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Probing strong-field gravity and black holes
with gravitational waves
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Department of Physics and MIT Kavli Institute, Massachusetts Institute of Technology,
77 Massachusetts Avenue, Cambridge, MA, 02139 United States

Abstract

Gravitational wave observations will be excellent tools for making precise measure-

ments of processes that occur in very strong-field regions of spacetime. Extreme mass

ratio systems, formed by the capture of a stellar mass body compact by a massive

black hole, will be targets for planned space-based interferometers such as LISA and

DECIGO. These systems will be especially powerful tools for testing the spacetime

nature of black hole candidates. In this writeup of the talk I gave at JGRG19, I

describe how the properties of black holes are imprinted on their waveforms, and how

measurements can be used to study these properties and thereby learn about the

astrophysics of black holes and about strong-field gravity.

Detectors for measuring gravitational waves (GWs) have recently completed their first multiyear data
runs. As this article is written, some of these detectors are being run at “enhanced” sensitivity. It is
expected that a final upgrade to “advanced” sensitivity will be needed in order for GWs from astrophysical
sources to be measured regularly. Once that state is reached, we can turn this process around, using
the GWs that we measure to learn about their sources, using GWs for observational astronomy. The
purpose of this article (and the talk on which it is based) is to give a brief review of the state of this field,
focusing in particular on how the characteristics of black holes and strong-field gravity are imprinted on
a system’s GWs.

1 Gravitational waves: Physics and astrophysics

We begin with a brief description of how GWs arise in general realtivity (GR). Our purpose is to introduce
the main concepts which describe this phenomenon; later, we will revisit this calculation, showing how
to go to higher order in order to describe realistic astrophysical sources. We conclude this section with a
quick summary of the astrophysics of binary GW sources.

1.1 Leading waveform

We begin by considering “weak” gravity, so that spacetime is nearly that of special relativity,

gαβ = ηαβ + hαβ . (1)

Take the correction to flat spacetime to be small, so that we can linearize in hαβ when we build our
curvature tensors. The Einstein tensor in particular becomes

Gαβ =
1

2
(∂α∂

µhµβ + ∂β∂
µhµα − ∂α∂βh−�hαβ + ηαβ�h− ηαβ∂

µ∂νhµν) , (2)

where h ≡ ηαβhαβ is the trace of hαβ , and � ≡ ηαβ∂α∂β is the flat spacetime wave operator.
Equation (2) is rather messy. To clean it up, we first introduce the trace-reversed metric perturbation

h̄αβ ≡ hαβ − (1/2)ηαβh. With this definition, Eq. (5) becomes

Gαβ =
1

2

(

∂α∂
µh̄µβ + ∂β∂

µh̄µα −�h̄αβ − ηαβ∂
µ∂ν h̄µν

)

. (3)
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2 Gravitational waves

Next, we take advantage of the gauge-freedom of linearized gravity. In electrodynamics, we may adjust
the potential by the gradient of a scalar, Aµ → Aµ − ∂µΛ. This leaves the field tensor Fµν = ∂µAν −
∂νAµ unchanged. In linearized GR, a similar operation follows by adjusting coordinates: If one changes
coordinates xα → xα + ξα (requiring ∂µξ

α ≪ 1), then

hµν → hµν − ∂µξν − ∂νξµ . (4)

One can easily show that changing gauge leaves all curvature tensors unchanged.
We take advantage of our gauge freedom to choose ξα so that ∂µh̄µν = 0. This is called “Lorenz gauge”

in analogy with the electrodynamic Lorenz gauge condition ∂µAµ = 0. This simplifies our Einstein tensor
considerably, yielding

Gαβ = −1

2
�h̄αβ . (5)

The Einstein equation for linearized gravity thus takes the simple form

�h̄αβ = −16πG

c4
Tαβ . (6)

Using a radiative Green’s function [e.g., [1], Sec. 12.11], we find the solution

h̄αβ(x, t) =
4G

c4

∫

Tαβ(x
′, t− |x− x′|/c)
|x− x′| d3x′ . (7)

Here, x is a spatial “field point,” where h̄αβ is evaluated, and x′ is a “source point,” the spatial coordinate
we integrate over the source’s extent. Notice that the solution at t depends on what happens to the source
at retarded time t− |x− x′|/c. Information must causally propagate from x′ to x.

Equation (7) is an exact solution to the linearized field equation. It gives the unfortunate impression
that every component of the metric perturbation is radiative. Just as one can choose a gauge such
that an isolated point charge has an oscillatory potential, the Lorenz gauge makes all components of
the metric appear radiative, even if they are static2. Fortunately, it is not difficult to see that only a
subset of the metric represents the radiative degrees of freedom in all gauges. We will only quote the
result here; interested readers can find the full calculation in Ref. [3], Sec. 2.2: Given a solution hαβ

to the linearized Einstein field equations, only the spatial, transverse, and traceless components hTT
ij

describe the spacetime’s gravitational radiation in a gauge-invariant manner. Traceless means

δijh
TT
ij = 0 ; (8)

“transverse” means
∂ih

TT
ij = 0 . (9)

Expanding hTT
ij in Fourier modes, we see that Eq. (9) requires hTT

ij to be orthogonal (in space) to each
mode’s wave vector k.

