
MIT Open Access Articles

Temporal dynamics of Prochlorococcus 
ecotypes in the Atlantic and Pacific oceans

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Malmstrom, Rex R et al. “Temporal dynamics of Prochlorococcus ecotypes in the 
Atlantic and Pacific oceans.” ISME J 4.10 (2010): 1252-1264.

As Published: http://dx.doi.org/10.1038/ismej.2010.60

Publisher: Nature Publishing Group

Persistent URL: http://hdl.handle.net/1721.1/61315

Version: Author's final manuscript: final author's manuscript post peer review, without 
publisher's formatting or copy editing

Terms of use: Attribution-Noncommercial-Share Alike 3.0

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/61315
http://creativecommons.org/licenses/by-nc-sa/3.0/


 
 
 
 
 
 
 
 
 
Title 
Temporal Dynamics of Prochlorococcus Ecotypes in the Atlantic and Pacific Oceans 
 
Authors 
Rex R. Malmstrom1, Allison Coe1, Gregory C. Kettler1, Adam C. Martiny1,2, Jorge Frias-
Lopez1,3, Erik R. Zinser1,4, and Sallie W. Chisholm1,*. 
 
1) Department of Civil and Environmental Engineering, Massachusetts Institute of 
Technology, Cambridge, MA, 02139. 
2) Departments of Earth System Science and Ecology and Evolutionary Biology, 
University of California, Irvine, CA 92693 
3) The Forsyth Institute, Boston, MA, 02115 
4) Department of Microbiology, University of Tennessee, Knoxville, TN, 37996 
* Corresponding author 
 
 
Running Title: Temporal Dynamics of Prochlorococcus  
 
Subject Category: Microbial population and community ecology 
 
Keywords: Prochlorococcus/Synechococcus/ecotype/time-series/HOT/BATS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Abstract 

To better understand the temporal and spatial dynamics of Prochlorococcus 

populations, and how these populations co-vary with the physical environment, we 

followed monthly changes in the abundance of five ecotypes – two high-light adapted 

and three low-light adapted - over a five-year period in coordination with the Bermuda 5 

Atlantic Time Series (BATS) and Hawaii Ocean Time-series (HOT) programs.  Ecotype 

abundance displayed weak seasonal fluctuations at HOT and strong seasonal fluctuations 

at BATS.  Furthermore, stable 'layered' depth distributions, where different 

Prochlorococcus ecotypes reached maximum abundance at different depths, were 

maintained consistently for five years at HOT.  Layered distributions were also observed 10 

at BATS, although winter deep mixing events disrupted these patterns each year and 

produced  large variations in ecotype abundance. Interestingly, the layered ecotype 

distributions were regularly reestablished each year after deep mixing subsided at BATS.  

In addition, Prochlorococcus ecotypes each responded differently to the strong seasonal 

changes in light, temperature, and mixing at BATS, resulting in a reproducible annual 15 

succession of ecotype blooms. Patterns of ecotype abundance, in combination with 

physiological assays of cultured isolates, confirmed that the low-light adapted eNATL 

could be distinguished from other low-light adapted ecotypes based on its ability to 

withstand temporary exposure to high intensity light, a characteristic stress of the surface 

mixed layer. Finally, total Prochlorococcus and Synechococcus dynamics were compared 20 

with similar time series data collected a decade earlier at each location.   The two data 

sets were remarkably similar - testimony to the resilience of these complex dynamic 

systems on decadal time scales. 
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Introduction 

A key challenge facing marine microbiology is to understand how microbial 

diversity and biogeochemical cycles are linked, and to eventually incorporate this 

understanding into conceptual and predictive ocean models. Physiological and genetic 

analyses of cultured isolates, as well as metagenomic studies of whole communities 5 

(DeLong et al. 2006; Venter et al. 2004), are uncovering more and more about the 

metabolic potential of microbes comprising these assemblages.  In addition, time series 

studies are revealing how the composition of microbial communities varies over both 

time and space (Carlson et al. 2009; Fuhrman et al. 2006; Treusch et al. 2009).  Coupling 

the spatial and temporal dynamics of specific microbial groups with insights into their 10 

metabolic potential is essential for developing a quantitative understanding of the roles 

these microbes play in marine ecosystems.  

Over the past twenty years, investigations of the unicellular cyanobacterium 

Prochlorococcus have provided insight into both the biogeography and metabolic 

potential of this group.  Prochlorococcus is typically the most abundant photoautotroph 15 

in tropical and subtropical waters (Campbell et al. 1994; Partensky et al. 1999), and its 

abundance varies seasonally at some locations (Campbell et al. 1997; DuRand et al. 

2001).  Studies of cultured isolates have revealed the optimal light and temperature levels 

differ among the strains (Moore and Chisholm 1999; Moore et al. 2002; Moore et al. 

1998; Zinser et al. 2007), as do the nutrient pools available to them (Moore et al. 2005; 20 

Moore et al. 2002).  Genomic analyses of isolates (Coleman et al. 2006; Kettler et al. 

2007; Rocap et al. 2003), and metagenomic analyses of natural communities (DeLong et 

al. 2006; Martiny et al. 2006; Martiny et al. 2009a), have provided additional insights into 
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the genetic diversity, metabolic potential, and evolutionary history of the group.   The 

ability to examine the abundance and distribution of Prochlorococcus in the wild, and 

measure its genomic and metabolic properties in the lab and field, make Prochlorococcus 

a model system for advancing our understanding the ecology of marine microbes. 

