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Abstract

We measure the viscoelastic properties of a highly entangled narrow molecular weight

polyisoprene melt with approximately 280 entanglements per chain in steady and transient

shear and in elongational �ows. The storage and loss moduli of the melt are found to be well

described by the Milner and McLeish model. The relaxation modulus G(t, γ) is measured

using stress relaxation after a sudden shearing displacement and we experimentally determine

the Rouse time, τR, by observing strain-time separability G(t, γ) = G(t)h(γ) for t > τR.

The transient elongational properties are measured using three distinct instruments; the

SER universal testing platform from Xpansion Instruments, its counterpart, the EVF from

TA Instruments, and a Filament Stretching Rheometer. The kinematics obtained in each

device are sensitive to the aspect ratio of the sample and care must be taken to achieve

homogeneous deformation conditions. Especially for the SER and EVF instruments, a second

aspect ratio associated with the rectangular cross-section of the sample is also important.

We �nd that the initial growth in the tensile stress follows the prediction given by the Doi-

Edwards reptation model for Deborah numbers, based on the Rouse time less than about

DeR = 0.04. For DeR = 0.04 the stress di�erence follows more or less the Doi-Edwards

prediction in the limit of in�nite stretch rates and for DeR > 0.04 the measured stresses are

well above those that can be predicted by the basic Doi-Edwards model. When DeR > 1

the stress di�erence also exceeds the linear viscoelastic prediction. In conjunction with this

strain-hardening response, a stabilization is obtained whereby the limiting Hencky strain

before sample rupture is markedly increased. We compare our observations in the regime

0.04 < DeR < 1 with available experiments and theories. The stabilization for DeR > 1 is

interpreted as a signature of chain stretching for elongational deformation rates faster than

the inverse Rouse time.
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1 Introduction

Non-linear rheological phenomena are encountered in polymer processing with very large defor-

mations gradients, and arise in both shear- and extension-dominated �ows. Reptational tube

models identify two characteristic time constants that characterize the rheological behavior of an

entangled polymer melt (Doi and Edwards, 1986). The longest time constant is the reptation

time τd and corresponds to the time it takes for a chain to di�use the length of its con�ning

tube. The Rouse time τR is a smaller characteristic time constant and represents the time it takes

a stretched chain to reach its equilibrium length in surroundings with no deformation gradients.

The model of Marrucci and Grizzuti (1988) incorporates the concept of chain stretch into the tube

model developed by Doi and Edwards, and predicts chain stretching in elongational �ows faster

than ε̇ ≈ 1/τR, and chain orientation for �ows in the intermediate region from 1/τd to 1/τR with

no stretching. For elongational �ow, we de�ne the dimensionless Deborah number based on the

Rouse time as: DeR ≡ ε̇τR and the Deborah number based on the reptation time as: Ded ≡ τdε̇.

Bach et al. (2003) [5] measured transient and steady elongational viscosity for two moderately

entangled polystyrene (PS) melts, with 15 and 29 entanglements respectively, and found these to

display substantial strain hardening over the Doi-Edwards prediction in the intermediate regime

1/τd < ε̇ < 1/τR and no remarkable change in behavior when entering the fastest stretching regime,

ε̇ > 1/τR. Similarly, we have recently measured strain hardening for narrow molecular weight PS

melts with 3.9 and 7.7 entanglements, (Nielsen et al. (2006)). Bach et al. (2003) noted that for

Ded > 1, the stress di�erence at steady state scales approximately as
√

ε̇Z2 ∼ √
ε̇τR where Z is

the number of entanglements. This holds for stress levels well above the plateau modulus. They

took this scaling as an indication that chain stretch begins much sooner than the inverse Rouse

time, and continues to become increasingly important with faster and faster �ow.