Conditions (8) and (9) make it simple to construct hTT
ij given some hij . Let ni denote components of

the unit vector along the propagation direction. The tensor

Pij = δij − ninj (10)

projects spatial components orthogonal to n. It is then simple to verify that

hTT
ij = hkl

(

PkiPlj −
1

2
PklPij

)

(11)

represents the “TT” metric perturbation. We can now manipulate the solution (7) into

hTT
ij =

2

D

G

c4
d2Ikl
dt2

(

PikPjl −
1

2
PklPij

)

, (12)

2In the electromagnetic case, it is unambiguous which field components are radiative and which are static. Similarly,
one can always tell which curvature components are radiative and which are static. Eddington [2] appears to have been the
first to use the curvature tensor to categorize gravitational degrees of freedom in this way.
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where D is distance to the source, and where

Iij =

∫

xi′xj′Ttt(x
′, t) d3x′ (13)

is the source’s quadrupole moment. It is straightforward to show that the trace I ≡ Iii does not contribute
to Eq. (12), so it is common to use the “reduced” quadrupole moment,

Iij = Iij −
1

3
δijI . (14)

The waveform then takes the form in which it is usually presented,

hTT
ij =

2

R

G

c4
d2Ikl
dt2

(

PikPjl −
1

2
PklPij

)

, (15)

the quadrupole formula for GW emission.
GWs also carry energy from their source. Isaacson [4] first carefully analyzed this in a tensorial

manner, showing that GWs produce a stress-energy tensor given by

TGW
µν =

c4

32πG
〈∇̂µhαβ∇̂νh

αβ〉 , (16)

where ∇̂µ denotes a covariant derivative in the background spacetime. (This assumes the waveform
is in a gauge such that it is transverse and traceless; more general expressions exist.) Notice that the
energy content is quadratic in the wave amplitude; computing it correctly requires taking our perturbative
analysis to second order. We defer the details of this derivation to Ref. [4].

Now consider a binary system with Newtonian orbital dynamics, radiating GWs according to Eq. (15)
and evolving by energy and angular momentum carried off in accordance with Eq. (16). Begin with the
binary’s members in circular orbit of separation R. This binary has orbital energy

Eorb =
1

2
m1v

2
1 +

1

2
m2v

2
2 −

Gm1m2

R
= −GµM

2R
, (17)

(where M = m1 +m2 and µ = m1m2/M) and orbital frequency

Ωorb =

√

GM

R3
. (18)

Far from the source, Eq. (16) tells us the flux of energy carried by GWs:

dEGW

dAdt
=

c4

32πG
〈∂thTT

ij ∂kh
TT
ij 〉nk . (19)

Plugging in Eq. (15) and integrating over the sphere, we find

dE

dt

GW

=

∫

dA
dE

dAdt
=

G

5c5

〈

d3Iij
dt3

d3Iij
dt3

〉

. (20)

For the Newtonian binary,

Iij = µ

(

xixj −
1

3
R2δij

)

; (21)

we choose coordinates such that the components of the separation vector are x1 = R cosΩorbt, x2 =
R sinΩorbt, x3 = 0. Inserting into Eq. (20), we find

dE

dt

GW

=
32

5

G

c5
µ2R4Ω6 . (22)



4 Gravitational waves

We now assert that the binary evolves quasi-statically — any radiation carried off by GWs is accounted
for by the evolution of its orbital energy, dEorb/dt + dEGW/dt = 0. Allow the orbital radius to slowly
change in time, so that dEorb/dt = (dEorb/dR)(dR/dt). Combining this rule with Eq. (22), we find

R(t) =

[

256G3µM2(tc − t)

5c5

]1/4

. (23)

This in turn tells us that the orbital frequency changes according to

Ωorb(t) =

[

5c5

256(GM)5/3(tc − t)

]3/8

. (24)

We have introduced the chirp mass M ≡ µ3/5M2/5, so called because it sets the rate at which the
binary sweeps upward in frequency, or “chirps.” We have also introduced the coalescence time tc, which
formally describes when the separation goes to zero (or when frequency goes to infinity). Corrections
for eccentricity can be computed by separately accounting for the evolution of the binary’s energy and
angular momentum; see Ref. [5], Exercise 16.10 for details.

We conclude this section by writing the gravitational waveform predicted for quadrupole emission
from the Newtonian, circular binary. Evaluating Eq. (15), we find that hij has two polarizations. These
are labeled “plus” and “cross,” from the lines of force associated with their tidal stretch and squeeze:

h+ = −2GM
c2D

(

πGMf

c3

)2/3

(1 + cos2 ι) cos 2ΦN(t) ,

h× = −4GM
c2D

(

πGMf

c3

)2/3

cos ι sin 2ΦN(t) , (25)

where the phase

ΦN (t) =

∫

Ωorb dt = Φc −
[

c3(tc − t)

5GM

]5/8

, (26)

and where f = (1/π)dΦN/dt is the GW frequency. The system’s inclination ι is just the projection of its

orbital angular momentum, L, to the wave’s direction of propagation n: cos ι = L̂ ·n (where L̂ = L/|L|).
Note that h+ and h× depend on, and thus encode, the chirp mass, distance, the position on the sky (via

the direction vector n), and the orientation of the binary’s orbital plane (via L̂). In later discussion, we
will amend Eq. (25) and (26) to include higher order contributions to the binary’s waves and evolution.

1.2 Astrophysical binary sources

The binary example considered in the previous section is particularly germane since compact binary
systems are among the most important astrophysical sources of GWs. Indeed, our best data on GWs
and GW sources comes from observations of binary pulsar systems, pairs of neutron stars at least one of
which is a pulsar. The pulsar member of the pair acts as an outstanding clock, allowing the properties
of the binary to be mapped with great precision.

Some binary neutron stars are in such strong field orbits that the evolution of the binary’s orbital
period due to GW emission can be discerned over long observational baselines. The prototypical example
is the first such system discovered, PSR 1913+16. Over 30 years of study have found extraordinary
agreement between prediction and observation for the evolution of this system’s orbit [6]. Additional
inspiraling systems have been discovered; in all cases for which we have enough data to discern period
evolution, the data agree with theory to within measurement precision [7–11]. At least one additional
recently discovered system is likely to show a measurable inspiral in the next few years [12].

Turn from binary neutron stars to compact binaries more generally. Such systems are organized most
naturally by their masses. At the low end we have stellar-mass binaries, including binary pulsars. The
data on these binaries are quite solid, since we can tie models for their birth and evolution to observations.
At least some fraction of short gamma-ray bursts are likely to be associated with the mergers of neutron
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star-neutron star (NS-NS) or black hole-neutron star (BH-NS) systems [13, 14]; as such, gamma-ray
telescopes may already be telling us about compact binary merger many times per year [15].