 Prochlorococcus is composed of several clades that are physiologically and 5 

phylogenetically distinct with respect to their optimal light and temperature environments 

(Johnson et al. 2006; Kettler et al. 2007; Moore and Chisholm 1999; Moore et al. 1998; 

Rocap et al. 2002; Zinser et al. 2007). These clades have been referred to as ‘ecotypes’ 

(Moore and Chisholm 1999; Moore et al. 1998; Rocap et al. 2002) following the broader 

historical designation for genetically distinct subgroups within a species that are adapted 10 

to specific environments (Clausen et al. 1940; Turesson 1922). They do not necessarily 

conform to the more recent and narrowly-defined ‘ecotype’ concept developed by Cohan 

and others  (Cohen 2001; Cohan and Perry 2007), which has become a notable model for 

exploring the theoretical basis for divergence among bacteria (Fraser et al. 2009, Ward et 

al. 2006).  A more detailed discussion of the different uses of the term ‘ecotype’ is 15 

provided by Coleman and Chisholm (2007). 

The abundance of Prochlorococcus ecotypes in various oceanic regions has been 

studied extensively (Ahlgren et al. 2006; Bouman et al. 2006; Johnson et al. 2006; West 

and Scanlan 1999; Zinser et al. 2006; Zinser et al. 2007).  Members of the two high-light 

adapted (HL) ecotypes, eMIT9312 and eMED4, are most abundant in the upper regions 20 

of the euphotic zone, whereas low-light adapted (LL) ecotypes such as eNATL and 

eMIT9313 are most abundant in the lower euphotic zone (Johnson et al. 2006; West et al. 

2001; Zinser et al. 2007).  These distribution patterns agree well with differences in the 
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optimal light levels for representative ecotype strains (Moore and Chisholm 1999; Zinser 

et al. 2007).  Furthermore, eMED4 tends to dominate in cooler, higher latitude waters, 

while eMIT9312 dominates warmer, lower latitude waters (Johnson et al. 2006; 

Zwirglmaier et al. 2007); also in good agreement with temperature optima of 

representative strains.  Water column stability and nutrient concentrations have also been 5 

correlated with ecotype abundance (Bouman et al. 2006; Johnson et al. 2006), and 

community structure (Martiny et al. 2009b), although the underlying causalities of these 

relationships are not well understood.   

The environmental factors influencing Prochlorococcus ecotype abundance, such 

as light, temperature, and water column mixing, vary over time and can display seasonal 10 

patterns, thus we might expect ecotype dynamics to do the same.   While we have 

analyzed ecotype variability over span of a few days (Zinser et al. 2007), extensive time-

series studies have not been conducted, and thus little is known about the dynamics of 

Prochlorococcus ecotypes on the scale of months to years.  Analyses on these time scales 

should help refine our understanding of ecotype/environment interactions, and provide 15 

datasets for testing models designed to explore the dynamics of phytoplankton 

community structure (Follows et al. 2007).  

To this end, we followed the spatial and temporal dynamics of Prochlorococcus 

ecotypes at monthly intervals over five years in coordination with the Bermuda Atlantic 

Time Series (BATS) and the Hawaii Ocean Time-series (HOT) programs (Karl and 20 

Lukas 1996; Steinberg et al. 2001).  Both programs are focused on oligotrophic, open 

ocean sites where Prochlorococcus is found in abundance (Campbell et al. 1994; DuRand 

et al. 2001).  However, the physics and chemistry of these locations differ, most notably 
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by the stronger seasonal mixing events at BATS and the higher inorganic phosphate 

concentrations at HOT (Cavender-Bares et al. 2001; Steinberg et al. 2001; Wu et al. 

2000).  Here we explore how changes in environmental factors such as mixing, light, and 

temperature are related to ecotype abundance and distribution, as well as how they co-

vary temporally over 5 years.  We also examine some of the emergent patterns in the 5 

field data through studies of light-shock tolerance in cultured isolates of different 

Prochlorococcus ecotypes.  

 

Methods and Methods 

Sample Collection 10 

 Beginning in November 2002, flow cytometry and qPCR samples were collected 

over a five-year period during monthly cruises for the Bermuda Atlantic Time Series 

(BATS) and Hawaii Ocean Time-series (HOT) programs.  Additional samples were 

collected bi-weekly between February and April at BATS.  Samples were collected from 

twelve depths (1, 10, 20, 40, 60, 80, 100, 120, 140, 160, 180, and 200m) at the BATS site 15 

(~5 nautical mile radius around 31° 40'N, 64° 10' W), and from twelve depths (5, 25, 45, 

60, 75, 85, 100, 115, 125, 150, 175, and 200m) at Sta. ALOHA (~5 nautical mile radius 

around 22° 45'N, 158° 00'W).  These locations are referred to BATS and HOT 

throughout the manuscript for simplicity. 

 20 

Flow Cytometry 

 Whole seawater samples were immediately fixed with glutaraldehyde (final conc. 

0.125% v/v) for 10 minutes, frozen in liquid nitrogen, and stored at –80°C until samples 
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could be processed in the laboratory using an Influx flow cytometer (Becton Dickinson).  

Prochlorococcus and Synechococcus populations were identified and quantified based on 

their unique autofluorescence and scatter signals (Olson et al. 1990a; Olson et al. 1990b).  

Prochlorococcus could not always be clearly distinguished in the upper 40m at BATS 

from June-September, thus these profiles were excluded from depth-integrated counts in 5 

Figure 2.  Flow cytometry profiles from early 2003 were not processed. 

