); //Init Channel 1

PDCAOPTIONS.size = num-data-per-packet;
PDCAOPTIONS.r-size num-data-per-packet;
PDCAOPTIONS.addr PacketStore[0].data;
PDCAOPTIONS.r-addr = PacketStore [1].data;
pdca-init-channel (0, &PDCAOPTIONS); // init PDCA channel with options.

pdca-enable-interrupt-reload-counter-zero (0);

// Enable the transfer (but will not do anything without timer to hit

//sample lines)
pdca-enable (0);

//Configure the PWM module
/Give PWM pins to module from GPIO

gpio-enable-module-pin (AVR32-PWM_0_PIN, AVR32_PWM_0_FUNCTION);

gpio-enable-module-pin (AVR32_PWM-2_PIN, AVR32_PWM_2_FUNCTION);

gpio-enable-module-pin (AVR32_PWM_3_PIN, AVR32_PWM_3-FUNCTION);

gpio-enable-module-pin (AVR32_PWM_4_1_PIN, AVR32_PWM_4-1_FUNCTION);

gpio-enable-module-pin (AVR32_PWM_5_1_PIN, AVR32_PWM_5_1.FUNCTION);

gpio-enable-module-pin (AVR32_PWM_6-PIN, AVR32.PWM-6_FUNCTION);

/The PWM is connected to Peripheral Bus A. This bus has a clock speed

/of 66 MHz looking at main.c and its power manager configuration.

//I want the waves to go low briefly at either the beginning or end of the

/wave.
/For now, no division of the clock. I could add the ability to sample slower

pwm-optt pwm-opt; // PWM option config.
avr32_pwmchannelt pwm-channel; // One channel config.

171

// PWM controller configuration.
pwm-opt.diva = AVR32_PWM.DIVACLKOFF;
pwm-opt.divb = AVR32_PWMDIVB.CLKOFF;
pwm-opt.prea = AVR32_PWMPREAMCK;
pwm-opt.preb = AVR32_PWM-PREBMCK;

pwm-init (&pwm-opt);

pwm-channel.CMR.calg = PWM-MODELEFTALIGNED; // Channel mode.
pwm-channel.CMR.cpol = PWM-POLARITYLOW; // Channel polarity.
pwm-channel.CMR.cpd PWM-UPDATEDUTY; // Not used the first time.
pwm-channel.CMR.cpre AVR32_PWMCMR-CPREMCK; // Channel prescaler.
pwm-channel.cdty = 5; // Channel duty cycle, should be < CPRD.
pwm-channel.cprd = period + buggyPWM; // Channel period.
pwm-channel.cupd = 0; // Channel update is not used here.

pwm-channel-init (0, &pwm-channel); 7/ Set channel configuration to channel 0.
pwm-channel-init (2, &pwm-channel); /7 Set channel configuration to channel 2.
pwm-channel-init (3, &pwm-channel); 77 Set channel configuration to channel 3.
pwm-channel-init (4, &pwm-channel); 77 Set channel configuration to channel 4.
pwm-channel-init (5, &pwm-channel); 77 Set channel configuration to channel 5.
pwm-channel-init (6, &pwm-channel); // Set channel configuration to channel 6.

gpio-clr-gpio-pin (AVR32_PINPB29); //De-assert ADC RESET line

pwm-start-channels (Ox7D);
taskENABLEINTERRUPTS ();

}

7*! \brief Halt ADC conversions and reset the device.
*7

void
StopADC (void)
{

taskDISABLEINTERRUPTS 0;

pwm-stop-channels (Ox7D); 77 Stop all channels (this function takes a bitmask).

//Pull RESET HIGH for ADC
gpio-set-gpio-pin (AVR32_PINPB29);

//Shut off SPI transfer to ADC
pdca-disable (1);

7/Shut off SPI transfers from ADC
pdca-disable (0);

7/Reset counter
fillingPacket = 1;

thisPacket = 0;
packet-number = 0;

resetDataStream 0;

172

taskENABLEINTERRUPTS ();

}

F.1.10 ethernet.h

/* This header file is part of the ATMEL AVR32-SoftwareFramework-AT32UC3A-1.4.0
Release */

7* This file has been prepared for Doxygen automatic documentation generation.*/
7*! \file ***

*

* \brief ethernet headers for AVR32 UC3.
*

* - Compiler: JAR EWAVR32 and GNU GCC for AVR32

* - Supported devices: All AVR32 devices can be used.
* - AppNote:

*

* \author Atmel Corporation: http://www.atmel.com \n

Support and FAQ: http://support.atmel.no/
*

/* Copyright (C) 2006-2008, Atmel Corporation All rights reserved.
*

* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*

* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*

* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation

* and/or other materials provided with the distribution .
*

* 3. The name of ATMEL may not be used to endorse or promote products derived

* from this software without specific prior written permission.
*

* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR

IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY

AND
* SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY

DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND

173

* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT

* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF

* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#ifndef ETHERNETH
#define ETHERNETH

#include "arch/cc.h"
#include "lwip/ip-addr.h"

7*!
* Struct definition for holding configuration information for the network
* interface

*/
typedef struct

{
char dhcpenable;
char addrO;
char addrl;
char addr2;
char addr3;
char netmaskO;
char netmask1;
char netmask2;
char netmask3;
char gatewayO;
char gatewayl;
char gateway2;
char gateway3;
struct ip-addr ipaddr;
struct ip-addr netmask;
struct ip-addr gateway;
u8t mac[3];

} MACinterfaceparams;

7* ! \brief Create the vStartEthernet Task task.
*

* \param uxPriority Input; priority of the task to create.
*

*/
void vStartEthernetTaskLauncher (unsigned portBASETYPE uxPriority);

7*! \brief create ethernet task, for ethernet management.
*

* \param pvParameters Input; not used.
*

*7
portTASKFUNCTION (vStartEthernetTask, pvParameters);

174

#endif

F.1.11 ethernet.c

/* This source file is part of the ATMEL AVR32-SoftwareFramework-AT32UC3A-1.4.0
Release */

/* This file has been prepared for Doxygen automatic documentation generation.*/

7*! \file ***

*

* \brief ethernet management for AVR32 UC3.
*

* - Compiler: IAR EWAVR32 and GNU GCC for AVR32

* - Supported devices: All AVR32 devices can be used.
* - AppNote:

*

* \author Atmel Corporation: http://www.atmel.com \n
Support and FAQ: http://support.atmel.no/

*

/* Copyright (C) 2006-2008, Atmel Corporation All rights reserved.
*

* Redistribution and use in source and binary forms, with or without

* modification, are permitted provided that the following conditions are met:
*

* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*

* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation

* and/or other materials provided with the distribution .
*

* 3. The name of ATMEL may not be used to endorse or promote products derived

* from this software without specific prior written permission.
*

* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR

IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF
* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY

AND
* SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY

DIRECT,
* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES

* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND

-175

* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT

* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OF

* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*7

#include <string.h>

#include "gpio.h" 77 Have to include gpio. h before FreeRTOS.h as long as
FreeRTOS

// redefines the inline keyword to empty.

/* Scheduler include files . *7
#include "FreeRTOS.h"
#include "task.h"

/* Demo program include files. *7
#include "confilwipthreads.h"

/* ethernet includes */
#include "ethernet.h"
#include "conf-eth.h"
#include "macb.h"

#include "DataStream.h"

#ifdef ENABLESERIAL
#include "serialport.h"
#endif

/* lwIP includes */
#include "lwip/sys.h"
#include "lwip/api.h"
#include "lwip/tcpip.h"
#include "lwip/memp.h"
#include "lwip/stats.h"
#include "netif/loopif.h"

/-/__ MA C-R O-S

/-/__D E FIN I TI 0 N S

/* global variable containing MAC Config (hw addr, IP, GW, ...) *7
struct netif MACBif;

MACinterfaceparams ethernetconfig;

//7 - D E CL A R A TI 0 N S

176

/* Initialisation required by lwIP. */
static void prvlwIPInit (void);

/* Initialisation of ethernet interfaces by reading config file *7
static void prvEthernetConfigureInterface (void *param);

7*! \brief Small task to launch lwIP
*

* Responsible for spawning the various servers after lwIP is
*

* \param uxPriority sets priority of the launcher task
*/

void
vStartEthernetTaskLauncher (unsigned portBASETYPE uxPriority)

/* Spawn the Sentinel task. */
xTaskCreate (vStartEthernetTask, (const signed portCHAR *)

configMINIMALSTACKSIZE, NULL, uxPriority,
(xTaskHandle *) NULL);

}

7*! \brief Ethernet task, for ethernet management.
*

*/
portTASKFUNCTION (vStartEthernetTask, pvParameters)

"ETHLAUNCH",

static const gpio-map-t MACBGPIO-MAP = {
{AVR32_MACB.MDC_0_PIN, AVR32_MAC:BMDC_0-FUNCTION},
{AVR32_MACBMDIO_0_PIN, AVR32_MACBMDIOOFUNCTION},
{AVR32_MACB_RXD_0_PIN, AVR32_MACB_RXD_0_FUNCTION},
{AVR32_MACBTXDO_PIN, AVR32_MACBTXD_0_FUNCTION},
{AVR32_MACB_RXD_1 PIN, AVR32_MACB_RXD-1_FUNCTION},
{AVR32_MACBTXD_1 PIN, AVR32_MACBTXD-1_FUNCTION},
{AVR32_MACB-TXEN_0_PIN, AVR32_MACB-TXEN_0-FUNCTION},
{AVR32_MACB_RX_ER_0_PIN, AVR32_MACBRXER_0_FUNCTION},
{AVR32_MACBRXDVO_PIN, AVR32-MACBRX_DV_O_FUNCTION},
{AVR32-MACBTXCLK_0-PIN, AVR32_MACBTXCLK0_FUNCTION}

};

// Assign GPIO to MACB
gpio-enable-module (MACB-GPIOMAP,

sizeof (MACBGPIOMAP) / sizeof (MACBGPIOMAP[0]));

/* Setup lwIP. *7
prvlwIPInit ();

sys-thread-new

systhread-new

systhread-new

("DSTRM", vDataStreamServer, (void *) NULL,
ethDATASTREAMSERVERSTACKSIZE,
ethDATASTREAMSERVERPRIORITY);

("AUTOD", vAutodetectServer, (void *) NULL,
AUTODSTACKSIZE, AUTODPRIORITY);

("CMD", vCommandServer, (void *) NULL,
COMMANDSTACKSIZE, COMMANDPRIORITY);

177

initialized

#ifdef ENABLESERIAL
sys-thread-new ("SERIAL", SerialServer, (void *) NULL,

COMMANDSTACKSIZE, 1);
#endif

// Kill this launcher task.
vTaskDelete (NULL);

}

//! Callback executed when the TCP/IP init is done.
static void
tcpip-init-done (void *arg)

sys-semt *sem;
sem = (sys-semt *) arg;
sys-sem-signal (*sem); // Signal the waiting thread that the TCP/IP init is done.

7*!
* \brief start lwIP layer.
*7

static void
prvlwIPInit (void)

sys-semt sem;
int uswvalue;

sem = sys-sem-new (0);
tcpip-init (tcpip-init done,
sys-sem-wait (sem);
sys-sem-free (sem);

// Create a new semaphore.
&sem);
/7 Block until the lwIP stack
/Free the semaphore.

/Now Init the GPIO
gpio-enable-gpio-pin
gpio-enable-gpio-pin
gpio-enable-gpio-pin

pins for the DIP switches
(AVR32_PINPX16); //USW1
(AVR32_PINPX19); //USW2
(AVR32_PIN-PX22); //USW3

uswvalue = (gpio-get-pin-value (AVR32_PINPX16) ? 0 : 1) +
(2 * (gpio-get-pin-value (AVR32_PINPX19) ? 0: 1)) +
(4 * (gpio-get-pin-value (AVR32_PIN-PX22) ? 0 : 1));

userpagedata *configdata = (userpagedata *) USERPAGEBASEADDR;

/These are bytes 4-6 of the MAC
ethernetconfig .mac[0] = configdata->mac[0];
ethernetconfig .mac[1] = configdata->mac[1];
ethernetconfig .mac[2] = configdata->mac[2];

/Use the switch value to select a configuration
if (uswvalue != 7)

ethernetconfig .dhcpenable = 0;

178

is initialized .

ethernetconfig .ipaddr.addr = configdata-:>ipaddr[uswvalue];
ethernetconfig gateway.addr = configdata-- >gateway[uswvalue];
ethernetconfig .netmask.addr = configdata->netmask[uswvalue];

I
else

{
ethernetconfig .dhcpenable = 1;

I
/* Set hw and IP parameters, initialize MACB too *7
prvEthernetConfigurelnterface (ðernetconfig);

}

7*!
* \brief set ethernet config
*7

static void
prvEthernetConfigurelnterface (void *param)

{
extern errt ethernetif-init (struct netif *netif);
unsigned portCHAR MacAddress[6];
MACinterfaceparams *ethernetconfig = pararn;

/* Default MAC addr. */
MacAddress[0] = ETHERNETCONFETHADDRO;
MacAddress[1] = ETHERNETCONFETHADDR1;
MacAddress[2] = ETHERNETCONFETHADDR2;
MacAddress[3] = ethernetconfig->mac[0];
MacAddress[4] = ethernetconfig->mac[1];
MacAddress[5] = ethernetconfig->mac[2];

/* pass the MAC address to MACB module */
vMACBSetMACAddress (MacAddress);

netifapi-netif-add (&MACB-if, ðernetconfig->ipaddr,
ðernetconfig->netmask, ðernetconfig- >gateway,
NULL, ethernetif-init, tcpip-input);

/* make it the default interface */
netifapi-netif-set-default (&MACB-if);

if (ethernetconfig ->dhcpenable)

netifapi-dhcp-start (&MACB-if);

}
else

{
/* bring it up *7
netifapi-netif-set-up (&MACB-if);

}
}

179

F.1.12 samplemanager.h

/*! \ file samplemanager.h */
#ifndef SAMPLEMANAGERH_
#define SAMPLEMANAGERH_

/*! The structure of a message to the samplemanager *7
typedef struct

{
char command;
unsigned short channels;
unsigned char precision;
unsigned long period;

} managerMessage;

7/Possible commands
#define STARTSAMPLING OxO
#define STOPSAMPLING OxO

extern xQueueHandle managerMbox;

void SendStopMessage (void);

void SendStartMessage (unsigned short channels, unsigned char precision,
unsigned long period);

void vStartSampleManagerTask (void);

#endif /*SAMPLEMANAGERH_ */

F.1.13 samplemanager.c

/*! \ file samplemanager.c */

/* Environment include files. *7
#include <stdlib.h>
#include <string.h>

#include <avr32/io.h>
#include "compiler.h"
#include "preprocessor.h"

#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"
#include "queue.h"

#include "samplemanager.h"
#include "InitBoard.h"
#include "gpio.h"
#include "conf-lwipthreads.h"

180

static portTASKFUNCTIONPROTO (vSampleManagerTask, pvParameters);

/*! Mailbox for the sample manager *7
xQueueHandle managerMbox;

/*! Start the sample manager *7
void
vStartSampleManagerTask (void)

{
/Mailbox will have 5 slots each holding an object with

//enough space to hold a managerMessage
managerMbox = xQueueCreate (5, sizeof (managerMessage));
gpio-enable-gpio-pin (LED2-PIN);

xTaskCreate (vSampleManagerTask, (const signed portCHAR * const) "SAMP",
configMINIMALSTACK-SIZE, NULL, SAMPLEMANAGERPRIORITY,
(xTaskHandle *) NULL);

}

7*! \brief Send a stop message

* This sends a message to the sample manager to halt sampling and reset the
* ADCs.

*7
void
SendStopMessage (void)

managerMessage message;
message.command = STOPSAMPLING;
xQueueSend (managerMbox, &message, portMAXDELAY);
return;

}

7*! \brief Start sampling
*

* Internally this calls SetupADCTimer, but it ensures that it is done
* in a safe way with other tasks not bothering it. It also manages
* the sampling LED properly
*7

void
SendStartMessage (unsigned short channels, unsigned char precision,

unsigned long period)

{
managerMessage message;
message.command = STARTSAMPLING;
message.channels channels;
message. precision = precision;
message.period = period;
xQueueSend (managerMbox, &message, portMAXDELAY);
return;

}

7*!

181

* \brief Sample manager task
*

* The sample manager exists to start and stop sampling in one central way
* by passing messages to it. It is high priority so that it will take priority
* over other tasks doing sampling and packet processing. It 's main purpose
* is to allow interrupt routines to stop sampling if they detect a buffer
* overflow.

*/
static
portTASKFUNCTION (vSampleManagerTask, pvParameters)
{

managerMessage messagebuffer;

while (1)
{

//Pend forever on messages
xQueueReceive (managerMbox, &messagebuffer, portMAXDELAY);

7/Process received message
switch (messagebuffer.command)

{
case STARTSAMPLING:

StopADC ();
//Configure the ADC with this information and start sampling
SetupADCTimer (messagebuffer. channels, messagebuffer. precision,

messagebuffer.period);
gpio-clr-gpio-pin (LED2_PIN);
break;

case STOPSAMPLING:
StopADC ();
gpio-set-gpio-pin (LED2_PIN);
break;

default:
break;

}
}

}

F.1.14 serialport.h

/*! \ file serialport .h */
#ifndef SERIALPORTH_
#define SERIALPORTH_

extern xQueueHandle serialChars;

portTASKFUNCTIONPROTO (SerialServer, pvParameters);

#endif /*SERIALPORT.H_ */

182

F.1.15 serialport.c

#ifdef ENABLESERIAL

/* Standard includes. *7
#include <stdio.h>
#include <string.h>
#include <stdint.h>

#include "conf-eth.h"

/* Scheduler includes. *7
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"

/* Demo includes. */
#include "portmacro.h"

/* lwIP includes. */
#include "lwipopts.h"
#include "lwip/api.h"
#include "lwip/tcpip.h"
#include "lwip/memp.h"
#include "lwip/stats.h"
#include "lwip/opt.h"
#include "lwip/arch.h"
#include "lwip/sys.h"
#include "netif/loopif.h"
#include "lwip/sockets.h"

/* ethernet includes */
#include "ethernet.h"

#include "intc.h"
#include "usart.h"

xQueueHandle serialChars;

#if -GNUC-
_attribute- ((_anoinline_))

#elif _ICCAVR32_
#pragma optimize = no-inline
#endif /*

static long
usart-nonNakedBehavior (void)

{

portBASE_.TYPE xhigherTaskWoken = FALSE;

183

int receivedchar;

usartjread-char (&AVR32_USART0, &receivedchar);

char truncated = receivedchar;

xQueueSendFromISR (serialChars, &truncated, &xhigherTaskWoken);

return xhigherTaskWoken;

}

#if __GNUC_
attribute- ((_naked_))

#endif /*

static void
usart int-handler (void)
{
portENTER-SWITCHINGISR 0;

usart-nonNakedBehavior ();

portEXITSWITCHINGISR ();

}
void
initSerialPort (void)
{

//Init the serial port 57600 baud 8 bit, 1 stop, no parity, no flow
init-dbg-rs232 (66000000); /766 MHz from PBA

print-dbg ("Debug-Port-started\n");

INTC-register-interrupt ((_int-handler) & usart int-handler,

AVR32_USART0_IRQ, AVR32_INTCINTO);

}

/*! \brief The Serial server.
*

* This uses Teilnet to talk to the serial port
*/

184

portTASKFUNCTION (SerialServer, pvParameters)
{
int ISocket;

struct sockaddr-in sLocalAddr;

volatile avr32_usart-t *usart = &AVR32_USART0;

serialChars = xQueueCreate (25, 1);

ISocket = lwip-socket (AFINET, SOCKSTREAM, 0);

if (ISocket < 0)
return;

memset ((char *) &sLocalAddr, 0, sizeof (sLocalAddr));

sLocalAddr.sinifamily = AFINET;

sLocalAddr.sin-len = sizeof (sLocalAddr);

sLocalAddr.sin-addr.s-addr = htonl (INADDRANY);

sLocalAddr.sin-port = 23;

if (iwipbind
(ISocket, (struct sockaddr *) &sLocalAddr, sizeof (sLocalAddr)) < 0)

{
lwip-close (ISocket);

return;

}

if (lwip-listen (ISocket, 20) ! 0)

{
lwip-close (ISocket);

return;

}

while (1)

{

185

int clientfd ;

struct sockaddrin clientaddr;

int addrlen = sizeof (client-addr);

char buffer [10];

int nbytes;

int i;

char serialbuffer;

clientfd =
lwip-accept (ISocket, (struct sockaddr *) &clientaddr,

(socklent *) & addrlen);

if (clientfd > 0)

//Enable the USART RX interrupt
usart->ier = AVR32_USARTIERRXRDYMASK;

do
{

while (xQueueReceive (serialChars, &serialbuffer, 0) == pdTRUE)
f

lwip-send (clientfd, & serialbuffer, 1, 0);

}

nbytes
lwip-recv (clientfd, buffer, sizeof (buffer), MSGDONTWAIT);

if (nbytes -2)

//delay a few ticks go give another routine a chance to run
vTaskDelay (10);

}

if (nbytes > 0)
{

for (i = 0; i < nbytes; i++)
{

186

print-dbg-char (buffer [i]) ;

}

}

}
while (nbytes > 0 |1 nbytes == -2);

//Turn off the RX interrupt
usart->idr = AVR32_USARTIDRRXRDYMASK;

lwip-close (clientfd);

}

}

lwip-close (ISocket);

}

#endif /*

F.1.16 wdtreset.h

#ifndef WDTRESETH_
#define WDTRESETJL

extern xQueueHandle watchdogMbox;

#define DSTREAMOK OxOO
#define TCPIPOK OxO1
#define CMDOK 0x02

void vStartWDTTask (void);
void wdtResetTimeout (void *arg);

#endif /* WDTRESETH_ */

F.1.17 wdtreset.c

/*! \ file wdtreset. c */

/* Environment include files. */
#include <stdlib.h>

#include <avr32/io.h>

187

#include
#include

#include
#include
#include

"compiler.h"
"preprocessor.h"

"FreeRTOS.h"
"conflwip-threads.h"
"task.h"

#include "wdt.h"
#include "queue.h"

/* iwIP includes. */
#include "lwipopts.h"
#include "lwip/api.h"
#include "lwip/tcpip.
#include "Iwip/memp
#include "lwip/stats.t
#include "lwip/opt.h"
#include "lwip/arch.h
#include "lwip/sys.h"
#include "netif/loopif
#include "Iwip/socket

h"

1"

.H"
s~h"

#include "wdtreset.h"

/*! Mailbox for the watchdog *7
xQueueHandle watchdogMbox;

static portTASKFUNCTIONiPROTO (vWDTTask, pvParameters);

void
vStartWDTTask (void)

{

/Set WDT to 5,000,000 microseconds, or 5 seconds
/We will hit it much more often than this.

watchdogMbox = xQueueCreate (5, 1);

wdt-enable (5000000);

xTaskCreate (vWDTTask, (const signed portCHAR * const) "WDT",
ethWDTTASKSTACKSIZE, NULL, ethWDTTASKPRIORITY,
(xTaskHandle *) NULL);

/*! \ brief Notify WDT that IwIP is OK

* Fired from within lwIP to ensure
*7

void
wdtResetTimeout (void *arg)

I

it is functional

188

char message = TCPIPOK;

//Tell WDT that the TCPIP task is OK
xQueueSend (watchdogMbox, &message, 10);

//Reset the timer
systimeout (500, wdtResetTimeout, NULL);

}

7*! \brief the Watchdog Timer reset task
*

* Waits for notification from both Datastream and iwIP
* before resetting the watchdog timer. If it gets no notification ,
* the timer expires and resets the chip.
*/

static
portTASKFUNCTION (vWDTTask, pvParameters)
{

char tcpipok = 0;
char dstreamok = 1;
char cmdok = 1;

char messagebuffer;

while (1)
{

//Pend forever on messages
xQueueReceive (watchdogMbox, &messagebuffer, portMAXDELAY);

switch (messagebuffer)

{
/case DSTREAMOK:
/7 dstreamok = 1;
/7 break;
case TCPIPOK:

tcpipok = 1;
break;

/case CMDOK:
/7 cmdok = 1;
/7 break;
default:

break;
}

if (tcpipok && dstreamok && cmdok)

{
/Hit the WDT

wdt-clear ();
//cmdok = 0;
//dstreamok = 0;
tcpipok = 0;

}
}

189

F.1.18 main.c

/* This file has been prepared for Doxygen automatic documentation generation.*/
/*! \file ***

*

\brief FreeRTOS and lwIP example for AVR32 UC3.

- Compiler: GNU GCC for AVR32
- Supported devices: All AVR32 devices can be used.
- AppNote:

*

\author Atmel Corporation: http://www.atmel.com \n
Support and FAQ: http://support.atmel.no/

/* Copyright (c) 2007, Atmel Corporation All rights reserved.
*

* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*

* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*

* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution .
*

* 3. The name of ATMEL may not be used to endorse or promote products derived
* from this software without specific prior written permission.

* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR
IMPLIED

* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF

* MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE EXPRESSLY
AND

* SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY
DIRECT,

* INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR

SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER

CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,

OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE

USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

190

7*
* This program was written by Zachary Clifford from modified Atmel software

* framework files. It implements the firmare necessary for the LEES data

* acquisition board to function properly
*7

/* Environment include files. *7
#include <stdlib.h>
#include <string.h>
#include "pm.h"
#include "flashc.h"
#include "sdramc.h"

#include <avr32/io.h>
#include "compiler.h"
#include "preprocessor.h"

7* Scheduler include files . *7
#include "FreeRTOS.h"
#include "task.h"
#include "semphr.h"

7* Demo file headers. *7
#include "ethernet.h"
#include "netif/etharp.h"

7* Custom headers */
#include "InitBoard.h"
#include "externalmem.h"
#include "wdtreset.h"
#include "samplemanager.h"
#include "gpio.h"
#include "rtc.h"
#include "wdt.h"
#include "pwm.h"
#include "spi.h"

#include "DataStream.h"
#include "serialport.h"

#include "print-funcs.h"

#if -_GNUC_
include "nlao-cpu.h"
#endif

/* Priority definitions for most of the tasks in the demo application. *7
#define mainETHTASKPRIORITY (tskIDLEPRIORITY + 1)

#include "debug.h"

191

/7! \fn main
/7! \brief start the software here
7/! 1) Initialize the microcontroller and the shared hardware resources
7/! of the board.
/7! 2) Launch the IP modules.
7/! 3) Start FreeRTOS.
/7! \return 42, which should never occur.

/7! \note
7/!

int
main (void)

wdt-disable 0;
Disable-global-interrupt 0;

//Enable the RESET to the ADC
gpio-enable-gpio-pin (AVR32-PINPB29);
//Pull RESET HIGH for ADC
gpio-set-gpio-pin (AVR32_PINPB29);

pwm-stop-channels (x7D); 7/ Stop all channels (this function takes a bitmask).

spi-disable (&AVR32_SPIO);
volatile avr32_pmt *pm = &AVR32_PM;

rtcinit (&AVR32_RTC, RTCOSCRC, RTCPSELRC_1_76HZ); //RTC ticks in about 1Hz
rtcenable (&AVR32_RTC);

#if (INCLUDEPOST == 1)
/First check the LEDs before trying to init the external clock

POSTLEDs 0;
#endif

/* 1) Initialize the microcontroller and the shared hardware resources of the board. *7
/* Switch to external oscillator 0 */
pm-switch-to-osc0 (pm, FOSCO, OSCOSTARTUP);

7/Setup PLLO on OSCO, mul+1=11 ,divisor by 1, lockcount=16, ie. 12Mhzx11/1 132MHz
output for VCO.

pm-pll-setup (pm, /* volatile avr32-pm-t* pm *7
0, /* unsigned int pil *7
10, /* unsigned int mul *7
1, /* unsigned int div *7
0, /* unsigned int osc *7
16); /* unsigned int lockcount *7

//After this line, the PLL will be divided by 2
pm-pll-set-option (pm, 0, 77 p110

1, 77 Choose the range 160-240MHz with 0 and 80-180 with 1
(VCO is at 132MHz).

1, // div2

192

0); // wbwdisable

//Now PLLO is configured to output 66 MHz

#if __GNUC-
set-cpuhz (66000000); //This is weird, but copied from pm-conf-clocks.c /Look out

because of bugs in the NEWLIB addons.