There is also evidence that nature produces supermassive binaries, in which the members are black
holes with M ∼ 106 − 108M⊙ such as are found at the centers of galaxies. Theoretical arguments
combining hierarchical galaxy growth scenarios with the hypothesis that most galaxies host black holes
generically predict the formation of such binaries. We have now identified many systems with properties
indicating that they may host such binaries. The evidence includes active galaxies with double cores
[16–18]; systems with doubly-peaked emission lines [19, 20]; helical radio jets [21–23]; and periodic or
semi-periodic systems, such as the blazar OJ287 [24]. As surveys go deeper and resolution improves, we
may expect the catalog of candidate supermassive black hole binaries to expand.

Now consider theoretical models. Assuming that our galaxy is typical and that the inferred density
of NS-NS systems in the Milky Way carries over to similar galaxies (correcting for factors such as typical
stellar age and the proportion of stars that form neutron stars), we can estimate the rate at which binary
systems merge in the universe. References [25] and [26] first made such estimates, finding a “middle-of-
the-road” rate that about 3 binaries per year merge to a distance of 200 Mpc. More recent calculations
based on later surveys and observations of NS-NS systems have amended this number somewhat; the
total number expected to be measured by advanced detectors is around several tens per year. See, for
example, [27] for a detailed discussion of methodology.

Another technique uses population synthesis. These calculations combine data on the observed distri-
bution of stellar binaries with models for how stars evolve. This allows us to estimate the rate of formation
and merger for systems which we cannot at present observe, such as stellar mass black hole-black hole
(BH-BH) binaries, or for which we have only circumstantial evidence, such as neutron star-black hole
(NS-BH) binaries (which presumably form some fraction of short gamma ray bursts). A disadvantage is
that the models of stellar evolution in binaries have many uncertainties. There are multiple branch points
in binary evolution, such as whether the binary remains bound following each supernova, and whether
the binary survives common envelope evolution. As a consequence, the population synthesis predictions
can be quite diverse. Though different groups generally agree well with the rates for NS-NS systems (by
design), their predictions for NS-BH and BH-BH systems differ by quite a bit. New data are needed to
clear the theoretical cobwebs.

Binaries can also form dynamically in dense environments, such as globular clusters. The most massive
bodies will tend to sink to a cluster’s core through mass segregation [28]; as such, the core will become
populated with the heaviest bodies, either stars which will evolve into compact objects, or the compact
objects themselves. As those objects interact with one another, they will tend to form massive binaries;
calculations show that the production of BH-BH binaries is particularly favored. It is thus likely that
globular clusters will act as “engines” for the production of massive compact binaries [29–31].

The hierarchical growth scenario for galaxies, coupled with the hypothesis that most galactic bulges
host large black holes, generically predicts the formation of supermassive binaries, especially at high
redshifts when mergers were common. The first careful discussion of this was by Begelman, Blandford,
and Rees [21]. The coevolution of black holes and galaxies in hierarchical scenarios has now become a
very active focus of research (e.g., Refs. [32–34]). Galaxy mergers appear to be a natural mechanism
to bring “fuel” to one or both black holes, igniting quasar activity; the formation of a binary may thus
be associated with the duty cycle of quasars [35–37]. Such scenarios typically find that most black hole
mergers come at fairly high redshift (z & 3 or so), and that the bulk of a given black hole’s mass is due
to gas it has accreted over its growth.

A subset of binaries in the supermassive range are of particular interest to the relativity theorist.
These binaries form by the capture of a “small” (1 − 100M⊙) compact object onto an orbit around a
black hole in a galactic center. Such binaries form dynamically through stellar interactions [38, 39]; the
formation rate predicted by most models is typically ∼ 10−7 extreme mass ratio binaries per galaxy per
year [39]. If the inspiraling object is a white dwarf or star, it could tidally disrupt as it comes close to the
massive black hole, producing an x-ray or gamma-ray flare [40, 41]. If the inspiraling object is a neutron
star or black hole, it will be swallowed whole by the large black hole. As such, it will almost certainly
be electromagnetically quiet; however, its GW signature will be loud, and is a particularly interesting
target.
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x−arm
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Figure 1: Schematic of an interferometer that could be used to detect GWs. Though real interferometers
are vastly more complicated, this interferometer topology contains enough detail to illustrate the principle
by which such measurements are made.

2 Measuring gravitational waves: Principles and experiments

Before moving to a discussion of how black hole characteristics and strong-field physics are imprinted on
GWs, let us briefly summarize the key principles by which a GW interferometer operators. Begin with
the simple limit in which we treat the spacetime in which our detector lives as flat plus a simple GW
propagating down our coordinate system’s z-axis:

ds2 = −c2dt2 + (1 + h)dx2 + (1− h)dy2 + dz2 , (27)

where h = h(t− z). We neglect the influence of the earth (clearly important for terrestrial experiments)
and the solar system (which dominates the spacetime of space-based detectors). Corrections describing
these influences can be added; we neglect them as they vary on much longer timescales than the GWs.

Figure 1 sketches an interferometer that can measure a GW. Begin by examining the geodesics de-
scribing the masses at the ends of the arms, and the beam splitter at the center. Take these objects to be
initially at rest, so that (dxµ/dτ)before

.
= (c, 0, 0, 0). The GW shifts this velocity by an amount of order

the wave strain: (dxµ/dτ)after = (dxµ/dτ)before +O(h). Now examine the geodesic equation:

d2xj

dτ2
+ Γj

αβ
dxα

dτ

dxβ

dτ
= 0 . (28)

All components of the connection are O(h). Combining this with our argument for how the GW affects
the various velocities, we have

d2xj

dτ2
+ Γj

00

dx0

dτ

dx0

dτ
+O(h2) = 0 . (29)

It is simple to show that the connection coefficient Γj
00 = 0, as the relevant metric components are all

constant. We conclude that
d2xj

dτ2
= 0 . (30)
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In other words, the test masses are unaccelerated to leading order in the GW amplitude h.
This seems to say that the GW has no impact! However, the geodesic equation describes motion

with respect to specified coordinates. Our coordinates are effectively “comoving” with the interferometer’s
components. Using the fact that our mirrors are at constant position in these coordinates, it is simple to
see that the proper length of the arms does change. For instance, the x-arm has a proper length

Dx =

∫ L

0

√
gxx dx =

∫ L

0

√
1 + h dx ≃

∫ L

0

(

1 +
h

2

)

dx = L

(

1 +
h

2

)

. (31)

Likewise, the y-arm has a proper length Dy = L(1− h/2).
This means that the armlengths as measured by a ruler will vary with h. One might worry that, in

practice, the ruler will vary with the wave, cancelling the measurement. This does not happen because
rulers are not made of freely-falling particles: Its elements are bound to one another, and act against the
GW. The ruler feels some effect due to the GW, but it is far smaller than the variation in Dx and Dy.