 

Primer Re-design for Ecotype eSS120 

 New primers for the eSS120 ecotype were designed in ARB (Ludwig et al. 2004), 

using a large database of environmental ITS sequences (Martiny et al. 2009b).  These 10 

primers, 5'-AAC AAA CTT TCT CCT GGG CT-3' and 5'-AGT TGA TCA GTG GAG 

GTA AG-3', matched 87% of known eSS120 ITS sequences, but did not target MIT9211.  

The specificity of the primers was initially tested against cultured isolates from other 

ecotypes such as MIT9313, MIT9312, MED4, and NATL2a.  These tests confirmed 

specificity within the dynamic range of the assay (~5 to 5 X 105 cells mL-1).  Specificity 15 

was also confirmed by cloning and sequencing ITS regions amplified from field samples 

from BATS and HOT using the new primers. All amplified ITS sequences clustered with 

strains SS120 and MIT9211, both members of the eSS120 ecotype (Kettler et al. 2007), 

in a boot-strapped (n=100) neighbor-joining tree constructed with the Bosque software 

package (Ramirez-Flandes and Ulloa 2008) (Supp. Fig. 1).  The new primers 20 

substantially increased counts of the SS120 ecotype (Supp. materials). 
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Quantitative PCR 

 Samples for qPCR were collected and processed as described previously (Ahlgren 

et al. 2006; Zinser et al. 2006; Zinser et al. 2007) with two small modifications.  First, 

reaction volumes were reduced from 25µL to 15µL and performed in 384-well plates on 

the Light Cycler 480 for samples collected after 2003.  Second, concentrations of 5 

eMIT9313-specific primers were increased to 5 µM to improve sensitivity. Estimated 

abundances that fell below the lowest value of the standard curve were set to the 

theoretical detection limit of 0.65 cells mL-1. Samples were excluded if their melt curves 

contained multiple peaks or peaks different from those in the DNA standards to ensure 

only the targeted ecotypes were quantified. Missing data were determined by linear 10 

interpolation when abundance estimates were available for the depths immediately above 

and below the missing value. 

 

Environmental Data Extraction 

 Temperature, salinity, and potential density were downloaded from the HOT and 15 

BATS websites. Missing data were determined by linear interpolation when values were 

available for the depths immediately above and below the missing data point.  Mixed 

layer depths, light attenuation coefficients, and Prochlorococcus and Synechococcus 

abundance (1991-1995) were also downloaded directly from the HOT website.  Mixed 

layer depths and attenuation coefficients at BATS were calculated from bottle-derived 20 

profiles and SeaWiFS Profiling Multichannel Radiometer profiles of photosynthetically 

active radiation (PAR) collected by Bermuda Bio-Optics Program.  The mixed layer 

depth was determined when potential density differed from surface values by  > 0.125 kg 
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m-3.  Attenuation coefficients at BATS were calculated by linear regression of log-

transformed PAR values; only profiles with an R2 > 0.993 were used.    

 

Solar Irradiance  

 Surface irradiance was determined from SeaWiFS-derived estimates of daily-5 

integrated PAR.  Eight-day means of daily integrated PAR values from March 2000 to 

July 2006 were calculated from a 27km by 27km region around BATS and HOT (White 

et al. 2007).  A two component Fourier model with a period of 1 year was fitted to PAR 

data, producing an R2 of 0.90 and 0.93 at BATS and HOT, respectively.  Modeled PAR 

data were used to estimate surface irradiance on the day of sample collection.  This model 10 

was necessary to account for seasonal variability in solar flux due to changes in day 

length and solar azimuth.  These changes result in a roughly two-fold difference in daily-

integrated solar flux between summer and winter (e.g. ~20,000 – 56,000 mE m-2 d-1 at 

BATS, and ~31,000 – 58,000 mE m-2 d-1 at HOT, using this model).    

 The relationships between ecotype abundance and PAR plotted in Figure 1 and 15 

Supplementary Figure 2 were determined using robust locally weighted linear regression 

(LOWESS) in MATLAB.  Robust LOWESS is more resistant to outliers (Cleveland 

1979), which are defined in MATLAB's robust LOWESS function as data outside six 

mean absolute deviations. 

 20 

Time Series and Other Statistical Analyses 

 Integrated ecotype abundance, surface PAR, and mixed layer depth were log-

transformed, detrended, and resampled at a regular monthly interval to meet the 
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mathematical requirements for time series analyses (Legendre and Legendre 1998).  

Detrended data were calculated as the residuals of linear regression of log-transformed 

data against time.  Detrended data were resampled every 30.44 days, which is equivalent 

to twelve measurements per year, using linear interpolation.  Coefficients of 

autocorrelation and cross-correlation were determined in MATLAB, and standard 5 

deviations calculated as n-1/2, where n is the number or resampled data points.  Spectral 

analysis by discrete Fourier transformation, calculated using the Fast Fourier 

Transformation (FFT) algorithm, was also performed in MATLAB.  The power spectral 

density was estimated as the absolute value of FFT2. 

 Differences among ecotypes in the average depth of maximum abundance were 10 

tested using repeated-measures ANOVA, followed by a Tukey post-test (α=0.05), using 

MATLAB. 