#endif

/* Enable PLLO *7
pm-pll-enable (pm, 0);

/* Wait for PLLO locked *7
pm-wait-for-p110_locked (pm);

/* switch to clock *7
pm-cksel (pm, 0,

0,
0,
0,
0,
0

/* Now PBA is at 66 MHZ,
flashc-set-wait-state (1);
/above 33 MHz

/* PBA clock divisor enable *7
/* PBA select */
/* PBB clock divisor enable *7
/* PBB Select */
/*HSB divisor enable (CPU clock = HSB clock) *7
/*HSB select (CPU clock HSB clock) */

HSB is 66, and PBB is 66 *7
/Need to set wait state because operating

7/Switch the main power manager to using the PLLO clock instead of oscO.

pm-switch-to-clock (pm, AVR32-PMMCCTRLMCSEL-PLLO);

#if (INCLUDEPOST == 1)
/Now try again after engaging the external oscillator
POST-LEDs 0;

#endif

// Initialize the SDRAM Controller and the external SDRAM chip.
sdramcinit (66000000); 7766 MHz to SDRAM Controller because it uses system clock

/Now the SDRAM lives from OxD0000000 to OxD2000000
7/It will be used to hold samples from the ADC
7/It has 256 MBits. The linker does not know about it, so it will be

//referenced through pointers. See externalmem.h for info about

/how this memory is used.

#if (INCLUDEPOST == 1)
/This takes forever, but is useful
if (POSTSDRAM () == 0)

for initial testing

POST-LEDs (;
}

#endif

//Setup the ADC's SPI bus. It is the only device there.
SetupADCSPI ();

193

#ifdef ENABLESERIAL
/This initializes the serial port for the telnet feature
initSerialPort 0;

#endif

Enable-global-interrupt 0;

vStartSampleManagerTask ();

/* Start the Ethernet tasks launcher. */
vStartEthernetTaskLauncher (configMAXPRIORITIES);

7/Start the packet processing task
StartCopyTask ();

7/Start the Watchdog Timer and its resetting task
vStartWDTTask ();

/* 3) Start FreeRTOS. *7
vTaskStartScheduler ();

/* Will only reach here if there was insufficient memory to create the idle task. *7

return 0;
}

/*---

F.1.19 version.h

/* This file was automatically generated. */
char * versionstr = "NERD:-Version-1.1-(2009-04-25)\n";

F.2 Ethstream Source

This section contains the source for the ethstream utility for acquirind data from
the NerdJack device. Ethstream is a modified version of LJStream written by Jim
Paris. Ethstream added the ability to communicate with a NerdJack to LJStream.
The parts relevant to NerdJack are included, but the original LabJack protocol and
network drivers are omitted for brevity and clarity.

F.2.1 ethstream.h

#ifndef ETHSTREAMH
#define ETHSTREAMJI

#define CONVERTDEC 0

194

#define CONVERT-VOLTS 1
#define CONVERT-HEX 2

#endif

F.2.2 ethstream.c

7*
* Labjack Tools

* Copyright (c) 2003-2007 Jim Paris <jimfrjtan. com>
*

* This is free software; you can redistribute it and/or modify it and

* it is provided under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation; see COPYING.
*/

/* ljstream: Stream data from the first N (1-14) analog inputs.
Resolution is set to 12-bit and all channels are in bipolar (-5 to
+5V) mode.

*/

#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <errno.h>
#include <sys/time.h>
#include <time.h>
#include <sys/stat.h>
#include <signal.h>
#include <unistd.h>
#include "debug.h"
#include "ue9.h"
#include "ue9error.h"
#include "nerdjack.h"
#include "opt.h"
#include "version.h"
#include "compat.h"
#include "ethstream.h"

#include "example.h"

#define DEFAULTHOST "192.168.1.209"
#define UE9_COMMANDPORT 52360
#define UE9_DATAPORT 52361

struct callbacklnfo

{
struct ue9Calibration calib;
int convert;
int maxlines;

195

struct options opt [] = {
{'a', "address", "string", "host/address.oLdevice,_(192.168.1.209)"},
{'n', "numchannels", "n", "sample.the.first-NADC -channels.(2)
{'N', "nerdjack", NULL, "Force.NerdJack-device"},
{'L', "labjack", NULL,"Force-LabJackdevice" },
{ 'd', "detect", NULL, "Detect-NerdJackJP-address"},
{'R', "range", "a,b",
"Set -range._on-NerdJack,_for-channels-0 -5,6 -11 -to-either-5-or-1 0-(10, 10)"

{'C', "channels", "a,b,c", "sample.channels-a,,b,._and.c"},
{ 'r' "rate", "hz", "sampleeachchanneLat-this-rate-(8000.0)" }'
{'o', "oneshot", NULL, "don't,_retry.in-case-of-errors"},
{' f', " forceretry", NULL, "retry-no-matter_what.happens"},
{'c', "convert", NULL, "convert,_output._to.volts" },
{'H', "converthex", NULL, "convert-output.toJex"},
{'n', "showmem", NULL, "output. _memorystats-withdata_(NJ.only)}

{'l', " lines " "num", "if_Lset,,_output.this._many-inesand.quit"},
{'h', "help", NULL, "this.help"},
{'v', "verbose", NULL, "be-verbose"},
{'V', "version", NULL, "show.version._number._and_exit"},
{'i', "info", NULL, "get.infofrom.device.(NJ.only)"},
{'X', "examples",NULL, "show.ethstream.examples_and-exit"},
{0, NULL, NULL, NULL}

} ;

int doStream (const char *address, uint8_t scanconfig, uint16_ scaninterval,
int * channeLlist , int channel-count, int convert,
int maxlines);

int nerdDoStream (const char *address, int *channeLlist, int channeLcount,
int precision, unsigned long period, int convert, int lines,
int showmem);

int data-callback (int channels, uint16_t * data, void *context);

int columnsleft = 0;
void
handle-sig (int sig)
{

while (columnsleft--)

{
printf (" _");

}
fflush (stdout);
exit (0);

}

int
main (int argc, char *argv[])
{

int optind;
char *optarg, *endp;
char c;
int tmp, i;
FILE *help = stderr;

196

char *address = strdup (DEFAULTHOST);
double desired-rate = 8000.0;
int lines = 0;
double actual-rate;
int oneshot = 0;
int forceretry = 0;
int convert = CONVERTDEC;
int showmem = 0;
int inform = 0;
uint8_t scanconfig;
uint16_t scaninterval;

#if UE9-CHANNELS > NERDJACK-CHANNELS
int channel-list [UE9_CHANNELS];

#else
int channel-list [NERDJACKCHANNELS];

#endif
int channel-count = 0;
int nerdjack = 0;
int labjack = 0;
int detect = 0;
int precision = 0;
int addressSpecified = 0;
int donerdjack = 0;
unsigned long period = NERDJACK.CLOCKRATE / desired-rate;

/* Parse arguments *7
opt-init (&optind);
while ((c = opt-parse (argc, argv,

{
switch (c)

&optind, &optarg, opt)) != 0)

case 'a':
free (address);
address = strdup (optarg);

addressSpecified = 1;
break;

case 'n':
channel-count = 0;
tmp = strtol (optarg, &endp, 0);
if (*endp 11 tmp < 1 || tmp > UE9_CHANNELS)

{
info ("bad-number-oLchannels:-%s\n", optarg);
goto printhelp;

}
for (i = 0; i < tmp; i++)

channeLlist [channel-count++] = i;
break;

case 'C':
channel-count = 0;

tmp = strtol (optarg, &endp, 0);
if (*endp != '\0' && *endp !

{

197

info ("bad-channel-number:_%s\n", optarg);
goto printhelp;

}
/We do not want to overflow channeLlist, so we need the check here
/The rest of the sanity checking can come later after we know

7/whether this is a
/LabJack or a NerdJack

#if UE9_CHANNELS > NERDJACKCHANNELS
if (channel-count >= UE9_CHANNELS)
{

#else
if (channel-count >= NERDJACKCHANNELS)
{

#endif
info ("error: -too-many-channels-specified\n");
goto printhelp;

}
channel-list [channeLcount++] = tmp;
optarg = endp + 1;

}
while (*endp);
break;

case 'r':
desired-rate = strtod (optarg, &endp);
if (*endp || desired-rate <= 0)
{

info ("bad-rate:_%s\n", optarg);
goto printhelp;

}
break;

case '1':
lines = strtol (optarg, &endp, 0);
if (*endp || lines <= 0)
{

info ("bad-number-ofilines:_%s\n", optarg);
goto printhelp;

}
break;

case 'R':
tmp = strtol (optarg, &endp, 0);
if (*endp != ',')

{
info ("bad-rangeanumber:_%s\n", optarg);
goto printhelp;

}
if(tmp != 5 && tmp != 10) {

info ("valid-choices-for -range-are-5-or-10\n");
goto printhelp;

}
if(tmp == 5) precision = precision + 1;

optarg = endp + 1;
if (*endp == '\0') {

198

info (" Range-needs-two-numbers, -one.for-channels.0 -5 -and-another Jor.
6-11\n");

goto printhelp;

}
tmp = strtol (optarg, &endp, 0);
if (*endp != '\0') {

info (" Range-needs-only.two-numbers,-one.for-channels.0-5._and.another-for-
6-11\n");

goto printhelp;

}
if(tmp != 5 && tmp != 10) {

info (" valid._choices._for -range.are.-5.or-10\n");

goto printhelp;

}
if(tmp == 5) precision = precision + 2;

break;
case 'N':

nerdjack++;
break;

case 'L':
labjack++;
break;

case 'd':
detect++;
break;

case '0:
oneshot++;
break;

case 'f':
forceretry ++;
break;

case 'c':
if (convert != 0)

{
info (" specify-onlyone.conversion.type\n");
goto printhelp;

I
convert = CONVERTVOLTS;
break;

case 'H':
if (convert 0)

{
info (" specify,_onlyone-conversion-type\n");
goto printhelp;

}
convert = CONVERT-HEX;
break;

case 'm':
showmem++;

case 'v':
verb-count++;
break;

case 'X':
printf (" %s",examplestring);

199

return 0;
break;

case 'V':
printf ("etherstream-" VERSION "\n");
printf ("Written-by-Jim-Paris-<jim@jtan.com>\n");
printf ("and-Zachary-Clifford-<zacharyc@mit.edu>\n");
printf ("This-program-comes-with-no-warranty-and-is-"

"provided-under-the-GPLv2.\n");
return 0;
break;

case 'i':
inform++;
break;

case ':
help = stdout;

default:
printhelp:

fprintf (help, "Usage: -%s-[options]\n", *argv);
opt-help (opt, help);
fprintf (help, "Read-data-from-thespecified-Labjack-UE9"

-via-Ethernet.-See-README-for-details.\n");
return (help == stdout) ? 0 : 1;

}
}
if (detect && labjack) {

info ("The.LabJack-does-notsupport-autodetection\n");
goto printhelp;

}
if (detect && !nerdjack) {

info ("Only-the-NerdJack-upports-autodetection---assuming--N-option\n");
nerdjack = 1;

}
if (detect && addressSpecified) {

info ("Autodetection-and-specifying-address-are-mutually-exclusive\n");
goto printhelp;

}
if (nerdjack && labjack) {

info ("Nerdjack-and-Labjack-options-are-mutually-exclusive\n");
goto printhelp;

}

donerdjack = nerdjack;

//First if no options were supplied try the Nerdjack
//The second time through, donerdjack will be true and this will not fire
if (!nerdjack && !labjack) {

info ("No-devicespecified ... Defaulting-to-Nerdjack\n");
donerdjack = 1;

}

200

doneparse:

if (inform) {
/We just want information from Nerd Jack
if(!detect) {

if(nerd-get-version (address) < 0) {
info ("Could-not-find-NerdJack-at-specified-address\n")

} else {
return 0;

}
}

info ("Autodetecting-NerdJack-address\n");
free (address);
if (nerdjack-detect (address) < 0)

{
info ("Error-with-autodetection\n");

goto printhelp;

}
else

{
info ("Found-NerdJack-at-address:-%s\n", address);

if(nerd-get-version (address) < 0) {
info ("Error-getting-NerdJack-version\n");
goto printhelp;

}
return 0;

}
}

if (donerdjack)
{

if (channel-count > NERDJACKCHANNELS)

{
info ("TooAnany-channels-for-NerdJack\n");
goto printhelp;

}
for (i = 0; i < channel-count; i++)

{
if (channel-list [i] >= NERDJACKCHANNELS)

{
info ("ChanneLis-out-oLNerdJack-range:-%d\n",

channel-list [i]);
goto printhelp;

}
}

}
else

{
if (channel-count > UE9_CHANNELS)
{

info ("Too-many-channels-forlabJack\n");
goto printhelp;

I

201

for (i = 0; i < channel-count; i++)
{

if (channellist [i] >= UE9_CHANNELS)
{

info ("ChanneLis-out-ofLabJack-range:-%d\n", channeLlist[i]);
goto printhelp;

}
}

}

if (optind < argc)

{
info ("error: -tooamany-arguments_(%s)\n\n", argv[optind]);
goto printhelp;

}
if (forceretry && oneshot)

{
info (" forceretry -and-oneshot-options-are-mutually-exclusive\n");
goto printhelp;

}
/* Two channels if none specified */
if (channel-count == 0)

{
channel-list [channel-count++] = 0;
channel-list [channel-count++] = 1;

}
if (verb-count)

{
info ("Scanning-channels:");
for (i = 0; i < channeLcount; i++)

info ("-AIN%d", channeliist[i]);
info ("\n");

}
/* Figure out actual rate. */
if (donerdjack)

{
if (nerdjack-choose-scan (desired-rate, &actual-rate, &period) < 0)

I
info ("error: -can't -achieveequestedscan-rate-(%lf-Hz) \n",

desired-rate);

}
}

else
I

if (ue9_choose-scan (desired-rate, &actuaLrate,
&scanconfig, &scaninterval) < 0)

f
info ("error: -can 't -ahee-euse sa-ae (%1LHz) \ n",

202

desired-rate);

if ((desired-rate != actual-rate) |1 verb-count)

{
info ("Actual-scanrate-is-%lf-Hz\n", actual-rate);
info ("Period-is_%ld\n", period);

if (verb-count && lines)

{
info ("Stopping-capture-after-%dJines\n", lines);

signal (SIGINT, handle-sig);
signal (SIGTERM, handlesig);

if (detect)

{
info ("Autodetecting-NerdJack-address\n");
free (address);
if (nerdjack-detect (address) < 0)
{

info ("Error-with-autodetection\n");
goto printhelp;

}
else

{
info ("Found-NerdJack-at-address:-%s\n", address);

for (;;)
{

int ret;
if (donerdjack)

ret =
nerdDoStream (address, channel-list, channel-count, precision,

period, convert, lines, showmem);
verb ("nerdDoStream-eturned-%d\n", ret);

}
else

{
ret = doStream (address, scanconfig, scaninterval,

channellist , channelcount, convert, lines);
verb ("doStream-returned-%d\n", ret);

}
if (oneshot)

203

break;

if (ret == 0)
break;

/Neither options specified at command line and first time through.
//Try LabJack

if (ret == -ENOTCONN && donerdjack && !labjack && !nerdjack)
{

info ("Could-not-connect-NerdJack ...Trying-LabJack\n");
donerdjack = 0;
goto doneparse;

}

/Neither option supplied, no address, and second time through.
//Try autodetection
if (ret == -ENOTCONN && !donerdjack && !labjack && !nerdjack &&

!addressSpecified) {
info ("Could-not-connect-LabJack ...Trying-to-autodetect-Nerdjack\n");
detect = 1;
donerdjack = 1;
goto doneparse;

}

if (ret == -ENOTCONN && nerdjack && !detect && !addressSpecified) {
info ("Could-not-reach-NerdJack ...Trying-to-autodetect\n");
detect = 1;
goto doneparse;

}

if (ret == -ENOTCONN && !forceretry)

{
info (" Initial -connection-failed , -giving-up\n");
break;

}

if (ret == -EAGAIN 1 ret == -ENOTCONN)
{

/* Some transient error. Wait a tiny bit, then retry *7
info ("Retrying-in-5-secs.\n");
sleep (5);

}
else

{
info ("Retrying-now.\n");

}
}

debug ("Done-loop\n");

return 0;

}

int

204

nerdDoStream (const char *address, int *channel-list, int channel-count,
int precision, unsigned long period, int convert, int lines,
int showmem)

{
int retval = -EAGAIN;
int fd-data;
static int first-call = 1;
static int started = 0;
static int wasreset = 0;
getPacket command;
static unsigned short currentcount = 0;

tryagain:

//If this is the first time, set up acquisition
7/Otherwise try to resume the previous one
if (started == 0)

{
if (nerd-generate-command

(&command, channel-list, channel-count, precision, period) < 0)

{
info ("Failed-to-create-configuration.-command\n");
goto out;

}

if (nerd-send-command (address, "STOP", 4) < 0)

{
if (first-call) {

retval = -ENOTCONN;
if (verb-count) info("Failed-to-send-STOP-command\n");
} else {

info ("Failed-to-send-STOP-command\n");

}
goto out;

}

if (nerd-send-command (address, &command, sizeof (command)) < 0)
{

info ("Failed-to-send-GET-command\n");
goto out;

}

}
else

{
7/If we had a transmission in progress, send a command to resume from there
char cmdbuf[1o];
sprintf (cmdbuf, "SETC%05hd", currentcount);
retval = nerd-send-command (address, cmdbuf, strlen (cmdbuf));
if (retval == -4)

{
info ("NerdJack-was-reset\n");
//Assume we have not started yet, reset on this side.
7/If this routine is retried, start over
printf ("# NerdJack-was-reset-here\n");

205

currentcount = 0;
started = 0;
wasreset = 1;
goto tryagain;

}
else if (retval < 0)

{
info ("Failed-to-send-SETC-command\n");
goto out;

}
}

/The transmission has begun
started = 1;

/* Open connection *7
fddata = nerd-open (address, NERDJACKDATAPORT);
if (fddata < 0)

{
info ("Connect-failed:-%s:%d\n", address, NERDJACKDATAPORT);
goto out;

}

retval = nerd-data-stream
(fd-data, channel-count, channellist , precision, convert, lines,
showmem, ¤tcount, period, wasreset);

wasreset = 0;
if (retval == -3)

{
retval = 0;

}
if (retval < 0)

{
info ("Failed-to-open-data-stream\n");
goto out1;

}

info ("Stream-finished\n");
retval = 0;

outl:
nerd-close-conn (fd-data);

out:
/We've tried communicating, so this is not the first call anymore
first-call = 0;

return retval;

}

int
doStream (const char *address, uint8t scanconfig, uint16_ scaninterval,

int * channellist , int channeLcount, int convert, int lines)
{

int retval -EAGAIN;
int fd-cmd, fddata;

206

int ret;
static int first-call 1;
struct callbackInfo ci = {

.convert = convert,
.maxlines = lines,

};

/* Open command connection. If this fails, and this is the
first attempt, return a different error code so we give up. *7

fd-cmd = ue9_open (address, UE9_COMMANDTORT);
if (fd-cmd < 0)

{
info ("Connectifailed:_%s:%d\n", address, UE9_COMMANDPORT);
if (first-call)

retval = -ENOTCONN;
goto out;

}
first-call = 0;

/* Make sure nothing is left over from a previous stream *7
if (ue9-stream-stop (fdcmd) == 0)

verb ("Stopped-previous-stream. \n");
ue9_buffer-flush (fd-cmd);

/* Open data connection */
fd-data = ue9_open (address, UE9_DATAPORT);
if (fd-data < 0)

{
info ("Connect-failed:_%s:%d\n", address, UE9_DATAPORT);
goto outl;

}

/* Get calibration */
if (ue9_get-calibration (fd-cmd, &ci.calib) < 0)

{
info ("Failed-to-get-device- calibration \n");
goto out2;

}

/* Set stream configuration */
if (ue9_streamconfig-simple (fd cmd, channel-list , channel-count,

scanconfig, scaninterval,
UE9_BIPOLARGAIN1) < 0)

{
info ("Failed-to-set -stream-configuration\n");
goto out2;

I

/* Start stream *7
if (ue9-stream-start (fd-cmd) < 0)

{
info ("Failed-to-start -stream\n");
goto out2;

I

207

/* Stream data */
ret = ue9_stream-data (fd-data, channeLcount, datacallback, (void *) &ci);
if (ret < 0)
{

info ("Data-stream-failed-with-error-%d\n", ret);
goto out3;

}
info (" Stream-finished\n");
retval = 0;

out3:
/* Stop stream and clean up */
ue9_stream-stop (fd-cmd);
ue9_buffer-flush (fd-cmd);

out2:
ue9_close (fd-data);

out1:
ue9_close (fd-cmd);

out:
return retval;

}

int
data-callback (int channels, uint16t * data, void *context)
{

int i;
struct callbacklnfo *ci = (struct callbackInfo *) context;
static int lines = 0;

columns-left = channels;
for (i = 0; i < channels; i++)

{
switch (ci->convert)

{
case CONVERT-VOLTS:

if (printf

ue9_binaryto-analog (&ci->calib, UE9_BIPOLARGAIN1, 12,
data[i])) < 0)

goto bad;
break;

case CONVERTHEX:
if (printf ("%04X", data[i]) < 0)

goto bad;
break;

default:
case CONVERTDEC:

if (printf ("%d", data[i]) < 0)
goto bad;

break;

}
columns-left - -

208

if (i < (channels - 1))

{
if (ci->convert!= CONVERTHEX && putchar ('') < 0)

goto bad;

}
else

{
if (putchar ('\n') < 0)

goto bad;
lines ++;
if (ci->maxlines && lines >= ci->maxlines)

return -1;

}
}

return 0;

bad:
info ("Output-error-(disk-full?) \n");
return -3;

}

F.2.3 nerdjack.h

7*
* Labjack Tools
* Copyright (c) 2003-2007 Jim Paris <jim@jtan. com>
*

* This is free software; you can redistribute it and/or modify it and
* it is provided under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation; see COPYING.
*7

#ifndef NERDJACK.H
#define NERDJACKH

#include <stdint.h>
#include <stdlib.h>

#include "netutil.h"

#define NERDJACKCHANNELS 12
#define NERDJACKCLOCK.RATE 66000000
#define NERDJACKDATAPORT 49155
#define NERDJACK-UDP-RECEIVEPORT 49156
#define NERDJACKCOMMANDPORT 49157

#define NERDJACK-PACKET-SIZE 1460
#define NERDJACKNUMSAMPLES 726

/* Packet structure used in message to start sampling on NerdJack *7
typedef struct __attribute-_ ((-_packed_))

209

char word[4];
unsigned long period;
unsigned short channelbit;
unsigned char precision;
unsigned char prescaler;

} getPacket;

/* Open/close TCP/IP connection to the NerdJack *7
int nerd-open (const char *address, int port);
int nerd-close-conn (int dataifd);

/* Generate the command word for the NerdJack *7
int nerd-generate-command (getPacket * command, int *channellist,

int channel-count, int precision,
unsigned long period);

/* Send given command to NerdJack */
int nerd-send-command (const char *address, void *command, int length);

/* Get the version string from NerdJack */
int nerd-get-version (const char *address);

/* Stream data out of the Nerd Jack */
int nerd-data-stream (int data-fd, int numChannels, int *channellist,

int precision, int convert, int lines, int showmem,
unsigned short *currentcount, unsigned int period,
int wasreset);

/* Detect the IP Address of the NerdJack and return in ipAddress *7
int nerdjack-detect (char *ipAddress);

/* Choose the best ScanConfig and ScanInterval parameters for the
desired scanrate. Returns -1 if no valid config found */

int nerdjack-choose-scan (double desired-rate, double *actual-rate,
unsigned long *period);

#endif

F.2.4 nerdjack.c

7*
* Labjack Tools

* Copyright (c) 2003-2007 Jim Paris <jim@jtan. com>
*

* This is free software; you can redistribute it and/or modify it and
* it is provided under the terms of version 2 of the GNU General Public
* License as published by the Free Software Foundation; see COPYING.
*7

#include <errno.h>
#include <stdint.h>

210

#include <stdlib.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>

#include <math.h>

#include "netutil.h"
#include "compat.h"

#include "debug.h"
#include "nerdjack.h"
#include "util.h"
#include "netutil.h"
#include "ethstream.h"

#define NERDJACK-TIMEOUT 5 /* Timeout for connect/send/recv, in seconds *

#define NERDHEADERSIZE 8
#define MAXSOCKETS 32

typedef struct -attribute_ ((-_packed__))

{
unsigned char headerone;
unsigned char headertwo;
unsigned short packetNumber;
unsigned short adcused;
unsigned short packetsready;
signed short data[NERDJACKNUMSAMPLES];

} dataPacket;

struct discovered-socket {
int sock;
uint32t locaLip;
uint32-t subnet-mask;

};

struct discovert {
struct discovered-socket socks [MAXSOCKETS];
unsigned int sockcount;

};

/* Choose the best ScanConfig and ScanInterval parameters for the
desired scanrate. Returns -1 if no valid config found *7

int
nerdjack-choose-scan (double desired-rate, double *actualrate,

unsigned long *period)

{
/The ffffe is because of a silicon bug. The last bit is unusable in all
/devices so far. It is worked around on the chip, but giving it exactly
//0 xfffff would cause the workaround code to roll over.
*period = floor ((double) NERDJACKCLOCKRATE / desired-rate);
if (*period > OxOffffe)

{

211

info ("Cannot-sample-that-slowly\n");
*actual-rate = (double) NERDJACKCLOCKRATE / (double) OxOffffe;
*period = OxOffffe;
return -1;

}
/Period holds the period register for the NerdJack, so it needs to be right
*actual-rate = (double) NERDJACK-CLOCKRATE / (double) *period;
if (*actualrate != desired-rate)

{
return -1;

I
return 0;

}

* Create a discovered socket and add it to the socket list structure.
* All sockets in the structure should be created, bound, and ready for broadcasting

static int discovered-sock-create (struct discovert *ds, uint32_t local-ip , uint32_t
subnet-mask)

{
if (ds->sock-count >= MAXSOCKETS) {

return 0;
}

/* Create socket. *7
int sock = (int)socket(AFINET, SOCKDGRAM, 0);
if (sock == -1) {

return 0;

I
/* Allow broadcast. *7
int sock-opt = 1;
setsockopt(sock, SOLSOCKET, SOBROADCAST, (char *)&sock-opt.,

sizeof(sock-opt));

/* Set nonblocking */
if (soblock (sock, 0) < 0)
{

verb ("can't-set-nonblocking\n");
return 0;

}

/* Bind socket. */
struct sockaddr-in sock-addr;
memset(&sock-addr, 0, sizeof(sock-addr));
sock-addr.sin-family = AF-INET;
sock-addr.sin-addr.saddr = htonl(local-ip);
sock-addr.sin-port = htons(0);
if (bind(sock, (struct sockaddr *)&sock-addr, sizeof(sock-addr)) != 0) {

close (sock);
return 0;

I

212

/* Write sock entry. */
struct discovered-socket *dss = &ds- >socks [ds- >sock-count++];
dss->sock = sock;
dss->local-ip = locaLip;
dss->subnet-mask = subnet-mask;

return 1;

}

* Enumerate all interfaces we can find and open sockets on each
*/
#if defined(USEIPHLPAPI)

static void enumerate-interfaces(struct discover-t *ds)
{

PIPADAPTERINFO pAdapterInfo = (IPADAPTERINFO
*)malloc(sizeof(IPADAPTERINFO));

ULONG ulOutBufLen = sizeof(IPADAPTERINFO);

DWORD Ret = GetAdapterslnfo(pAdapterlnfo, &ulOutflufLen);
if (Ret != NOERROR) {

free (pAdapterInfo);
if (Ret != ERRORBUFFER-OVERFLOW) {

return;

I
pAdapterInfo = (IPADAPTERINFO *)malloc(ulOutBufLen);
Ret = GetAdapterslnfo(pAdapterlnfo, &ulOutBufLen);
if (Ret != NOERROR) {

free (pAdapterlnfo);
return;

}
}
PIP-ADAPTERINFO pAdapter = pAdapterlnfo;
while (pAdapter) {

IPADDRSTRING *pIPAddr = &pAdapter->IpAddressList;
while (pIPAddr) {

uint32t local-ip = ntohl(inet-addr(plPAddr->IpAddress.String));
uint32_t mask = ntohl(inet-addr(pIPAddr- >IpMask.String));

if (locaLip == 0) {
pIPAddr = pIPAddr->Next;
continue;

}

discovered-sock-create (ds, locaLip , mask);
pIPAddr = pIPAddr->Next;

}

pAdapter = pAdapter->Next;