The ruler used by the most sensitive current and planned detectors is based on laser interferometry.
We will not describe the details of how a GW is imprinted on the output observable of an interferometer
such as that sketch in Fig. 1; for our purposes, it is enough to note that in essence one uses the (highly
stable) frequency of the laser as a clock, and times the light travel in the two arms. We recommend the
nicely pedagogical article by Faraoni [42] for a clear discussion, as well as a relatively recent analysis by
Finn [43] for more detailed discussion.

From basic principles, we now give a brief summary of current and planned detectors. Our goal is not
an in-depth discussion, so we refer readers interested in these details to excellent reviews by [44] (which
covers in detail the characteristics of the various detectors) and [45] (which covers the interferometry
used for space-based detectors). When thinking about GW detectors, a key characteristic is that the
frequency of peak sensitivity scales inversely with armlength. The ground-based detectors currently in
operation are sensitive to waves oscillating at 10s – 1000s of Hertz. Planned space-based detectors will
have sensitivities at much lower frequencies, ranging from 10−4 – 0.1 Hz (corresponding to waves with
periods of tens of seconds to hours).

The ground-based detectors in operation are LIGO (Laser Interferometer Gravitational-wave Obser-
vatory), with antennae in Hanford, Washington and Livingston, Louisiana; Virgo near Pisa, Italy; and
GEO near Hanover, Germany. The LIGO interferometers have 4-kilometer arms, and a peak sensitivity
near 100 Hz. Virgo has 3-kilometer arms, and sensitivity comparable to the LIGO detectors. GEO has
600-meter arms; as such, its peak sensitivity is at higher frequencies than LIGO and Virgo. Using ad-
vanced interferometry techniques, it achieves sensitivity competitive with the kilometer-scale instruments.
All of these instruments will be upgraded over the course of the next few years, installing more powerful
lasers, and reducing the impact of local ground vibrations. The senstivity of LIGO should be improved
by roughly a factor of ten, and the bandwidth increased as well. See [46] for detailed discussion.

There are plans to build additional kilometer-scale instruments. The detector AIGO (Australian In-
ternational Gravitational Observatory) is planned as a detector very similar to LIGO and Virgo, but in
Western Australia [47]. This location, far from the other major GW observatories, has great potential
to improve the ability of the worldwide GW detector network to determine the characteristics of GW
events [48]. The Japanese GW community, building on their experience with the 300-meter TAMA inter-
ferometer, hopes to build a 3-kilometer underground instrument. Dubbed LCGT (Large-scale Cryogenic
Gravitational-wave Telescope), the underground location takes advantage of the fact that local ground
motions tend to decay fairly rapidly as we move away from the earth’s surface. They plan to use cryogenic
cooling to reduce noise from thermal vibrations.

In space, the major project is LISA (Laser Interferometer Space Antenna), a 5-million kilometer
interferometer under development as a joint NASA-ESA mission. LISA will consist of three spacecraft
placed in orbits so that their relative positions form an equilateral triangle lagging the earth by 20◦,
inclined to the ecliptic by 60◦; see Fig. 2. The spacecraft are free and do not maintain this constellation
precisely; however, their armlength variations occur on a timescale far longer than the periods of their
target waves. The review by [45] discusses in great detail how one does interferometry on such a baseline
with time-changing armlengths. LISA targets waves with periods of hours to several seconds, a rich
band for signals involving massive black holes. The LISA Pathfinder, a testbed for some of the mission’s
components, is scheduled for launch in the very near future [49].
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Earth 

Sun 

Venus 

Mercury 

20o 

60 o 

5x106 km 
LISA 

Figure 2: Schematic of the LISA constellation in orbit about the sun. Each arm of the triangle is 5× 106

km; the centroid of the constellation lags the Earth by 20◦, and its plane is inclined to the ecliptic by 60◦.
Note that the spacecraft orbit freely; there is no formation flying in the LISA configuration. Instead,
each spacecraft is in a slightly eccentric, slightly inclined orbit; their individual motions preserve the
near-equilateral triangle pattern with high accuracy for a timescale of decades.

Somewhat smaller than LISA, The Japanese GW community has proposed DECIGO (DECI-hertz
Gravitational-wave Observatory), a space antenna to target a band at roughly 0.1 Hz. This straddles the
peak sensitivities of LISA and terrestrial detectors, and may thus act as a bridge for signals that evolve
from one band to the other. See Ref. [50] for further discussion.

3 Comparable mass binary waves

We now at last begin to examine how the characteristics of black holes and strong-field gravity are
imprinted on the GWs these systems generate. We first must go somewhat beyond the leading-order
waveform discussed in Sec. 1.1. After developing the necessary formal tools, we discuss how the interesting
characteristics appear in the waves.