 Non-parametric partial correlation coefficients (Spearman R) were calculated in 

MATLAB to determine the relationship between abundance and temperature while 

controlling for the influence of light. 15 

 

Light Shock Experiments 

 Serial batch cultures of axenic Prochlorococcus strains MED4, NATL2a, and 

SS120 were grown in Sargasso seawater-based Pro99 media (Moore et al. 2007) and 

illuminated by cool white fluorescent lamps. Cultures were transferred at least four times 20 

to acclimate them to 35 µE m-2 s-1 of continuous light.  Duplicate acclimated cultures that 

were in log-phase growth were then exposed to 400 µE m-2 s-1 for four hours before being 

returned to their initial light levels.  In vivo chlorophyll fluorescence was measured 
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before and after light shock with a 10-AU fluorometer (340-500 nm excitation and 680 

nm emission filters), and cell counts determined by flow cytometry as described above.  

 

Results and Discussion 

Ecotype distribution with light and temperature 5 

 Striking similarities between HOT and BATS emerged when data from all depths 

and all 5 years were combined for a synoptic analysis of Prochlorococcus ecotype 

abundance along irradiance/depth gradients (Fig. 1 a,b ;  Supp. Fig. 2 ).  As expected, the 

two high-light adapted ecotypes, eMIT9312 and eMED4, were most abundant at higher 

irradiances, with abundance dropping off sharply below 1,500 mE m-2 d-1 of 10 

photosynthetically-active radiation (Fig. 1a,b; Supp. Fig. 2a,e).  In contrast, two low-light 

adapted ecotypes, eSS120 and eMIT9313, usually reached maximum abundances 

between 100-250 mE m-2 d-1, and were typically at or near detection limits at irradiances 

>1,500 mE m-2 d-1. The eNATL group, also low-light adapted, had an intermediate 

distribution, reaching maximum abundance at 300-600 mE m-2 d-1.  Unlike the other low 15 

light ecotypes, eNATL abundance was occasionally high at irradiance levels >1,500 mE 

m-2 d-1 (Fig. 1a,b; Supp. Fig. 2c,h), which is consistent with hypothesis that eNATL can 

tolerate exposure to higher light levels than eSS120 and eMIT9313 (Coleman and 

Chisholm 2007; Zinser et al. 2007).   

This consistent relationship between irradiance and ecotype abundance results in a 20 

'layered' depth distribution at both locations (Fig. 1a-d). At HOT, for example, HL 

ecotype eMIT9312 tended to reach maximum abundance at shallower depths than did its 

fellow HL ecotype eMED4 (Table 1).  LL ecotypes also partitioned the water column at 
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HOT, with eNATL abundance peaking at significantly shallower depths than eSS120 and 

eMIT9313 (Table 1). Similar patterns in ecotype distribution were also observed at 

BATS (Table 1; Fig. 1b,d), except for during deep mixing events, defined here as when 

the mixed layer depth was >100m.  During periods of deep mixing physical 

homogenization appears to overwhelm biological partitioning of the water column, 5 

resulting in uniform depth distributions (Fig. 1e,f).  Therefore, data from periods of deep 

mixing were removed from statistical analysis of depth distributions.   

It is remarkable that, with the exception of periods of deep mixing, the general 

patterns of ecotype abundance appear relatively consistent in the Atlantic and Pacific 

despite substantial differences in the chemical and physical environment.  Furthermore, 10 

these patterns are consistent with those found previously in a variety of ocean regions 

(Bouman et al. 2006; Johnson et al. 2006; West and Scanlan 1999; West et al. 2001; 

Zinser et al. 2006; Zinser et al. 2007).  That is, the ecotypes tend to partition the water 

column by depth, with eNATL reaching maximum abundance in between the peaks of 

HL ecotypes MED4 and MIT9312, and other LL ecotypes. The similarities in the 15 

distributions along depth/light gradients suggest that Prochlorococcus ecotypes are 

responding in a consistent fashion to irradiance regardless of geography. 

 

Temporal Dynamics: Depth-integrated Prochlorococcus and Synechococcus 

populations 20 

Using flow cytometry, we measured the abundance of Prochlorococcus, and its 

close relative Synechococcus (Rocap et al., 2002), to provide an overall framework for 

exploring Prochlorococcus ecotype dynamics. At BATS, the depth-integrated 
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Prochlorococcus population displayed a strong seasonal pattern, reaching the highest 

levels in the late summer and fall, and the lowest in the late winter during the annual deep 

mixing events (Fig. 2a).  Synechococcus displayed the inverse pattern, and even 

occasionally exceeded the abundance of Prochlorococcus during deep mixing events 

(Fig. 2b).  This is the same pattern reported by DuRand et al. (2001) for Prochlorococcus 5 

and Synechococcus at BATS from 1990-1994 (Fig. 2a,b).   The concordance between 

these two data sets is remarkable, given that they are separated by more than a decade.     

Variations in Prochlorococcus and Synechococcus abundance were much less 

dramatic at HOT.  Integrated abundance of Prochlorococcus varied just over 2-fold 

throughout the time series, and did not always reach maximal abundance in the summer 10 

or minimal abundance in the winter (Fig 2c).  Synechococcus still displayed an annual 

pattern, tending to reach peak abundance during winter, but they were never as abundant 

as Prochlorococcus, in contrast to what was observed at BATS.  These abundance and 

variability levels are also consistent with those observed over a decade ago at HOT (Fig. 

2c,d) 15 

 

Temporal Dynamics: Depth-integrated ecotype abundance patterns   

As was seen in the total Prochlorococcus population, the depth-integrated (0-

200m) abundance of all five ecotypes followed clear annual patterns at BATS (Fig. 3a).  

