Study of $B \to X\gamma$ decays and determination of $|V_{td}/V_{ts}|$

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

| Citation | del Amo Sanchez, P. et al. “Study of $B \to X\gamma$ decays and determination of $|V_{td}/V_{ts}|$.” Physical Review D 82.5 (2010): n. pag. © 2010 The American Physical Society |
|--------------------|---|
| As Published | http://dx.doi.org/10.1103/PhysRevD.82.051101 |
| Publisher | American Physical Society |
| Version | Final published version |
| Citable link | http://hdl.handle.net/1721.1/61336 |
| Terms of Use | Article is made available in accordance with the publisher’s policy and may be subject to US copyright law. Please refer to the publisher’s site for terms of use. |
Study of $B \to X \gamma$ decays and determination of $|V_{td}/V_{ts}|$
Using a sample of 471×10^6 $B \bar{B}$ events collected with the BABAR detector, we study the sum of seven exclusive final states $B \to X_{(s)} \gamma$, where $X_{(s)}$ is a strange (nonstrange) hadronic system with a mass of up to 2.0 GeV/c^2. After correcting for unobserved decay modes, we obtain a branching fraction for $b \to d \gamma$...
of (9.2 ± 2.0(stat) ± 2.3(syst)) × 10^{-6} in this mass range, and a branching fraction for \(b \to s\gamma \) of (23.0 ± 0.8(stat) ± 3.0(syst)) × 10^{-5} in the same mass range. We find \(\frac{B_{B^{0} \to K^{+}e^-\bar{\nu}}}{B_{B^{0} \to K^{+}e^-\bar{\nu}}} = 0.040 ± 0.009\) (stat) ± 0.010(syst), from which we determine \(|V_{td}/V_{ts}| = 0.199 ± 0.022\) (stat) ± 0.024(syst) ± 0.002(th).

The decays \(b \to d\gamma \) and \(b \to s\gamma \) are flavor-changing neutral current processes forbidden at tree level in the standard model (SM). The leading-order processes are one-loop electroweak penguin diagrams, for which the top quark is the dominant virtual particle. In theories beyond the SM, new virtual particles may appear in the loop, which could lead to measurable effects on experimental observables such as branching fractions and CP asymmetries [1]. In the SM the inclusive rate for \(b \to d\gamma \) is suppressed relative to \(b \to s\gamma \) by a factor \(|V_{td}/V_{ts}|^2 \), where \(V_{td} \) and \(V_{ts} \) are Cabibbo-Kobayashi-Maskawa matrix elements. Measurements of \(|V_{td}/V_{ts}| \) using the exclusive modes \(B \to (\rho, \omega)\gamma \) and \(B \to K^{*}\gamma \) [2,3] are now well established, with theoretical uncertainties of 7% from weak annihilation and hadronic form factors [4]. This ratio can also be obtained from the \(B_d \) and \(B_s \) mixing frequencies and is found to be 0.206 ± 0.0007(exp) + 0.0081 − 0.0060(th) [5]. It is important to confirm the consistency of the two methods of determining \(|V_{td}/V_{ts}| \), since new physics effects would enter in different ways in mixing and radiative decays. A measurement of the branching fractions of inclusive \(b \to d\gamma \) relative to \(b \to s\gamma \) would determine \(|V_{td}/V_{ts}| \) with reduced theoretical uncertainties compared to that from exclusive modes [6].

This paper supersedes [7], and presents the first significant observation of the \(b \to d\gamma \) transition in the hadronic mass range \(M(X_{d}) > 1.0 \text{ GeV}/c^2 \), resulting in a significant improvement in the determination of \(|V_{td}/V_{ts}| \) via the ratio of inclusive widths. Inclusive \(b \to s\gamma \) and \(b \to d\gamma \) rates are extrapolated from the measurements of the partial decay rates to seven exclusive final states (see Table I) in the hadronic mass ranges 0.5 < \(M(X_{d}) < 1.0 \text{ GeV}/c^2 \) (low mass, containing the previously measured \(K^* \), \(\rho \) and \(\omega \) resonances) and 1.0 < \(M(X_{d}) < 2.0 \text{ GeV}/c^2 \) (high mass). We combine these measurements and make a model-dependent extrapolation to higher hadronic mass to obtain an inclusive branching fraction \((B) \) for \(b \to (s, d)\gamma \). These measurements use the full data set of 471 \times 10^6 \(\bar{B}B \) pairs collected at the \(\Upsilon(4S) \) resonance at the PEP-II B factory with the BABAR detector [8].