3.1 Going beyond leading order

In the analytic treatment of comparable mass binary waves, one begins by considering the post-Newtonian,
or pN, expansion. This expansion in turn begins by considering the binary in so-called harmonic or
deDonder coordinates. In these coordinates, one defines

hµν ≡ √−ggµν − ηµν , (32)

where g is the determinant of gµν . This looks similar to the flat spacetime perturbation defined in Sec.
1.1; however, we do not assume that h is small. We next impose the gauge condition

∂αh
αβ = 0 . (33)

With these definitions, the exact Einstein field equations are

�hαβ =
16πG

c4
ταβ , (34)

where � = ηαβ∂α∂β is the flat spacetime wave operator. The form of Eq. (34) means that the radiative
Green’s function we used to derive Eq. (7) can be applied here, yielding

hαβ = −4G

c4

∫

ταβ(x
′, t− |x− x′|/c)
|x− x′| d3x′ . (35)
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Equation (35) is exact. Note, however, that we never defined the source ταβ . It is given by

ταβ = (−g)Tαβ +
c4Λαβ

16πG
; (36)

Tαβ is the usual stress energy tensor, Λαβ encodes the nonlinear structure of the Einstein field equations:

Λαβ ≡ 16π(−g)tαβ
LL

+ ∂νh
αµ∂µh

βν − ∂µ∂νh
αβhµν (37)

= Nαβ[h, h] +Mαβ [h, h, h] + Lαβ[h, h, h, h] +O(h5) . (38)

On the first line, tαβ
LL

is the Landau-Lifshitz pseudotensor, a quantity which (in certain gauges) allows
us to describe how GWs carry energy through spacetime ([51], Sec. 96). On the second line, the term
Nαβ [h, h] means a collection of terms quadratic in h and its derivatives, Mαβ[h, h, h] is a cubic term, etc.
Our solution hαβ appears on both the left- and right-hand sides of Eq. (35). Such a structure can be
handled very well iteratively. We write

hαβ =

∞
∑

n=1

Gnhαβ
n . (39)

The n = 1 term is essentially the linearized solution from Sec. 1.1. To go higher, let Λαβ
n denote the

contribution of Λαβ to the solution hαβ
n . We find

Λαβ
2 = Nαβ [h1, h1] , (40)

Λαβ
3 = Mαβ [h1, h1, h1] +Nαβ [h2, h1] +Nαβ[h1, h2] , (41)

etc.; higher contributions to Λab can be found by expanding its definition and gathering terms. By
solving the equations which result from this procedure, we can build the spacetime metric and describe
the motion of the members of a binary and the radiation that they emit.

We defer details of this construction to the literature (Blanchet’s review, Ref. [52], is particularly
useful for this purpose), and turn to a study of the interesting features of the pN binary waveform. Take
the members of the binary to have masses m1 and m2, let their separation be r, and let r̂ point to body
1 from body 2. In the harmonic gauge used for pN theory, the acceleration of body 1 is given by

a = a0 + a2 + a4 + a5 + a6 + a7 . . . . (42)

The zeroth term,

a0 = −Gm2

r2
r̂, (43)

is the usual Newtonian gravitational acceleration. Each an is a correction of order (v/c)n. The first is

a2 =

[

5G2m1m2

r3
+

4G2m2
2

r3
+

Gm2

r2

(

3

2
(r̂ · v2)

2 − v21 + 4v1 · v2 − 2v22

)]

r̂

c2
. (44)

For the acceleration of body 2 due to body 1, exchange labels 1 and 2 and replace r̂ with −r̂. So far,
the pN acceleration has been computed to order (v/c)7. As we go to high order, the expressions for an
become quite lengthy. An excellent summary is given in Ref. [52], Eq. (131) and surrounding text.

PN theory also introduces a distinctly non-Newtonian element to binary dynamics: its members’ spins
precess in the binary’s curved spacetime. If the spins are S1 and S2, one finds [53]

dS1

dt
=

G

c2r3

[(

2 +
3

2

m2

m1

)

µ
√
MrL̂

]

× S1 +
G

c2r3

[

1

2
S2 −

3

2
(S2 · L̂)L̂

]

× S1 , (45)

dS2

dt
=

G

c2r3

[(

2 +
3

2

m1

m2

)

µ
√
MrL̂

]

× S2 +
G

c2r3

[

1

2
S1 −

3

2
(S1 · L̂)L̂

]

× S2 . (46)

We now discuss the ways in which aspects of pN binary dynamics color a system’s waves.
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3.1.1 Gravitational-wave amplitudes.

Although a binary’s dominant waves come from variations in its mass quadrupole moment, higher mo-
ments also generate GWs. In the pN framework, these moments contribute to the amplitude of a binary’s
waves beyond the quadrupole form, Eq. (25). Write the gravitational waveform from a source as

h+,× =
2GM
c2D

(

πGMf

c3

)2/3
[

H0
+,× + v1/2H

1/2
+,× + vH1

+,× + . . .
]

, (47)

where v ≡ (πGMf/c3)1/3 is roughly the orbital speed of the binary’s members (normalized to c). The

H0
+,× terms reproduce the waveform presented in Eq. (25). The higher-order terms H

1/2
+,× and H1

+,× can
be found in [52], his Eqs. (237) through (241). A key point to note is that these higher-order terms
introduce new dependences on the binary’s orbital inclination and its masses. As such, measurement of
these terms provides additional constraints on the system’s characteristics.

3.1.2 Orbital phase.

The motion of a binary’s members about each other determines the orbital phase. Specializing to circular
orbits, we can determine the orbital frequency from the acceleration of the its members; integrating up
this frequency, we define the phase Φ(t). The first few terms of this phase are given by [54]

Φ = Φc −
[

c3(tc − t)

5GM

]5/8 [

1 +

(

3715

8064
+

55

96

µ

M

)

Θ−1/4 − 3

16
[4π − β(t)] Θ−3/8

+

(

9275495

14450688
+

284875

258048

µ

M
+

1855

2048

µ2

M2
+

15

64
σ(t)

)

Θ−1/2

]

, (48)

where

Θ =
c3η

5GM
(tc − t) . (49)

The leading term is just the Newtonian quadrupole phase, Eq. (26). Each power of Θ connects to a
higher order in the expansion. Equation (48) is taken to “second post-Newtonian” order, meaning that
corrections of (v/c)4 are included. Corrections to order (v/c)6 are summarized in [52]. In addition to
the chirp mass M, the reduced mass µ enters Φ when higher order terms are included. Including higher
pN effects in our wave model makes it possible to determine both chirp mass and reduced mass, fully
constraining the binary’s masses.