Spectral analysis of each ecotype revealed dominant peaks in the power spectrum at a 20 

period of one year (Supp. Fig. 3), and autocorrelations displayed a sinusoidal pattern, 

with peaks in autocorrelation every twelve months (Supp. Fig. 4).  Furthermore, fitting a 

single component Fourier series with a period of 1 year to each ecotype produced R2 
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values ranging from 0.48 (eMIT9313) to 0.67 (eSS120), indicating that most of the 

variability in integrated abundance could be accounted for by an annual oscillation. 

Annual variations in temperature and mixed layer depth were smaller at HOT than 

at BATS, as were the variations in ecotype abundance (Fig. 3b).  While spectral analysis 

did reveal that all ecotypes had a peak in the power spectrum at a period of 1 year, this 5 

was not the only strong signal, particularly for the LL ecotypes (Supp. Fig. 5).  Fitting a 

single component Fourier series with a period of 1 year to each ecotype produced R2 

values ranging from only 0.17 (eMIT9312) to 0.33 (eMIT9313).  In addition, 

autocorrelations did not display the same strong sinusoidal pattern as seen at BATS 

(compare Supp. Fig. 3 with Supp. Fig. 6).  Thus, while there was a component of annual 10 

variability to ecotype abundance at HOT, there was also variability at periods greater and 

less than one year.  This suggests that when annual environmental variations are more 

moderate, the impact of intra- and inter-annual events, such as passage of mesoscale 

eddies or El Niño/La Niña oscillations - both known to influence primary production and 

phytoplankton community composition at HOT (Bibby et al. 2008; Corno et al. 2007; 15 

Karl et al. 1995; Letelier et al. 2000) - may become more pronounced.  

Although ecotype abundance followed a clear annual cycle at BATS, the cycles 

were not synchronized among ecotypes, i.e. different ecotypes reached peak abundance at 

different times.  In each of the five years, the eNATL ecotype reached its maximum 

integrated abundance about four months after winter deep mixing events (Table 2), 20 

typically in June (Supp. Fig. 7). Abundance of eMED4 peaked roughly one month later, 

while the LL-clades eSS120 and eMIT9313 reached maximal abundance about eight 

months after the deep mixing event (Table 2). HL ecotype eMIT9312 also reached 
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maximal abundances at around the same time as eSS120 and eMIT9313, typically in 

October or November (Supp. Fig. 7).  The regularity of this pattern indicates that each 

ecotype responded to changes in environmental conditions in different, yet consistent 

ways, resulting in an annually repeating succession of ecotypes. 

 The succession of Prochlorococcus ecotypes is in some ways reminiscent of 5 

classical phytoplankton succession models, although it is occurring at a much smaller 

phylogenetic scale; all Prochlorococcus differ in 16S rRNA sequence by <3% (Moore et 

al. 1998), which would collectively constitute a single bacterial species by conventional 

standards (Stackebrandt and Goebel 1994).  Interestingly, two recent time series studies 

at BATS have also uncovered annual cycles and succession patterns in other microbial 10 

groups, most notably the SAR11 clade (Carlson et al. 2009; Treusch et al. 2009).  For 

example, one SAR11 subgroup reaches peak abundance in surface waters during the 

summer, while another subgroup peaks in the winter (Carlson et al. 2009). SAR11 

bacteria are the most abundant heterotrophs at BATS and are major consumers of 

dissolve organic compounds (Malmstrom et al. 2005; Morris et al. 2002), whereas 15 

Prochlorococcus is the most abundant photoautotroph and a substantial source of 

dissolved organics (Bertilsson et al. 2005; DuRand et al. 2001).  In addition, SAR11 

bacteria and Prochlorococcus are both major consumers of small compounds like amino 

acids and dimethylsulfoniopropionate (DMSP) (Malmstrom et al. 2004; Michelou et al. 

2007; Vila-Costa et al. 2006; Zubkov et al. 2003), which are significant sources of C,N, 20 

and S to marine microbial communities.  Therefore, it seems plausible that succession in 

these two abundant groups could be linked through the production of, and competition 
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for, dissolved organic compounds.  Uncovering potential links in the dynamics of the 

dominant microbial groups presents a future challenge. 

 

Ecotype abundance in different regions of the euphotic zone 

Variations in light and temperature levels, which impact the growth of 5 

Prochlorococcus (Johnson et al. 2006; Moore and Chisholm 1999; Zinser et al. 2007), are 

greater in surface waters than at depth.  Thus integrating abundance across the entire 

water column likely obscures important features in ecotype dynamics.  To get a more 

detailed understanding of the temporal and spatial dynamics of the ecotypes, we analyzed 

integrated abundance in three sections of the euphotic zone (0-60m, 60-120m, and 120-10 

200m).  

The HL-adapted ecotype eMIT9312 displayed similar abundance patterns in the 

upper (0-60m) and middle (60-120m) euphotic zone at BATS, but below 120m the 

seasonal cycle was out of phase with surface cycles by several months (Fig. 4a; Fig. 5a).  

Abundance in the lower euphotic was positively correlated with mixed layer depth 15 

(Spearman R = 0.5; p <0.05), and abundance peaks occurred simultaneously with annual 

deep mixing events (Fig. 4a).  This suggests that it is the transport of surface populations 

below 120m, and not in situ growth, that may be responsible for most of the annual 

variation in abundance of eMIT9312 in the lower euphotic zone at BATS. 