Marrucci and Ianniruberto (2004) proposed an alternative explanation of the scaling observed
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by Bach et al.. According to this model, the additional stress observed beyond the prediction

of the Doi-Edwards model at stretch rates below the inverse Rouse time is due not to chain

stretching but to the e�ect of a con�ning tube pressure. To describe this e�ect, they introduced

a new characteristic time constant τp. In the Marrucci and Ianniruberto tube pressure model

there are then three regions that characterize extensional �ows of monodisperse polymers: 1) For

1/τd < ε̇ < 1/τp the polymer is oriented and the tube diameter is constant; 2) for 1/τp < ε̇ < 1/τR

the polymer is oriented and the tube surrounding the chain is subject to a squeezing pressure,

which reduces the tube diameter; 3) for 1/τR < ε̇ the polymer chains are stretched by the �ow. A

description of the resulting four �ow regimes along with data for entangled polymer solutions and

melts has recently been presented by Acharya et al. (2008).

The tube pressure time scales with the number of entanglements, Z, as τp ∼ Z2, similarly to

the Rouse time, meaning that the distance between τp and τd scales with Z1, τp ∼ Z−1τd. Marrucci

and Ianniruberto estimated τp to be equal to τd if the number of entanglements is approximately

15. The conclusions made by Bach et al. (2003) are based on two PS melts with 15 and 29

entanglement, which means that the slowest region de�ned as 1/τd < ε̇ < 1/τp is not present for

Z = 15 and is very narrow for Z = 29. In order to thoroughly investigate and identify the slowest

region we need to be able to access a broad interval of elongational rates for which 1/τd < ε̇ < 1/τp.

If for instance τp/τd = 10, the region of tube orientation should be measurable over one decade

of elongational rate. This would require that Z = 150, which for PS corresponds to a molecular

weight of Mw = 2 · 106 g/mole. This is however too high for rheological tests with PS melts, due

to the very long relaxation times that are obtained when temperatures are restricted below the

degradation temperature of around 200◦C for PS. Testing of tube theories using PS will typically

be limited to materials with less than 100 entanglements mainly due to its high entanglement

molecular weight, Me = 13.3 · 103 g/mole and its high glass transition temperature, T PS
g = 100◦C.

To investigate melts with more than 100 entanglements we have thus decided to use polyisoprene
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(PI) as a model material. This polymer has some of the same advantages as PS and the two

materials together open a wider experimental window than may be obtained by either one alone.

Both materials can be synthesized by anionic polymerization, which is the most commonly used

method for making model linear polymers with low polydispersity. The side groups on PI are less

bulky than is the case for PS, which results in a signi�cant reduction of the entanglement molecular

weight to Me = 4.82 · 103 g/mole (Fetters et al. 1994). Therefore it is possible to make materials

with a larger number of entanglements giving a larger spacing between the reptation time τd and

the tube pressure time τp. The less bulky side groups also lead to a signi�cantly reduced glass

transition temperature, T PI
g =-75◦C (compared to PS). This results in a much larger accessible

frequency interval for small amplitude oscillatory shear (SAOS) measurements. Temperature

sweeps in the SAOS measurements on the AR2000 rheometer show that PI is thermorheologically

stable at temperatures below 100◦C. PI is more prone to thermal degradation than PS due to the

presence of the double bond in the backbone of the polymer; however this reduced absolute thermal

stability is more than o�set by the wider range of temperatures above the glass transition point

that can be accessed using time-temperature superposition so that the maximum temperature

for measurements become respectively T PI
max

∼= T PI
g + 175◦C and T PS

max
∼= T PS

g + 100◦C . The

rheological properties of 1,4-PI have been carefully characterized in shear over a large molecular

weight range by Abdel-Goad et al. (2004)and Auhl et al. (2008). Our extensional rheological

measurements build on the work of Acharya et al. (2008) for moderately entangled PI solutions

and melts (Z ≤ 52) by probing a highly entangled PI melt with Z ∼ 280.