High-energy photons are reconstructed from an isolated energy cluster in the barrel of the calorimeter, with shape consistent with a single photon, and energy 1.15 < \(E_{\gamma}^{*} \) < 3.50 GeV, where * denotes the center-of-mass (CM) frame of the \(\bar{B}B \) system. We remove photons that can form a \(\pi^0 \) (\(\eta \)) candidate in association with another photon of energy greater than 30 (250) MeV if the two-photon invariant mass is in the range 110 < \(m_{\gamma\gamma} < 160 \) (520 < \(m_{\gamma\gamma} < 560 \) MeV/c^2) for the low mass region and 95 < \(m_{\gamma\gamma} < 155 \) (530 < \(m_{\gamma\gamma} < 565 \) MeV/c^2) for the high mass region.

Charged pion and kaon candidates are selected from well-reconstructed tracks. We use a pion selection algorithm to differentiate pions from kaons, with a typical selection efficiency of 95% and kaon misidentification rate of 4%. Kaons are identified as tracks failing the pion selection criteria. We reconstruct \(\pi^0(\eta) \) candidates from pairs of photons of minimum energy 20 MeV with an invariant mass 115 < \(m_{\gamma\gamma} < 150 \) (470 < \(m_{\gamma\gamma} < 620 \) MeV/c^2). We require all pion, eta, and kaon candidates to have a momentum in the laboratory frame greater than 600 (425) MeV/c in the low (high) mass region.

The selected pion, eta, kaon, and high-energy photon candidates are combined to form \(B \) meson candidates consistent with one of the seven decay modes. The charged particles are combined to form a common vertex, whose \(\chi^2 \) probability is required to be greater than 1%. We use the kinematic variables \(\Delta E = E_B - E_{\text{beam}} \), where \(E_B \) is the energy of the \(B \) meson candidate and \(E_{\text{beam}} \) is the beam energy, and \(m_{\text{ES}} = \sqrt{E_{\text{beam}}^2 - \vec{p}_B^*} \), where \(\vec{p}_B^* \) is the momentum of the \(B \) candidate. We consider candidates in the range −0.3 < \(\Delta E < 0.2 \text{ GeV} \) and \(m_{\text{ES}} > 5.22 \text{ GeV}/c^2 \).

Contributions from continuum processes (\(e^+e^- \to q\bar{q} \)), with \(q = u, d, s, c \) are reduced by considering only events for which the ratio \(R_2 \) of second-to-zeroth order Fox-Wolfram moments [9] is less than 0.98. To further discriminate between the jetlike continuum background and the more spherically symmetric signal events, we compute the angle \(\theta_T^2 \) between the photon momentum and the thrust axis of the rest of the event (ROE) and require \(|\cos(\theta_T^2)| < 0.8 \). The ROE is defined as all charged tracks and neutral energy deposits that are not used to reconstruct the \(B \) candidate.

Ten other event shape variables that distinguish between signal and continuum events are combined in a neural

<table>
<thead>
<tr>
<th>TABLE I. The reconstructed decay modes. Charge conjugate states are implied throughout this paper</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(B \to X_{d}\gamma)</td>
<td>(B \to X_{s}\gamma)</td>
</tr>
<tr>
<td>(B^0 \to \pi^+\pi^-\gamma)</td>
<td>(B^0 \to K^+\pi^-\gamma)</td>
</tr>
<tr>
<td>(B^+ \to \pi^+\pi^0\gamma)</td>
<td>(B^+ \to K^+\pi^0\gamma)</td>
</tr>
<tr>
<td>(B^+ \to \pi^+\pi^-\pi^0\gamma)</td>
<td>(B^+ \to K^+\pi^-\pi^0\gamma)</td>
</tr>
<tr>
<td>(B^0 \to \pi^+\pi^-\pi^0\gamma)</td>
<td>(B^0 \to K^+\pi^-\pi^0\gamma)</td>
</tr>
<tr>
<td>(B^+ \to \pi^+\pi^-\pi^0\gamma)</td>
<td>(B^+ \to K^+\pi^-\pi^0\gamma)</td>
</tr>
<tr>
<td>(B^+ \to \pi^+\eta\gamma)</td>
<td>(B^+ \to K^+\eta\gamma)</td>
</tr>
</tbody>
</table>
network (NN). These include the ratio R'_2, which is R_2 calculated in the frame recoiling against the photon momentum; the B meson production angle with respect to the beam axis in the CM frame; θ_{p}^γ, and the L-moments [10] of the ROE with respect to either the thrust axis of the ROE or the direction of the high-energy photon. Differences in lepton, pion, and kaon production between background and B decays are exploited by including several flavor-tagging variables applied to the ROE [11]. Using the NN output, we reject 99% of continuum background while preserving 25% of signal decays.