As with eMIT9312, patterns of eMED4 abundance in the upper and middle 20 

euphotic zone also differed from those in the lower zone at BATS (Fig. 5b), with strong 

spikes in abundance below 120m accompanying deep mixing (Fig. 4b).  But while the 

eMED4 and eMIT9312 dynamics were synchronized below 120m, these HL-adapted 
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ecotypes were out of synchronization by several months in the upper 120m (Fig. 5a,b).  

That is, each year at BATS, eMED4 typically reached peak abundance in July-August, 

whereas eMIT9312 reached maximum abundance in October-November (Supp. Fig. 7).  

At HOT, in contrast, these two HL ecotypes did not display these offset repeating 

patterns. 5 

We hypothesize that different temperature sensitivities of eMED4 and eMIT9312 

explain, at least in part, the differences in their temporal dynamics at BATS.  That is, 

strains belonging to the eMED4 clade have lower temperature optima than those 

belonging to the eMIT9312 clade (Johnson et al. 2006; Zinser et al. 2007).   If this 

differential trait is universal among cells belonging to the eMED4 and eMIT9313 clades, 10 

then this would allow eMED4 cells to accumulate during the first half of the year when 

temperatures were low, while the higher temperature optimum of eMIT9312 would limit 

their accumulation until later in the season when temperatures were high – as was 

observed at BATS.  In fact, the abundance of eMED4 in the upper 60m was negatively 

correlated with temperature when light levels were taken into account (partial correlation 15 

coeff. -0.43; p<0.05), whereas eMIT9312 abundance was positively correlated with 

temperature (partial correlation coeff. 0.30; p<0.05).  The potential influence of 

temperature on the temporal distribution of HL ecotypes at BATS is analogous to its 

inferred influence on their geographic distribution:  eMED4 dominates in cooler, higher 

latitude waters, and eMIT9312 dominates warmer, lower latitude waters (Johnson et al. 20 

2006; Zwirglmaier et al. 2007). 

Abundance patterns of eNATL also differed among regions of the euphotic zone, 

and the similarity of these patterns between BATS and HOT was striking.  At both 
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locations, abundance in the upper 60m typically peaked 3-4 months earlier than at 60-

120m and 120-200m (Fig. 4c,h; Fig. 5c,h).  Integrated abundance in the upper 60m 

reached maximum levels during deep mixing events, and decreased as the mixed layer 

depth shoaled (Fig 4c,h). This suggests that annual peaks in abundance in the upper 60m 

were due, at least in part, to vertical transport of deeper cells to surface waters via 5 

mixing. While it remains unclear if members of the LL-adapted eNATL clade were able 

to grow at high light levels found in the upper euphotic zone, the net accumulation 

eNATL cells throughout the water column during periods of deep mixing confirmed that 

the eNATL clade was able to at least tolerate temporary exposure to high irradiance.   

In contrast to eNATL, the abundance of the other two LL-adapted ecotypes, 10 

eSS120 and eMIT9313, did not increase dramatically in the upper 60m during periods of 

deep mixing.  In fact, their abundance of was typically near or below detection levels 

throughout the entire water column at BATS when the well-mixed layer spanned the 

euphotic zone (Fig 4d,e).  It appears that, unlike eNATL, members of the eSS120 and 

eMIT9313 ecotypes could not tolerate temporary high light exposure when transported to 15 

surface waters via mixing.  At HOT, however, the mixed layer depth rarely exceeded 

100m, and therefore a substantial fraction eSS120 and eMIT9313 cells were not 

transported to surface waters during winter mixing events.   Thus, it appears that eSS120 

and eMIT9313 maintained relatively stable abundance levels throughout the time series, 

in comparison with BATS, as they were not subjected to inhibitory, or lethal, high light 20 

exposure during mixing events. 
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Response to light shock in cultured isolates 

To directly test the hypothesis that members of the eNATL clade can withstand 

temporary exposure to high intensity light better than members of the other LL-ecotypes, 

we performed light shock experiments with cultured isolates from the eMED4, eNATL, 

and eSS120 clades.  Strains acclimated to an irradiance of 35 µE m-2 s-1 were exposed to 5 

light levels of 400 µE m-2 s-1 for 4 hours and then returned back to 35 µE m-2 s-1.  For 

perspective, these light levels are equivalent to those that would be found at 90m and 

36m at mid-day, assuming a surface irradiance of 2,000 µE m-2 s-1 and an attenuation 

coefficient of –0.045 m-1, which are typical of HOT and BATS.  Furthermore, 400 µE m-2 

s-1 is a lethal intensity for NATL2a and SS120, but not MED4, when applied 10 

continuously (Moore and Chisholm 1999).   

In vivo chlorophyll fluorescence of all three cultures dropped significantly relative 

to the control after the light shock.  Fluorescence in MED4 and NATL2a cultures 

rebounded within 24 hours and continued to increase over the next 48 hours (Fig. 6), 

while fluorescence of the SS120 culture continued to decline for the following 72 hours.  15 

Cell concentrations of MED4 and NATL2a also rose following the light shock, whereas 

the number of SS120 cells declined throughout the recovery period (Supp. Fig. 8). These 

results indicate that NATL2a can withstand temporary light shock better than SS120, 

which is consistent with the temporal and spatial distribution patterns of their respective 

ecotypes at HOT and BATS described above.  These results are also consistent with a 20 

similar light shock experiment comparing isolates SS120 and PCC 9511, a member of the 

HL-adapted eMED4 ecotype.  In this study, the capacity to repair damage to photosystem 

II caused by light shock was much greater in PCC 9511 than in SS120 (Six et al. 2009).  
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Although it was not tested specifically, it is plausible that NATL2a is also better able to 

reverse photoinactivation of photosystem II than SS120.  If so, then this would present a 

possible mechanism to explain, at least in part, the differences in temporary light shock 

tolerance and the subsequent environmental distributions of LL ecotypes. 