The SAOS test measurements have been used to estimate the reptation time, τd and the Rouse

time of an entanglement segment, τe, by �tting the loss and storage moduli to the Milner and

McLeish (1998) model (corrected version in Ye et al. 2003). The magnitude of τd can be roughly

estimated from the position of the maximum in G′′ at low frequencies, ωmax ∼ 1/τd and τe can be

estimated from the reciprocal of the frequency at the higher of the two cross over points between
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G′ and G′′. A number of approaches have been proposed for determining τR (Osaki et al. 1982).

One method is to estimate the Rouse time is to use the relation τR = τeZ
2 with the value of τe

determined from the �t to the Milner McLeish model.

A second approach is to �t the high frequency portion of the measured linear viscoelastic data to

the predictions of the Rouse model:

G′(ω) = G′′(ω) = aω1/2 for ω →∞ (1)

The parameter a is given as: a = π
4

ρRT
M

(2τR)1/2. Here ρ is the density and M is the molecular

weight. Finally as a more direct way of �nding the onset of chain stretch we measure the stress

relaxation after a sudden shearing displacement. The Rouse time τR is determined experimentally

by observing strain-time separability G(t, γ) = G(t)h(γ) in the data for t > τR.

We base most of our elongational conclusions on results obtained using two similar extensional

rheometers, the EVF and the SER [Sentmanat et al. (2005)]. In both of these techniques a

rectangular strip of polymer �lm is attached to two cylindrical drums that are rotated in opposite

directions to each other, stretching out the sample �lm. To validate the strain rate in the SER-

experiments we use digital video analysis of the elongational deformations at di�erent elongational

rates and for di�erent aspect ratios of the samples. The transient elongational results obtained

using the EVF and SER rheometers are also compared with elongational results on the same

polymer from a �lament stretching rheometer.
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2 Theory

2.1 Milner- McLeish model

Milner and McLeish (1998) re�ned the original reptation model of Doi and Edwards (1986) by

incorporating in a quantitative manner the concept of contour length �uctuation �rst studied by

Doi and Kuzuu (1980). According to this concept, the ends of the chain do not experience the

same duration of constraints as the central part of the chain, but can additionally relax stress by

�uctuations along the tube length direction.

The original Milner-McLeish model (1998) has been modi�ed by Likhtmann and McLeish

(2002) who included additional details into the model, for instance constraint release. This new

version of the MM model is however much more computationally demanding, and here we use the

corrected version of the MM model that is described in detail in Ye et al. (2003).

2.2 Doi-Edwards model: Startup of uniaxial elongational �ow

We calculate the elongational stress growth predicted by the Doi-Edwards model from the formu-

lation described in Bird et al. (1987), which uses the independent alignment approximation. For

uniaxial �ow the stress becomes:

σzz − σrr =

∫ t

−∞
M(t− t′)SDE(t, t′)dt′ (2)

where the strain function in uniaxial elongation is:

SDE(t, t′) =

[〈
u′u′

u′u′

〉

zz

−
〈

u′u′

u′u′

〉

rr

]
= 5

(
2e3ε + 1− 3e3ε arctan

√
e3ε − 1√

e3ε − 1

)
1

2e3ε − 2
. (3)

Here u′ = E · u where Eij = ∂x/∂x′ is the deformation gradient from t′ to t and 〈· · · 〉 indicates an
average over the orientation of the 3-dimensional unit vector u. The x′i and xi denote coordinates
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of a material particle at times t′ and t respectively. For startup of steady �ow the Hencky strain

ε is given as:

ε(t, t′) =





ε̇0t , t′ < 0

ε̇0(t− t′) , 0 < t′ < t
(4)

where ε̇0 is the elongational rate. As an expression for the memory function M(t) we use a multi

mode Maxwell spectrum:

M(t) =
imax∑
i=1

ηi

λ2
i

e−t/λi . (5)

A multi-mode Maxwell model can be �tted quantitatively to the rheological data obtained in SAOS

and can therefore be used to calculate the linear viscoelastic prediction in transient elongation with

signi�cant accuracy. In the limit of rapid stretching, the relaxation process becomes negligible

and the Doi-Edwards stress growth function in equations (3) and (4) depends only on the Hencky

strain, ε and the plateau modulus, G0
N of the melt.