}

free (pAdapterlnfo);

}

213

#else
static void enumerate-interfaces(struct discover-t *ds) {

int fd socket(AFINET, SOCKDGRAM, 0);
if (fd == -1) {

return;

}
struct ifconf ifc;
uint8_ buf [8192];
ife . ifc-len = sizeof(buf);
ifc . ifc-buf = (char *)buf;

memset(buf, 0, sizeof(buf));

if (ioctl (fd, SIOCGIFCONF, &ifc) != 0) {
close (fd);
return;

}

uint8t *ptr (uint8t *) ife. ifc-req
uint8_ *end = (uint8_ *)&ifc. ifc-buf [ifc . ifc-len];

while (ptr <= end) {
struct ifreq * ifr = (struct ifreq *)ptr;
ptr += _SIZEOFADDRJFREQ(*ifr);

if (ioctl (fd, SIOCGIFADDR, ifr) != 0) {
continue;

}
struct sockaddr-in *addr-in = (struct sockaddr-in *)&(ifr->ifr-addr);
uint32t local-ip = ntohl(addr-in->sin-addr.s-addr);
if (local-ip == 0) {

continue;

}
if (ioctl (fd, SIOCGIFNETMASK, ifr) != 0) {

continue;

}
struct sockaddrin *mask-in = (struct sockaddr-in *)&(ifr->ifr-addr);
uint32t mask = ntohl(mask-in->sin-addr.s-addr);

discovered-sock-create (ds, local-ip , mask);

}
}
#endif

* Close all sockets previously enumerated and free the struct

static void destroy-socks(struct discovert *ds)

{
unsigned int i;
for (i = 0; i < ds->sock-count; i++) {

struct discovered-socket *dss = &ds->socks[i];

214

close (dss->sock);

}
free (ds);

}

/* Perform autodetection. Returns 0 on success, -1 on error

* Sets ipAddress to the detected address
*/

int
nerdjack-detect (char *ipAddress)

{
int32t receivesock;
struct sockaddr-in sa, receiveaddr, sFromAddr;
int buffer-length;
char buffer [200];
char incomingData[10];
unsigned int 1FromLen;

sprintf (buffer, "TEST");
buffer-length = strlen (buffer) + 1;

net-init 0;

receivesock = socket (PFINET, SOCKDGRAM, IPPROTOUDP);

/* Set nonblocking */
if (soblock (receivesock, 0) < 0)

{
verb ("can't-set -nonblocking\n");
return -1;

}
if (-1 == receivesock) /* if socket failed to initialize , exit

{
verb ("Error-Creating-Socket\n");
return -1;

}
7/Setup family for both sockets
sa. sin-family = PFINET;
receiveaddr. sin-family = PF-INET;

7/Setup ports to send on DATA and receive on RECEIVE
receiveaddr. sin-port = htons (NERDJACKUDPRECEIVEPORT);
sa. sin-port = htons (NERDJACKDATAPORT);

7/Receive from any IP address
receiveaddr.sin-addr.s-addr = INADDRANY;

bind (receivesock, (struct sockaddr *) &receiveaddr,
sizeof (struct sockaddr-in));

215

struct discover-t *ds = (struct discover-t *)calloc (1, sizeof(struct discover-t));
if (!ds) {

return -1;

}

/* Create a routable broadcast socket. */
if (!discovered-sock-create (ds, 0, 0)) {

free (ds);
return -1;

}

/* Detect & create local sockets. *7
enumerate-interfaces(ds);

7*
* Send subnet broadcast using each local ip socket.
* This will work with multiple separate 169.254.x.x interfaces.
*/

unsigned int i;
for (i = 0; i < ds->sock-count; i++) {

struct discovered-socket *dss = &ds->socks[i];
uint32t target-ip = dss->local-ip I ~dss->subnet-mask;

sa.sin-addr.saddr = htonl(target-ip);
sendto (dss->sock, buffer, buffer-length, 0, (struct sockaddr *) &sa,

sizeof (struct sockaddrin));

I

destroy-socks (ds);

iFromLen = sizeof (sFromAddr);

if (0 >
recvfromtimeout (receivesock, incomingData, sizeof (incomingData), 0,

(struct sockaddr *) &sFromAddr, &lFromLen,
&(struct timeval)

{
.tv-sec = NERDJACKTIMEOUT}))

{
close (receivesock);
return -1;

I

ipAddress = malloc (INETADDRSTRLEN);

7/It isn't ipv6 friendly, but ineLntop isn't on Windows...
strcpy (ipAddress, inet-ntoa (sFromAddr.sin-addr));

close (receivesock);
return 0;

}

7*
* Get the NerdJack version string and print it

*7

216

int
nerd-get-version (const char *address)

{
int ret , fd-command;
char buf[200];
fd-command = nerd-open (address, NERDJACK-COMMAND-PORT);
if (fdcommand < 0)

{
info ("Connect-failed:_%s:%d\n", address, NERDJACK.COMMAND-PORT);
return -2;

}

/* Send request */
ret = send-alltimeout (fd-command, "VERS", 4, 0, &(struct timeval)

{
.tv-sec = NERDJAC:K-TIMEOUT});

if (ret < 0)

{
verb ("short-send-%d\n", (int) ret);
return -1;

I
ret = recv-alltimeout (fd-command, buf, 200, 0, &(struct timeval)

{
.tv-sec = NERDJACKTIMEOUT});

nerd-close-conn (fd-command);

if (ret < 0)
{

verb ("Error-receiving-command\n");
return -1;

I

/Slice off the "OK" from the string
buf[strlen(buf)-2] = '\0'

printf (" %s\n",buf);

return 0;

}

/* Send the given command to address. The command should be something
* of the specified length. This expects the NerdJack to reply with OK
* or NO
*/

int
nerd-send-command (const char *address, void *command, int length)

{
int ret, fd-command;
char buf[3];
fd-command = nerd-open (address, NERDJACKCOMMANDPORT);
if (fd-command < 0)

217

info ("Connectifailed:_%s:%d\n", address, NERDJACKCOMMANDPORT);
return -2;

}
/* Send request *7
ret = send-alltimeout (fd-command, command, length, 0, &(struct timeval)

.tv-sec = NERDJACKTIMEOUT});
if (ret < 0 |1 ret != length)

{
verb ("short send-%d\n", (int) ret);
return -1;

}
ret = recv-all-timeout (fd-command, buf, 3, 0, &(struct timeval)

{
. tvsec = NERDJACKTIMEOUT});

nerd-close-conn (fd-command);

if (ret < 0 | ret 3)
{

verb ("Error-receiving-OK-for-command\n");
return -1;

}

if (0 != strcmp ("OK", buf))

{
verb ("Did-not-receive-OK.-Received-%s\n", buf);
return -4;

}
return 0;

int
nerd-data-stream. (int datafd, int numChannels, int *channel-list,

int precision, int convert, int lines, int showmem,
unsigned short *currentcount, unsigned int period,
int wasreset)

/Variables that should persist
static dataPacket buf;
static int linesleft = 0;
static int linesdumped = 0;

across retries

/Variables essential to packet processing
signed short datapoint = 0;
int i;

int numChannelsSampled = channel-list[0] + 1;

218

/The number sampled will be the highest channel requested plus 1

//(i e. channel 0 requested means 1 sampled)
for (i = 0; i < numChannels; i++)

{
if (channel-list [i] + 1 > numChannelsSampled)

numChannelsSampled = channel-list[i] + 1;

}

double voltline[numChannels];

unsigned short dataline[numChannels];

unsigned short packetsready = 0;
unsigned short adcused = 0;
unsigned short tempshort = 0;
int charsread = 0;

int numgroupsProcessed = 0;
double volts;

/The timeout should be the expected time plus 60 seconds
/This permits slower speeds to work properly

unsigned int expectedtimeout =
(period * NERDJACKNUMSAMPLES / NERDJACKCLOCKRATE) + 60;

/Check to see if we're trying to resume
/Don't blow away linesleft in that case
if (lines != 0 && linesleft == 0)

{
linesleft = lines;

}
/If there was a reset, we still need to dump a line because of faulty PDCA start
if (wasreset)

{
linesdumped = 0;

I
7/If this is the first time called, warn the user if we're too fast
if (linesdumped == 0)
{

if (period < (numChannelsSampled * 200 + 600))

foinfo ("You-are-sampling-close-to-theJimit-oflNerdJack\n");
info ("Sample-fewer-channels-or-sample-slower\n");

}

/Now destination structure array is set as well as numDuplicates.

int totalGroups = NERDJACKNUMSAMPLES / numChannelsSampled;

219

/Loop forever to grab data
while ((charsread =

recv-alltimeout (data-fd, &buf, NERDJACKPACKETSIZE, 0,
&(struct timeval)

{
tv-sec = expectedtimeout})))

{
if (charsread != NERDJACKPACKETSIZE)

{
/There was a problem getting data. Probably a closed

//connection.
info ("Packet-timed-out-or-was-too-short\n")
return -2;

}

/First check the header info
if (buf.headerone != OxFO || buf.headertwo != OxAA)

{
info ("No-Header-info\n");
return -1;

I
/Check counter info to make sure not out of order

tempshort = ntohs (buf.packetNumber);
if (tempshort != *currentcount)

{
info ("Count-wrong.-Expected-%hd-but-got-%hd\n", *currentcount,

tempshort);
return -1;

}

//Increment number of packets received
*currentcount = *currentcount + 1;

adcused = ntohs (buf.adcused);
packetsready = ntohs (buf.packetsready);
numgroupsProcessed = 0;

if (showmem)

{
printf ("%hd-%hd\n", adcused, packetsready);
continue;

I
/While there is still more data in the packet, process it

while (numgroupsProcessed < totalGroups)

{
7/Poison the data structure
switch (convert)

{
case CONVERTVOLTS:

memset (voltline, 0, numChannels * sizeof (double));
break;

220

default:
case CONVERTIHEX:
case CONVERTDEC:

memset (dataline, 0, numChannels * sizeof (unsigned char));
}

/Read in each group
for (i = 0; i < numChannels; i++)

{
/Get the datapoint associated with the desired channel

datapoint =
ntohs (buf.

data[channel-list [i] +
numgroupsProcessed * numChannelsSampled]);

/Place it into the line
switch (convert)

{
case CONVERT-VOLTS:

if (channel-list [i] <= 5)

volts =
(double) (datapoint / 32767.0) *

((precision & 0x01) ? 5.0 : 10.0);

}
else

{
volts =

(double) (datapoint / 32767.0) *

((precision & 0x02) ? 5.0 : 10.0);

}
voltline [i] = volts;
break;

default:
case CONVERT-HEX:
case CONVERTDEC:

dataline [i] (unsigned short)
break;

}
}

/We want to dump the first line because
if (linesdumped != 0)

(datapoint - INT16_MIN);

it 's usually spurious

/Now print the group
switch (convert)

{
case CONVERT-VOLTS:

for (i = 0; i < numChannels; i++)

{
if (printf ("%lf", voltline [i]) < 0)

goto bad;

break;
case CONVERTHEX:

221

for (i = 0; i < numChannels; i++)
{

if (printf ("%04hX", dataline[i]) < 0)
goto bad;

}
break;

default:
case CONVERTDEC:

for (i = 0; i < numChannels; i++)
{

if (printf ("%hu-", dataline[i]) < 0)
goto bad;

}
break;

}
if (printf ("\n") < 0)

goto bad;

//If we're counting lines, decrement them
if (lines != 0)

{
linesleft -- ;

if (linesleft 0)

{
return 0;

}
}

}
else

{
linesdumped = linesdumped + 1;

}
//We've processed this group, so advance the counter
numgroupsProcessed++;

}
}

return 0;

bad:
info ("Output-error-(disk-full?) \n");
return -3;

}

/* Open a connection to the Nerd Jack */
int
nerd-open (const char *address, int port)
{

struct hostent *he;

222

net-init ();

int32_t i32SocketFD = socket (PFINET, SOCKSTREAM, 0);

if (-1 == i32SocketFD)

{
verb ("cannot-createsocket");
return -1;

}

/* Set nonblocking *7
if (soblock (i32SocketFD, 0) < 0)

{
verb ("can't -set -nonblocking\n");
return -1;

I
struct sockaddr-in stSockAddr;
memset (&stSockAddr, 0, sizeof (stSockAddr));

stSockAddr.sin-family = AF-INET;
stSockAddr.sin-port = htons (port);

he = gethostbyname (address);
if (he == NULL)

{
verb ("gethostbyname(\" %s\")-failed\n", address);
return -1;

}
stSockAddr.sin-addr = *((struct in-addr *) he->h-addr);

debug ("Resolved_%s_->_%s\n", address, inetantoa (stSockAddr.sin-addr));

/* Connect */
if (connect-timeout

(i32SocketFD, (struct sockaddr *) &stSockAddr, sizeof (stSockAddr),
&(struct timeval)

{
.tv-sec = 3}) < 0)

{
verb ("connection-to-%s:%d-failed:-%s\n",

inet-ntoa (stSockAddr.sin-addr), port, compat-strerror (errno));
return -1;

}

return i32SocketFD;

}

//Generate an appropriate sample initiation command
int
nerd-generate-command (getPacket * command, int *channel-list,

int channel-count, int precision, unsigned long period)

{

223

short channelbit = 0;
int i;
int highestchannel = 0;

for (i = 0; i < channelcount; i++)
{

if (channel-list [i] > highestchannel)

{
highestchannel = channel-list [i];

}
//channelbit = channelbit | (Ox1 << channeLlist[i]);

}

for (i = 0; i <= highestchannel; i++)
{

channelbit = channelbit (Ox01 << i);

}

command->word[0] = 'G';
command-->word[1] = 'E';
command->word[2] ='T';
command->word[3] = 'D';
command->channelbit = htons (channelbit);
command- >precision = precision;
command->period = htoni (period);
command- >prescaler = 0;

return 0;

}

int
nerd-close-conn (int dataifd)
{

shutdown (data-fd, 2);
close (dataifd);
return 0;

}

F.3 Nerdconfig Source

This section contains the source for the nerdconfig utility for programming the Nerd-
Jack device. It depends on a Python packaged called intelhex to parse the object files
for NerdJack, but this code is not included. It can be freely downloaded from the
Python package repository.

It also depends on dfu-programmer and libUSB, which can both be downloaded
from SourceForge.

224

F.3.1 configData.py

from intelhex import IntelHex
from intelhex import hex2bin
from subprocess import *

import sys
import StringIO
import csv
import tempfile
import os
import pkgutil
import re

class DFUException(Exception):
def -init_ (self, value):

self .value = value
def __str__ (self):

return repr(self. value)

def which(program):
"""Finds-iLa- file -exists -in -the-path

-Don't-forget-about-the-extension

def is-exe (fpath):
return os.path.exists(fpath) and os.access(fpath, os.XOK)

fpath, fname = os.path.split (program)
if fpath:

if is.exe (program):
return program

else:
for path in os. environ ["PATH"].split(os.pathsep):

exe-file = os.path.join (path, program)
if is-exe (exefile):

return exe-file

return None

class ConfigData:
"""...Holds-the-data-encoded-in-the.User.Page-of-the.NerdJack-device.

def _init_ (self, chipInit =False):
""" Initializes -the- internal -representation -of-the-User-Page

if which('dfu-programmer') is None and which('dfu-programmer.exe') is None:
print
print "dfu-programmer-is-not-installed-and-available-in-the-path"
print "Please-make-sure-it-is- installed -and-try-this-program-again"
print ""
sys. exit (-1)

if(chipInit):
self .readChip()

else:

225

self. hexfile = IntelHexo
self .initbootloader ()
self. serial = "FF-FF-FF-FF-FF-F"
self . mac = "FF:FF:FF"
for i in range(7):

self . config [i]. ipaddress = '255.255.255.255'
self . config[i .gateway = '255.255.255.255'
self .config [i]. netmask = '255.255.255.255'

def -getattr_ (self name):

return {'serial': self . readserial ,
'config ': self . readconfig,
'mac': self . readmac} [name]()

def _setattr_ (self ,name,value):

try:

testdict {' serial ': self . writeserial ,
'mac': self .writemac} [name] (value)

except KeyError:
self. _dict- [name] = value

def createCSV(self):
outputbuffer = StringIO.StringIO()
csvwriter = csv.writer (outputbuffer)
for i in range(7):

csvwriter .writerow([self .config [i]. ipaddress, \
self .config [i].netmask, \
self .config [i]. gateway])

output = outputbuffer.getvalue()
outputbuffer. close 0
return output

def createTable(self):
outputstring = "\nCurrent-Configuration\n" + \

----------------- ------------------ - -\n" + \
"Serial -Number:-" + self. serial + "\n" + \
"MAC-Address:-00:04:25:" + self.mac + "\n" + \
"Config-number".center(16) + "|" + \
"IPAddress".center(16) + "|" + \
"Netmask".center(16) + "|" + \
"Gateway".center(16) + "|\n"

for i in range(7):
outputstring = outputstring + str(i). center(16)+ "|" + \

self .config [i). ipaddress. center(16)+ "|" + \
self .config [i). netmask.center(16)+ "|" + \
self .config [i). gateway.center(16)+ "I\n"

return outputstring

def shiftCodeDown(self,hexfile):
"""Strips-off -the-higher-address-information-byshifting-this-data-downward

226

Required-ifusing-batchisp-under-Windows.

for index in range(512*1024):
#if self. hexfile [0x80800+index] != Oxff:

#print "Copying byte from location: "+hex(0x80800+index)
hexfile [index] = hexfile [0x80000000+index]
#del self. hexfile [0x8080000+index]
#else:
pass

#print "No copy from address: " +hex(x80800000+index)
try:

del hexfile [0x80000000+index]
except KeyError:

pass

def shiftAddressesDown(self):
""" Strips-offthe-higher-address-information-by-shifting-this-data-downward

_- -Required-ifusing-batchispunder-Windows.

for index in range(512):
#if self. hexfile [0x80800+index] != Oxff:

#print "Copying byte from location: "+hex(0x80800+index)
self. hexfile [index] = self. hexfile [0x80800000+index]
#del self. hexfile [0x8080000+index]
#else:
pass

#print "No copy from address: "+hex(0x80800000+index)
del self. hexfile [0x80800000+index]

def shiftAddressesUp(self):
""" Shifts -data-up-in-address-to-make-batchisphappy

for index in range(512):
self. hexfile [0x80800000+index] =self.hexfile [index]

del self. hexfile [:512]

def readISPVersion(self):
"""Returns-theJSP-version-oLthe-bootloader

version = StringIO.StringIO()
dfu-programmer = Popen (('dfu--programmer', 'at32uc3aO512'

,'get','bootloader-version'),stdout=PIPE)
for line in dfu-programmer.stdout:

version. write(line)
dfu-programmer.wait()
dfu-programmer.stdout.close()
versionstring version.getvalue()
version. close 0
if dfu-programmer.returncode is not 0:

raise DFUException("dfu-programmer-error:-"+str(dfu-programmer.returncode))
return versionstring

def readCode(self):

227

Returns-a-string-of-the-bin-data-coming-out-of-the-code-memory

binfile = StringIO.StringIO()
dfu-programmer = Popen(('dfu-programmer', 'at32uc3aO5l2' ,'dump'),stdout=PIPE)
for line in dfu-programmer.stdout:

binfile .write(line)

dfuprogrammer.wait()
dfu-programmer.stdout.close()
binstring = binfile .getvalue()

binfile . close ()
if dfu-programmer.returncode is not 0:

raise DFUException("dfu-programmer.error:-"+str(dfu-programmer.returncode))
return binstring

def readChip(self):
""" Initializes ,the.instance-rom.inputted -chip._data.
First try-dfu-programmer,._then-falL-back-to-batchisp

if which('dfu-programmer') is not None or which('dfu-programmer.exe') is not None:
#We found dfu-programmer. Use it
dfu-programmer = Popen (('dfu-programmer', 'at32uc3aO512'

,'dump-user'),stdout=PIPE)
self. hexfile = IntelHex(
self. hexfile . loadfile (dfu-programmer.stdout,'bin')
dfu-programmer.wait(
if dfu-programmer.returncode is not 0:

raise DFUException("dfu-programmer-error:
"+str(dfu-programmer.returncode))

else:
#Fall back on batchisp
try:

(handle, filename) = tempfile. mkstemp (suffix='. hex')
os. close (handle)
batchisp =

Popen(('batchisp','-device','at32uc3a0512','-hardware','ush','-operation','memory','USER','re,
#batchisp =

Popen(('batchisp', '-device','at32uc3a0512', '-hardware', 'usb '-operation', 'memory', 'USER', 'ret

batchisp. wait()
if batchisp. returncode is not 0:

raise DFUException (" Batchisp.error: 2 str (batchisp. returncode))
self. hexfile = IntelHex(
self . hexfile . loadfile (filename, 'hex')
#self. hexfile . loadjile ('read.hex ', 'hex')
self .shiftAddressesDown(

#self. hexfile .dump()
finally:

os. remove(filename)
pass

#1self. hexfile = IntelHex('test. hex')
#self. hexfile . readfile ()

def initbootloader (self):
""" Initializes -the-bootloader-configuration.section._ofthe.User-Page

228

This-must-not-be-damagedor-the-bootloader-will-not-work.

self . hexfile [508] = 0x92
self . hexfile [509] 0x9E
self. hexfile [510] = 0x14
self. hexfile [511] = 0x24

def writemac(self,lowerin):
"""Writes-the-given.MAC -address. -lowerthree-should-be-a-list-of-the
last -three-bytes-of-the-MAC-address, MSB-first

if isinstance (lowerin, str):
macsplit = lowerin. split (':')
lowerthree = []
for byte in macsplit:

lowerthree. append(int(byte,16))
else:

lowerthree = lowerin
self. hexfile [84] = lowerthree [0]
self. hexfile [85] = lowerthree [1]
self . hexfile [86] = lowerthree[2]

def readmac(self):
""" Reads-the-MAC-address-from-the-current image. -Returns-a-tuple

- - of-the-last -3.bytes, -MSB-first.

return hex(self. hexfile [84]) [2:] + + \

hex(self. hexfile [85]) [2:] + ':' + \
hex(self. hexfile [86]) [2:]

def writeaddress(self , addressnum,addrin):
"""Writes-the.address-in-network-byte-order

-----This-happens-because-we-are-manually-setting-the-bytes-of-thedist

if ((addressnum > 20) or (addressnum < 0)):
raise Exception(" Address-number-invalid")

if isinstance (addrin, str):
addrsplit = addrin. split ('.')
addresses = []
for byte in addrsplit:

addresses. append(int(byte,10))
else:

addresses = addrin
self. hexfile [addressnum*4] = addresses [0]
self. hexfile [1+addressnum*4] = addresses[1]
self . hexfile [2+addressnum*4] = addresses[2]
self. hexfile [3+addressnum*4] = addresses[3]

def readaddress(self, addressnum):
" " "Reads-the-requested-address-and-re,,turns-a-tuple-in-network

- byte-order.

return str(self. hexfile [addressnum*4]) + '.' + \

229

str (self. hexfile [1+addressnum*4]) + '.' + \
str (self . hexfile [2+addressnum*4]) + '.' + \
str (self . hexfile [3+addressnum*4])

def writeserial (self , serialin):
"" Recordst he-given-seriaL number-to-the._User -Page

if isinstance (serialin , str):
serialsplit serialin . split ('-')

serialnum []
for byte in serialsplit

serialnum.append(int(byte,16))
else:

serialnum = serialin

self . hexfile [87] = serialnum[0]
self . hexfile [88] = serialnum[1]
self. hexfile [89] = serialnum[2]
self . hexfile [90] = serialnum[3]
self. hexfile [91] = serialnum[4]
self . hexfile [92] = serialnum[5]

def readserial (self):
""" Reads.the-current-serialnumber.

return hex(self. hexfile {87]) [2:] +'-'+

hex(self. hexfile [88]) [2:]+'-'+ \
hex(self. hexfile [89]) [2:]+'-'+ \
hex(self. hexfile [90]) [2:]+'-'+ \
hex(self. hexfile [91]) [2:]+'-'+ \
hex(self. hexfile [92]) [2:]

def readconfig(self):
"""Reads-out-config-informationdrom.the-User-Page.

- Returns-a-list -of- all .of-the.config._setups

configlist []

for confignum in range(7):
configlist .append(IPConfig(confignum, self.hexfile))

return configlist

def writeout(self , file):
self. hexfile . tofile (file ,'hex')

def exitDFU(self):
if which('dfu-programmer') is not None or which('dfu-programmer.exe') is not None:

dfu-programmer = Popen (('dfu-programmer', 'at32uc3a0512',
'setfuse','ISPFORCE','0'))

dfu-programmer.wait()
if dfu-programmer.returncode is not 0:

230

raise DFUException("DFU-Programmer-Setfuse-error:
"+str (dfu-programmer. returncode))

else:
#Fall back on batchisp

batchisp =
Popen(('batchisp','-device','at32uc3a0512','- hardware','usb','-operation',' start', ' reset', '0'))

batchisp.wait 0
if batchisp.returncode is not 0:

raise DFUException (" Batchisp-error:-"+ str (batchisp. returncode))

def programChip(self):
if which('dfu-programmer') is not None or which('dfu-programmer.exe') is not None:

dfu-programmer = Popen (('dfu-programmer', 'at32uc3aO512', 'flash-user',
'STDIN'),stdin=PIPE)

self .writeout(dfu-programmer.stdin)
dfu-programmer.wait()
if dfu-programmer.returncode is not 0:

raise DFUException("DFU-Programmer-error:
"+str (dfu-programmer. returncode))

else:
#Fall back on batchisp
try:

(handle, filename) = tempfile.mkstemp(suffix='.hex')
f = os.fdopen(handle,"w")
#f = open('test.hex 'w')
self .shiftAddressesUp(
self .writeout(f)
f .close ()
self .shiftAddressesDown(
batchisp =

Popen(('batchisp','-device','at32uc3a0512','-hardware','usb','-operation','memory','USER','lo
batchisp. wait 0
if batchisp. returncode is not 0:

raise DFUException("Batchisp-error:-"+str(batchisp.returncode))
finally:

os. remove(filename)

def versionString (self , file ='default'):
if file == 'default':

code = pkgutil.get-data('nerdjack', 'data/code.hex')
elif file == 'chip':

binstring = self.readCode()
versre = re.search('NERD:2(.*?)\n',binstring)
return versre.group(1)

else:
code = open(file).read()

codefile = StringIO.StringlO(code)

hexfile = IntelHexo
hexfile. loadfile (codefile ,'hex')

231

self .shiftCodeDown(hexfile)
binstring = hexfile. tobinstr 0

versre = re. search ('NERD: *?)\n',binstring)
return versre.group(1)

def programCode(self,file='default'):
if which('dfu-programmer') is not None or which('dfu-programmer.exe') is not None:

dfu-programmer = Popen (('dfu-programmer', 'at32uc3aO512', 'erase'))
dfu-programmer.wait()
if dfu-programmer.returncode is not 0:

raise DFUException("DFU-Programmer-Erase-error:
"+str(dfu-programmer.returncode))

if file == 'default':
code = pkgutil.get-data('nerdjack', 'data/code.hex')

else:
code = open(file).read()

dfu.programmer = Popen (('dfu-programmer', 'at32uc3aO512', 'flash', 'STDIN',
'--suppress-bootloader-mem'),stdin=PIPE)

dfu-programmer.stdin.write (code)
dfu-programmer.wait()

if dfu-programmer.returncode is not 0:
raise DFUException("DFU-Programmer-Flash-error:

"+str(dfu-programmer.returncode))

else:
#Fall back on batchisp
try:

(handle, filename) = tempfile. mkstemp (suffix='. hex')
f = os.fdopen(handle,"w")
code = pkgutil.get-data('nerdjack', 'data/code.hex')
f .write(code)
self .writeout(f)
f .close ()
batchisp

Popen(('batchisp','-device','at32uc3a0512','- hardware','usb','-operation','erase', 'f ','memory
'flash', 'blankcheck', 'loadbuffer',filename,'program','verify'))

batchisp.wait()
if batchisp. returncode is not 0:

raise DFUException("Batchisp-error:-"+str(batchisp.returncode))
finally:

os. remove(filename)

class IPConfig(ConfigData):
"""Holds-the-netmask, -gateway, -andP-address-ofa-configuration-record

def __init_ (self, confignum, hexfile):
""" Initializes -the-number-of-the-config

-----Must -be-between-0-and-6

232

if (confignum < 0 or confignum > 6):
raise Exception(" Confignumber-invalid")

self .confignum = confignum
self. hexfile = hexfile

def __getattr_ (self name):
return {'ipaddress': self . readip,

netmask': self .readnetmask,
'gateway': self .readgateway} [name] 0

def __setattr_ (self, name,value):
try:

{'ipaddress': self .writeip,
netmask': self .writenetmask,
gateway': self .writegateway} [name] (value)

except KeyError:
self. _dict_ [name] = value

def readip(self):
"""Readsthe-specifieddpaddress-as-a,_tuple

return self. readaddress(self .confignum)

def readnetmask(self):
"""Reads-the-netmask-as-a.tuple

return self. readaddress(self .confignum+-7)

def readgateway(self):
" "" Reads-the,_gateway,_as,_a-tuple

return self. readaddress(self .confignum+14)

def writeip (self ,address):
"""Writes-the-ipaddress

self .writeaddress(self .confignum,address)

def writenetmask(self,address):
"""Writesthenetmask

self .writeaddress(self .confignum+7,address)

def writegateway(self, address):
"""Writes-the-gateway

self .writeaddress(self . confignum+14,address)

F.3.2 nerdconfig.py

#!/opt/local/bin/python

233

from nerdjack import ConfigData
from nerdjack import DFUException
from optparse import OptionParser
import csv
import sys
import os.path
import subprocess
import pkgutil
import StringIO
import random

versionNumber = "1.0"

def readChip(:
chip = ConfigData(chipInit=True)

def getDataFile(mode):
#First check to see if the data directory exists
if (not os.path.exists ('./serialdata')):

#We were not in a working copy so check one out
retval = subprocess. call (["svn"," co" ," https: //bucket. mit.edu/svn/" +\

"nilm/acquisition/customboard/deviceprogrammer/serialdata"," serialdata"])
if retval is not 0:

raise Exception(" Error-with-subversion-checkout")

#Check status to see if data is a working copy and if there are any
#local changes to trash
subversion = subprocess.Popen(['sn','status', ' serialdata '], stdout=subprocess.PIPE)
statusout = subversion.stdout. readline 0
subversion. wait ()
if subversion. returncode is not 0:

raise Exception(" Error-with-subversion-status")

if "not-a-working-copy" in statusout:
raise Exception(" serialdata- exists -but -is -not -a-working-copy. \n"+ \

"Please-delete- it .and.try-again.")