Equation (48) also depends on two parameters, β and σ, which come from the binary’s spins and
orbit orientation. The “spin-orbit” parameter β is

β =
1

2

2
∑

i=1

[

113
(mi

M

)2

+ 75η

]

L̂ · Si

m2
i

; (50)

the “spin-spin” parameter σ is

σ =
η

48m2
1m

2
2

[

721(L̂ · S1)(L̂ · S2)− 247S1 · S2

]

(51)

[54]. These parameters encode valuable information, especially when spin precession is taken into account.

3.1.3 Spin precession.

Although the spin vectors S1 and S2 wiggle around according to Eqs. (45) and (46), the system must
preserve a notion of global angular momentum. Neglecting for a moment the secular evolution of the
binary’s orbit due to GW emission, pN encodes the notion that the total angular momentum

J = L+ S1 + S2 (52)
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Figure 3: Illustration of precession’s impact on a binary’s waves. The top panels show h+ and h× for a
binary that contains nonspinning black holes; the lower panels show the waveforms for a binary with rapid
rapidly rotating (a = 0.9M) holes. The strong amplitude modulation is readily apparent in this figure.
Less obvious, but also included, is the frequency modulation that enters through the spin-dependent
orbital phase parameters β and σ [cf. Eq. (48)].

must be conserved. This means L must oscillate to compensate for the spins’ dynamics, and guarantees
that, when spin precession is accounted for in our evolutionary models, the phase parameters β and σ
become time varying. Likewise, the inclination angle ι varies with time. Precession thus leads to phase
and amplitude modulation of a source’s GWs. Figure 3 illustrates precession’s impact, showing the late
inspiral waves for binaries that are identical aside from spin.

Careful analysis shows that accounting for these effects in our wave model makes it possible to measure
the spins of a binary’s members, in many cases with excellent precision [55]. By measuring both masses
and spins, instruments such as LISA for example become tools for tracking the cosmic evolution of black
hole masses and spins, opening a window onto the growth of these objects from early cosmological epochs.

4 Extreme mass ratio binary waves

We conclude by examining waves from extreme mass ratio binaries — stellar mass (roughly 1− 100M⊙)
compact bodies spiraling into a much more massive (roughly 105−107M⊙) black holes. Such systems are
very well modeled using black hole perturbation theory, so we begin with a quick review of this subject.

4.1 Brief overview of black hole perturbation theory

Black hole perturbation theory can be developed much like the weak gravity limit described in Sec. 1.1,
replacing the flat spacetime metric ηαβ with the spacetime of a black hole:

gµν = gBH
µν + hµν . (53)

For astrophysical scenarios, one uses the Schwarzschild (non-rotating black hole) or Kerr (rotating) so-
lutions for gBH

µν . It is straightforward (though somewhat tedious) to then develop the Einstein tensor for
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this spacetime, keeping terms only to first order in the perturbation h.
This approach works very well when the background is non-rotating,

ds2 = gBH
µν dxµdxν = −

(

1− 2M̂

r

)

dt2 +
dr2

(

1− 2M̂/r
) + r2dΩ2 , (54)

where dΩ2 = dθ2 + sin2 θdφ2 and M̂ = GM/c2. Our discussion for this special case is adapted from
[56]. Because the background is spherically symmetric, we decompose the perturbation into spherical
harmonics. For example, under rotations in θ and φ, h00 should transform as a scalar. We thus put

h00 =
∑

lm

alm(t, r)Ylm(θ, φ) . (55)

The components h0i transform like components of a 3-vector, and can be expanded in vector harmonics;
hij can be expanded in tensor harmonics. One can decompose further with parity: Even harmonics
acquire a factor (−1)l when (θ, φ) → (π − θ, φ + π); odd harmonics acquire a factor (−1)l+1.

By imposing these decompositions, choosing a particular gauge, and requiring that the spacetime
satisfy the vacuum Einstein equation Gµν = 0, we find an equation that governs the perturbations.
Somewhat remarkably, the t and r dependence for all components of hµν for given spherical harmonic
indices (l,m) can be constructed from a function Q(t, r) governed by the simple equation

∂2Q

∂t2
− ∂2Q

∂r2∗
− V (r)Q = 0 , (56)

where r∗ = r+2M̂ ln(r/2M̂−1). The potential V (r) depends on whether we consider even or odd parity:

Veven(r) =

(

1− 2M̂

r

)







2q(q + 1)r3 + 6q2M̂r2 + 18qM̂2r + 18M̂3

r3
(

qr + 3M̂
)2






, (57)

where q = (l − 1)(l + 2)/2; and

Vodd(r) =

(

1− 2M̂

r

)[

l(l+ 1)

r2
− 6M̂

r3

]

. (58)

For even parity, Eq. (56) is the Zerilli equation [57]; for odd, it is the Regge-Wheeler equation [58]. See
[56] for further discussion, including how gauge is chosen and how to construct hµν from Q. When
the spacetime perturbation is due to a body orbiting the black hole, these equations acquire a source
term. One can find the waves from an orbiting body by using the source-free equation to build a Green’s
function, and then integrating over the source.

How does this procedure fare for rotating holes? The background spacetime,

ds2 = −
(

1− 2M̂r

ρ2

)

dt2 − 4aM̂r sin2 θ

ρ2
dtdφ +

ρ2

∆
dr2 + ρ2dθ2 +

(

r2 + a2 +
2M̂ra2 sin2 θ

ρ2

)

dφ2 ,

(59)

where

a =
|~S|
cM

, ρ2 = r2 + a2 cos2 θ , ∆ = r2 − 2M̂r + a2 , (60)

is now nonspherical, and the decomposition into spherical harmonics is not useful. One could in principle
simply expand Gµν = 0 to first order in hµν and obtain a partial differential equation in t, r, and θ. (The
metric is axially symmetric, so we can easily separate the φ dependence.)