2.3 The Marrucci-Ianniruberto Model

Marrucci and Ianniruberto (2004) set up a balance between the force pushing on the tube from

the outside with the perpendicular force from the chain inside the tube. This eventually leads to

an expression for their new time constant, τp that is found to be:

τp ≈ a2
0

b2
τR (6)

.

where a0 is the equilibrium tube diameter, b is the length of a Kuhn step and τR is the Rouse time

of the chain. Since a0 and b are related to the speci�c type of polymer, they are independent of
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molecular weight; τp therefore scales with molecular weight in the same way as the Rouse time,

i.e: τp ∼ M2
w. Fetters et al. (1994) report the values for the tube diameter and the Kuhn step

length of 1,4 PI, (with 7% 3,4 microstructure) as a0 = 61.6Å and b = 8.44Å, giving the pre-factor

in equation 6 as (a0/b)
2 = 53.3. In other words, if we de�ne a tube pressure Deborah number

de�ned by

Dep =
a2

0

b2
DeR (7)

then this parameter will be given by DeR ≈ 0.02Dep for the present PI. The Marrucci and

Ianniruberto tube pressure model should therefore apply to the interval 0.02 < DeR < 1.

3 Experimental Methods

3.1 Molecular characterization

The PI sample is purchased from Polymer Source Inc., Canada, which reports the mass-average

molecular weight as: Mw = 1.31 · 106g/mole and the polydispersity as Mw/Mn = 1.1.

The PI is characterized by H-NMR in deuterated chloroform. We determined the content of

1,4 and 3,4 structure from the chemical shift signal of the ole�nic alkene protons between 4 ppm

and 6 ppm, which gives a microstructural fraction of 8.6% 3,4-PI.

3.2 Shear measurements

The SAOS and step strain shear experiments are performed on an AR-G2 rheometer (TA in-

struments, Newcastle DE) using an 8 mm parallel plate geometry. The SAOS experiments were

performed over a range of temperatures from -22◦C to 75◦C, and the measured values of G′ and

G′′ were shifted horizontally to obtain the single master curve shown in Figure 1 using time-

temperature shifting.
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Figure 2 shows measurements of the results of the stress relaxation after a sudden shearing

displacement for seven di�erent shear strains, from γ = 0.02 to γ = 0.75 at 25◦C. The limited

range of shear strains presented is due to slip at the polymer-steel interface on the rheometer for

strains higher than γ > 0.75. For times longer than the Rouse time, the measured moduli G(t, γ)

shown in Figure 2(a) are shifted vertically by a strain-dependent multiplier h(γ) to determine the

strain independent relaxation modulus G(t). This relaxation modulus can also be evaluated from

the discrete Maxwell spectrum which is independently �tted from the SAOS data. This predicted

function is shown by the dashed line and accurately describes the data from 0.01 to 5000s.

3.3 Elongational viscosity measurements, SER, EVF and FSR

We present transient elongational viscosity measurements from three di�erent instruments; the

Extensional Viscosity Fixture (EVF) from TA Instruments, the Sentmanat Extensional Rheom-

etry Rheometer �xture (SER) from Xpansion Instruments and a home built Filament Stretching

Rheometer (FSR). The SER and EVF are `constant length devices' whereas the FSR is a `constant

volume' device. On the EVF, two cylindrical drums are used to wind up a polymer sample. One

cylinder rotates round its own axis while orbiting around the other cylinder which is held �xed.