#We know data exists and is a working copy. Try to update it
subup = subprocess.Popen(['svn','up',' serialdata'])
subup.waito
if subup.returncode is not 0:

raise Exception(" Error-with-subversion-update")

#Now we have updated. Make sure that the status is clear
subversion = subprocess.Popen(['svn','status', ' serialdata'], stdout=subprocess.PIPE)
statusout = subversion.stdout. readline 0
subversion. wait 0
if subversion. returncode is not 0:

raise Exception(" Error.with-second-subversion.status")

if len(statusout) is not 0:
raise Exception(" LocaLchanges._existin._serialdata. .Please-correct.")

234

The data is definitely up to date. Return a file object
return open('. /serialdata/nerdjack.csv',mode)

def flushtoSVNO:
#We assume that the subversion changes are ours and that we are working
#with a valid working copy. This should be satisfied if getDataFile

#was used
retcode = subprocess.call (['svn','commit','serialdata'])
if retcode is not 0:

raise Exception(" Error-with-subversion.-commit")

def getSerials ():
datafile = getDataFile('rb')
stringserials = csv.reader(datafile)

serials []
allmac []

for row in stringserials
#Convert to list from string
serials .append(map(lambda x: int(x,16), row[0].split('-')))
allmac.append(map(lambda x: int(x,16), row[1].split(':')))

datafile . close ()
return (serials,allmac)

def getHole(serials):
hole = [0,0,0,0,0,0]
for j in reversed(range(6)):

for i in range(256):
hole[j] = i
if hole not in serials:

break
return hole

def CSVtoChip(filename,chip,type='filename'):
if isinstance (filename, str):

if type == 'filename':
defaultsettings = csv.reader(open(filename,'rb'))

elif type == 'data':
defaultsettings = csv.reader(StringlO.StringIO(filename))

else:
raise Exception(" Unrecognized-data-type-to-CSVtoChip")

else:
defaultsettings = csv.reader(filename)

confnumber = 0
for line in defaultsettings:

chip. config [confnumber].ipaddress = line [0]
chip. config [confnumber].netmask = line[1]
chip. config [confnumber].gateway = line[2]
confnumber = confnumber + 1

def initializeChip (hole,chip, mac):

235

#This is a new chip that needs a serial and MAC address
chip. serial = hole
chip.mac = mac
chip. programChip()

def printDirections (:
print "The-changes-requested-have-been-made."
print "Switch-the-programming-DIP-switch-(Switch-4)-to-the"
print "OFF-position-and-reset-the-NerdJack."
print ""

#Find if the read serial number is legitimate
#if chip. serial not in sortedserials :
print "Chip serial number unrecognized!"

if _name_= 'main-':
parser = OptionParser(
parser. add-option(" -f', "--file", dest="filename",

help=" read-configuration-from-FILE", metavar=" FILE")
parser. add-option(" -p" ," -- pipe", dest="pipe", default=False,

help=" read-configuration-from-stdin", action=" storetrue")
parser. add-option(" -c" ," - -csv", dest="csv", default=False,

help=" output-configuration-info.in-C SV", action=" storetrue")
parser .add-option(" -im" ," - -mac", dest=" mac",

help=" Set-last-three-bytes-ofMAC-address-to-MAC", metavar=" MAC")
parser. add-option(" -d" ," - -display-serial", dest=" display", default=False,

action=" store_true", help=" Print-MAC-address-and-seriaLnumber")
parser. add-option(" -s" ," -- standard-config", dest="standard",default=False,

help=" Use-standard-configuration-settings", action=" storetrue")
parser. add-option(" -b" "--burn", dest="code",default=False,

help=" Program-NerdJack-code-into-flash",action=" storetrue")
parser. add-option(" -i" ," -- install" ,dest=" installfile ",

help="Instal-HEXFILE-on-NerdJack", metavar="HEXFILE")
parser. add-option(" -S" ,"--use-subversion", dest="subversion",default=False,

help=" Use.Subversion-to-manage.serialization", action=" storetrue")
parser. add-option(" -r" ," -- reburn-serial", dest='changeserial',

default =False,
help=" Generate-and-burn-another.random-seriaLnumber",
action=" storetrue")

parser. add-option(" -V", " -- version" ,dest=" version" ,default=False,
help="Print.version.of-Nerdconfig-and-bundled-firmware-then-exit",
action=" storetrue")

parser . add-option(" -R" ," - -read-version" ,dest="readversion",default=False,
help=" Read.firmware-revision-from-attached-NerdJack",
action=" storetrue")

(optionsargs) = parser.parse-args()

if (options. version):
chip = ConfigData(chiplnit=False)
print "Nerdconfig-version-" + versionNumber
print "Reading.versionirom-bundled-firmware..."
print "Bundled.NerdJack-Firmware.is-" + chip.versionStringo

236

sys. exit (0)

if(options.pipe and options.filename is not None):
parser. error (" Cannot-take-input-from-fileand-STDIN")

if (options. standard and options.pipe):

parser. error ("Cannot-usestandard-config-andSTDIN")

if (options. standard and options.filename is not None):
parser. error ("Cannot-use standard-config-andinput-file")

if (options. code and options. installfile is not None):
parser. error (" Cannot-use-standard-NerdJ ackand-custom.co de")

try:
chip = ConfigData(chipInit=True)

if ((chip. serial == 'ff-ff-ff-ff-ff-ff') and (options.filename is None) and (not
options.pipe) and (not options.standard) and (not options.changeserial) and (not
options.code) and (options.installfile is None) and (options.mac is None)):

#This should fire if it 's a blank chip with no options given
print "\n-Thisis-a-blank-chip."
print ""
print "Assuming,-s-and--b-options-toburn-with-standard"
print "settings ,andstock-NerdJack,_firmware"
options. standard = True
options. changeserial = True
options.code = True

performProgram = options.filename is not None or options.pipe or
options.mac is not None or options.standard or options.changeserial

if options. filename is not None:
CSVtoChip(options.filename,chip)

if options.pipe:
CSVtoChip(sys.stdin,chip)

if options. standard:
CSVtoChip(pkgutil.get-data('nerdjack','data/default.csv') ,chip, type='data')

if options. mac is not None:
chip. mac = options.mac

if (options. changeserial):
if (options. subversion):

(serial , allmac) = get Serials 0
hole = getHole(serial)

else:
hole = random.sample(range(256),6)

if not options.mac:
#Change the MAC with the serial unless told otherwise
mac = (hole[3],hole [4], hole [5])

237

print ""
print " Initializing -chip-with-new-serial-number"
print "and-MAC-address..."
print ""
initializeChip (hole,chip, mac)
if (options. subversion):

datafile = getDataFile('ab')
datawriter = csv.writer (datafile)
datawriter.writerow([chip. serial ,chip.mac])
datafile .close ()
flushtoSVN()

else:
This is only needed if we didn't change the serial number
if performProgram:

print "Programming-specified-settings.into-NerdJack"
chip. programChip()

if (options. code):
print "Reading-version-information-from-bundled-firmware..."
print "Burning-NerdJack-Firmware-"+ chip.versionStringo
chip. programCode()

if (options. installfile is not None):
print "Burningspecified-firmware"
chip. programCode(options. installfile)

if (options. readversion):
print "Reading-firmware-version..."
print "Installed-Firmware-is-" + chip.versionString('chip')
print chip.readISPVersion(

if (options. display):
print chip. serial +",-" +chip.mac

if (options.csv):
print chip.createCSV()

else:
if not options.display:

print chip.createTable(

chip.exitDFU(

if (options. code or performProgram or options. installfile):
printDirections 0

sys. exit (0)

except DFUException:
print ""
print " There-was-an-error-communicating.with-the-NerdJack-over-USB."
print "It-might-ieed-to-be-reset-after-youlast-ranNerdConfig."
print ""
print " If-that.does.not,_work,"

238

print "Ensure-that-drivers-are-installed , -the-NerdJack-is-connected,"
print "and-that-the-programming-DIPswitch-(switch-4)-is-in-the-ON"
print "position."
sys. exit (-1)

239

240

Appendix G

Burnlt Source Code Listing

G.1 ATMEGA Firmware

This section contains the C code for BurnIt firmware. The programming algorithms
for the PIC16F628, GAL22V10, and AT89C2051 are implemented here for the Burnlt
hardware. It can be compiled using the AVR port of the GNU Compiler Collection
toolchain. It is meant to be programmed to the BurnIt ATMEGA644 prior to instal-
lation in the BurnIt PCB.

Portions of this code relevant for programming the AT89C2051 were originally
authored by Chris Whittaker and modified for the current revision of BurnIt.

The PIC code was borrowed and modified from jimpic written by Jim Paris.
The GAL programming algorithm and portions of code were modified from GAL-

Blast written by Manfred Winterhoff.

G.1.1 2051.h

7*
* Standard port definitions for a MEGA64'4,
* This should be all you need to change for a different micro.
*7

/* the port that data is transferred to and from the device with*/
#define DATAPORT PORTA
#define DATADDR DDRA
#define DATAPIN PINA

/* the port that controls the device (program codes, etc.)*7

#define CONTROLPORT PORTB
#define CONTROLDDR DDRB
#define CONTROLPIN PINB

#define RSTDDR DDRB
#define RSTPORT PORTB

241

#define SENSE2051PIN PINC
#define SENSE2051 PC3

#define RST5 PBO
#define RST12 PB1
#define XTAL PB7
#define P32 PB6
#define P33 PB5
#define P34 PB4
#define P35 PB3
#define P37 PB2

#define FEEDBACKPORT PORTC
#define FEEDBACKDDR DDRC
#define FEEDBACKPIN PINC

#define P31 PCO

/static void print-ihex (void);
void atmel-pulse-xtal(void);
void atmel-write-chip(void);
void atmeLclear-chip(void);
int atmelisignature(void);
void atmel-view(void);
void atmel-verify(void);
void atmel-program(void);

G.1.2 2051.c

7*
* Routines for interacting specifically with an Atmel 2051/4051
*/

#include <stdio.h> /* used for string manipulation procedures*/
#include <avr/io.h> /* direct access to the AVRs IO ports/SFRs *7
#include <avr/pgmspace.h> /* for accessing strings in program memory */

#include <ctype.h> /* to convert characters from upper to lowercase

#include "avrutils.h"
#include "2051.h"

7* Iterate through the BurnIt chip memory and display on the
* serial port, in ascii-coded hex
*

*/

/static void print~ihex () {

242

//7
//7
//7
//7
//7
//7
//7
//7
//7
//7
77
//7
77
//7
//7
77
77
77
//}
7*

printstr-p (PSTR ("Displaying code in R AM\n"));
printstr-p (PSTR ("ADDR :\tDATA\n"));
7*go thru all of memory*/
int16_t ix;
for(ix = 0; ix < CHIPMEMSIZE; ix++) {

if ((ix % 32) == 0) { /* line numbers and newlines */
printstr-p (PSTR("\n"));
char line-num[i0];
sprintf (line-num, "%04X :\t", ix);
printstr (line-num);

}
uint8_t curr-mem = chipMemory[ix];
printhex(curr-mem);

* Pulse XTAL1 on the ATMEL 205174051 to advance the programming
* memory location.

*/
void atmel-pulse-xtal(void) {

CONTROL-PORT 1= _BV(XTAL);
_delay-us(1);
CONTROLPORT &= ~_BV(XTAL);
-delay-us(1);

}

/*
* Write the data currently contained in memory to an Atmel 205174051
*

*/
void atmel-write-chip(void) {

printstr-p (PSTR(" \nWriting-chip..."));
CONTROLPORT = OxOO;
DATA-PORT = OxOO;
_delay-us(10);
CONTROLPORT =BV(RST5) | _BV(P32); //5v on RST, P3.2 high

CONTROLPORT & (-BV(P33)); // L H H H set mode bits.
CONTROLPORT _BV(P34) I J3V(P35) I _BV(P37);
-delay-us(2);

CONTROLPORT = BV(RST12); // Raise up to 12V (Enable programming)
_delay-us(30);

int16t ix;
for(ix = 0; ix < CHIPMEMSIZE; ix++) {

if ((ix % 128) == 0) { 7*progress
printstr-p (PSTR("."));

}

indicator*/

243

uint8t curr-mem = chipMemory[ix];
DATAPORT = curr-mem;
_delay-us (2);
CONTROLPORT &= ~(_BV(P32));
_delay-us(10);
CONTROLPORT 1= _BV(P32);

loop-untiLbit-is-clear (FEEDBACKPIN, P31);
loop-untilbit-is-set (FEEDBACK-PIN, P31);

atmel-pulse-xtal();
_delay-us (2);

}
_delay-ms(10);
CONTROLPORT &= ~(_BV(RST12));
_delay-ms(10);
CONTROLPORT = OxOO;
DATAPORT = OxOO;
printstr-p (PSTR("-OK.2));

}
7*
* Erase an atmel 2051/4051. Sets all bytes to OxFF.
*7

void atmel-clear-chip(void) {
printstr-p (PSTR(" \nClearing-chip ... "));
CONTROLPORT OxOO;
CONTROLPORT =BV(RST5) I _BV(P32);

CONTROLPORT 1= _BV(P33); /H L L L
CONTROLPORT &= ~(_BV(P34)|_BV(P35)|_BV(P37));
_delay-us(1O);
CONTROLPORT |- BV(RST12); 7/ Raise up to 12V
_delay-us(12);
CONTROLPORT &= ~(J3V(P32));
_delay-ms(10);
CONTROLPORT =-BV(P32);
_delay-ms(1O);
CONTROLPORT &= ~(_BV(RST12));
_delay-ms(10);
CONTROLPORT = OxOO;
printstr-p (PSTR(" OK."));

}
7*
* Request a signature bytes from the AT2051/4051.
* Returns 0 if a known signature is given
* 1 if invalid signature is given

244

int atmel-signature(void) {
printstr-p (PSTR(" \nDetermining-chip-type..."));
DATA_DDR = OxOO;
CONTROLPORT OxOO;
delay-us(1O);

CONTROLPORT =BV(RST5) I _BV(P32);

CONTROLPORT &= ~(_BV(P33)|_BV(P34)|_BV(P35)|_BV(P37)); // L L L L

printstr-p (PSTR(" 0x"));
_delay-us (2) ; //time until data is valid

uint8t manufact-byte;
manufact-byte = DATAPIN;
printhex(manufact-byte);

printstr-p (PSTR(" -Ox"));
atmel-pulse-xtal();
_delay-us (2);

uint8_ part-byte;
part-byte = DATAPIN;
printhex(part-byte);

CONTROL-PORT = OxOO;
DATADDR = OxFF;
DATAPORT = OxOO;

if(manufact-byte == Oxle && part-byte 0x21) {
printstr-p (PSTR("._AtmeL2051."));
return 0;

} else if (manufact-byte == 0xle && part-byte 0x41) {
printstr-p (PSTR("._AtmeL4051."));
return 0;

} else {
printstr.p (PSTR(" \nUnknown-Part...Check-Connections"));
return 1;

}

}
7*
* View the Data currently on the chip
*/

void atmel-view(void) {

DATA-DDR = OxO;
CONTROLPORT OxOO;
_delay-us(10);
CONTROLPORT = BV(RST5) I _BV(P32);

CONTROLPORT &= ~(_BV(P33)| _BV(P34)); /7 L L H H
CONTROL-PORT = BV(P35) I -BV(P37);

245

_delay-us(2);

int16t ix;
for(ix = 0; ix < CHIPMEMSIZE; ix++) {

if ((ix % 32) == 0) { /*line numbers and newlines */
printstr-p (PSTR(" \n"));
char line-num[10];
sprintf (line-num, "%04X-:\t", ix);
printstr (line-num);

}

uint8t curr-mem = DATAPIN;
printhex(curr-mem);
atmel-pulse-xtal 0;
_delay-us (2);

}
CONTROLPORT = OxOO;
DATADDR = OxFF;
DATAPORT = OxOO;

}

* Checks to see if the data in the internal representation of
* the chip's memory matches the data on the currently inserted chip
*/

void atmel-verify(void) {
printstr-p (PSTR(" \nVerifying-program-data..."));
DATADDR = OxOO;
CONTROL-PORT OxOO;
_delay-us(10);
CONTROLPORT =BV(RST5) | _BV(P32);

CONTROLPORT &= ~(_BV(P33)| _BV(P34)); // L L H H
CONTROLPORT |= _BV(P35) | _BV(P37);
_delay-us(2);

int16t ix;
for(ix = 0; ix < CHIPMEMSIZE; ix++) {

if ((ix % 128) == 0) { 7*progress indicator*/
printstr-p (PSTR("."));

}
uint8_ curr-mem = DATA-PIN;
if (curr-mem != chipMemory[ix]) {

printstr-p (PSTR("Verification-Failed!"));
CONTROLPORT = 0x00;
DATADDR = OxFF;
DATAPORT = OxOO;
return;

}
atmel-pulse-xtal();
-delay-us (2);

246

I
CONTROLPORT = OxOO;
DATA DDR = OxFF;
DATAPORT = 0x00;
printstr-p (PSTR(" -OK."));

}
7*
* Go through the steps of programming:
* check the signature, if invalid then do nothing
* if valid, clear the chip, write the chip and then verify it

*7
void atmel-program(void) {

printstr-p (PSTR(" \nPreparing-to-program-AtmeL2051/4051..."));
if (atmel-signature() == 0) {

atmel-clear-chip 0 ;
atmel-write-chip();
atmel-verify (;

I
//verify chip

}

G.1.3 avrutils.h

7*
* Some simple UART IO functions.
* modified from AVRFreaks
*/

#define FCPU 8000000UL /* CPU clock in Hertz (8 MHz) for internal RC
Oscillator*/

#include <util/delay.h> /* for precision delays using the clock freq *7

/* The representation in RAM of the memory to be burned *7
#define CHIPMEMSIZE 2048
extern uint8_t chipMemory[CHIPMEMSIZE];

7*
* Send character c down the UART Tx, wait until tx holding register
* is empty.
*7

void putchr(char c);

/* Get a character from the UART Rx, wait until the rx holding register
* is set

*/
char getchr(void);

7*
* Send a C (NUL-terminated) string down the UART Tx.

*/
void printstr(const char *s);

247

* Same as above, but the string is located in program memory,
* so "pm" instructions are needed to fetch it.
*7

void printstr-p(const char *s);

7*
* returns a char given a received ascii character
*/

unsigned char asciito-bin(char data);

void printhex(uint8t print-byte);

G.1.4 avrutils.c

* Some simple UART 10 functions.
* modified from AVRFreaks
*/

#include <stdio.h> /* used for string manipulation procedures*7
#include <avr/io.h> /* direct access to the AVRs IO ports/SFRs *7
#include <avr/pgmspace.h> /* for accessing strings in program memory */
#include <ctype.h> /* to convert characters from upper to lowercase

*/
#include "avrutils.h"
uint8_t chipMemory[CHIPMEMSIZE];
7*
* Send character c down the UART Tx, wait until tx holding register
* is empty.
*/

void putchr(char c)

{
loop-until-bit-is-set (UCSROA, UDREO);

UDRO = c;

}

/* Get a character from the UART Rx, wait until the rx holding register
* is set

*7
char getchr(void) {

loop-until-bit-is-set (UCSROA, RXCO);
return UDRO;

* Send a C (NUL-terminated) string down the UART Tx.

*7
void printstr (const char *s)

while (*s)

248

if (*s == '\n')
putchr('\r');

putchr(*s++);
}

}

* Same as above, but the string is located in program memory,
* so "pm" instructions are needed to fetch it.

void printstr-p(const char *s)

{
char c;

for (c = pgm-read-byte(s); c; ++s, c pgm-read-byte(s))

{
if (c == '\n')

putchr('\r');
putchr(c);

}
}
7*

* returns a char given a received ascii character

*7
unsigned char asciitobin(char data)

{
if(data < 'A')
{

return(data - '0');
}
else
{

return(data - 55);

}
}
/*end simple 10 functions */

void printhex(uint8t print-byte) {
char string-byte [31;
sprintf (string-byte, "%02X", print-byt-e);
printstr (string-byte);

}

G.1.5 burnitall.c

/* B URNIT ALL
* This simple program allows an ATMEL 2051, a PIC 16F628, or a GAL22V10 part to be

burned
* using an interface similar to the MINMON application used by MIT's

* Microprocessor Project Laboratory (6.115).

249

* Original 2051 work by Steve Whittaker with PIC and 22V10 additions by Zachary Clifford
*

* Steve Whittaker, April-May 2007
* Zachary Clifford Jan-Aug 2008
*7

#include <stdio.h> /* used for string manipulation procedures*/
#include <avr/io.h> /* direct access to the AVRs 10 ports/SFRs *7
#include <avr/pgmspace.h> /* for accessing strings in program memory *7

#include <ctype.h> /* to convert characters from upper to lowercase */

#include "avrutils.h"
#include "pic.h" /* Constants for PIC programming*/
#include "gal.h"
#include "2051.h"

//0 is ATMEL mode, 1 is PIC mode, 2 is 22V10 mode
static uint8t currentMode = 0;

7*
* Set up the UART using the cpu clock defined above.
* 9600 Baud / 8-bit / 1-stop bit
*7

static void ioinit (void) {
//baud rate calculation
UBRROH = OUL;
UBRROL = ((FCPU / (16 * 9600UL)) - 1); 779600 Bd (calculated using F_ CPU,

// defined above)

UCSROB = _BV(TXEN0)|_BV(RXEN0); // tx/rx enable
UCSROC = _BV(UCSZ00)BV(UCSZ01); // 8 bit bit
UCSROC &= ~(_BV(USBS0)); // 1 stop bit

}

/*
* Reads in a Intel HEX file over the serial port and
* stores the data in memory
* Also understands if PIC is being used.
*

* Some hex processing hints taken from AVRFreaks.net forums.
*7

static uint8t load-ihex() {
printstr-p (PSTR("\n>")); /the programming prompt
uint8t data-pairs, address-hi, addresslo, temp-byte, i, checksum, type;

while(1) {

while (getchr() != ':') 77 go forward until we get a colon

{

}

7* get the number of ascii character pairs on this line *7

250

data-pairs ascii-to-bin (getchr ()) << 4;
data-pairs ascii-to-bin (getchr());

/* address to write to*/
address-hi ascii-to-bin (getchr()) < 4;
address-hi ascii-to-bin (getchr 0);

address-lo ascii-to-bin (getchr()) << 4;
addresslo ascii-to-bin (getchr());

/* get the data type */
type = ascii-to-bin (getchr()) << 4;
type = ascii-to-bin (getchr 0);

checksum = (type + address-lo + addresshi + data-pairs) & OxFF;

if (type != 0 && type != 1) {
//Something is wrong
/Borrowed error handling from JimPic by Jim Paris
if(type==0x04 && type==0x02) {

/* Ignore this one silenty; not sure why
so many programs include it. *7

} else {
printstr-p (PSTR(" \nWarning:-ignoring-HEX-record-"));
char s [20];
sprintf (s, "type-%02x\n",type);
printstr (s);

}
continue;

}

for(i = 0; i < data-pairs; i++)

{
temp-byte ascii-to-bin(getchr()) «4;
temp-byte = ascii-to-bin(getchr());
checksum += temp-byte;
if ((addressilo + 256*addresshi + i <= Ox400F) &&

(address-lo + 256*addressLi + i >= 0x4000))

{
7/It 's PIC configuration bytes
picConfigMemory[address-lo + i] = temp-byte;

} else if ((addresslo + 256*address-hi + i >= 0x4200) &&
(addressJo + 256*addresslhi + i <= 0x4280))

{
7/It 's PIC Data. That usually lives in 0x2100 to 0x2180
7/Doubled to Ox4200 to 0x4280
picDataMemory[address-lo + i] = temp-byte;

} else if(addresslo + 256*addresshi + i >= CHIPMEMSIZE) {
7/It is bigger than normal data but not any of the
/other special cases
printstr-p (PSTR(" \nERROR:-This-hex-fileJhas-data-in-high-memory"

"-that-does-not-correspond\n"));
printstr-p (PSTR("to-Data-or-Config-memory.-It-might-also-be"

" -too-big-for -this -chip. "));

251

return -1;
} else {

7/It's plain old data.
if((currentMode == 1) &&

((PICtype == PIC16F627) 1| (PICtype == PIC16F627A)) &&
((uintl6_t)(address-lo + 256*addresshi + i) > 1024))

{
//It is a small PIC and we're writing outside
/its implemented memory
printstr-p (PSTR(" \nERROR:-This-hex-file-has-more-data"

"-than-the-PIC16F627.can.hold."));
printstr-p (PSTR("\nCheck-your-compiler-settings-or-get-a-16F628."));
return -1;

}
chipMemory[addressilo + 256*addresshi + i] = temp-byte;

}
}

/*and the checksum*/
temp-byte asciitobin(getchr() « 4;
temp-byte asciitobin(getchr());

if (((checksum + temp-byte) & OxFF) != 0) {
printstr-p (PSTR(" \nERROR:-Checksum-invalid-in-hex-file."));

I
/if it 's the end of record and no data, terminate
if (type == 1 && data-pairs == 0) {

getchr(;
break;

I
printstr-p (PSTR(".")); /* display progress*/

}
return 0;

}

7*
* initPins - Called at the beginning of BurnIt. Because we might have a GAL, pull-ups

should be active on
* all outputs. Shuts off all output pins
* and ensures that high voltage pins are inactive
*7

void initPins(void) {

//Ensure pullups are on
MCUCR &= ~(_BV(PUD));

7/Set all pins to inputs except for the high voltage buffers at PB1 and PD6
/Keep those low to keep from applying the high voltage. Pull others high with weak

pullups.