After all selections are applied, there remain events with more than one B candidate. In these events the candidate with the reconstructed π^0 or η mass closest to nominal is retained. Where there is no π^0 or η we retain the candidate with the highest vertex χ^2 probability.

The signal yields in the data for the sum of the seven decay modes are determined from two-dimensional extended maximum likelihood fits to the ΔE and m_{ES} distributions. We consider the following contributions: signal, combinatorial backgrounds from continuum processes, backgrounds from other B decays, and cross-feed from misreconstructed $B \rightarrow X\gamma$ events. The fits to $B \rightarrow X_{d}\gamma$ events contain components from misidentified $b \rightarrow s\gamma$ decays, with an expected contribution of 345 events. We neglect the small $b \rightarrow d\gamma$ background in the fits to $B \rightarrow X_{s}\gamma$ events.

Each contribution is modeled by a probability density function (PDF) that is determined from Monte Carlo (MC) simulated events unless otherwise specified. For the misidentified signal cross-feed components, we use a binned two-dimensional PDF to account for correlations. All the other PDFs are products of one-dimensional functions of ΔE and m_{ES}. For signal, the m_{ES} spectrum is described by a Crystal Ball function [12], and ΔE by a Cruijff function [13]. The parameters of these functions are determined from the fit to the high-statistics $B \rightarrow X_{s}\gamma$ data sample. We use these fitted values to fix the signal shape in the fits to $B \rightarrow X_{d}\gamma$ events.

The remaining B backgrounds contain a small component that peaks in m_{ES} but not ΔE, which is modeled by a Gaussian distribution in m_{ES}. Continuum and other nonpeaking backgrounds are described by an ARGUS shape [14] in m_{ES} and a second-order polynomial in ΔE.

We perform separate fits for $B \rightarrow X_{d}\gamma$ and $B \rightarrow X_{s}\gamma$ in each of the hadronic mass ranges 0.5–1.0 GeV/c^2 and 1.0–2.0 GeV/c^2. For each of the four fits, we combine the component PDFs and fit for the signal, generic B and continuum yields, the ARGUS and two polynomial shape parameters. We scale the cross-feed contributions proportionally to the fitted signal yield, refit and iterate until the procedure converges. Projections of m_{ES} and ΔE from fits to data for $B \rightarrow X_{s}\gamma$ and $B \rightarrow X_{d}\gamma$ are shown in the low mass region in Fig. 1 and in the high mass region in Fig. 2. Table II gives the signal yields, efficiencies (after correct-
PB fractions, some of which are common to both uncertainty in the measurement of the partial branching data sample.

B (see Table III: those that do not cancel in the ratio are the same for the which are relatively free of background, assuming that Xd/C13 and the veto have been evaluated using independent control samples of data and MC simulated events, and incorporated into our analysis. Uncertainty due to the NN selection has been evaluated by comparing the efficiency of the selection in data and MC for the B → Xsγ events, which are relatively free of background, assuming that potential discrepancies between data and MC are the same for the B → Xdγ sample. The means and widths of the signal PDF are varied within the range allowed by the fit to the B → Xsγ data, accounting for correlations. Other PDF parameters are also varied within the 1σ limits determined from the fit to MC. We vary the b → sγ background in the fit to B → Xdγ by the statistical uncertainty on our measurement of those decays. The signal cross feed originating from our measured channels is varied by the statistical uncertainty on our measurement; other signal cross-feed backgrounds by ±50%. An additional uncertainty on the efficiency arises from the fragmentation of the hadronic system among the measured final states. For B → Xsγ the uncertainty is constrained by the errors on the measured data; for B → Xdγ an estimate is obtained from the difference between the default phase-space fragmentation (see below) and a reweighting using the measured data/MC differences in B → Xsγ.