Rather than expanding the metric, Teukolsky [59] examined perturbations of curvature:

Rαµβν = RBH
αµβν + δRαµβν . (61)
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The curvature tensor is invariant to first-order gauge transformations, an attractive feature. This tensor
obeys a nonlinear wave equation which can be derived from the Bianchi identity; see [60] for discussion.
By expanding this wave equation to linear order in δRαµβν , Teukolsky showed that perturbations to Kerr
black holes are governed by the equation

[

(r2 + a2)2

∆
− a2 sin2 θ

]

∂2
tΨ− 4

[

r + ia cos θ − M̂(r2 − a2)

∆

]

∂tΨ+
4iM̂amr

∆
∂tΨ−∆2∂r

(

∆−1∂rΨ
)

− 1

sin θ
∂θ (sin θ∂θΨ)−

[

a2

∆
− 1

sin2 θ

]

m2Ψ+ 4im

[

a(r − M̂)

∆
+

i cos θ

sin2 θ

]

Ψ−
(

4 cot2 θ + 2
)

Ψ = T .

(62)

The field Ψ is a complex quantity built from a combination of components of δRαµβν . It describes a
spacetime’s radiation; see [59] for details. (We have assumed Ψ ∝ eimφ.) Likewise, T describes a source
function built from the stress-energy tensor describing a small body orbiting the black hole.

Somewhat amazingly, Eq. (62) separates: putting

Ψ =

∫

dω
∑

lm

Rlmω(r)Slmω(θ)e
imφ−iωt (63)

and applying a similar decomposition to the source T , we find that Slmω(θ) is a “spin-weighted spheroidal
harmonic” (a basis for tensor functions in a non-spherical background), and that Rlmω(r) is governed by
a simple ordinary differential equation. Ψ characterizes Kerr perturbations in much the same way that Q
[cf. Eq. (56)] characterizes them for Schwarzschild. Although the perturbation equations are often solved
numerically, analytic solutions are known [61], and can dramatically improve one’s scheme for solving for
black hole perturbations; see Refs. [62, 63].

How do we describe the motion of a small body about a black hole? The most rigorous approach
is to enforce ∇µTµν = 0, where Tµν describes the small body in the spacetime of the large black hole.
Neglecting the small body’s perturbation to the spacetime, we find the geodesic equation uµ∇µu

ν = 0,
where uµ is the small body’s 4-velocity. Geodesic black hole orbits have been studied extensively; see,
for example, Ref. [64], Chapter 33. They are characterized (up to initial conditions) by three conserved
constants: energy E, axial angular momentum Lz, and “Carter’s constant” Q. If the black hole does not
rotate, Carter’s constant is related to the orbit’s total angular momentum: Q(a = 0) = L ·L−L2

z. When
the black hole rotates rapidly, Q is not so easy to interpret; the idea that it is essentially the rest of the
orbit’s angular momentum can be useful.

Taking into account perturbations from the small body, ∇µTµν = 0 now implies that the small body
follows a “forced” geodesic,

uµ∇̂µu
ν = fν , (64)

where ∇̂µ is the covariant derivative in the background spacetime. The novel feature of Eq. (64) is the
self force fν , a correction to the motion of order the small body’s spacetime perturbation. The self force
is so named because it arises from the body’s interaction with its own spacetime correction.

Computing the gravitational self force near a black hole is an active area of current research. It is
useful to break the self force into a dissipative piece, fν

diss
, which is asymmetric under time reversal, and

a conservative piece, fν
cons, which is symmetric. Dissipation causes the “conserved” quantities (E,Lz, Q)

to decay, driving inspiral of the small body. Quinn and Wald [65] have shown that the rate at which
E and Lz change due to fν

diss is identical to what is found when one computes the fluxes of energy and
angular momentum encoded by the Isaacson tensor (16).

The conservative self force does not cause orbit decay. “Conserved” constants remain conserved,
but the orbits are shifted from the background geodesics. This reflects the fact that, even neglecting
dissipation, the small body’s motion is determined by the full spacetime, not just the background black
hole. Conservative effects shift the orbital frequencies by an amount

δΩx ∼ Ωx × (µ/M) (65)
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[where x ∈ (φ, θ, r)]. Because the GWs have spectral support at harmonics of the orbital frequencies,
these small but non-negligible frequency shifts are directly encoded in the waves that the binary generates.
Good discussion and a toy model can be found in [66].

There has been enormous progress in understanding self forces on orbits around non-rotating holes.
Barack and Sago [67] have completed an analysis of the full self force for circular orbits about a
Schwarzschild black hole; generalization to eccentric orbits is in progress (L. Barack, private commu-
nication). An independent approach developed by Detweiler [68] has been found to agree with Barack
and Sago extremely well; see [69] for detailed discussion of this comparison.

4.2 Gravitational waves from extreme mass ratio binaries

We now discuss the properties of GWs and GW sources as calculated using perturbation theory. Our goal
is to highlight features of the Kerr inspiral waveform. We will neglect the conservative self force, which is
not yet understood for the Kerr case well enough to be applied to these waves. When conservative effects
are neglected, the binary can be regarded as evolving through a sequence of geodesics, with the sequence
determined by the rates at which GWs change the “constants” E, Lz, and Q. Modeling compact binaries
in this limit takes three ingredients: First, a description of black hole orbits; second, an algorithm to
compute GWs from the orbits, and to infer how the waves’ backreaction evolves us from orbit to orbit;
and third, a method to integrate along the orbital sequence to build the full waveform. A description of
this method is given in [70]; we summarize the main results of these three ingredients here.

4.2.1 Black hole orbits.

Motion near a black hole can be conveniently written in the coordinates of Eq. (59) as r(t), θ(t), and
φ(t). Because t corresponds to time far from the black hole, this gives a useful description of the motion
as measured by distant observers. Bound orbits are confined to a region near the hole. They have
rmin ≤ r(t) ≤ rmax and θmin ≤ θ(t) ≤ π − θmin, and thus occupy a torus in the 3-space near the hole’s
event horizon; an example is shown in Fig. 4, taken from [71]. Selecting the constants E, Lz, and Q
fully determines rmin/max and θmin. It is useful for some discussions to reparameterize the radial motion,
defining an eccentricity e and a semi-latus rectum p via

rmin =
p

1 + e
, rmax =

p

1− e
. (66)

For many bound black hole orbits, r(t), θ(t), and φ(t) are periodic [72, 73]. (Exceptions are orbits which
plunge into the hole; we discuss these below.) Near the hole, the time to cover the full range of r becomes
distinct from the time to cover the θ range, which becomes distinct from the time to cover 2π radians of
azimuth. One can say that spacetime curvature splits the Keplerian orbital frequency Ω into Ωr, Ωθ, and
Ωφ. Figure 5 shows these three frequencies, plotted as functions of semi-major axis A for fixed values of
e and θmin. Notice that all three approach Ω ∝ A−3/2 for large A.