252

/Setting the pins in this way should not interfere with the serial port because of
internal override signals

DDRA = OxOO;
RSTDDR = _BV(RST12);

DDRC = OxOO;
EDITDDR = _BV(EDIT);

RSTPORT = ~(_BV(RST12));
PORTA = OxFF;

PORTC = OxFF;
EDITPORT = ~(_BV(EDIT));

}

/* Check for which mode we're in.
* The DP3T switch applies ground to different pins.
* BURNIT senses the GND pins of the DP3T switch. ATMEGA pins will have
* weak pullups to VCC so they are 1 if in that position and 0 otherwise.
* If switch is "right"
* we're in PIC mode and the PIC VSS will be grounded. PIC VCC will be
* applied as well. If switch is "center" VCC will be applied for 2051 and

* other part of the switch will be grounded.
* If switch is " left ", no power is applied. The GND side pulls down on a pin

* for sensing purposes.
*/

int getlnsertedChip(void) {
if((GALSENSEPIN & _BV(GALSENSE)) == 0) {

//GALSENSE was pulled low, so it's a GAL
return 2;

}
if ((PICSENSEPIN & _BV(PICSENSE)) == 0) {

//It's a PIC
return 1;

}
if ((SENSE2051PIN & _BV(SENSE2051)) == 0) {

7/It 's a 2051
return 0;

I
/We don't know for sure. However, BurnIt and PICBurnIt do not have a

SENSE2051PIN
//So that those boards work, we will defaut to 2051.
return 0;

}

7*
* The BurnIT main program loop

int main(void) {

253

short location ;

//For all chips, ensure that drivers are off and that high voltage is
//not active.
initPins () ;
ioinit 0; /set up the serial port

getchr(); //wait for first keypress.
printstr-p (PSTR("\nWelcome-to-BURNIT!\nPressjH'for-help."));

//Now detect the chip and properly initialize for that chip
currentMode = getInsertedChip(;

if(currentMode == 1) {
printstr-p (PSTR(" \nPIC-mode-enabled"));

/Set up port pins for PIC mode
DDRB = PORTB_PIC.DDR;
DDRA = PORTA_PIC_DDR;

pic-get-revision ();

if(PICtype == 0) {
printstr-p (PSTR(" \nMaybe-the-chip-isn'tinserted-or-"

"the-switch-is-in-the-wrong-posit ion.")
printstr-p (PSTR(" \nPlease-correct-and-reset-BurnIt\n"));
while(1);

}
} else if (currentMode == 0) {

printstr-p (PSTR(" \nAtmeL2051-mode-enabled"));

//standard setup, data is output, everything zeroed.
DATADDR = OxFF; /Data is output
CONTROLDDR = OxFF; /Control Port is all output.
FEEDBACKDDR = OxOO;//Feedback is inputs

CONTROL-PORT = OxOO;
DATA-PORT = OxOO;

atmel-pulse-xtal ();
} else if (currentMode == 2) {

printstr-p (PSTR(" \nGAL22V10mode-enabled"));

7/Leave the pins alone for now
/Because we do not know how the GAL is presently programmed, we do not

know what are inputs and outputs
/We cannot activate the drivers until EDIT is asserted

} else {
printstr-p (PSTR(" \nUnrecognized-chip,-please-ensureat-is-insrted-and-try

again"));
while (1);

}

254

/* initialize memory to OxO if necessary for chip type *7
int ix;
if(currentMode == 0) {

for(ix = 0; ix < CHIPMEMSIZE; ix+-) {
chipMemory[ix] = Ox00;

I
} else if(currentMode == 1) {

/We're in PIC mode. Initialize to OxFF3F repeating
/That way we know which words need programming.

for(ix = 0; ix < CHIPMEMSIZE / 2; ix++) {
chipMemory[2*ix] = OxFF;
chipMemory[2*ix+1] = 0x3F;

}
for(ix = 0; ix < 128; ix++) {

picDataMemory[ix] = OxFF;

I
for(ix = 0; ix < 8; ix++) {

picConfigMemory[2*ix] OxFF;
picConfigMemory[2*ix+1] = 0x3F;

I
} else if(currentMode == 2) {

/We're in GAL mode, so no init is necessary
/The JEDEC file determines whether the default is zeros or ones

}

/*Main Loop*/
while(1) {

printstr-p (PSTR(" \nBURNIT>"));
char rxbyte = toupper(getchr();
putchr(rxbyte);
if (currentMode 1) {
switch(rxbyte) {

case 'C':
pic-bulk-erase 0;
break;

case 'D':
load-ihex(;
break;

case 'A':
loadihexo;

case 'P':

/* display prompt*/
/*get character from serial, convert to upper*/

pic-bulk-erase () ;

if(picwrite-program()<0) break;

if (pic-write-data ()<0) break;

pic-write-configuration ();

break;
case 'V':

pic-view(;

255

//Fallthrough intentional

break;
case 'U':

pictotal-erase (;
break;

case 'H':
printstr-p (PSTR(" \nBURNIT-Help"));
printstr-p (PSTR(" \nP--Program-a-PIC."));
printstr-p (PSTR(" \nC--Clear-a-PIC."));
printstr-p (PSTR(" \nD--Download-an-Intel-Hex-file-to-BURNIT."));
printstr-p (PSTR(" \nA--Auto.Download-and-Program-PIC."));
printstr-p (PSTR(" \nH--Print.this-help-document."));
printstr-p (PSTR(" \nV--View.the-code-on-the.currently-inserted-PIC."));
printstr-p (PSTR(" \nU--Unlock-PIC-ifcode-protection-enabled."));
break;

case '\r': //FALLTHROUGH intentional
case '\n':

break;
default:

printstr-p (PSTR(" \ninvalid-command"));

}
} else if (currentMode == 2) {

//Show GAL menu
switch(rxbyte) {

case 'C':
//ReadPES();
ParsePES(O);
printstr-p (PSTR(" \nErasing-GAL..."));
EraseGALO;
printstr-p (PSTR(" \nGALErased"));

break;
case 'D':

if(readJEDEC() {
printstr-p (PSTR(" \nJEDEC-Download-Complete"));

} else {
printstr-p (PSTR(" \nERROR-in-downloading-JEDEC"));

}
break;

case 'A':
if(readJEDEC() {

printstr-p (PSTR(" \nJEDEC-Download-Complete"));
} else {

printstr-p (PSTR(" \nERROR.in.downloading-
JEDEC.. .Autoprogramming-will-not-continue"));

break;
} //Fallthrough intentional

case 'P':
//ReadPESO; //Get the programmer's signature
ParsePES(O); //Parse it

printstr-p (PSTR("\nErasingGAL..."));
EraseGAL(;
printstr-p (PSTR(" \nGAL-Erased"));
printstr-p (PSTR(" \nProgramming-GAL..."));

256

//WriteGAL(1);
/EraseGAL();

WriteGAL(O);
printstr-p (PSTR(" \nGAL-Programmed...Verifying..."));
/location = ReadGAL(1);

if (ReadGAL(1)) {
printstr-p (PSTR(" \nVerification-Error"));

//char s[10];
//sprintf(s, "%hd", location);
//printstr (s);

} else {
printstr-p (PSTR(" \nVerification-OK."));

}
break;

case 'V':
//ReadPES); /Get the programmer's signature
ParsePES(O); /Parse it
ReadGAL(O);

PrintFuseso;
break;

case 'T':
ReadPES(;
ParsePES(1);
break;

case 'H':
printstr-p (PSTR(" \nBURNITEIelp"));
printstr-p (PSTR(" \nP--Program-a-GAL."));
printstr-p (PSTR(" \nC--Clear-a-GAL."));
printstr-p (PSTR(" \nD--Download-a-JEDEC-file-to-BURNIT."));
printstr-p (PSTR(" \nA--Aut-Download-and-Program-a-GAL."));

printstr-p (PSTR(" \nV--View usemap-ofinserted-GAL."));
//printstr-p(PSTR("\nT Test view the PES."));

printstr-p (PSTR(" \nH--Print-this-help-document."));
break;

case '\r': //FALLTHROUGH intentional
case '\n':

break;
default:

printstr-p (PSTR(" \ninvalid-command"));

}

} else{

switch(rxbyte) {
case 'P':

atmel-programo;
break;

case 'V':
atmel-viewo;
break;

case 'C':
atmel-clear-chip ();
break;

case 'A':

257

load-ihexo;
atmel-programO;
break;

case 'D':
load-ihexo;
break;

//case 'S':
7/ atmel-signature ()0;
7/ break;
case 'H':

printstr-p (PSTR(" \nBURNIT-Help"));
printstr-p (PSTR(" \nP -- Program-an-ATMEL-2051/4051."));
printstr-p (PSTR(" \nC -- Clear-an-ATMEL-2051/4051."));
printstr-p (PSTR(" \nD--Download-anntel-Hex-file-to-BURNIT."));
printstr-p (PSTR(" \nA -- Auto-Download-and-Program-2051/4051."));
printstr-p (PSTR(" \nH--Print-this-help-document."));
printstr-p (PSTR("\nV -- View-the-code-on-the-currently-inserted

2051/4051."));
//printstrp (PSTR("\nS Read the signature bits of the chip."));
break;

case '\r': //FALLTHROUGH intentional
case '\n':

break;
default:

printstr-p (PSTR(" \ninvalid-command"));

}
}

}

}

G.1.6 gal.h

#define EDIT PD6
#define EDITPORT PORTD
#define EDITDDR DDRD

#define GALSENSE PC2
#define GALSENSEPIN PINC

#define PV PBO /NOTE, this may need a pulldown externally
#define SCLK PB4
#define SDIN PB3
#define STB PB2

#define SDOUT PINAO
#define SDOUTPIN PINA

#define GALCTRLPORT PORTB
#define GALCTRLDDR DDRB
#define GALCTRLPIN PINB

258

//Calling GAL PAO - 5 GALPAO - 5 to avoid name conflicts

#define GALPA0 PD3
#define GALPAOPORT PORTD

#define GALPA1 PCO
#define GALPAlPORT PORTC

#define GALPA2 PC1
#define GALPA2PORT PORTC

#define GALPA3 PB7
#define GALPA3PORT PORTB

#define GALPA4 PB6
#define GALPA4PORT PORTB

#define GALPA5 PB5
#define GALPA5PORT PORTB

#define
#define
#define
#define
#define
#define

GALPAO
GALPA1
GALPA2
GALPA3
GALPA4
GALPA5

PAO
PA1
PA2
PAS

PA4
PA5

#deflne GALADPORT PORTA
#define GALADDDR DDRA
*7

/Port A has input on 0, but all others are VIL, so need to be asserted as outputs
#define PORTAGAL-DDR ~_BV(O)

/Port B has outputs on 5, 6, 7
7/PBO is output, and PB1 is undesirable high, so it stays that way. All others are data pins
#define PORTBGALDDR OxFF

//0 and 1 are outputs
#define PORTCGALDDR 0x03

/Port D has outputs on 2, 3, 4, 6, 7
#define PORTD-GALDDR OxDC

typedef enum { UNKNOWN,GAL22V10} GALTYPE;

typedef struct

{
GALTYPE type;
unsigned char id0,idl;

259

char *name;
int fuses;
int pins;
int rows;
int bits ;
int uesrow;
int uesfuse;
int uesbytes;
int
int
int,

eraserow;
eraseallrow;
pesrow;

int pesbytes;
int cfgrow;
int *cfg;
int cfgbits;

} GALINFO;

#define
#define
#define

#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

LATTICE OxAl
NATIONAL Ox8F
SGSTHOMSON 0x20

READGAL 0
VERIFYGAL 1
READPES 2
SCLKTEST 3
WRITEGAL 4
ERASEGAL 5
ERASEALL 6
BURNSECURITY 7
WRITEPES 8
VPPTEST 9

int readJEDEC(void);
void EraseGAL(void);
void ReadPES(void);
void ParsePES(int DisplayPES);
void WriteGAL(int ones);
int ReadGAL(char verify);
void PrintFuses(void);

G.1.7 gal.c

//JEDEC and GAL algorithms
//Taken from GALBlast and ported to AVR without interface

#include
#include
#include
#include
#include

<stdio.h>
<avr/io.h>

/* used for string manipulation procedures*/
/* direct access to the AVRs 10 ports/SFRs *

<avr/pgmspace.h> /* for accessing strings in program memory *7
<ctype.h> /* to convert from upper to lowercase */
<string.h>

260

#include "avrutils.h"
#include "gal.h"

//Programming Pulse time. Learned from PES
static int pulse=0;

/Erase Pulse time. Learned from PES
static int erase=0;

//Programming Voltage from PES.
static int vpp= 0;

//Array mapping PES duration values to milliseconds
static int duration [16]={1,2,5,10,20,30,40,50,60,70,80,90,100,200,0,0};

static unsigned char fusemap[737];

unsigned char pes[12];

static int cfg22V1O[]=

{
5809,5808,
5811,5810,
5813,5812,
5815,5814,
5817,5816,
5819,5818,
5821,5820,
5823,5822,
5825,5824,
5827,5826

GALINFO galinfo[]=

{
{UNKNOWN, OxOO,OxOO,"unknown", 0, 0, 0, 0, 0,

0,0, 0, 0, 0, 8, 0,0,0},
{GAL22V1O, Ox48,0x49," GAL22V1O", 5892,24,44,

132,44,5828,8,61,60,58,10,16, cfg22V1,sizeof(cfg22VlO)/sizeof(int)},

7*
* SetAddr(uint8-t addr)
* Sets the address lines of the GAL22V10 to the specified value

*7
static void SetAddr(uint8_ addr)

{
//Unfortunately, these address lines are scattered across different ports, so each bit

has to be
//done individually.
if(addr & -BV(0)) {

GALPAOPORT 1= _BV(GALPAO);
} else {

GALPAOPORT &= ~_BV(GALPAO);

261

}
if(addr & _BV(1)) {

GALPA1PORT
} else {

}
if(addr

} else {

}
if(addr

} else {

1= _BV(GALPA1);

GALPA1PORT &= ~_BV(GALPA1);

& _BV(2)) {
GALPA2PORT 1= _BV(GALPA2);

GALPA2PORT &= ~_BV(GALPA2);

& _BV(3)) {
GALPA3PORT 1= _BV(GALPA3);

GALPA3PORT &= ~_BV(GALPA5);
}
if(addr & _BV(4)) {

GALPA4PORT
} else {

GALPA4PORT

}
if(addr & _BV(5)) {

GALPA5PORT
} else {

_BV(GALPA4);

&-= ~BV(GALPA4);

=BV(GALPA5);

GALPA5PORT &= ~_BV(GALPA5);

* SetEDIT()
* sets the value of the EDIT line on the GAL
*7

static void SetEDIT(int setEdit) {
if(setEdit) {

EDITPORT 1= _BV(EDIT);
} else {

EDITPORT &= ~(_BV(EDIT));

* Sets the drivers to be either on or off

static void SetDrivers(int setDrivers)

if(setDrivers) {
//Drive everything low except for EDIT itself and STB on PortB
PORTA = OxO;;
PORTB = _BV(STB);
PORTC = OxOO;
EDITPORT &= _BV(EDIT); 7/Leave EDIT alone, but put everything else low

DDRA = PORTAGALDDR;
DDRB = PORTB.GALDDR;

DDRC = PORTCGALDDR;
DDRD = PORTDGALDDR;

262

} else {
//Convert all back to inputs except the high voltage bits. They keep driving

DDRA = OxOO;
DDRB = -BV(PB1); /This is to keep the 2051 high voltage driver from being

silly
DDRC = OxOO;
EDITDDR = _BV(EDIT);

/Now enable pullups except on ultra high voltages
PORTA = OxFF;
PORTB = ~(-BV(PB1));
PORTC = OxFF;
//Enable all pullups except on EDIT. Just leave it alone
PORTD 1= ~(_BV(EDIT));

}
}
static void SetPV(int setPV) {

if(setPV) {
GALCTRLPORT 1= -BV(PV);

} else {
GALCTRLPORT &= ~(-BV(PV));

}
}
static void SetSCLK(int setSCLK) {

if(setSCLK) {
GALCTRLPORT 1= _BV(SCLK);

} else {
GALCTRLPORT &= ~(_BV(SCLK));

}
}
//Enters programming mode. This will take care of initializing output pins

/Mode determines whether we are doing a RE.AD or some kind of write. The programming

voltage is different
static char TurnOn(int mode)

{
char writeorerase;

/First decide if this turn on will involve writing.
if(mode=WRITEGALIlmode==ERASEGAL |mode==ERASEALLI|

mode==BURNSECURITYI mode==WRITEPES mode==VPPTEST)

{
writeorerase=1;

} else {
writeorerase=0;

}
/Pins should not be driving, but make sure

SetDrivers(0);

-delay-us(20);

//Turn on programming/reading voltage only

263

SetEDIT(1);

_delay-ms(100);

_delay-ms(1O);

7/Now all pins in programming mode, so drivers can come on
//This puts all VIL LOW and all GAL INPUTS to LOW except STB

SetDrivers(1);

-delay-ms(20);

if (writeorerase)
{

SetPV(1);
-delaymns(1O);

} else {
SetPV(O);
delayams(10);

}
return 1;

}

//Turns off the programming mode
static void TurnOff(void)
{

-delay-us(200);

/Disable the drivers.
SetDrivers(O);

_delay-ms(10);

//Turn off edit now
SetEDIT(O);

_delay-us(20);

}
void SendBit(int bit)
{

if(bit) {
GALCTRLPORT =BV(SDIN);

} else {
GALCTRLPORT &= ~(_BV(SDIN));

}

delay-us(2);
SetSCLK(1);
_delay-us(2);
SetSCLK(O);

_delay-us (2);

}

264

void SendBits(int n,int bit)
{

while(n-->0) SendBit(bit);

}
void Strobe(int msec)

//_delay-ms(3);
-delay-ms(1);

GALCTRLPORT
_delay-ms(msec);
GALCTRLPORT
//_delayms(3);

_delay-ms(1);

&= ~(_BV(STB));

1= _BV(STB);

void SendAddress(int n,int row)

{
while(n-->0)

{
SendBit(row&1);
row>>=1;

}

/Selects the row we want to talk to
void StrobeRow(int row)

{
SetAddr(0);
SendBits(132,0); /Sends 132 zeroes (because 132 bits per row in GAL22V10)
SendAddress(6,row); /Now send address of the row we want

/The 6 is for how many bits are in the row

Strobe(1); /Strobe the pin

}
unsigned char ReceiveBit(void)

{
unsigned char bit;

bit= (SDOUTPIN & _BV(SDOUT) ? 1: 0);
_delay-us(2);

SetSCLK(1);
_delay-us (2);
SetSCLK(0);

_delay-us (2);
return bit;

}

7/Parses the PES information retreived from the GAL
/This contains information on programming voltage, programming time, and other things

void ParsePES(int displayPES)

{
int algo=pes[1]&0x0F;

265

if (algo==5) { //Algorithm is specified
erase=(25<<((pes[4] >>2)&7))/2;
pulse=duration[((((unsigned)pes[5] <<8) jpes[4]) > >5)&15];
vpp=2*((pes[5]> >1)&31)+20;

} else {
erase = (pes[3]==NATIONAL?50:100);
switch(algo) {
case 0:

vpp=66; /7 16.5V
pulse=10;
break;

case 1:
vpp=63; // 15.75V
pulse=100;
break;

case 2:
vpp=pes[3]==NATIONAL?60:58; 7/ 15/14.5V
pulse=40;
break;

case 3:
vpp=56; // 14 V
pulse=100;
break;

}
}

//I am hardwiring this to be a long time so that the chip will work even if the PES is
toasted.

pulse = 100;
erase = 200;

/Note: I do not want to compile in software floating point arithmetic
/for this. Since I am just dividing by two, I can do it with bit shifts

if(displayPES) {
char s[100];
int realvpp = vpp / 4;
char isQuarter = vpp & OxOl; 7/See if dividing by two truncates
char isHalf = vpp & 0x02 ? 1 : 0;
char fraction = isQuarter * 25 + isHalf * 50;
sprintf (s ,"\nPES says-Vpp-=_%d.%d,Pulse-"

"time-= -%d-ms" ,realvpp,fraction, pulse);
printstr (s);
sprintf (s ," \nPES:-%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d,%d",pes[0],pes[1],

pes [2], pes [3], pes [4], pes [5], pes [6], pes [7], pes [8],
pes [9], pes [10], pes [11])

printstr (s);
}

return;

}

/Reads the Programmer's Electronic Signature to make sure
/this is a GAL22V10 and we know the programming

//algorithm
void ReadPESO

266

{
int bitmask,byte;

TurnOn(READPES);

StrobeRow(58); /Select row 58, the PES on GAL22V10
for(byte=O;byte<10;byte++) { /The PES is 10 bytes long. Get them

pes [byte] =0;
for(bitmask=Ox1;bitmask<=x8;bitmask<<=1) { /Get each bit and

//assemble into PES
if(ReceiveBit() pes [byte] I=bitmask;

}
}
TurnOffO;

}

int ReadGAL(char verify)
{

int row,bit;
short fuseindex;
int fusebit ;

char s [7];
int errorfound = 0;

char tempfusemap = 0;

TurnOn(READGAL);

for(row=0;row<galinfo[GAL22V10].rows;row++) {
StrobeRow(row);
for(bit =0;bit<galinfo[GAL22V10]0.bits;bit++){

fuseindex = (galinfo [GAL22V10].rows*bit+row) / 8;
fusebit = (galinfo [GAL22V1].rows*bit+row) % 8;
if(verify) {

tempfusemap = ReceiveBitO ?
tempfusemap I _BV(fusebit) :
tempfusemap & ~(_BV(fusebit));
if ((tempfusemap & _BV(fusebit)) !=

(fusemap[fuseindex] & _BV(fusebit))){
sprintf (s ," \n%hd",fuseindex*8 + fusebit);
printstr (s);
errorfound = 1;

}
} else {

fusemap[fuseindex] ReceiveBitO ?
fusemap[fuseindex] _ _BV(fusebit) :
fusemap[fuseindex] & (BV(fusebit));

}
}

}

// UES

267

StrobeRow(galinfo[GAL22V1O].uesrow);
for(bit =0;bit<galinfo[GAL22V10].uesbytes*8;bit++) {

fuseindex = (galinfo [GAL22V1].uesfuse+bit) / 8;
fusebit = (galinfo [GAL22V1].uesfuse+bit) % 8;
if(verify) {

tempfusemap = ReceiveBitO ?
tempfusemap I _BV(fusebit) :
tempfusemap & ~(_BV(fusebit));
if ((tempfusemap & -BV(fusebit)) !=

(fusemap[fuseindex] & _BV(fusebit))){
sprintf (s ," \n%hd",fuseindex*8 + fusebit);
printstr (s);
errorfound 1;

}
} else {

fusemap[fuseindex] ReceiveBit() ?
fusemap[fuseindex] | _BV(fusebit) :
fusemap[fuseindex] & ~(_BV(fusebit));

}
}
// CFG
SetAddr(galinfo[GAL22V1O].cfgrow);
Strobe(2);
for(bit=0;bit<galinfo[GAL22V10].cfgbits;bit++) {

fuseindex = (galinfo [GAL22V1O].cfg[bit]) / 8;
fusebit = (galinfo [GAL22V1O].cfg[bit]) % 8;
if(verify) {

tempfusemap = ReceiveBitO ?
tempfusemap _BV(fusebit) :
tempfusemap & ~(_BV(fusebit));
if ((tempfusemap & _BV(fusebit))

(fusemap[fuseindex] & _BV(fusebit))){
sprintf (s ," \n%hd",fuseindex*8 + fusebit);
printstr (s);
errorfound 1;

}
} else {

fusemap[fuseindex] ReceiveBitO ?
fusemap[fuseindex] |BV(fusebit) :
fusemap[fuseindex] & ~(_BV(fusebit));

}
}
TurnOffO;
return errorfound;

}

void PrintFuses(void)

{
int i;
char s [8];
for(i = 0; i < sizeof(fusemap); i++) {

if (i % 32 == 0){

268

printstr-p (PSTR(" \n"));

}
sprintf (s,"%X-",fusemap[i]);
printstr (s);

}
}
void EraseGAL(void)

{
if(TurnOn(ERASEGAL)) {

SetAddr(61);
Strobe(erase);
TurnOff(;

}
}
//Write the current fusemap to the GAL in the socket using data from PES
void WriteGAL(int ones)

{
int row,bit;
short fuseindex;
int fusebit ;

if(TurnOn(WRITEGAL)) {
SetAddr(O);
for(row=O;row<galinfo[GAL22V1O0].rows;row++) {

for(bit =0;bit<galinfo[GAL22V10]. bits;bit++) {
fuseindex = (galinfo [GAL22V1O].rows*bit + row) / 8;
fusebit = (galinfo [GAL22V10].rows*bit + row) % 8;
if (ones) {

SendBit(1);
} else {

SendBit(fusemap[fuseindex] & _BV(fusebit) ? 1 0);

}
}
SendAddress(6,row);
GALCTRLPORT &= ~(_BV(SDIN));
Strobe(pulse);

}
7/ UES
for(bit =0;bit<galinfo[GAL22V1O].uesbytes*8;bit++) {

fuseindex = (galinfo [GAL22V1O].uesfuse+bit) / 8;
fusebit (galinfo [GAL22V1O].uesfuse+bit) % 8;
if(ones) {

SendBit(1);
} else {

SendBit(fusemap[fuseindex] & _BV(fusebit) ? 1: 0);

}
}
if (galinfo [GAL22V10].uesbytes*8<galinfo[GAL22V1O].bits) {

SendBits(galinfo [GAL22V1O].bits-galinfo [GAL22V10]0.uesbytes*8,0);

}
SendAddress(6,galinfo[GAL22V1O] .uesrow);
GALCTRLPORT &= ~(_BV(SDIN));

269

Strobe(pulse);
// CFG
SetAddr(galinfo[GAL22V1O].cfgrow);
for(bit =0;bit<galinfo[GAL22V10]. cfgbits;bit++) {

fuseindex = (galinfo [GAL22V1O].cfg[bit]) / 8;
fusebit = (galinfo [GAL22V1O].cfg[bit]) % 8;

if(ones) {
SendBit(1);

} else {
SendBit(fusemap[fuseindex] & _BV(fusebit) ? 1 0);

}
}
GALCTRLPORT &= ~(_BV(SDIN));
Strobe(pulse);

}
TurnOffO;

}

/Computes the checksum of the fusemap
//argument is the size of the fusemap. For GAL22V1O, should be
/75892, but this is checked before CheckSum is called
static unsigned short CheckSum(int n)
{

unsigned short c,e;
long a;
int i;

unsigned short fusemapindex=0;
unsigned char bitindex 0;

c=e=0;
a=0;
for(i=0;i<n;i++)
{

if (e==9)
{

e=1;
a+=c;

c=0;
}

C>>=1;
fusemapindex = i / 8;
bitindex = i % 8;
if (fusemap[fusemapindex] & _BV(bitindex)) c+=0x80;

}
return (unsigned short) ((c>> (8-e)) +a);

}

7/Parses a JEDEC file being transmitted over the serial port
/Uses a messy state machine to do it. Returns 1 if successful and 0 if an error

int readJEDECO

270

//int i, n, type, checksumpos, address,pins, lastfuse , state;

77 O=outside JEDEC, 1=skippirng comment or unknown, 2=read command

/7 Other states were undocumented.