Analysis of the genomes of cultured isolates provides some insight into the genes 5 

that may be responsible for differences in light physiology among LL-adapted ecotypes.  

For example, the two sequenced eNATL isolates each have 41 genes encoding high light-

inducible proteins (HLIPs), whereas the other LL-adapted ecotypes only have 9 to 13 

HLIP genes (Coleman and Chisholm 2007). This protein family, also called small cab-

like proteins, aids in high-light survival and photoacclimation in Synechocystis (Havaux 10 

et al. 2003; He et al. 2001), and may also play role in light-shock tolerance in eNATL. 

The mechanism by which they do this remains unclear, but HLIPs are thought to 

physically associate with either photosystem and allow it to shed excess energy as heat 

and thereby reduce photoinactivation (Promnares et al. 2006; Yao et al. 2007).  As a 

photosynthetic organism, reducing and reversing the effects of photosystem inactivation 15 

is crucial for the survival of Prochlorococcus exposed to high light levels.  

Differences in their ability to repair UV-damaged DNA of may also partially 

explain differences in the environmental distributions of eNATL and other LL ecotypes.  

The six sequenced isolates from the two HL-adapted ecotypes and the two sequenced 

isolates from the eNATL ecotype contain genes that encode photolyase (Coleman and 20 

Chisholm 2007; Kettler et al. 2007), an enzyme helps repair UV-damaged DNA (Sancar 

2000).  Photolyase genes are absent in the genomes of the other four LL-adapted isolates 

that have been sequenced. While these other LL-adapted isolates do encode for an 
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alternate putative UV-repair enzyme, pyrimidine dimer glycosylase (Goosen and 

Moolenaar 2008; Partensky and Garczarek 2010), its function in Prochlorococcus has not 

been confirmed. This enzyme also has a modification of the Arg-26 residue that is known 

to dramatically reduce activity in homologs (Doi et al. 1992; Goosen and Moolenaar 

2008), suggesting a diminished ability to repair UV-damaged DNA in eSS120 and 5 

eMIT9313 ecotypes. Indeed, the high-light adapted strain MED4, which encodes 

photolyase, has a greater tolerance to UV exposure than low-light adapted strain 

MIT9313 (Osburne et al. 2010), which lacks photolyase but encodes pyrimidine dimmer 

glycosylase.  Thus, the protection from UV exposure provided by photolyase may 

explain, at least in part, why the eNATL clade can better survive transport to UV-rich 10 

surface waters.”  

 

Conclusions 

 Clear patterns in the temporal and spatial distribution of Prochlorococcus 

ecotypes emerge from this study.  For example, ecotype abundance follows a strong 15 

annual pattern at BATS, whereas ecotype abundance has only a weak annual pattern at 

HOT.  In addition, ecotypes at BATS follow an annual succession pattern, but a similar 

pattern is not observed at HOT.  These patterns are consistent with what we have learned 

from physiological assays on cultured isolates with regards to the light optima, 

temperature optima, and light-shock tolerance of different ecotypes.  That is, the distinct 20 

distribution patterns at both HOT and BATS can be explained, at least in general terms, 

by the consistent and predictable responses of ecotypes to changes in the light, 

temperature, and mixing at each location.   
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Analyses of inorganic nutrient concentrations and ecotype abundance were not 

possible as nutrient levels were below detection in the upper 100m at BATS throughout 

most of this study.  However, while nutrients undoubtedly influence growth rates and 

standing stocks of Prochlorococcus, their influence on specific ecotypes may not be 

apparent, as evidenced by the fact that general patterns can be explained without them.  5 

Indeed, recent work suggests that nitrate concentrations might impact the composition of 

Prochlorococcus populations at finer phylogenetic levels than the ecotypes examined in 

our study (Martiny et al 2009b).  Exploring how, and at which temporal, spatial, and 

phylogenetic scales, chemical and biological environment influence Prochlorococcus 

abundance and diversity presents a future challenge.  10 

 
Results from this study help set the stage for coupling patterns in temporal and 

spatial dynamics of ecotypes with insights into their metabolic potential.  The next step is 

to understand how Prochlorococcus ecotypes, or even sub-groups within these ecotypes, 

might differ in terms of nutrient usage, dissolved organic matter production and 15 

consumption, and other metabolic processes. This understanding will come from 

additional studies involving strain isolation, metagenomic comparisons, and large-scale 

single-cell genomics. 

 

 20 
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Figure Legends 

Figure 1: Ecotype distribution patterns in relation to depth and photosynthetically active 

radiation.  A smoothed illustration of relationship between ecotype abundance and 

irradiance, calculated from a compilation of data from all 5 years, was plotted for HOT 

(A) and BATS (C).  Data were smoothed by locally weighted regression of ecotype 

abundance against irradiance.   Note, smoothed data exclude profiles with a mixed layer 

depth >100m. Representative depth profiles of ecotype abundance at HOT (B,E) and 

BATS (D,F) during periods of stratification and deep mixing. Dashed lines mark the 

mixed layer depth, and error bars represent one standard deviation.  An illustration of the 

color scheme and general phylogenetic relationships among ecotypes (after Kettler et al. 