4.2.2 Gravitational radiation from orbits.

Because their orbits are periodic, GWs from a body orbiting a black hole will have support at harmonics
of the orbital frequencies. One can write the two polarizations

h+ + ih× =
∑

Hmkne
iωmknt , where (67)

ωmkn = mΩφ + kΩθ + nΩr . (68)

The amplitude Hmkn can be found by solving the Teukolsky equation (62) using the decomposition (63);
details for the general case can be found in [71].

The expansion (67) does not work well for orbits that plunge into the black hole; those orbits are not
periodic, and cannot be expanded using a set of real frequencies. A better way to calculate those waves is
to solve the Teukolsky equation (62) without introducing the decomposion (63). Results for waves from
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Figure 4: The geometry of a generic Kerr black hole orbit [taken from [71]]. This orbit is about a black
hole with spin parameter a = 0.998M (recall a ≤ M , so this represents a nearly maximally spinning
black hole). The range of its radial motion is determined by p = 7GM/c2 (G and c are set to 1 in the
figure) and e = 1/3; θ ranges from 60◦ to 120◦. The left panel shows the torus in coordinate space this
torus occupies. The right panel illustrates how a generic orbit ergodically fills this torus.

plunging orbits in the language of perturbation theory were first given by Damour, Nagar, and Tartaglia
[74]; Sundararajan [75] has recently extended the cases that we can model to full generality.

As mentioned above, it is fairly simple to compute the flux of energy Ė and angular momentum L̇z

from the Isaacson tensor, Eq. (16), once the waves are known. Recent work [76] has shown that a similar
result describes Q̇. Once Ė, L̇z, and Q̇ are known, it is straightforward to evolve the orbital elements
rmin/max and θmin, specifying the sequence of orbits through which GWs drive the system. Once that
sequence is known, it is straightforward to build the worldline that a small body follows as it spirals into
the black hole. From the worldline, we can build a source function T (t) for Eq. (62) and compute the
evolving inspiral waves.

4.3 Mapping black hole spacetimes

Extreme mass ratio GW events may allow a unique and powerful measurement: We may use them to
“map” the spacetimes of black holes and test how well they satisfy the stringent requirements of GR. As
discussed above, an extreme mass ratio inspiral is essentially a sequence of orbits. Thanks to the mass
ratio, the small body moves through this sequence slowly, spending a lot of time “close to” any orbit
in the sequence. Also thanks to the mass ratio, each orbit’s properties are mostly determined by the
larger body. In analogy to geodesy, the mapping of earth’s gravity with satellite orbits, one can imagine
bothrodesy3, the mapping of a black hole’s gravity by studying the orbits of inspiraling “satellites.”

In more detail, consider first Newtonian gravity. The exterior potential of a body of radius R can be
expanded in a set of multipole moments:

ΦN = −GM

r
+G

∞
∑

l=2

(

R

r

)l+1

MlmYlm(θ, φ) . (69)

Studying orbits allows us to map the potential ΦN , and thus to infer the moments Mlm. By enforcing
Poisson’s equation in the interior, ∇2ΦN = 4πGρ, and then matching at the surface R, one can relate the
moments Mlm to the distribution of matter. In this way, orbits allow us to map in detail the distribution
of matter in a body like the earth.

Bothrodesy applies the same idea to a black hole. The spacetime of any stationary, axisymmetric
body can be described by a set of “mass moments” Ml, similar to the Mlm of Eq. (69); and a set of
“current moments” Sl which describe the distribution of mass-energy’s flow. The moments of a black
hole take a simple, special form: for a Kerr black hole (59) with mass M and spin parameter a,

Ml + iSl = M(ia)l . (70)

3This name was coined by Sterl Phinney, and comes from the word βoθρoς, which refers to a sacrificial pit in ancient
Greek. This author offers an apology to speakers of modern Greek.
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Figure 5: Orbital frequencies for generic Kerr black hole orbits. We vary the orbits’ semilatus rectum p,
but fix eccentricity e = 0.5 and inclination parameter θmin = 75◦. Our results are plotted as a function of
semimajor axis A = p/

√
1− e2. All three frequencies asymptote to the Keplerian value Ω =

√

GM/A3

in the weak field, but differ significantly from each other in the strong field.

A black hole has a mass moment M0 = M and a current moment S1 = aM (i.e., the magnitude of its
spin is aM , modulo factors of G and c). Once those moments are known, all other moments are fixed if
the Kerr solution describes the spacetime. This is a restatement of the “no hair” theorem [77, 78] that a
black hole’s properties are set by its mass and spin.

The facts that an object’s spacetime and orbits are determined by its multipoles, and that the Kerr
moments take such a simple form, suggests a consistency test: Develop an algorithm for mapping the
multipolar structure by studying orbits, and check that the l ≥ 2 moments satisfy Eq. (70). Ryan [79]
first demonstrated that such a measurement can be done, and Brink [80] has recently clarified what must
be done for such measurements to be done in practice. Collins and Hughes [81] took the first steps in
formulating this question as a null experiment (with the Schwarzschild solution as the null hypothesis).
Glampedakis and Babak [82] formulated a similar approach appropriate to Kerr black holes; Vigeland
and Hughes [83] have recently extended the Collins and Hughes formalism in that direction.

A robust test of the Kerr solution is thus a very likely outcome of measuring waves from extreme
mass ratio captures. If testing metrics is not your cup of tea, precision black hole metrology may be: In
the process of mapping a spacetime, one measures with exquisite accuracy both the mass and the spin
of the large black hole. Barack and Cutler [84] have found that in most cases these events will allow
us to determine both the mass and the spin of the large black hole with 0.1% errors are better. GW
measurements will give us a precise picture of these amazing objects.
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