To obtain inclusive B(b → sγ) and B(b → dγ) we need to correct the partial B values in Table II for the fractions of missing final states. After correcting for the 50% of

<table>
<thead>
<tr>
<th>Systematic</th>
<th>Error source</th>
<th>M(Xs) 0.5–1.0</th>
<th>M(Xs) 1.0–2.0</th>
<th>M(Xd) 0.5–1.0</th>
<th>M(Xd) 1.0–2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track selection</td>
<td>0.3%</td>
<td>0.4%</td>
<td>0.3%</td>
<td>0.4%</td>
<td></td>
</tr>
<tr>
<td>Photon reconstruction</td>
<td>1.8%</td>
<td>1.8%</td>
<td>1.8%</td>
<td>1.8%</td>
<td></td>
</tr>
<tr>
<td>π0/η reconstruction</td>
<td>0.9%</td>
<td>1.1%</td>
<td>1.4%</td>
<td>1.6%</td>
<td></td>
</tr>
<tr>
<td>Neural network</td>
<td>1.1%</td>
<td>4.9%</td>
<td>1.1%</td>
<td>4.9%</td>
<td></td>
</tr>
<tr>
<td>B counting</td>
<td>0.6%</td>
<td>0.6%</td>
<td>0.6%</td>
<td>0.6%</td>
<td></td>
</tr>
<tr>
<td>PID (*)</td>
<td>2.0%</td>
<td>2.0%</td>
<td>2.0%</td>
<td>2.0%</td>
<td></td>
</tr>
<tr>
<td>Fit bias (*)</td>
<td>0.1%</td>
<td>0.9%</td>
<td>4.9%</td>
<td>6.5%</td>
<td></td>
</tr>
<tr>
<td>PDF shapes (*)</td>
<td>2.3%</td>
<td>0.6%</td>
<td>3.7%</td>
<td>3.4%</td>
<td></td>
</tr>
<tr>
<td>Histogram binning (*)</td>
<td>0.8%</td>
<td>0.2%</td>
<td>1.8%</td>
<td>1.8%</td>
<td></td>
</tr>
<tr>
<td>Background (*)</td>
<td>0.8%</td>
<td>1.2%</td>
<td>5.9%</td>
<td>7.0%</td>
<td></td>
</tr>
<tr>
<td>Fragmentation (*)</td>
<td>⋯</td>
<td>3.3%</td>
<td>⋯</td>
<td>5.1%</td>
<td></td>
</tr>
<tr>
<td>Signal model</td>
<td>⋯</td>
<td>5.8%</td>
<td>⋯</td>
<td>6.0%</td>
<td></td>
</tr>
<tr>
<td>Error on partial B</td>
<td>4.0%</td>
<td>9.0%</td>
<td>9.3%</td>
<td>14.2%</td>
<td></td>
</tr>
<tr>
<td>Missing ≥ 5 body</td>
<td>9.6%</td>
<td>⋯</td>
<td>18.2%</td>
<td>⋯</td>
<td></td>
</tr>
<tr>
<td>Other missing states</td>
<td>7.5%</td>
<td>⋯</td>
<td>15.3%</td>
<td>⋯</td>
<td></td>
</tr>
<tr>
<td>Spectrum model</td>
<td>1.8%</td>
<td>⋯</td>
<td>1.6%</td>
<td>⋯</td>
<td></td>
</tr>
<tr>
<td>Error on inclusive B</td>
<td>4.0%</td>
<td>15.2%</td>
<td>9.3%</td>
<td>27.7%</td>
<td></td>
</tr>
</tbody>
</table>
missing decay modes with neutral kaons, the low mass $B \to X_s \gamma$ measurement is found to be consistent with previous measurements of the rate for $B \to K^* \gamma$ [15]. For the low mass $B \to X_d \gamma$ region, we correct for the small amount of nonreconstructed ω final states (for example, $\omega \to \pi^0 \gamma$), and find a partial branching fraction consistent with previous measurements of $\mathcal{B}(B \to (\rho, \omega) \gamma)$ [15]. We assume that nonresonant decays do not contribute in this region.