7/Looking at the JEDEC standard, a transmission starts with hex 0x02

//and ends with hex OxO3
//Every useful line starts with a 'V' character, so the

/state machine goes to 2

short address = 0;

/Used because the fusemap must be packed for space reasons.
short fuseaddress = 0;
char bitlocation = 0;

/This is the 16-bit sum of the entire transmission
unsigned short xmitchecksum = 0;

char state=0;
char security=0;
short checksum=0;
char pins=0;
short lastfuse=0;

unsigned char receivedChar;

printstr-p (PSTR(" \n>"));

/Wait until we get START byte
while(getchr(!= 0x02){

}
xmitchecksum = 0x02;
/We got it. Now process the file

while((receivedChar = getchr()) {
xmitchecksum = (xmitchecksum + receivedChar) & OxFFF;
/First check for end
if (receivedChar == 0x03) {

//We're done
break;

} else if(receivedChar =='*'){

printstr-p (PSTR("."));
state=2;

} else switch(state) {
case 2: /This char defines what the line is

if (! isspace (receivedChar)) {
switch(receivedChar) {

case 'L': /Fuse List
address=0;
state=3;
break;

case 'F': //Default Fuse State
state=5;

271

break;
case 'G': //Security Fuse

state=13;
break;

case 'Q': /Specifies features of GAL
state=7;
break;

case 'C': //Fuse Checksum
state=14;
break;

default:
state=1;

}
break;

case 3:/Getting first digit of Fuse List
if (! isdigit (receivedChar)) return 0;
address=receivedChar-'0';
state=4;
break;

case 4: /Getting remaining digits of Fuse List until Space received
if(isspace (receivedChar)){

state=6;
} else if(isdigit (receivedChar)) {

address= 10*address+ (receivedChar-'0');
} else {

return 0;
}
break;

case 5: //Default Fuse state command "format" the fusemap
if (isspace (receivedChar)) break; // ignored
if (receivedChar==V'0' receivedChar= =1') {

memset(fusemap,receivedChar-'0',sizeof(fusemap));
} else {

return 0;
}
state=1;
break;

case 6: /Reading in fuses from Fuse List entry until next '*'

if(isspace (receivedChar)) break; // ignore spaces
if (receivedChar=='0'l receivedChar=='1') {

7/Divide by 8 to get index into packed fusemap array
fuseaddress = address / 8;
/Use modulo to get which bit in that cell to read
bitlocation = address % 8;

//Finally, write the bit
if(receivedChar == '0')

fusemap [fuseaddress]
} else {

fusemap[fuseaddress]

into that cell

{
&= (BV(bitlocation));

=BV(bitlocation);

address++;

272

} else {
return 0;

}
break;

case 7: /Get configuration information. Currently ignored

if(isspace (receivedChar)) break; // ignored
if (receivedChar=='P') {

pins=0;
state=8;

} else if(receivedChar=='F') {
lastfuse =0;
state=9;

} else state=2;
break;

case 8: /Setting expected number of pins
if (isspace (receivedChar)) break; // ignored
if (! isdigit (receivedChar)) return 0;
pins=receivedChar-'0';

state=10;
break;

case 9: /Setting expected number of fuses
if (isspace (receivedChar)) break; // ignored
if (! isdigit (receivedChar)) return 0;
lastfuse =receivedChar-'0';
state=11;
break;

case 10: /Getting remaining digits of number of pins
if(isdigit (receivedChar)) {

pins=10*pins+(receivedChar-'0');
} else if(isspace(receivedChar)) {

state=12;
} else return 0;
break;

case 11: /Getting remaining digits of number of fuses
if(isdigit (receivedChar)) {

lastfuse =10*lastfuse+(receivedChar-'0');
} else if(isspace(receivedChar)) {

state=12;
} else return 0;
break;

case 12: //Ensuring that there is whitespace aft
if (! isspace (receivedChar)) return 0;
break;

case 13: //Security Fuse setting
if(isspace(receivedChar)) break; // ignored
if (receivedChar=='0'lIreceivedChar=='1') {

security =receivedChar-'0':
} else {

return 0;
}
state=1;
break;

case 14: /Get the checksum first digit
if(isspace (receivedChar)) break; // ignored

er setting config ?

273

if(isdigit (receivedChar)) {
checksum=receivedChar-'O';

} else if(toupper(receivedChar)>='A'&&
toupper(receivedChar)<='F') {

checksum=toupper(receivedChar) -'A'+10;
} else return 0;
state=15;
break;

case 15: /Get the remaining digits until a space
if(isdigit (receivedChar)) {

checksum=16*checksum+receivedChar-'0';
} else if(toupper(receivedChar)>='A'&&

toupper(receivedChar)<='F') {
checksum=16*checksum+toupper(receivedChar)-'A'+10;

} else if(isspace (receivedChar)) {
state=2;

} else return 0;
break;

}
} /Ends for loop

/Now get the transmit checksum
unsigned short tempxmitcheck = 0;
tempxmitcheck = asciitobin(getchro);
tempxmitcheck = (tempxmitcheck << 4) 1 asciitobin(getchr();
tempxmitcheck = (tempxmitcheck << 4) 1 asciitobin(getchr();
tempxmitcheck = (tempxmitcheck << 4) 1 asciito-bin(getchr();

7*
* Note we are not checking the transmission checksum.
* It is broken if the JED file
* moves between Unix and Windows or if it is mangled in Hyperterminal because it

includes
* line feeds and carriage returns as meaningful elements.
* If the file is moved as a text file , line endings get
* mangled and invalidate the checksum.
* Besides, there is already a fuse checksum, so this feels superfluous.
*7

/Make sure that a GAL22V1O was used
if(lastfuse != 5892) {

printstr-p (PSTR(" \nThis.JEDEC-has-the-wrong-number-ofluses.or"
"no-fuse-declaration. -Is -it -for -aGAL22V10?"));

return 0;

}
if(pins != 24) {

printstr-p (PSTR(" \nThis.JEDEC-has-the-wrong-number.ofpins.or.no"
".pin.declaration. -Is-it -for -a-GAL22V1O?"));

return 0;
}

/Now compute fuse checksum using the known fuse size
//I will demand that a checksum be present
if (checksum == 0) {

274

printstr-p (PSTR(" \nNo-FuseChecksum-present-in-JEDEC-file. "
"Check-compiler-settings"));

return 0;

}
if (checksum != CheckSum(lastfuse)) {

printstr-p (PSTR(" \nChecksumWrong"));
return 0;

if(security == 1) {
printstrp (PSTR(" \nYou-have-chosen-toprogram.theSecurity-Fuse-inthis,

JEDEC."));
printstr-p (PSTR(" \nBecause-tis-wilLprevent-reading-out-thefusemap, -this-

GAL"));
printstr-p (PSTR(" \nwilLgive,_a-verification-error, after -programming."));
printstr-p (PSTR(" \nSimply-clearor-reprogram-the-GALto-clearthe.security-

fuse"));

}
return 1;

}

G.1.8 pic.h

#define PIC16F628 x3E

#define PIC16F628A 0x83

#define PIC16F627 Ox3D
#define PIC16F627A 0x82

#define PIC16F648A 0x88

#define
#define
#define
#define
#define
#define

LOADCONFIG-COMMAND OxOO
LOADPROGRAMCOMMAND 0x02
LOADDATA-COMMAND 0x03
INCREMENTADDRESS 0x06
READPROGRAM.COMMAND 0x04
READDATA-COMMAND 0x05

/The following command is for no A
//A version calls this Program Only

#define BEGINERASEPROGRAM 0x08

#define APROGRAMONLY 0x08

/Just for old chip

#define BEGIN-PROGRAMONLY 0x18

#define BULKERASEPROGRAM 0x09

#define BULKERASEDATA OxOB

/Just for old chip
/Used to hose code protection bits

#define BULK.ERASESETUPONE 0x01

#define BULKERASESETUPTWO 0x07

275

/This is the definition for the PIC burning pins
#define VSS PB6
#define VDD PA3
#define VPP PB7
#define PGM PB2
#define CLOCK PA1
#define DATA PA2

#define PICSENSE PB6
#define PICSENSEPIN PINB

//PB2,PB7 are outputs. PB6 input
/PA1, output, PA2 is both (calling an input in default
#define PORTBPIC-DDR 0x84
#define PORTAPICDDR 0x02
#define VSSDDR DDB6
#define VSSPIN PINB6
#define CLOCKPORT PORTA
#define DATAPORT PORTA
#define PGMPORT PORTB
#define VPPPORT PORTB
#define VSSPORT PORTB
#define VSSDDR DDRB
#define VSSPIN PINB
#define DATADDR DDA2
#define DATADDR DDRA
#define DATAPIN PINA
#define DATAIN PINA2

/sets type of PIC
extern uint8t PICtype;

//Data memory for the PIC to be burned
extern uint8t picDataMemory[128];

//Configuration memory for the PIC to be burned
extern uint8t picConfigMemory[16];

/void picenter-programming(void);
/void pic-exit-programming(void);
/void pic-pulse-clock (void);
/void pic-send-command(uint8_t comm);

//uint16_t pic-receive-data (void);
/void pic-send-data(uintl6_t comm);

void picbulk-erase(void);
int pic-write-program(void);
int pic-write-data (void);
int pic-write-configuration (void);
uint8t pic-get-revision (void);
void picview(void);
void pictotal-erase (void);

276

G.1.9 pic.c

#include <stdio.h> /* used for string manipulation procedures*/
#include <avr/io.h> /* direct access to the AVRs 10 ports/SFRs *7
#include <avr/pgmspace.h> /* for accessing strings in program memory */

#include <ctype.h> /* to convert characters from upper to lowercase *7

#include "avrutils.h"
#include "pic.h" /* Constants for PIC programming*/

/sets type of PIC
uint8_t PICtype = 0;

/Data memory for the PIC to be burned
uint8-t picDataMemory[128];

//Configuration memory for the PIC to be burned
uint8_t picConfigMemory[16];

7*
* The following are low level routines to help portability to other platforms
*7

static void pic-set-clock (int setClock) {
if(setClock) {

CLOCKPORT 1= _BV(CLOCK);
} else {

CLOCKPORT &= ~(_BV(CLOCK));

}

static void pic-set-pgm(int setPGM) {
if (setPGM) {

PGMPORT |= _BV(PGM);
} else {

PGMPORT &= ~(_BV(PGM));

}
}

static void pic-set-vpp(int setVPP) {
if(setVPP) {

VPPPORT 1= _BV(VPP);
} else {

VPP-PORT &= ~(_BV(VPP));

}
}
7*
* pic-enter-programming
* Enter PIC programming mode
*

*/
static void picenter-programming(void) {

277

//Ensure everything is low
pic-set-clock (0);
pic-set-pgm(O);
pic-set-vpp (0);

/Wait delay between power on and PGM rise
_delay-us(5);

//Now raise lines
pic-set-pgm(1);
_delay-us (5);

pic-set-vpp(1);
_delay-us(5);

/Now we are ready for command

}

7*
* pic-exit-programming
* Exit PIC programming mode
*7

static void pic-exit-programming(void) {
pic-set-vpp(0);
pic-set-pgm(0);

}

7*
* pic-pulse-clock
* Pulses the clock to the PIC
*/

static void picpulse-clock (void) {
7/Clock needs setup and hold of 100ns each. Both should be met
//without explicit delays.

_delay-us(2);
pic-set-clock (0);

delay-us (2);

pic-set-clock (1);

_delay-us(2);

}

7*
* pic-send-command
* Sends the specified 6 bit command to the PIC
* Assumes already in programming mode
*7

static void pic-send-command(uint8t comm) {

/Make DATA an output

278

DATADDR 1= _BV(DATADDR);

//Raise the clock line
pic-set-clock (1);

DATAPORT = comm & Ox1 ?
DATAPORT | _BV(DATA):

pic-pulse-clock ();
DATA-PORT = comm & 0x2 ?

DATAPORT I _BV(DATA):
pic-pulse-clock ();
DATA-PORT = comm & 0x4 ?

DATAPORT I _BV(DATA):
pic-pulse-clock ();
DATAPORT = comm & 0x8 ?

DATAPORT I _BV(DATA):
pic-pulse-clock ();
DATAPORT = comm & 0x10 ?

DATAPORT | _BV(DATA):
pic-pulse-clock ();
DATAPORT = comm & 0x20 ?

DATAPORT I _BV(DATA):

DATAPORT & ~(_BV(DATA));

DATA-PORT & ~(_BV(DATA));

DATAPORT & ~(_BV(DATA));

DATAPORT & ~(_BV(DATA));

DATAPORT & ~(_BV(DATA));

DATAPORT & ~(_BV(DATA));

7/Don't pulse last clock because it needs to remain low for a while.

pic-set-clock (0);

/Shut off the data port before the PIC makes an attept to drive it.

//Make an input.
DATADDR &= ~(_BV(DATADDR));

//Delay after command sent
_delay-us(1);

* pic-receive-data
* Receives 16 bits of data and returns 14 bits actually sent.

*7
static uintl6t pic-receive-data (void) {

uintl6t data = 0;
//Make DATA an input
DATADDR &= ~(_BV(DATADDR));

//Raise the clock line
pic-set-clock (1);

//Pulse clock to receive leading zero
pic-pulseclock ();

/Now get the data
data I= ((DATAPIN & -BV(DATAIN)) ? 0x1 0);
pic-pulse-clock ();
data J= ((DATAPIN & _BV(DATAIN)) ? 0x2: 0);

279

pic-pulse-clock ();
data 1= ((DATAPIN & _BV(DATAIN)) ? 0x4: 0);
pic-pulse-clock ();
data |= ((DATAPIN & _BV(DATAIN)) ? 0x8: 0);
pic-pulse-clock ();
data I= ((DATAPIN & _BV(DATAIN)) ? Ox10 : 0);
pic-pulse-clock ();
data 1= ((DATAPIN & _BV(DATAIN)) ? 0x20: 0);
pic-pulse-clock ();
data 1= ((DATAPIN & _BV(DATAIN)) ? 0x40: 0);
pic-pulse-clock ();
data 1= ((DATAYIN & _BV(DATAIN)) ? 0x80: 0);
pic-pulse-clock ();
data 1= ((DATAPIN & _BV(DATAIN)) ? 0x100: 0);
pic-pulse-clock ();
data |= ((DATAPIN & _BV(DATAIN)) ? 0x200 : 0);
pic-pulse-clock ();
data 1= ((DATAPIN & _BV(DATAIN)) ? 0x400: 0);
pic-pulse-clock ();
data 1= ((DATAPIN & _BV(DATAIN)) ? 0x800 : 0);
pic-pulse-clock ();
data I= ((DATAPIN & _BV(DATAIN)) ? 0x1000 : 0);
pic-pulse-clock ();
data 1= ((DATAPIN & _BV(DATAIN)) ? 0x2000: 0);
pic-pulse-clock ();

/Now have the data. Just lower clock one more time to clear lagging zero
pic-set-clock (0);

_delay-us(1);

return data;

}

/*
* pic-send-data
* Sends the specified 14 bit command (will be 0 padded to 16) to the PIC
* Assumes already in programming mode and command already sent
*/

static void pic-send-data(uintl6_ comm) {
//Make DATA an output
DATADDR 1= _BV(DATADDR);

/Raise the clock line
pic-set-clock (1);

//Send 0

DATAPORT = DATAPORT & ~(_BV(DATA));
pic-pulse-clock (;

DATAPORT = comm & Ox1 ?
DATAPORT I _BV(DATA) : DATA-PORT & (BV(DATA));

pic-pulse-clock ();

280

DATAPORT = comm & 0x2 ?
DATAPORT | _BV(DATA)

pic-pulse-clock ();
DATAPORT = comm & 0x4 ?

DATAPORT I _BV(DATA)
pic-pulse-clock ();
DATAPORT = comm & 0x8 ?

DATAPORT I _BV(DATA)
pic-pulse-clock ();
DATAPORT = comm & Ox1O ?

DATAPORT I _BV(DATA)
pic-pulse-clock ();
DATA-PORT = comm & 0x20 ?

DATA-PORT I _BV(DATA)
pic-pulse-clock ();
DATAPORT = comm & 0x40 ?

DATAPORT I _BV(DATA)
pic-pulse-clock ();
DATAPORT = comm & 0x80 ?

DATAPORT I _BV(DATA)
pic-pulse-clock ();
DATAPORT = comm & Ox10

DATAPORT I _BV(DATA)

DATAPORT & ~(_BV(DATA));

DATA-PORT & ~(_BV(DATA));

DATAPORT & ~(_BV(DATA));

DATAPORT & ~(_BV(DATA));

DATAPORT & ~(_BV(DATA));

DATA-PORT & ~(-BV(DATA));

DATA-PORT & ~(_BV(DATA));

DATAPORT & ~(_BV(DATA));
pic-pulse-clock ();
DATA-PORT = comm & 0x200 ?

DATAPORT I _BV(DATA): DATA-PORT
pic-pulse-clock ();
DATAPORT = comm & 0x400 ?

DATAPORT j _BV(DATA): DATAPORT
pic-pulse-clock ();
DATAPORT = comm & 0x800 ?

DATAPORT I _BV(DATA): DATAPORT
pic-pulse-clock ();
DATAPORT = comm & Ox1000 ?

DATAPORT I _BV(DATA) : DATAPORT
pic-pulse-clock ();
DATAPORT = comm & 0x2000 ?

& ~(_BV(DATA));

& ~(_BV(DATA));

& ~(_BV(DATA));

& ~(_BV(DATA));

DATAPORT | _BV(DATA): DATAPORT & ~(_BV(DATA));
pic-pulse-clock ();

//Send trailing zero
DATAPORT = DATAPORT & ~(.BV(DATA));
//Don't pulse last clock because it needs to remain low for a while.
pic-set-clock (0);

//Shut off the data port
/Make an input.

DATADDR &= ~(_BV(DATADDR));

//Delay after data sent
_delay-us(1);

281

* pic-bulk-erase
* Erase the PIC's memory
*7

void pic-bulk-erase(void) {
pic-enter-programming(;
printstr-p (PSTR(" \nErasing-PIC-program-memory..."));

//First load data for program memory with data set to all ones.
pic-send-command(LOADPROGRAMCOMMAND);

pic-send-data(0x3FFF);

pic-send-command(BULKERASEPROGRAM);

if ((PICtype == PIC16F628) 1| (PICtype == PIC16F627)) {
pic-send-command(BEGIN-PROGRAM-ONLY);

}
_delay-ms(6);

printstr-p (PSTR("\nErasing-PIC-data-memory..."));

pic-send-command(LOADPROGRAMCOMMAND);

pic-send-data(Ox3FFF);

pic-send-command(BULKERASE-DATA);

if ((PICtype == PIC16F628) || (PICtype == PIC16F627)) {
pic-send-command(BEGINPROGRAMONLY);

}
_delay-ms(6);
pic-exit-programming(;

}
7*
* pic-write-program
* Program PIC memory
*/

int pic-write-program(void) {
uint16_t i = 0;
uint16_t tempdata;
uint16_t sendingdata;

pic-enter-programming(;
printstr-p (PSTR(" \nProgramming-PIC-Program-memory..."));

for(i = 0;i < CHIPMEMSIZE / 2; i++) {
if(i % 32 == 0) {

printstr-p (PSTR("."));

}

sendingdata = (((chipMemory[2*i+1] << 8) & 0x3F00)

282

chipMemory[2*i]) & Ox3FFF;

/Don't bother sending data if it 's blank.
if ((sendingdata == Ox3FFF)) {

pic-send-command(INCREMENTADDRESS);
continue;

}

/Load data for program memory
pic-send-command(LOAD-PROGRAM-COMMAND);

//Send the data
pic-send-data((((chipMemory[2*i+1] <<8) & Ox3F0) I

chipMemory[2*i]) & Ox3FFF);
/Begin programming only cycle
if ((PICtype == PIC16F628) || (PICtype == PIC16F627)) {

pic-send-command(BEGINPROGRAMONLY);
-delay-ms(8);

} else {
pic-send-command(A-PROGRAM-ONLY);
_delay-ms(4);

}

/Now verify that it was written
/Read from Program

pic-send-command(READPROGRAMCOMMAND);
tempdata = pic-receive-dataO;
if((tempdata & Ox3FFF) != ((((chipMemory[2*i+1] << 8) & Ox3FOO)

chipMemory[2*i]) & Ox3FFF)) {
printstr-p (PSTR(" \nVerification-error-during-programming."));
printstr-p (PSTR(" \nCode-protectionmay-be-enabled."));
pic-exit-programming(;
return -1;

}
//Increment address
pic-send-command(INCREMENTADDRESS);

}
pic-exit-programming(;
return 0;

}
7*
* pic-write-data
* Program PIC memory
*7

int pic-write-data(void) {
uint8t i = 0;
uintl6_ tempdata;
pic-enter-programmingo;
printstr-p (PSTR(" \nProgramming-PIC-Data-memory..."));

for(i = 0;i < 128; i++) {
if(picDataMemory[i] == OxFF) {

pic-send-command(INCREMENTADDRESS);
continue;

283

/Load data for program memory
picsend-command(LOADDATACOMMAND);

//Send the data
picsend-data(picDataMemory[i] & OxOOFF);
//Begin programming only cycle
if ((PICtype == PIC16F628) || (PICtype == PIC16F627)) {

pic-send-command(BEGINPROGRAMONLY);
_delay-ms(8);

} else {
pic-send-command(APROGRAMONLY);
_delay-ms(4);

}

/Now verify that it was written
/Read from Data

pic-send-command(READDATACOMMAND);
tempdata = pic-receive-data(;
if ((tempdata & OxOOFF) != (picDataMemory[i] & OxOOFF)) {

printstr-p (PSTR("\nVerification-error-during-Data-programming."));
pic-exit-programmingo;
return -1;

I
//Increment address
pic-send-command(INCREMENTADDRESS);

}
pic-exit-programmingO;
return 0;

}

7*
* pic-write-configuration
* Program PIC config memory
*7

int pic-write-configuration (void) {
uint8t i = 0;
uintl6t tempdata;
uintl6t sendingdata;
printstrp (PSTR(" \nProgramming-PIC-Configuration-Word..."));
pic-enter-programmingo;
pic-send-command(LOAD.CONFIGCOMMAND);
pic-send-data(0x3FFF);

for(i = 0;i < 8; i++) {
if(i > 3 && i < 7) {

pic-send-command(INCREMENT-ADDRESS);
continue;

I
sendingdata = (((picConfigMemory[2*i+1] <<8) & Ox3FOO)

picConfigMemory[2*i]) & Ox3FFF;

7/Don't bother sending data if it 's blank.
if ((sendingdata == Ox3FFF)) {

284

pic-send-command(INCREMENTADDRESS);
continue;

}
//Load data for program memory
pic-send-command(LOAD-PROGRAMCOMMAND);

//Send the data
pic-send-data((((picConfigMemory[2*i+1] <<8) & Ox3FOO)

picConfigMemory[2*i]) & Ox3FFF);
//Begin programming only cycle
if ((PICtype == PIC16F628) 11 (PICtype == PIC16F627)) {

//Using Erase/Program because the bulk erase apparently doesn't
//clear this memory space.
pic-send-command(BEGINERASEPROGRAM);
_delay-ms(13);

} else {
pic-send-command(APROGRAMONLY);
-delay-ms(4);

}

//Now verify that it was written
//Read from Program

picsend-command(READ-PROGRAM-COMMAND);
tempdata = pic-receive-data(;
if ((tempdata & Ox3FFF) != ((((picConfigMemory[2*i+1] «8) & Ox3FOO)

picConfigMemory[2*i]) & Ox3FFF)) {
printstr-p (PSTR(" \nVerification.error-during.Configuration"

.programming."));
printstr-p (PSTR(" \nSent:_"));
printhex(picConfigMemory[2*i+1]);
printhex(picConfigMemory[2*i]);
printstr-p (PSTR(" \n-Read:._"));
printhex((tempdata >> 8) & OxOOFF);
printhex(tempdata & OxOOFF);

printstr-p (PSTR(" \nNOTE:-This.programmer.cannot-disable-Low."
"Voltage.Programming\n"));

printstr-p (PSTR("If-that.was.the-.only-problem,.do-not-worry."));
pic-exit-programming(;
return -1;

}
//Increment address
pic-send-command(INCREMENTADDRESS);

}
pic-exit-programming(;
return 0;

}
7*
* pic-geLrevision
* Gets the revision of this PIC and prints it for debugging right now.

285

uint8_t pic-get-revision (void) {
uint16_t deviceid;
pic-enter-programmingo;

//Load configuration
pic-send-command(OxOO);
pic-send-data(xOOO);

pic-send-command(0x06);
pic-send-command(0x06);
pic-send-command(0x06);
pic-send-command(0x06);
pic-send-command(0x06);
pic-send-command(0x06);

/Should be advanced to 0x2006 by now
/Get data

pic-send-command(0x04);

deviceid = pic-receive-data();

/Mask off the lower 5 bits because they are just revision.
deviceid = (deviceid >> 5) & OxFF;

switch(deviceid) {
case PIC16F648A:

printstr-p (PSTR(" \nPIC16F648A-detected"));
printstr-p (PSTR(" \nNote:-This-programmer-can-only-program-"

"the- first -2K-ofmemory-and-not-the-whole"));
printstr-p (PSTR("\n4K-oLmemory-on-this-device."));
printstr-p (PSTR(" \nIt-can-also-only-program-the-first-28-bytes"

-of-Data-and-not-alL256-bytes."));
PICtype = PIC16F648A;
return PIC16F648A;
break;

case PIC16F627A:
printstr-p (PSTR(" \nPIC16F627A-detected"));
PICtype = PIC16F627A;
return PIC16F627A;
break;

case 0x83:
printstr-p (PSTR(" \nPIC16F628A-detected"));
PICtype = PIC16F628A;
return PIC16F628A;
break;

case PIC16F627:
printstr-p (PSTR(" \nPIC16F627-detected"));
PICtype = PIC16F627;
return PIC16F627;
break;

case Ox3E:
printstr-p (PSTR(" \nPIC16F628-detected"));
PICtype = PIC16F628;
return PIC16F628;

286

break;
default:

printstr-p (PSTR(" \nUnknown-PIC,-Config-word-was:"));
printhex((deviceid >> 8) & OxFF);
printhex(deviceid & OxFF);
return deviceid;
break;

}
picexit-programming(;

}
7*
* pic-view
* view the code on the PIC
*7

void pic-view(void) {
pic-enter-programmingo;

pic-send-command(LOADPROGRAMCOMMAND);
pic-send-data(OxOOOO);

int16t ix;
for(ix = 0; ix < CHIPMEMSIZE / 2; ix++) {

if ((ix % 16) == 0) { /* line numbers and newlines *7
printstr-p (PSTR(" \n"));
char line-num[10];
sprintf (line-num, "%04X-:\t", (2*ix));
printstr (line-num);

}
pic-send-command(READPROGRAMCOMMAND);
uint16_t curr-mem pic-receive-data(;
printhex(curr-mem & OxFF);
printhex((curr-mem >> 8) & OxFF);
pic-send-command(INCREMENT-ADDRESS);

}
pic-exit-programming(;
pic-enter-programming(;

printstr-p (PSTR("\n-DATA-:"));
for(ix = 0; ix < 128; ix++){

if ((ix % 32) == 0) { /* line numbers and newlines *7
printstr-p (PSTR(" \n"));
char line-num[10];
sprintf (line-num, " %04X-: \t", (ix)');
printstr (line-num);

}
pic-send-command(READDATACOMMAND);

uint16-t curr-mem pic-receive-datao;
printhex(curr-mem & OxOOFF);

287

pic-send-command(INCREMENTADDRESS);

}
pic-exit-programming(;
pic-enter-programming(;

pic-send-command(LOADCONFIGCOMMAND);
pic-send-data(Ox3FFF);

printstr-p (PSTR("\nUSERJD_:_"));

for(ix = 0; ix < 4 ; ix+ +) {

pic-send-command(READPROGRAMCOMMAND);
uint16_t curr-mem pic-receive-dataO;
printhex(curr-mem & OxFF);
printhex((curr-mem >> 8) & OxFF);
pic-send-command(INCREMENT-ADDRESS);

}

pic-send-command(INCREMENT.ADDRESS);
pic-send-command(INCREMENTADDRESS);
picsendcommand(INCREMENTADDRESS);

printstr-p (PSTR(" \n-CONFIG-WORD-: -"));

pic-send-command(READPROGRAM.COMMAND);
uint16_t curr-mem pic-receive-data(;
printhex(curr-mem & OxFF);
printhex((curr-mem >> 8) & OxFF);

pic-exit-programmingO;

}
7*
* pic-totaLerase
* Perform total PIC bulk erase. Necessary to clear data protection bits.
*/

void pictotaLerase (void) {

printstr-p (PSTR(" \nPerforming-totaLbulk-erase-to-"
" clear -code-protection..."));

pic-enter-programmingo;

if ((PICtype == PIC16F628) || (PICtype == PIC16F627)) {
pic-send-command(LOADCONFIGCOMMAND);
pic-send-data(Ox3FFF);

pic-send-command(INCREMENTADDRESS);
pic-send-command(INCREMENTADDRESS);
pic-send-command(INCREMENTADDRESS);
pic-send-command(INCREMENTADDRESS);
pic-send-command(INCREMENTADDRESS);

288

pic-send-command(INCREMENTADDRESS);
pic-send-command(INCREMENTADDRESS);

pic-send-command(BULKERASE-SETUPONE);
pic-send-command(BULKERASESETUPTWO);

pic-send-command(BEGINERASEPROGRAM);

_delay-ms(13);

pic-send-command(BULKERASESETUPONE);
pic-send-command(BULKERASESETUPTWO);
} else {

pic-send-command(LOADCONFIGCOMMAND);

picsend_data(0x3FFF);

pic-send-command(BULKERASEPROGRAM);

-delay-ms(6);

}

picexit-programming();
}

289

290

Appendix H

IQ Demodulator DSP Source Code
Listing

H.1 Programming the IQ Demodulator DSP

The demodulation dsPIC, the dsPIC33FJ256MC710, can be programmed using Mi-

crochip's MPLAB tools. The code can be compiled using the MPLAB IDE Version

8.33 with the MPLAB C compiler for dsPIC version 3.12. The PIC was burned using

the MPLAB ICD 2 programming device. A README.txt file can be found with the

source code in ./homenilm/f irmware in the bucket repository. The board is powered

with +15 Volt rails.