The �xed cylinder is mounted to the torque transducer of the ARES rheometer, and the orbiting

cylinder is coupled to the ARES actuator. The Sentmanat Extensional Rheometer (SER), from

Xpansion instruments, is also mounted onto the ARES rheometer and consists of two counter-

rotating cylindrical drums. The polymer sample is attached onto these drums with clamps. The

dimensions of the cylinders and the separation between the cylinders are the same for both the

SER and the EVF, which makes it easy experimentally to compare the results from the two

rheometers. We denote the radius of the cylinders by R while the distance between the attach-

ment points for the samples is L. Then the nominal Hencky strain of the samples in the SER and

EVF instruments are computed from
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εN = 2θR/L (8)

where θ is the angle by which the cylinders have been rotated. The instantaneous nominal exten-

sion rate then becomes ε̇N = 2ΩR/L where Ω = dθ/dt is the angular velocity of the cylinders. All

reported strains and strain rates for the EVF and SER instruments are nominal values, although

the subscript N is omitted from ε̇.

We denote the initial thickness of the sample by W0 and the initial height by H0. All samples had

W0 = 0.7 mm, while the initial sample height was varied between H0 = 1.39mm and H0 = 10mm.

We de�ne the initial aspect ratio of the samples as Λ0 = H0/W0. The aspect ratio H0/L is prob-

ably also important, but it is not changed independently of Λ0 since both L and W0 are �xed.

In addition to the experiments on the SER and EVF we also performed experiments on the

Filament Stretching Rheometer (FSR) located at DTU in Lyngby. For the FSR, the true Hencky

strain and stretch rates are computed from on-line measurements of the mid-�lament diameter D

according to ε = 2 ln(D0/D) and ε̇ = dε/dt (McKinley and Sridhar 2002, Bach et al. 2003a).

3.4 Strain validation by digital video microscopy

While the FSR provides immediate strain validation due to the online measurement and control

of the cylindrical �lament diameter via laser micrometer, the SER and EVF rheometers merely

impose a torsional displacement that results in a deformation of the strip of polymer that could

even be a mixture between uniaxial and planar elongation. Experience with other extensional

rheometers such as the RME show that independent measurements of the kinematics is essential

if the extensional viscosity is to be accurately determined (Schulze et al. 2001). To obtain a more

direct measure of the Hencky strain imposed on the sample in the SER device we video record the
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sample deformation for di�erent elongational rates and di�erent sample aspect ratio. We use a

high-speed digital CMOS video camera (Phantom 5) operating at a frame rate of 100-1000 frames

per second, depending on the stretching rate of the experiment.

4 Results and Discussion

4.1 Shear stress relaxation and Small Angle Oscillatory Shear

The measured storage- and loss moduli, G′ and G′′, were �tted to the MM model, and the results

are shown as solid lines in Figure 1. Values of the four �tted parameters, τd, τe, Z, G0
n in the

model are listed in table 1. In addition, a 10-mode Maxwell spectrum was also �tted to the SAOS

data and is shown in Figure 1 by the dotted lines. The individual contributions to the relaxation

spectrum are also listed in table 1. We report in Table 1 three distinct estimates of the Rouse time,

as determined from the Milner-McLeish model, from step-strain experiments and from the high

frequency limit of the Rouse model. The latter is found from equation 1 where ρ = 830 kg/m3,

T = 298K and a = 860Pa s1/2, see �gure 1. We �nd good agreement between these estimates.

The strain-dependent shear modulus, determined from stress relaxation measurements can be

nicely shifted onto a single master curve for elapsed times higher than a value τk = 3s, as seen in

Figure 2. The damping function determined experimentally was found to lie below the theoretical

Doi-Edwards prediction hDE(γ) meaning that h(γ) < hDE(γ) < 1 especially for γ > 1. Moreover

the experimental values of h(γ) at strains γ > 0.75 could not be reproduced when changing the

gap size in the measurements. The reason for this may be that the adhesive strength of this

high molecular weight PI on steel is weak, and the actual strain is smaller than the apparent

strain for high values of γ. This however does not the a�ect the magnitude of the time τk which

is independent of γ. Since the purpose of performing step-strain experiments in the present

study is to determine this value, no investigations have been made to explore the possibility of
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adhesive failure. The magnitude of the time τk is related to the Rouse chain stretch time, and

it is expected that at short times stress relaxation occurs exponentially with the Rouse time.