In the high mass region, the missing fractions depend on the fragmentation of the hadronic system and are expected to be different for X_d and X_s. In our signal MC, fragmentation is modeled by selecting an array of final-state particles and resonances according to the phase-space probability of the final state, as implemented by JETSET [16]. We further constrain the distribution of X_s final states to that observed for our seven decay modes as well as the distributions of a number of other states measured in [17]. According to this MC model we reconstruct 43% of the total width in $b \to d\gamma$ and 36% in $b \to s\gamma$. A further 37% of the width of $b \to s\gamma$ is constrained by the isospin relation between charged and neutral kaon decays. We explore the uncertainty in the correction for missing modes by considering several alternative models: replacing 50% of $b \to s\gamma$ and $b \to d\gamma$ hadronic final states with a mix of resonances; varying $b \to s\gamma$ fragmentation constraints within their statistical uncertainties; and setting the $b \to d\gamma$ fragmentation rates to those of their corresponding $b \to s\gamma$ states. The resulting missing fractions vary by up to 50(40)% relative to the nominal model in $B \to X_d \gamma$ ($B \to X_s \gamma$). We therefore independently vary final states with ≥ 5 stable hadrons, or with $\geq 2\pi^0$ or η mesons, by $\pm 50(40)$%.

Results for the corrected \mathcal{B} values are shown in Table II. Adding the two mass regions, taking into account a partial cancellation of the missing fraction uncertainties in the ratio of $b \to d\gamma$ to $b \to s\gamma$, we find $\mathcal{B}(b \to d\gamma)/\mathcal{B}(b \to s\gamma) = 0.040 \pm 0.009$(stat) ± 0.010(syst) in the mass range $M(X) < 2.0$ GeV/c^2.

We correct for the unmeasured region $M(X) > 2.0$ GeV/c^2 using the spectral shape from Kagan-Neubert [18] with the kinetic parameters $(m_\rho, \mu_\rho^2) = (4.65 \pm 0.05, -0.52 \pm 0.08)$ extracted from fits of $b \to s\gamma$ and $b \to c\ell\nu$ data [19], yielding corrections of 1.66 ± 0.03; the spectra for $b \to s\gamma$ and $b \to d\gamma$ are expected to be almost identical.

Conversion of the ratio of inclusive branching fractions to the ratio $[V_{td}/V_{ts}]$ is done according to [6], which requires the Wolfenstein parameters ρ and η as input. However, since the world average of these quantities relies on previous measurements of $[V_{td}/V_{ts}]$ we instead reexpress ρ and η in terms of $[V_{td}/V_{ts}]$ and the world average of the independent CKM angle β [15]. This procedure yields a value of $[V_{td}/V_{ts}] = 0.199 \pm 0.022$(stat) ± 0.024(syst) ± 0.002(th), compatible and competitive with more model-dependent determinations from the measurement of the exclusive modes $B \to (\rho, \omega)\gamma$ and $B \to K^*\gamma$ [2,3].

In summary, we have measured the inclusive $b \to s\gamma$ and $b \to d\gamma$ transition rates using a sum of seven final states in the hadronic mass range up to 2.0 GeV/c^2, making the first significant observation of the $b \to d\gamma$ transition in the region above 1.0 GeV/c^2. The value of $[V_{td}/V_{ts}]$ derived from these measurements has an experimental uncertainty approaching that from the measurement of exclusive decays $B \to (\rho, \omega)\gamma$ and $B \to K^*\gamma$, but a significantly smaller theoretical uncertainty.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support BABAR. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MES (Russia), MICIN (Spain), STFC (United Kingdom). Individuals have received support from the Marie Curie EIF (European Union), the A. P. Sloan Foundation (USA) and the Binational Science Foundation (USA-Israel).

[10] L-moments are defined as $L_i = \sum_j p_j^* \cdot |\cos \theta_j^*| / \sum_j p_j^*$ and $L_i = \sum_j p_j^* \cdot |\sin \theta_j^*| / \sum_j p_j^*$, where p_j^* and θ_j^* are the momentum and angle with respect to a given axis, respectively, for each particle j in the ROE.

[13] The Cruijff function is a centered Gaussian with different left-right resolutions and non-Gaussian tails: $f(x) = \exp((x - m)^2/(2\sigma_{L,R}^2 + \alpha_{L,R}(x - m)^2))$.