H.2 DSP Firmware

The code included here takes the magnitude of I and Q and combines them to ac-

complish AM demodulation.
The square root algorithm was taken from Al-Thaddeus Avestruz and the Quick

Select median algorithm was taken from Nicolas Devillard.

H.2.1 main.c

* 2005 Microchip Technology Inc.
*

* FileName: main. c
* Dependencies: Header (.h) files if applicable, see below

* Processor: dsPIC33Fxxxx/PIC24Hxxxx
* Compiler: MPLAB C30 v3.00 or higher
* Tested On: dsPIC33FJ256GP710
*

* SOFTWARE LICENSE AGREEMENT:
* Microchip Technology Incorporated ("Microchip") retains all ownership and

* intellectual property rights in the code accompanying this message and in all

* derivatives hereto. You may use this code, and any derivatives created by

291

* any person or entity by or on your behalf, exclusively with Microchip's
* proprietary products. Your acceptance and/or use of this code constitutes
* agreement to the terms and conditions of this notice.
*

* CODE ACCOMPANYING THIS MESSAGE IS SUPPLIED BY MICROCHIP "AS IS". NO
* WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT

NOT LIMITED
* TO, IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND

FITNESS FOR A
* PARTICULAR PURPOSE APPLY TO THIS CODE, ITS INTERACTION WITH

MICROCHIP'S
* PRODUCTS, COMBINATION WITH ANY OTHER PRODUCTS, OR USE IN ANY

APPLICATION.
*

* YOU ACKNOWLEDGE AND AGREE THAT, IN NO EVENT, SHALL MICROCHIP BE
LIABLE, WHETHER

* IN CONTRACT, WARRANTY, TORT (INCLUDING NEGLIGENCE OR BREACH OF
STATUTORY DUTY),

* STRICT LIABILITY, INDEMNITY, CONTRIBUTION, OR OTHERWISE, FOR ANY
INDIRECT, SPECIAL,

* PUNITIVE, EXEMPLARY, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, FOR
COST OR EXPENSE OF

* ANY KIND WHATSOEVER RELATED TO THE CODE, HOWSOEVER CA USED, EVEN IF
MICROCHIP HAS BEEN

* ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE
FULLEST EXTENT

* ALLOWABLE BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY
WAY RELATED TO

* THIS CODE, SHALL NOT EXCEED THE PRICE YOU PAID DIRECTLY TO MICROCHIP
SPECIFICALLY TO

* HAVE THIS CODE DEVELOPED.
*

* You agree that you are solely responsible for testing the code and
* determining its suitability . Microchip has no obligation to modify, test,
* certify , or support the code.
*

* REVISION HISTORY:
*

* Author Date Comments on this revision
*

* Settu D. 07/09/06 First release of source file
*

*

* ADDITIONAL NOTES:
* This code is tested on Explorer 16 board with dsPIC33FJ256GP710 controller
*

* The Processor starts with the Internal oscillator without PLL enabled and then the Clock is
switched to PLL Mode.

#if defined(_dsPIC33F_)
#include "p33Fxxxx.h"
#elif defined(_PIC24H_)
#include "p24Hxxxx.h"

292

#endif

#include "i2cdac.h"
#include "adcDrv2.h"
#include "ocmodules.h"

// Internal FRC Oscillator
_FOSCSEL(FNOSCFRC);
FOSC(FCKSMCSECMD & OSCIOFNCOFF & POSCMDXT);

//_FOSC(FCKSMCSECMD & OSCIOFNCOFF & POSCMDOFF);

// FRC Oscillator

Clock

Switch

is

enablei

and

Fail

Safe

Clock

Monitt

is

disable

OSC2

Functi

OSC2

is

Clock

Outpw

Prima

Oscill

Mode:

Disablq

293

FWDT(FWDTENOFF);
Enabled/disabled by user software

// Watchdog Timer

_FPOR(FPWRTPWR1);
power-up timers.

_FGS(GCP-OFF);
Protection

// Turn off the

7/ Disable Code

// Instantiate Drive and Data objects
I2CDACDRV i2cdac= I2CSDACDRVDEFAULTS;
I2CDACDATA wData;
I2CDAC-DATA rData;

//unsigned int wBuff[1 0], rBuff[10];
unsigned int enable;

int main(void)
{
//int i=O;

Configure Oscillator to operate the device at 40Mhz
Fosc= Fin*M/(N1*N2), Fcy=Fosc/2
Fosc= 8M*40/(2*2)=8OMhz for 8M input clock
Only 73.7 for Internal FRC Oscillator, so Fcy = 36.86 MHz

PLLFBD=38; // M=40 (M = 2 + PLLDIV)
CLKDIVbits.PLLPOST=O; /7 N1=2 (N1 = 2 + PLLPOST)
CLKDIVbits.PLLPRE=O; /7 N2=2 More complicated
OSCTUN=O; 7/ Tune FRC oscillator, if FRC is used

CLKDIVbits.FRCDIV = 0;

294

(LPR(

can

be

disable

by

clearin

SWD'I

bit

in

RCON

registe

/7 Disable Watch Dog Timer
RCONbits.SWDTEN=O;

/7 Make all the ANx pins as digital pins
AD1PCFGL=OxFFFF;
AD1PCFGH=OxFFFF;

/7 Clock switch to incorporate PLL
/Clock not installed ... oops

//_builtin-writeOSCCONH(0x03);
_builtin-writeOSCCONH(OxOl);

// Initiate Clock Switch to Primary

Oscillator

with

PLL

(NOSC=0b011

_builtin-writeOSCCONL(OxOl); // Start clock switching
/while (OSCCONbits. COSC != ObOl 1); // Wait for Clock switch to occur

while (OSCCONbits.COSC != Ob01); // Wait for Clock switch to occur

7/ Wait for PLL to lock
while(OSCCONbits.LOCK!=1) {};

/7 Initialise 12C peripheral and Driver
i2cdac. init (&i2cdac);

/7 Initialise Data to be written

//for(i=o;i<10;i++)
// wBuff[i]=i;

to serial EEPROM

7/ Initialise 12C Data object for Write operation
//wData. buff=wBuff;
//wData.n=10;
//wData. addr=OxOO;
//wData. csel=OxOO;
wData.addr = OxOO;
wData.sample OxOO;
wData.channel OxOO;
wData.mode = DACUPDATE;
wData.burstmode = DACBURST;

/7 Initialise I2C Data Object for Read operation
//rData. buff=rBuff;
//rData.n=10;
//rData. addr=OxOO;
//rData. csel=OxOO;

/7 Enable data write to 12C serial EEPROM

295

//enable=1;

initOCModuleso;

/Need a nice long delay to wait for power rails to stabilize

//current board has offset problems that need the modulation

//source to be active before measuring.

//wait 3 seconds using Timer 6/7
//Fcy is 36.86 MHz, period is 27.1 ns
/With 256:1 prescaler, each tick is 6.95 us
/73 sec / 6.96 us = 431953

T6CONbits.T32 = 1;
T6CONbits.TCKPS = Ob1l; /256 to 1 prescaler
T6CONbits.TCS = 0; /Use Tcy
PR6 = (431953 & OxOFFFF);
PR7 = 0x06; /High word of the count
TMR6 = 0;
TMR7 = 0;
IFS3bits.T7IF = 0;
T6CONbits.TON = 1;

while(!IFS3bits.T7IF);

T6CONbits.TON = 0;

initAdcl); 7/ Initialize
initDmao0();

buffer ADC data in conversion order

while(!performCalibration(); // Wait for offset

while(1)

{

the A/D converter to convert Channel 5
// Initialise the DMA controller to

calibration

// Write Data
i2cdac. oData=&wData;
i2cdac.cmd = 12CWRITE;

while(i2cdac.cmd!=I2CBURSTOK)
{

i2cdac. tick (&i2cdac);

}
wData.sample = pendLatestValueo;

//wData.sample = (unsigned int) (ADC1BUFO & Ox3FF);

//wData.sample = 0x5555;

/* if (wData.sample == 0x0000)

{
wData.sample =OxFFFF;

296

} else {
wData.sample = 0x0000;

}
*7

/7 Read Data
//i2cmem. oData=&rData;
//i2cmem.cmd = I2CREAD;
//while(i2cmem. cmd!=12CIDLE)

//{
7/ i2cmem. tick(&i2cmem);

//}
//}

};

H.2.2 adcDrv2.h

* 2005 Microchip Technology Inc.
*

* FileName: adcDrv2.h
* Dependencies: Other (.h) files if applicable, see below
* Processor: dsPIC33Fxxxx/PIC24Hxxxx
* Compiler: MPLAB C30 v3.00 or higher
*

* SOFTWARE LICENSE AGREEMENT:
* Microchip Technology Incorporated ("Microchip") retains all ownership and

* intellectual property rights in the code accompanying this message and in all

* derivatives hereto. You may use this code, and any derivatives created by

* any person or entity by or on your behalf, exclusively with Microchip's

* proprietary products. Your acceptance and/or use of this code constitutes

* agreement to the terms and conditions of this notice.
*

* CODE ACCOMPANYING THIS MESSAGE IS SUPPLIED BY MICROCHIP "AS IS". NO

* WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT

NOT LIMITED
* TO, IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND

FITNESS FOR A
* PARTICULAR PURPOSE APPLY TO THIS CODE, ITS INTERACTION WITH

MICROCHIP'S
* PRODUCTS, COMBINATION WITH ANY OTHER PRODUCTS, OR USE IN ANY

APPLICATION.

* YOU ACKNOWLEDGE AND AGREE THAT, IN NO EVENT, SHALL MICROCHIP BE

LIABLE, WHETHER
* IN CONTRACT, WARRANTY, TORT (INCLUDING NEGLIGENCE OR BREACH OF

STATUTORY DUTY),
* STRICT LIABILITY, INDEMNITY, CONTRIBUTION, OR OTHERWISE, FOR ANY

INDIRECT, SPECIAL,

297

* PUNITIVE, EXEMPLARY, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, FOR
COST OR EXPENSE OF

* ANY KIND WHATSOEVER RELATED TO THE CODE, HOWSOEVER CA USED, EVEN IF
MICROCHIP HAS BEEN

* ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE
FULLEST EXTENT

* ALLOWABLE BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY
WAY RELATED TO

* THIS CODE, SHALL NOT EXCEED THE PRICE YOU PAID DIRECTLY TO MICROCHIP
SPECIFICALLY TO

* HAVE THIS CODE DEVELOPED.
*

* You agree that you are solely responsible for testing the code and
* determining its suitability . Microchip has no obligation to modify, test,
* certify, or support the code.
*

* REVISION HISTORY:

* Author Date Comments on this revision
*

* Settu D 03/09/06 First release of source file
- -*

* ADDITIONAL NOTES:
* 1. This file contains definitions commonly used in this project.

#ifndef _ADCDRV2_H_
#define _ADCDRV2_H_

// External Functions
extern void initAdcl(void);
extern void initDmaO(void);
extern void _attribute_((_interrupt_)) DMAOnterrupt(void);
extern void -attribute_((_interrupt_)) DMAlnterrupt(void);
extern int pendLatestValue(void);
extern int performCalibration(void);

#endif

H.2.3 adcDrv2.c

* 2005 Microchip Technology Inc.

* FileName: adcDrv2.c
* Dependencies: Header (.h) files if applicable, see below
* Processor: dsPIC33Fxxxx/PIC24Hxxxx
* Compiler: MPLAB C30 v3.00 or higher

* SOFTWARE LICENSE AGREEMENT:
* Microchip Technology Incorporated ("Microchip") retains all ownership and

298

* intellectual property rights in the code accompanying this message and in all

* derivatives hereto. You may use this code, and any derivatives created by
* any person or entity by or on your behalf, exclusively with Microchip's
* proprietary products. Your acceptance and/or use of this code constitutes

* agreement to the terms and conditions of this notice.
*

* CODE ACCOMPANYING THIS MESSAGE IS SUPPLIED BY MICROCHIP "AS IS". NO

* WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT
NOT LIMITED

* TO, IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND

FITNESS FOR A
* PARTICULAR PURPOSE APPLY TO THIS CODE, ITS INTERACTION WITH

MICROCHIP'S
* PRODUCTS, COMBINATION WITH ANY OTHER PRODUCTS, OR USE IN ANY

APPLICATION.
*

* YOU ACKNOWLEDGE AND AGREE THAT, IN NO EVENT, SHALL MICROCHIP BE

LIABLE, WHETHER
* IN CONTRACT, WARRANTY, TORT (INCLUDING NEGLIGENCE OR BREACH OF

STATUTORY DUTY),
* STRICT LIABILITY, INDEMNITY, CONTRIBUTION, OR OTHERWISE, FOR ANY

INDIRECT, SPECIAL,
* PUNITIVE, EXEMPLARY, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, FOR

COST OR EXPENSE OF
* ANY KIND WHATSOEVER RELATED TO THE CODE, HOWSOEVER CAUSED, EVEN IF

MICROCHIP HAS BEEN
* ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE

FULLEST EXTENT
* ALLOWABLE BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY

WAY RELATED TO
* THIS CODE, SHALL NOT EXCEED THE PRICE YOU PAID DIRECTLY TO MICROCHIP

SPECIFICALLY TO
* HAVE THIS CODE DEVELOPED.
*

* You agree that you are solely responsible for testing the code and

* determining its suitability . Microchip has no obligation to modify, test,
* certify, or support the code.
*

REVISION HISTORY:
*

Author Date Comments on this revision
*

Settu D 03/09/06 First release of source file

*

ADDITIONAL NOTES:
This file contains two functions - initAdcl(), initDmaO and _DMAOInterrupt(.

*

#if defined(_dsPIC33F_)
#include "p33Fxxxx.h"
#elif defined(_PIC24H_)
#include "p24Hxxxx.h"

299

#endif

#include "adcDrv2.h"
#include "funcs.h"
//#include "tglPin.h"

#define NUMSAMP 1
signed int BufferAl[NUMSAMP] _attribute_((space(dma)));
signed int BufferBl[NUMSAMP] _attribute-((space(dma)));

signed int BufferA2[NUMSAMP] -attribute_((space(dma)));
signed int BufferB2[NUMSAMP] _attribute_((space(dma)));

int latestValue,ready, calibrated, oldvalue;

signed int chanloff, chan2off;

signed int calibratel [100];
signed int calibrate2 [100];

void ProcessADCSamples(signed int * AdcBufferl, signed int * AdcBuffer2);
/void ProcessADC2Samples(int * AdcBuffer);

//Functions:
//initAdcl() is used to configure A/D to convert AINO using CHO and CHI sample/hold in

sequencial mode
/at 1. 1MHz throughput rate. ADC clock is configured at 13.3Mhz or Tad=75ns

void initAdcl (void)

{

calibrated = 0;
//DAC can run at 22.22 kSPS on "Fast" mode. Sample about that level.

AD1CONlbits.FORM = 1; 7/ Data Output Format: Signed Integer
AD1CONlbits.SSRC = 7; // Internal Counter (SAMC) ends sampling and

starts convertion
AD1CONlbits.ASAM = 1; 7/ ADC Sample Control: Sampling begins

immediately after conversion
ADlCONlbits.AD12B = 1; // 12-bit ADC operation

AD2CONlbits.FORM = 1;
AD2CON1bits.SSRC = 7;

starts convertion
AD2CONlbits.ASAM = 1;

immediately after conversioi
AD2CONlbits.AD12B = 1;

//AD1CON2bits.CHPS = 1;

//AD2CON2bits.CHPS = 1;

7/ Data Output Format: Signed Integer
/7 Internal Counter (SAMC) ends sampling and

7/ ADC Sample Control: Sampling begins
n

7/ 12-bit ADC operation

// Converts CHO/CH1

77 Converts CHO/CH1

300

AD1CON3bits.ADRC=O;
Clock

AD1CON3bits.SAMC=O;
AD1CON3bits.ADCS=63;

Tad=Tcy* (ADCS+1)=

AD2CON3bits.ADRC=O;
Clock

AD2CON3bits.SAMC=O;
AD2CON3bits.ADCS=63;

Tad=Tcy* (ADCS+1)=

// ADC Clock is derived from Systems

7/ Auto Sample Time = 0* Tad
// ADC Conversion Clock

(1/40M)* 64 = 1.6us (625khz)
/7 ADC Conversion

Time for 12-bit
Tc=14* Tab =
22.4us (44.6kHz)

/7 ADC Clock is derived from Systems

7/ Auto Sample Time = 0* Tad
// ADC Conversion Clock

(1/40M)*64 = 1.6us (625khz)
/7 ADC Conversion

Time for 12-bit
Tc=14* Tab =
22.4us (44.6kHz)

AD1CONlbits.ADDMABM = 1; // DMA buffers are built in conversion order

mode
AD1CON2bits.SMPI = 0;

every time
// SMPI must be 0 - increment DMA address

AD2CON1bits.ADDMABM = 1; // DMA buffers are built in conversion order
mode

AD2CON2bits.SMPI = 0;
every time

// SMPI must be 0 - increment DMA address

/ADlCHSO/AD1CHS123: A/D Input Select Register
AD1CHSObits.CHOSA=0; // MUXA +ve input selection (AINO) for CHO

AD1CHSObits.CHONA=0; // MUXA -ve input selection (Vref-) for CHO

AD2CHSObits.CHOSA=1; /7
AD2CHSObits.CHONA=0;

CHO

MUXA +ve input selection (AIN1) for ADC2
// MUXA -ve input selection (Vref-) for ADC2

//AD1CHS123bits.CH123SA=0; // MUXA +ve input selection (AINO) for CH1
//AD1CHS123bits. CH123NA=0; // MUXA -ve input selection (Vref-) for CH1

//AD1PCFGH/AD1PCFGL: Port Configuration Register
AD1PCFGL=OxFFFF;
AD1PCFGH=OxFFFF;
AD1PCFGLbits.PCFGO = 0; // ANO as Analog Input

AD2PCFGL=OxFFFF;
/There is no AD2PCFGH register...

AD2PCFGLbits.PCFG1 = 0;

IFSObits.AD1IF = 0;

/7 AN1 as Analog Input

/7 Clear the A/D interrupt flag bit

301

// Do Not Enable A/D interrupt

IFS1bits.AD2IF 0;
IEClbits.AD2IE = 0;

AD2CONlbits.ADON = 1;
AD1CON1bits.ADON = 1;

/7 Clear the A/D interrupt flag bit
77 Do Not Enable A/D interrupt

/7 Turn on the A/D converter
77 Turn on the A/D converter

ready = 0;
//tglPinInit ();

}

/7 DMA0 configuration
/7 Direction: Read from peripheral address O-x300 (ADC1BUFO) and write to DMA RAM
7/ AMODE: Register indirect with post increment
// MODE: Continuous, Ping-Pong Mode
/7 JRQ: ADC Interrupt
/7 ADC stores results stored alternatively between DMA-BASE[0]/DMABASE[16] on every

16th DMA request

void initDma0(void)

DMAOCONbits.AMODE = 0;
increment

DMAOCONbits.MODE = 2;
mode

DMA1CONbits.AMODE = 0;
increment

DMA1CONbits.MODE = 2;
mode

/7 Configure DMA for Register indirect with post

/7 Configure DMA for Continuous Ping-Pong

/7 Configure DMA for Register indirect with post

/7 Configure DMA for Continuous Ping-Pong

DMA0PAD=(int)&ADC1BUF0;
DMAOCNT=(NUMSAMP-1);

DMA1PAD=(int)&ADC2BUFO;
DMA1CNT=(NUMSAMP-1);

DMAOREQ=13;

DMA1REQ=21;

DMAOSTA = _builtin-dmaoffset(BufferAl);
DMAOSTB = _builtin-dmaoffset(BufferB 1);

DMA1STA = _builtin-dmaoffset(BufferA2);
DMA1STB = _builtin-dmaoffset(BufferB2);

IFSObits.DMAOIF = 0;
IECObits.DMAOIE = 1;

IFSObits.DMA1IF = 0;

/Clear the DMA interrupt flag bit
/Set the DMA interrupt enable bit

/Clear the DMA interrupt flag bit

302

I EC~bits.AD1IIE = 0;

IECObits.DMA1IE = 1;

DMAOCONbits.CHEN=1;
DMA1CONbits.CHEN=1;

}

int pendLatestValue(void) {
while(ready == 0);
return latestValue;

I

/Set the DMA interrupt enable bit

_DMAOInterrupt(: ISR name is chosen from the device linker script.

unsigned int Dma0Buffer = 0;

void __attribute_ ((interrupt, no-auto-psv)) _DMA0Interrupt(void)

{

if (Dma0Buffer == 0)

ProcessADCSamples(BufferA1,BufferA2);

else

ProcessADCSamples(BufferBl,BufferB2);

}

Dma0Buffer ^= 1;

//tgPin(0 -;
IFS~bits.DM AOIF = 0;

// Toggle RA6
/Clear the DMAO Interrupt Flag

_DMAllnterrupt(: ISR name is chosen from the device linker script.

unsigned int DmalBuffer = 0;

void __attribute__ ((interrupt, no-auto-psv)) _DMAlInterrupt(void)

if (DmalBuffer == 0)

{
ProcessADC2Samples(BufferA2);

303

else

{
ProcessADC2Samples(BufferB2);

}
*/

DmalBuffer ^= 1;

//tglPin(); // Toggle RA6
IFSObits.DMA1IF = 0; /Clear the DMAO Interrupt Flag

}

void ProcessADCSamples(signed int * AdcBufferl,signed int * AdcBuffer2)
{

/* Do something with ADC Samples *7
if(calibrated < 100){

calibratel [calibrated] = *AdcBufferl;
calibrate2 [calibrated] *AdcBuffer2;
calibrated++;

} else{
typeCartesian currentSample = {*AdcBuffer1,*AdcBuffer2,0};
latestValue = Magnitude (currentSample,chanl off,chan2off, oldvalue);
oldvalue = latestValue;
ready = 1;

}
//latestValue =*AdBufferl >> 2;

}

int performCalibration(void) {
if(calibrated < 100) return 0;
else {
chanloff = quick-select (calibratel ,100);
chan2off = quick-select(calibrate2,100);
oldvalue = 0;
return 1;
}

}
void ProcessADC2Samples(int * AdcBuffer)

{
7/ Do something with ADC Samples

//ready = 1;
//latestValue = *AdcBuffer;

}
*/

H.2.4 funcs.h

7*
Header for DSP functions from Al- Thaddeus Avestruz

304

#ifndef FUNCSAI
#define FUNCSIH

//Integer Data Types
//In icc short int=int=2 bytes, long=4 bytes
typedef signed short int Jntl6;
typedef unsigned short int _UIntl6;
typedef signed long int Jnt32;
typedef unsigned long int -Ulnt32;

typedef struct

{
-Intl6 d;
_Intl6 q;
_UIntl6 ovf;//overflow

} typeCartesian;

inline _UIntl6 Lsqrt (_UInt32 x);

_UIntl6 Magnitude(typeCartesian Cl, signed int offsetl, signed int offset2, int oldvalue);

signed int quick-select (signed int arr [], int n);

#endif

H.2.5 funcs.c

DSP functions borrowed from Al- Thaddeus Avestruz's Aardvark
project
*/

#include "funcs.h"

inline _Ulntl6 lIsqrt (_UInt32 x)
{//Tested 4/18/08

unsigned long y=O;
_Ulnt32 y2=0;
_UIntl6 yp=O;
_UIntl6 yshift=O;
_UIntl6 i=O;

yshift = 0x8000;
yp = 0x8000;

for (i=l; i<17; i++)
{

//yp = y + yp;
yp = y + yshift;

y2 = (_UInt32)yp * (_UInt32)yp;
if (y2<x) y=yp;

yshift = yshift>>1;
//yp = 0x8000>>1;

305

return(y);

}

#define MAGTHRESHOLD 20
#define SIGNTHRESHOLD 3
#define HYSTTHRESH 2

_Ulnt16 Magnitude(typeCartesian C1, signed int offsetl, signed int offset2, int oldvalue)
{

_UInt32 lprod1=0;
_UInt32 lprod2=0;
_UInt32 sum=0;
_UInt16 x=O;
_Int16 basicsum=0;

//This would be nice to do on the DSP hardware, but currently it is not
//needed

/First subtract off the measured offset. Being able to change this while

//running would be nice.
//The constant is used to center the wave in the lower half of the range.
/This eliminates zero crossings at the expense of more noise throughout the

//wave. Zero crossings introduce digital noise, while this offset introduces
//analog noise. When the gain stage is fixed, this hack should not be needed.
C1.d = C1.d - offsetl - 270;
C1.q = C1.q - offset2 - 270;

if(C1.d >= 0) basicsum = 1; else basicsum = -1;

7/Take the absolute value of the args
if (C1.d<0) C1.d = -C1.d;
if (C1.q<0) C1.q = -C1.q;

//Square them. Note the typecasting to prevent overflowing
lprodi (_UInt32)C1.d * (_UInt32)C1.d;
lprod2 = (_Unt32)C1.q * (_UInt32)C1.q;

/Now add them to an *unsigned* sum
sum = lprod1 + lprod2;
sum = sum << 8;
x lisqrt (sum);
x = x >> 4;

7/Stop overflows before they happen
if(x > 511) x = 511;

/Take I as the sign reference.
if(basicsum >= 0) x = x + 512;
else
x = 512 - x;

306

//Double the wave. This goes hand in hand with the earlier offset hack. This
// digitally gets the output right, but more signal input would be better.
x = x << 1;
if (x > 1023) x = 1023;

return(x);

}
7*
* This Quickselect routine is based on the algorithm described in
* "Numerical recipes in C", Second Edition,
* Cambridge University Press, 1992, Section 8.5, ISBN 0-521-43108-5
* This code by Nicolas Devillard - 1998. Public domain.
*/

#define ELEMSWAP(a,b) { register int t=(a);(a)=(b);(b)=t; }

signed int quick-select (signed int arr [], int n)
{

signed int low, high;
signed int median;
signed int middle, 11, hh;

low = 0 ; high = n-1 ; median = (low + high) / 2;
for (;;) {

if (high <= low) /* One element only *7
return arr[median] ;

if (high == low + 1) { /* Two elements only */
if (arr [low] > arr[high])

ELEMSWAP(arr[low], arr[high]);
return arr[median]

}

/* Find median of low, middle and high items; swap into position low *7
middle = (low + high) / 2;
if (arr [middle] > arr[high]) ELEMSWAP(arr[middle], arr[high])
if (arr [low] > arr[high]) ELEMSWAP(arr[low], arr[high]) ;
if (arr [middle] > arr[low]) ELEMSWAP(arr[middle], arr[low])

/* Swap low item (now in position middle) into position (low+1) *7
ELEMSWAP(arr[middle], arr[low+1]) ;

/* Nibble from each end towards middle, swapping items when stuck *7
11 = low + 1;
hh = high;
for (;;) {

do l1++; while (arr[low] > arr[ll])
do hh--; while (arr[hh] > arr[low])

if (hh < 11)
break;

307

ELEMSWAP(arr[ll], arr[hh])
}

/* Swap middle item (in position low) back into correct position *7
ELEMSWAP(arr[low], arr[hh])

/* Re-set active partition */
if (hh <= median)

low = 11;
if (hh >= median)
high = hh - 1;

}
}

#undef ELEMSWAP

H.2.6 i2cdac.h

* 2005 Microchip Technology Inc.
*

* FileName: i2cEmem.h
* Dependencies: Other (.h) files if applicable, see below
* Processor: dsPIC33Fxxxx//PIC24Hxxxx
* Compiler: MPLAB C30 v3.00 or higher
*

* SOFTWARE LICENSE AGREEMENT:
* Microchip Technology Incorporated ("Microchip") retains all ownership and
* intellectual property rights in the code accompanying this message and in all
* derivatives hereto. You may use this code, and any derivatives created by
* any person or entity by or on your behalf, exclusively with Microchip's
* proprietary products. Your acceptance and/or use of this code constitutes
* agreement to the terms and conditions of this notice.
*

* CODE ACCOMPANYING THIS MESSAGE IS SUPPLIED BY MICROCHIP "AS IS". NO
* WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT

NOT LIMITED
* TO, IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND

FITNESS FOR A
* PARTICULAR PURPOSE APPLY TO THIS CODE, ITS INTERACTION WITH

MICROCHIP'S
* PRODUCTS, COMBINATION WITH ANY OTHER PRODUCTS, OR USE IN ANY

APPLICATION.
*

* YOU A CKNOWLEDGE AND A GREE THAT, IN NO EVENT, SHALL MICROCHIP BE
LIABLE, WHETHER

* IN CONTRACT, WARRANTY, TORT (INCLUDING NEGLIGENCE OR BREACH OF
STATUTORY DUTY),

* STRICT LIABILITY, INDEMNITY, CONTRIBUTION, OR OTHERWISE, FOR ANY
INDIRECT, SPECIAL,

* PUNITIVE, EXEMPLARY, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, FOR
COST OR EXPENSE OF

308

* ANY KIND WHATSOEVER RELATED TO THE CODE, HOWSOEVER CA USED, EVEN IF
MICROCHIP HAS BEEN

* ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE
FULLEST EXTENT

* ALLOWABLE BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY
WAY RELATED TO

* THIS CODE, SHALL NOT EXCEED THE PRICE YOU PAID DIRECTLY TO MICROCHIP
SPECIFICALLY TO

* HAVE THIS CODE DEVELOPED.