Doi and Edwards (1986) report the relation between τk and τR to be 4.5τR = τk, and since

exp(−τk/τR) = exp(−4.5) = 0.01 it is reasonable to assume that the chain stretch is fully relaxed

after a time τk corresponding to 4.5 Rouse times.

We estimate the molecular weight of the PI from the number of entanglements, Z = 280, found

by �tting the MM model to the dynamic moduli G′ and G′′. Auhl et al. (2008) determined an

average value of the entanglement molecular weight for PI to be: Me = 4.82 ·103 g/mole, which then

gives a molecular weight Mw = 1.35 · 106 g/mole which serves as an additional check of the value

reported by the manufacturer. The values of Mw are listed in table 1 together with the values of

G0
N and η0. The Rouse time found from the DE model is given as τR = τeZ

2.

Property Value ηi [Pa s] λi [s]
η0 from Maxwell �t to SAOS data 3.43 · 108 Pa s
τd from MM �t to SAOS data 646 s
τR from the high frequency limit of the Rouse model 0.24 s 2.05 ·108 6000
τR from MM �t to SAOS data 0.89 s 1.27 ·108 850
τR = τk/4.5 from step strain data 0.67 s 1.06 ·107 90
τe from MM �t to SAOS data 1.4 · 10−5 s 6.68 ·105 10
sd from MM �t to SAOS data 0.0877 45057 1
τp = a2

0/b
2τR = 53.3 · 0.67s 35.5 s 2794 0.1

G0
n from MM �t to SAOS data 4.50 · 105 Pa 219 0.01

Mw from MM �t to Z 1.36 · 106 g/mole 25.3 0.001
Mw reported by manufacturer 1.31 · 106 g/mole 8.393 0.0001
Z from MM �t to SAOS data 280 5.34 1.0 ·10−5

Table 1: Properties of the polyisoprene determined from small angle oscillatory shear

4.2 Con�rmation of strain rate and variation with aspect ratio

In order for the deformation in the EVF and SER to be uniaxial with constant elongational rate,

the width (or thickness) and the height of the initially rectangular cross-sectional area of the
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sample should decrease as W/W0 = exp(−εN/2) and H/H0 = exp(−εN/2) where εN is given

by Eq. 8. We recorded the deformation of the PI �lm on the SER for four di�erent imposed

elongational rates: 0.2s−1, 2s−1, 8s−1 and 50s−1 using the same aspect ratio of Λ0 = 14.3. The

results are shown in Figure 3 as dimensionless height, H/H0, against time, non-dimensionalized

with the imposed elongational rate i.e. ε̇ · t. To examine how the actual strain obtained in the

sample depends on initial aspect ratio, we also recorded the sample deformation for three di�erent

initial aspect ratios, Λ0 = 2.0, Λ0 = 9.6 and Λ0 = 14.3; with all experiments carried out at the

same imposed rate, ε̇ = 3s−1. Figure 5 displays a sequence of image frames from the videos for

Λ0 = 2.0 and 14.3, taken for frames at times t=0.0s, 0.33s, 0.66s, 1.00s and 1.33s. The height

of the samples was found by digital image processing and Figure 4 shows how the dimensionless

height, H/H0, of the sample evolves with nominal strain for the three di�erent aspect ratios.

The �gure shows that the strain rate in each sample is initially constant for nominal strains

lower than approximately 1.5, and then the strain rate starts to decrease. This decrease is not seen

in the slowest experiment at ε̇ = 0.2s−1 because the sample ruptures at εN ≈ 1.2, nor is it seen for

ε̇ = 50s−1 due to rupture at εN ≈ 2.5. By �tting the sample height, measured for εN < 1.2, to the

expected exponential decrease H/H0 = exp(−ε̇t/2) we �nd that the strain rates are around 20 %

smaller than the imposed strain rates. Schulze et al (2001) observed a similar deviation between

the imposed strain rate and the actual strain rate for LLDPE melts on the Rheometric Scienti�c

RME extensional rheometer. The strain rates measured from the video images are given in the

caption to Figure 3.