2007; Rocap et al. 2002) is displayed in panel G.  This tree serves only as reference to the 

other panels; branch lengths are not to scale. 

 

Figure 2: Abundance of Prochlorococcus and Synechococcus at BATS and HOT 

determined by flow cytometry (bottom x-axis). Abundance levels from this study are 

compared with those collected at BATS from 1990-1994 (DuRand et al. 2001) (A,B),  

and at HOT from 1991-1995 (C,D) (top x-axis), which were also determined by flow 

cytometry. 

 

Figure 3: Integrated ecotype abundance (0-200m) at BATS (A) and HOT (B) from 2003-

2008. Solid lines represent abundances smoothed by locally weighted regression for 

eMIT9312 (yellow), eMED4 (green), eNATL (blue), eSS120 (purple), and eMIT9313 

(red).   



 

Figure 4: Ecotype abundance at BATS (A-E) and HOT (F-J) from 2003-2008.  Sampling 

depths at HOT and BATS are indicated by the points overlaying panels A and F.  The 

solid lines indicate the mixed layer depth. 

 

Figure 5: Integrated ecotype abundance of in different regions of the euphotic zone at 

BATS (A-E) and HOT (F-J).  The regions from 0-60m, 60-120m, and 120m are 

identified by filled squares, open circles, and open triangles, respectively.  Abundance 

was smoothed using locally weighted regression to eliminate low frequency variation. 

 

Figure 6: Response of Prochlorococcus strains MED4, NATL2a, and SS120 to light-

shock. In vivo chlorophyll fluorescence of duplicate cultures acclimated to 35 µE m-2 s-1, 

exposed to 400 µE m-2 s-1 for four hours (grey area), and returned to 35 µE m-2 s-1. 

Controls did not experience light shock.  Error bars represent one standard deviation. 

 

Supplementary Figure 1: Neighbor-joining tree of ITS sequences amplified from both 

HOT and BATS using re-designed qPCR primers specific for eSS120 ecotype.  

Amplified ITS sequences are identified by name "HOT_BATS." Previously sequenced 

genomes are marked with an *.  Bootstrap values >40 are indicated (n=100). 

 

Supplementary Figure 2:  Ecotype abundance vs. photosynthetically-active radiation at 

BATS (A-E) and HOT (F-J).  Data point colors indicate temperature. Black lines 

represent a locally weighted regression of the relationship between abundance and 



irradiance.  No profiles were excluded based on mixed layer depth (compare with Fig. 

1a,b). 

 

Supplementary Figure 3:  Spectral analysis of integrated (0-200m) ecotype abundance  at 

BATS.  Peaks represent unbiased power spectral density at periods of 1 month. 

 

Supplementary Figure 4:  Autocorrelation of integrated abundance at BATS with lags of 

one month.  Dashed lines represent two standard deviations around a correlation 

coefficient of 0. 

 

Supplementary Figure 5:  Spectral analysis of integrated (0-200m) ecotype abundance  at 

HOT.  Peaks represent unbiased power spectral density at periods of 1 month. 

 

Supplementary Figure 6:  Autocorrelation of integrated abundance at HOT with lags of 

one month. Dashed lines represent two standard deviations around a correlation 

coefficient of 0. 

 

Supplementary Figure 7: Annual pattern of integrated abundance, surface temperature, 

surface light levels, and mixed layer depth at BATS.  Data represent a smoothed 

compilation of all five years. 

 

Supplementary Figure 8: Response of Prochlorococcus strains MED4, NATL2a, and 

SS120 to light-shock. Cell counts determined by flow cytometry of duplicate cultures 



acclimated to 35 µE m-2 s-1, exposed to 400 µE m-2 s-1 for four hours (grey area), and 

returned to 35 µE m-2 s-1. Controls did not experience light shock.  Error bars represent 

one standard deviation. 
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Ecotype HOT (m) BATS (m)

eMIT9312 42 ± 27
A

54 ± 28
A

eMED4 71 ± 29
B

60 ± 26
A

eNATL 105 ± 18
C

87 ± 22
B

eSS120 118 ± 26
D

101 ± 28
C

eMIT9313 128 ± 30
D

107 ± 25
C

Table 1: Average depth of maximum ecotype 

abundance at HOT and BATS (mean ± STD).  

Samples collected when the mixed layer 

depth was >100m were excluded.  Values 

with different superscripts are significanlty 

different (Tukey post test of repeated 

measures ANOVA; alpha = 0.05).



Ecotype

Correlation coeff. 

(lag in months)

Max. cross-

correlation coeff. 

(lag in months) 

eMIT9312 -0.06   (0) 0.61* (8)

eMED4 -0.62* (0) 0.58* (5)

eNATL -0.54* (0) 0.65* (4)

eSS120 -0.60* (0) 0.66* (8)

eMIT9313 -0.46* (0) 0.61* (8)

Table 2: Correlation and cross-correlation between 

integrated ecotype abundance (0-200m) and 

mixed layer depth at BATS.  The coefficient of 

cross-correlation represents the relationship 

between abundance at one month and the mixed 

layer depth from previous months.  The maximum 

positive cross-correlation is reported along with 

the delay in months (lag) between abundance and 

mixed layer depth when correlation is greatest. * 

indicates p<0.05.
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