* You agree that you are solely responsible for testing the code and
* determining its suitability . Microchip has no obligation to modify, test,
* certify , or support the code.

REVISION HISTORY:
*

Author Date Comments on this revision

Settu D. 07/09/06 First release of source file

ADDITIONAL NOTES:
*

#ifndef -I2CDACH_
#define -I2CDAC-H_

#define MAX-RETRY 1000
#define ONE-3YTE 1
#define TWOBYTE 2

// DAC ADDRESS SIZE
#define ADDRWIDTH ONE-BYTE

7/ DAC DRIVER COMMAND DEFINITION
#define I2CIDLE 0
#define I2CWRITE 1
#define I2CREAD 2
#define I2CBURSTOK 3
#define I2CERR OxFFFF

/7 DAC BURST OPTIONS
#define DACJNOBURST 0
#define DACJ3URST 1

7/ DAC MODE OPTIONS
#define DACSTORE 0
#define DACUPDATE 1
#define DACSYNC 2
#define DACBROADCAST 3

/ DAC DATA OBJECT
7/typedef struct {
7/ unsigned int * buff;

309

7/ unsigned int n;
/7 unsigned int addr;
77 unsigned int csel;
//}I2CDAC-DATA;

// DAC DATA OBJECT
typedef struct {

unsigned int addr;
unsigned int sample;
unsigned int channel;
unsigned int mode;
unsigned int burstmode;

}I2CDACDATA;

// DA C DRIVER OBJECT
typedef struct {

unsigned int cmd;
I2CDACDATA *oData;

void (*init)(void *);
void (*tick)(void *);
}I2CDAC-DRV;

#define I2CSDACDRVDEFAULTS { 0,\
(I2CDACDATA *)O,\
(void (*)(void *))I2CDACinit,\
(void (*)(void *))I2CDACdrv}

void I2CDACinit(I2CDACDRV *);

void I2CDACdrv(I2CDACDRV *);

#endif

H.2.7 i2cdac.c

* 2005 Microchip Technology Inc.
*

* FileName: i2cdac. c
* Dependencies: Header (.h) files if applicable, see below
* Processor: dsPIC33Fxxxx/PIC24Hxxxx
* Compiler: MPLAB C30 v3.00 or higher
* Tested On: dsPIC33FJ256GP710
*

* SOFTWARE LICENSE AGREEMENT:
* Microchip Technology Incorporated ("Microchip") retains all ownership and
* intellectual property rights in the code accompanying this message and in all
* derivatives hereto. You may use this code, and any derivatives created by
* any person or entity by or on your behalf, exclusively with Microchip's

310

* proprietary products. Your acceptance and/or use of this code constitutes
* agreement to the terms and conditions of this notice.
*

* CODE ACCOMPANYING THIS MESSAGE IS SUPPLIED BY MICROCHIP "AS IS". NO
* WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT

NOT LIMITED
* TO, IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND

FITNESS FOR A
* PARTICULAR PURPOSE APPLY TO THIS CODE, ITS INTERACTION WITH

MICROCHIP'S
* PRODUCTS, COMBINATION WITH ANY OTHER PRODUCTS, OR USE IN ANY

APPLICATION.
*

* YOU ACKNOWLEDGE AND AGREE THAT, IN NO EVENT, SHALL MICROCHIP BE
LIABLE, WHETHER

* IN CONTRACT, WARRANTY, TORT (INCLUDING NEGLIGENCE OR BREACH OF
STATUTORY DUTY),

* STRICT LIABILITY, INDEMNITY, CONTRIBUTION, OR OTHERWISE, FOR ANY
INDIRECT, SPECIAL,

* PUNITIVE, EXEMPLARY, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, FOR
COST OR EXPENSE OF

* ANY KIND WHATSOEVER RELATED TO THE CODE, HOWSOEVER CAUSED, EVEN IF
MICROCHIP HAS BEEN

* ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE
FULLEST EXTENT

* ALLOWABLE BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY
WAY RELATED TO

* THIS CODE, SHALL NOT EXCEED THE PRICE YOU PAID DIRECTLY TO MICROCHIP
SPECIFICALLY TO

* HAVE THIS CODE DEVELOPED.
*

* You agree that you are solely responsible for testing the code and
* determining its suitability . Microchip has no obligation to modify, test,
* certify , or support the code.
*

* REVISION HISTORY:
*

* Author Date Comments on this revision
*

* Settu D. 07/09/06 First release of source file
*

#if defined(-dsPIC33F__)
#include "p33Fxxxx.h"
#elif defined(__PIC24H__)
#include "p24Hxxxx.h"
#endif

#include "i2cdac.h"

unsigned int jDone;

*------------------------------

311

12C Master Interrupt Service Routine

void _.attribute_ ((interrupt, no-auto-psv)) _MI2C1Interrupt(void)

{
jDone=1;

IFS1bits.MI2C1IF = 0; //Clear the DMAO Interrupt Flag;

}

12C Slave Interrupt Service Routine

void _attribute_ ((interrupt, no-auto-psv)) _SI2C1Interrupt(void)

IFS1bits.SI2C1IF = 0; /Clear the DMAO Interrupt Flag

}

12C Peripheral Initialisation

void I2CDACinit(I2CDAC_DRV *i2cDac)

{
i2cDac->cmd=0;
i2cDac->oData=0;

7/ Configre SCA/SDA pin as open-drain
ODCGbits.ODCG2=1;
ODCGbits.ODCG3=1;

I2C1CONbits.A1OM=0; //7 bit addressing
I2C1CONbits.SCLREL=1; 7/Release SCL (only matters if slave
//I2C1BRG=300; //Baud rate generator... leaving alone for now

I2C1BRG = 80; /We want Fast standard.. .400 kHz..Actually is 381

I2C1ADD=0; 7/Set slave address to 0
I2C1MSK=0; /No bit masking... all must match

I2C1CONbits.I2CEN=1; //Enable 12C
IEClbits.MI2C1IE 1; //Enable I2C Master events interrupt
IFS1bits.MI2C1IF 0; /Clear 12C Master events flag

}

I2C DAC, STATE-MACHINE BASED DRIVER

void I2CDACdrv(I2CDAC_DRV *i2cDac)

{

312

static int state=O, cntr=O, rtrycntr=O;

switch(state)

{
case 0:

if((i2cDac->cmd == I2C-WRITE) (i2cDac->cmd 12CREAD))
state=1;

break;

/* Control/Address Phase *7

case 1:
/7 Start Condition
I2C1CONbits.SEN=1;
state=state+1;

break;

case 2:
7/ Start Byte with device select id

if(jDone==1) {
jDone=O;

state=state+1;
/The following assumes we will always write to the DAC

I2C1TRN=(0xO098)1(((i2cDac->oData->addr)&0x3)<<1); 7/Assert DA C
hardwired address ANDed with address selected

//12C1 TRN=(xOOAO) (((i2cDac->oData->csel)&x7)<<1);

}
break;

case 3:
// Send control byte, if ack is received. Else Retry
if(jDone==1) {

jDone=0;

if(I2C1STATbits.ACKSTAT==1) { 77 Ack Not received, Retry

if(rtrycntr < MAXRETRY)
state=18;

else
state=16; /7 Flag

error and exit

} else {

rtrycntr =0;

//Powerdown not implemented
I2C1TRN=(((i2cDac->oData->addr)&OxOOOC) << 4)1

(((i2cDac->oData->mode)&0x0003) << 4)1
(((i2cDac->oData->channel)&0x0003) << 1);

313

state = state + 2;

#if ADDRWIDTH==TWO-BYTE
I2C1TRN=((i2cDac->oData->addr)&xFFOO)>>8;

state =state+1;
#endif

#if ADDRWIDTH==ONEBYTE
12C1TRN=((i2cDac->oData->addr));
state =state+2;
#endif

break;

case 4:
// Send address byte 2, if ack is received. Else Flag error and exit

if(jDone==1) {
jDone=O;

if (I2C1STATbits.ACKSTAT==1) { /7 Ack Not received, Flag error
and exit

state =1 6;

} else {

#if ADDRWIDTH==TWO-BYTE
21 TRN=((i2cMem->oData->addr)&OxOOFF);

#endif
state =state+1;

}
break;

case 5:
// Read or Write

if(jDone==1) {
jDone=O;

if(I2C1STATbits.ACKSTAT==1) {
and exit

state=16;

} else {

if(i2cDac->cmd == 12CWRITE)
state=state+1;

if (i2cDac->cmd == I2CREAD)
state =8;

// Ack Not received, Flag error

314

break;

/* Write Data Phase */

case 6:
7/ Send first data chunk

i2cDac->cmd = I2CWRITE;
I2C1TRN=(i2cDac->oData->sample & OxO3FC) >> 2;
state=state+1;
cntr=cntr+1;
break;

case 7:

//Send second data chunk
if(jDone==1) {

jDone=O;
state = state+1;

if(I2C1STATbits.ACKSTAT==1) {
state=16;

} else {
I2C1TRN=(i2cDac- >oData- >sample

}
}
break;

case 8:
7/Set completed flag and hold selected
if(jDone==1) {

jDone=O;

if(i2cDac->oData->burstmode == DACBURST) {
state = 6;
i2cDac->cmd = I2CBURSTOK;

} else {
state = 14;

}

if(I2C1STATbits.ACKSTAT==1) {
state=16;

// Ack Not received, Flag error and exit

break;

case 7:
7/ Look for end of data or no Ack

if(jDone==l) {
jDone=O;
state =state-1;

315

// Ack Not received, Flag error and exit

& 0x0002) << 6;

if (I2C1STATbits.ACKSTAT==1) {
and exit

state =1 6;
} else {

if (cntr== i2cMem- > oData- > n)
state =14;

Frame

77 Ack Not received, Flag error

// Close the

break;
*/

/* Read Data Phase */

7* case 8:
// Repeat Start
I2C1CONbits.RSEN=1;
state =state+1;

break;

case 9:
// Re-send control byte with W/R=R

if(jDone==l) {
jDone=0;

state =state+1;
12C1TRN=(0xO0A1)|(((i2cMem->oData->csel)&Wx7)< <1);

break;

case 10:
77 Check, if control byte went ok

if(jDone==1) {
jDone=0;

state =state+1;

if (I2C1STATbits.ACKSTAT==1)
and exit

state =1 6;

}
break;

case 11:
77 Receive Enable

12C1CONbits.RCEN=1;
state ++;
break;

case 12:
77 Receive data

if(jDone==1) {
jDone=0;

// Ack Not received, Flag error

316

state =state+1;

* (i2cMem-> oData-> buff+cntr)=I2ClRCV;
cntr++;

if (cntr== i2cMem->oData- >n) {
I2C1CONbits.ACKDT=1; /No ACK

} else {
I2ClCONbits.ACKDT=O; /7 ACK

}

12C1CONbits.ACKEN=1;

}
break;

case 13:
if (jDone==1) {

jDone=O;
if (cntr== i2cMem->oData->n)

state =state+1;
else
state =state-2;

}
break;

*7

/* Stop Sequence *7

case 14:
I2C1CONbits.PEN=1;
state++;
break;

case 15:
if(jDone==1) {

jDone=O;
state=O;
entr=O;
i2cDac->cmd=O;

}
break;

/* Set Error *7

case 16:
I2C1CONbits.PEN=1;
state++;
break;

case 17:
if(jDone==) {

jDone=O;

317

state=0;
rtrycntr =0;
cntr=0;
i2cDac->cmd=OxFFFF;

}
break;

/* Retry */

case 18:
I2C1CONbits.PEN=1;
state++;

rtrycntr++;
break;

case 19:
if(jDone==1) {

jDone=0;
state=0;
cntr=0;

}
break;

}

}

H.2.8 ocmodules.h

* 2005 Microchip Technology Inc.
*

* FileName: adcDrv2.h
* Dependencies: Other (.h) files if applicable, see below
* Processor: dsPIC33Fxxxx/PIC24Hxxxx
* Compiler: MPLAB C30 v3.00 or higher
*

* SOFTWARE LICENSE AGREEMENT:
* Microchip Technology Incorporated ("Microchip") retains all ownership and
* intellectual property rights in the code accompanying this message and in all
* derivatives hereto. You may use this code, and any derivatives created by
* any person or entity by or on your behalf, exclusively with Microchip's
* proprietary products. Your acceptance and/or use of this code constitutes
* agreement to the terms and conditions of this notice.
*

* CODE ACCOMPANYING THIS MESSAGE IS SUPPLIED BY MICROCHIP "AS IS". NO
* WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT

NOT LIMITED
* TO, IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND

FITNESS FOR A

318

* PARTICULAR PURPOSE APPLY TO THIS CODE, ITS INTERACTION WITH
MICROCHIP'S

* PRODUCTS, COMBINATION WITH ANY OTHER PRODUCTS, OR USE IN ANY
APPLICATION.

* YOU ACKNOWLEDGE AND AGREE THAT, IN NO EVENT, SHALL MICROCHIP BE
LIABLE, WHETHER

* IN CONTRACT, WARRANTY, TORT (INCLUDING NEGLIGENCE OR BREACH OF
STATUTORY DUTY),

* STRICT LIABILITY, INDEMNITY, CONTRIBUTION, OR OTHERWISE, FOR ANY
INDIRECT, SPECIAL,

* PUNITIVE, EXEMPLARY, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, FOR
COST OR EXPENSE OF

* ANY KIND WHATSOEVER RELATED TO THE CODE, HOWSOEVER CAUSED, EVEN IF
MICROCHIP HAS BEEN

* ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE
FULLEST EXTENT

* ALLOWABLE BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY
WAY RELATED TO

* THIS CODE, SHALL NOT EXCEED THE PRICE YOU PAID DIRECTLY TO MICROCHIP
SPECIFICALLY TO

* HAVE THIS CODE DEVELOPED.
*

* You agree that you are solely responsible for testing the code and
* determining its suitability . Microchip has no obligation to modify, test,
* certify , or support the code.
*

* REVISION HISTORY:

* Author Date Comments on this revision

* Settu D 03/09/06 First release of source file
* *

* ADDITIONAL NOTES:
* 1. This file contains definitions commonly used in this project.

#ifndef __OCMODULESH__
#define -OCMODULES.H-

#define MODULATIONCHAN 1
#define QUADRATURECHAN 2
#define MANUAL_1 3
#define MANUAL-2 4
#define MANUAL_3 5
#define MANUAL-4 6
#define FILTERCLK 7

// External Functions
extern void initOCModules(void);

#endif

319

H.2.9 ocmodules.c

* 2005 Microchip Technology Inc.
*

* FileName: adcDrv2. c
* Dependencies: Header (.h) files if applicable, see below
* Processor: dsPIC33Fxxxx/PIC24Hxxxx
* Compiler: MPLAB C30 v3.00 or higher
*

* SOFTWARE LICENSE AGREEMENT:
* Microchip Technology Incorporated ("Microchip") retains all ownership and
* intellectual property rights in the code accompanying this message and in all
* derivatives hereto. You may use this code, and any derivatives created by
* any person or entity by or on your behalf, exclusively with Microchip's
* proprietary products. Your acceptance and/or use of this code constitutes
* agreement to the terms and conditions of this notice.
*

* CODE ACCOMPANYING THIS MESSAGE IS SUPPLIED BY MICROCHIP "AS IS". NO
* WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT

NOT LIMITED
* TO, IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY AND

FITNESS FOR A
* PARTICULAR PURPOSE APPLY TO THIS CODE, ITS INTERACTION WITH

MICROCHIP'S
* PRODUCTS, COMBINATION WITH ANY OTHER PRODUCTS, OR USE IN ANY

APPLICATION.
*

* YOU A CKNOWLEDGE AND A GREE THAT, IN NO EVENT, SHALL MICROCHIP BE
LIABLE, WHETHER

* IN CONTRACT, WARRANTY, TORT (INCLUDING NEGLIGENCE OR BREACH OF
STATUTORY DUTY),

* STRICT LIABILITY, INDEMNITY, CONTRIBUTION, OR OTHERWISE, FOR ANY
INDIRECT, SPECIAL,

* PUNITIVE, EXEMPLARY, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, FOR
COST OR EXPENSE OF

* ANY KIND WHATSOEVER RELATED TO THE CODE, HOWSOEVER CAUSED, EVEN IF
MICROCHIP HAS BEEN

* ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE
FULLEST EXTENT

* ALLOWABLE BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY
WAY RELATED TO

* THIS CODE, SHALL NOT EXCEED THE PRICE YOU PAID DIRECTLY TO MICROCHIP
SPECIFICALLY TO

* HAVE THIS CODE DEVELOPED.
*

* You agree that you are solely responsible for testing the code and
* determining its suitability . Microchip has no obligation to modify, test,
* certify, or support the code.
*

* REVISION HISTORY:
*

* Author Date Comments on this revision

320

* Settu D 03/09/06 First release of source file
- * *

*

* ADDITIONAL NOTES:
* This file contains two functions - initAdcl, initDma0 and _DMAOInterrupt(.
*

#if defined(_dsPIC33F_)
#include "p33Fxxxx.h"
#elif defined(_PIC24H_)
#include "p24Hxxxx.h"
#endif

#include "ocmodules.h"

void initOCModules(void){

7/First drive the FLOPRST line high
TRISGbits.TRISG6 = 0;
PORTGbits.RG6 = 1;

OC1CONbits.OCTSEL = 1; // Use Timer3 for clock source
OC2CONbits.OCTSEL = 0; /7 Use Timer2 for clock source

OC2R = 20; 7/Trigger on 0
OCIR = OxOO;

OC2CONbits.OCM = ObOll; 7/Set Modulation to toggle mode
OC1CONbits.OCM = ObOll; //Set Quadrature to toggle mode

//Now set up Timer 2 to go at 448 kHz
//Fcy = 40 MHz is assumed
//Fcy = 36.85 MHz for now
/Closest period is 82 ticks. No prescaling or 32 bit timer.
/This gives a frequency of: 449.4 kHz.

T2CONbits.T32 0; /Two 16 bit timers
T2CONbits.TCS 0; /Clock source is Fcy
T2CONbits.TCKPS = ObOO; 7/No prescaler
T2CONbits.TGATE = 0; /Gating accumulation disabled

T3CONbits.TCS = 0;
T3CONbits.TCKPS = ObOO;
T3CONbits.TGATE = 0;

TMR2 = 0x00;
TMR3 = 0x00;
//PR2 = 82; 7/Set timer period to 89
7/Must be miscomputing clock or hitting a prescaler. Halve it.

PR2 = 41;
//PR3 = 83;
PR3 = 82; //Intentionally off to send signal for loopback
T2CONbits.TON = 1; //Activate timer

321

T3CONbits.TON = 1;

}

H.2.10 traps.c

* 2005 Microchip Technology Inc.
*

* FileName: traps. c
* Dependencies: Header (.h) files if applicable, see below
* Processor: dsPIC33Fxxxx/PIC24Hxxxx
* Compiler: MPLAB C30 v3.00 or higher
*

* SOFTWARE LICENSE AGREEMENT:
* Microchip Technology Incorporated ("Microchip") retains all ownership and
* intellectual property rights in the code accompanying this message and in all
* derivatives hereto. You may use this code, and any derivatives created by
* any person or entity by or on your behalf, exclusively with Microchip's
* proprietary products. Your acceptance and/or use of this code constitutes
* agreement to the terms and conditions of this notice.
*

* CODE ACCOMPANYING THIS MESSAGE IS SUPPLIED BY MICROCHIP "AS IS". NO
* WARRANTIES, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING, BUT

NOT LIMITED
* TO, IMPLIED WARRANTIES OF NON--INFRINGEMENT, MERCHANTABILITY AND

FITNESS FOR A
* PARTICULAR PURPOSE APPLY TO THIS CODE, ITS INTERACTION WITH

MICROCHIP'S
* PRODUCTS, COMBINATION WITH ANY OTHER PRODUCTS, OR USE IN ANY

APPLICATION.

* YOU ACKNOWLEDGE AND AGREE THAT, IN NO EVENT, SHALL MICROCHIP BE
LIABLE, WHETHER

* IN CONTRACT, WARRANTY, TORT (INCLUDING NEGLIGENCE OR BREACH OF
STATUTORY DUTY),

* STRICT LIABILITY, INDEMNITY, CONTRIBUTION, OR OTHERWISE, FOR ANY
INDIRECT, SPECIAL,

* PUNITIVE, EXEMPLARY, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, FOR
COST OR EXPENSE OF

* ANY KIND WHATSOEVER RELA TED TO THE CODE, HOWSOEVER CA USED, EVEN IF
MICROCHIP HAS BEEN

* ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE
FULLEST EXTENT

* ALLOWABLE BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY
WAY RELATED TO

* THIS CODE, SHALL NOT EXCEED THE PRICE YOU PAID DIRECTLY TO MICROCHIP
SPECIFICALLY TO

* HAVE THIS CODE DEVELOPED.
*

* You agree that you are solely responsible for testing the code and
* determining its suitability . Microchip has no obligation to modify, test,

322

* certify , or support the code.
*

* REVISION HISTORY:
*

* Author Date Comments on this revision
*

Settu D 07/09/06 First release of source file

* ADDITIONAL NOTES:
* 1. This file contains trap service routines (handlers) for hardware
* exceptions generated by the dsPIC33F device.
* 2. All trap service routines in this file simply ensure that device
* continuously executes code within the trap service routine. Users
* may modify the basic framework provided here to suit to the needs
* of their application.
*

#if defined(-dsPIC33F_)
#include "p33fxxxx.h"
#elif defined(_PIC24H_)
#include "p24hxxxx.h"
#endif

void _attribute ((-interrupt-)) OscillatorFail (void);
void -attribute ((_interrupt-)) AddressError(void);
void -attribute ((-interrupt-)) StackError(void);
void _attribute ((_interrupt-)) -MathError(void);
void _attribute ((_interrupt-)) -DMACError(void);

void _attribute- ((-interrupt_-)) _AltOscillatorFail (void);
void _attribute-((_interrupt-)) AltAddressError(void);
void _attribute ((_interrupt-)) AltStackError(void);
void -attribute ((_interrupt-)) AltMathError(void);
void _attribute_ ((_interrupt-)) AltDMACError(void);

7*
Primary Exception Vector handlers:
These routines are used if INTCON2bits.ALTIVT = 0.
All trap service routines in this file simply ensure that device
continuously executes code within the trap service routine. Users
may modify the basic framework provided here to suit to the needs
of their application.

void -attribute_ ((interrupt, no-auto-psv)) -OscillatorFail (void)

{
INTCON1bits.OSCFAIL = 0; /Clear the trap flag
while (1);

}

void -attribute_ ((interrupt, no-auto-psv)) -AddressError(void)

{
INTCON1bits.ADDRERR = 0; /Clear the trap flag

323

while (1);
}
void __attribute__ ((interrupt, no-auto-psv)) _StackError(void)

{
INTCON1bits.STKERR = 0; //Clear the trap flag
while (1);

}
void _attribute_- ((interrupt, no-auto-psv)) _MathError(void)

{
INTCON1bits.MATHERR = 0; /Clear the trap flag
while (1);

}
void _attribute_ ((interrupt, no-auto-psv)) _DMACError(void)

{
INTCON1bits.DMACERR = 0; /Clear the trap flag
while (1);

}

7*
Alternate Exception Vector handlers:
These routines are used if INTCON2bits.ALTIVT = 1.
All trap service routines in this file simply ensure that device
continuously executes code within the trap service routine. Users
may modify the basic framework provided here to suit to the needs
of their application.
*7

void _attribute_ ((interrupt, no-auto-psv)) _AltOscillatorFail (void)

INTCON1bits.OSCFAIL = 0;
while (1);

}
void _attribute_ ((interrupt, no-auto-psv)) _AltAddressError(void)

{
INTCONlbits.ADDRERR = 0;
while (1);

}

void _attribute_ ((interrupt, no-auto-psv)) _AltStackError(void)

{
INTCON1bits.STKERR = 0;
while (1);

}

void _attribute_ ((interrupt, no-auto-psv)) _AltMathError(void)

{
INTCON1bits.MATHERR = 0;

324

while (1);

}
void attribute__ ((interrupt, no-auto-psv)) _AltDMACError(void)

{
INTCON1bits.DMACERR = 0; /Clear the trap flag

while (1);

}

325

326

Bibliography

[1] N. Bowler. Frequency-dependence of relative permeability in steel. Review of
Quantitative Nondestructive Evaluation, 25:1269-1276, 2006.

[2] R. W. Cox, P. Bennett, D. McKay, J. Paris, and S. B. Leeb. Using the non-
intrusive load monitor for shipboard supervisory control. In IEEE Electric Ship
Technologies Symposium, Arlington, VA, May 2007.

[3] T. DeNucci, R. Cox, S. B. Leeb, J. Paris, T. J. McCoy, C. Laughman, and
W. Greene. Diagnostic indicators for shipboard systems using non-intrusive load
monitoring. In IEEE Electric Ship Technologies Symposium, Philadelphia, Penn-
sylvania, July 2005.

[4] Inc. Ferroxcube. Tx25/15/10-3e6 datasheet. Available http: //www.
ferroxcube.com/prod/assets/tx251510.pdf.

[5] W. Greene, J. S. Ramsey, S. B. Leeb, T. DeNucci, J. Paris, M. Obar, R. Cox,
C. Laughman, and T. J. McCoy. Non-intrusive monitoring for condition-based
maintenance. In American Society of Naval Engineers Reconfigurability and Sur-
vivability Symposium, Atlantic Beach, Florida, February 2005.

[6] U. A. Khan, S. B. Leeb, and M. C. Lee. A multiprocessor for transient event
detection. IEEE Transactions on Power Delivery, 12(1):51-60, 1997.

[7] S. B. Leeb, S. R. Shaw, and Jr. J. L. Kirtley. Transient event detection in
spectral envelope estimates for nonintrusive load monitoring. IEEE Transactions
on Power Delivery, 10(3):1200-1210, July 1995.

[8] G. Mitchell, R. W. Cox, M. Piber, P. Bennett, J. Paris, W. Wichakool, and
S. B. Leeb. Shipboard fluid system diagnostic indicators using nonintrusive load
monitoring. In American Society for Naval Engineers Day 2007, Arlington, VA,
June 2007.

[9] G. R. Mitchell, R. W. Cox, J. Paris, and S. B. Leeb. Shipboard fluid system
diagnostic indicators using non-intrusive load. Naval Engineers Journal, 119(1),
November 2007.

[10] J. P. Mosman, R. W. Cox, D. McKay, S. B. Leeb, and T. McCoy. Diagnostic
indicators for shipboard cycling systems using non-intrusive load monitoring. In
American Society for Naval Engineers Day 2006, Arlington, VA, June 2006.

327

[11] L. K. Norford and S. B. Leeb. Non-intrusive electrical load monitoring in com-
mercial buildings based on steady state and transient load-detection algorithms.
Energy and Buildings, 24:51-64, 1996.

[12] E. Proper, R. W. Cox, S. B. Leeb, K. Douglas, J. Paris, W. Wichakool, L. Foulks,
R. Jones, P. Branch, A. Fuller, J. Leghorn, and G. Elkins. Field demonstration
of a real-time non-intrusive monitoring system for condition-based maintenance.
In Electric Ship Design Symposium, National Harbor, Maryland, February 2009.

[13] J. S. Ramsey, S. B. Leeb, T. DeNucci, J. Paris, M. Obar, R. Cox, C. Laughman,
and T. J. McCoy. Shipboard applications of non-intrusive load monitoring. In
American Society of Naval Engineers Reconfigurability and Survivability Sympo-
sium, Atlantic Beach, Florida, February 2005.

[14] S. R. Shaw, S. B. Leeb, L. K. Norford, and R. W. Cox. Nonintrusive load moni-
toring and diagnostics in power systems. IEEE Transactions on Instrumentation
and Measurement, 57(7):1445-1454, July 2008.

328