To investigate the phenomenon further we conducted a series of experiments using samples of

varying initial widths. Figure 4 shows the evolution in sample width for three di�erent aspect

ratios and the data indicates that the evolution in the actual sample deformation depends strongly

on initial aspect ratio, Λ0. As Λ0 approaches unity the progressive deviation from ideal uniaxial

elongation at high strains is greatly reduced. This phenomenon is illustrated more visually in
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Figure 5.

4.3 Comparison of SER, EVF and FSR

To validate the elongational measurements made on the SER and EVF rheometers, independent

measurements on the same PI were performed on an FSR rheometer, (Bach et al. 2003). The

results for three di�erent elongational rates are plotted in Figure 6 as engineering stress against

the Hencky strain. For the EVF and SER we use nominal Hencky strain while for the FSR we use

the Hencky strain obtained from the �lament diameter. The engineering stress is de�ned as the

measured tensile force divided by the initial cross-sectional area (σzz−σrr)eng = F (t)/(H0W0). We

note that the ordinate-axis is on a linear scale in order to ease visual comparison. The maximal

deviation in engineering stress between the measurements on the EVF, SER and FSR at an

elongational rate ε̇ = 0.2s−1 is 13 % at an extension of one Hencky strain unit, ε̇t = 1. Similarly

the maximum deviation is 6% for ε̇ = 0.03s−1 at ε̇t = 1 and 7% for ε̇ = 0.003s−1 at ε̇t = 0.5. It can

be seen that the FSR is able to measure the extensional stress growth for about 0.5 to 1.0 Hencky

strain units longer than the SER and EVF. For ε̇ = 0.2s−1 the FSR data extend more than one

Hencky strain unit further. This is due to the closed loop control of the sample deformation in

the FSR. However, the SER and EVF are able to impose substantially higher elongational rates

than the FSR with closed loop control in operation. The combined application of the EVF and

SER �xtures with the FSR therefore allow us to explore a wider range of Deborah numbers than

is possible with the FSR alone.

4.4 Transient elongational viscosity

Also shown in Figure 6 is the response of the Doi-Edwards model (Eq. 2) in the fast stretching

limit De →∞. It is seen that for DeR = 0.04 the data follow more or less the fast stretching limit
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of the Doi-Edwards model. For DeR = 0.13 the data lie signi�cantly above the Doi-Edwards upper

limit. Figure 7 shows the growth in the engineering stresses obtained from EVF measurements

for elongational rates ranging from ε̇ = 0.0003s−1 to ε̇ = 0.6s−1 together with the corresponding

Doi-Edwards prediction. The data are well predicted by the Doi-Edwards model up to a strain

rate of ε̇ = 0.03s−1 corresponding to DeR = 0.02. For larger stretch rates, the data are above

the Doi-Edwards model. This deviation corresponds well with the prediction of Marrucci and

Ianniruberto in Eq. 7, i.e. we see substantial deviation from the basic Doi-Edwards theory when

Dep is greater than about unity.

Figures 6 and 7 also reveal that for elongational rates below approximately 0.2s−1 the samples

rupture and fail very rapidly after reaching a maximum in the engineering stress. Sample failure

is seen visually as a cohesive breakage (see the pictures in Figure 7) and is also observed as a rapid

decrease in the engineering stress, as opposed to the smooth decrease seen at the the highest rate

of ε̇ = 0.6s−1. Similar observations have been reported by Wang et al. (2007) and Wang and

Wang (2008) for a series of Styrene Butadiene Rubbers. The Considere criterion, [McKinley and

Hassager (1999)], predicts that for a purely elastic material sample, failure occurs at the maximum

in engineering stress:
∂σeng

∂ε
= 0 (9)

.

The measured engineering stress especially for the EVF and the SER appears to satisfy this

criterion for ε̇ < 0.2s−1. The small time delay from maximum to rupture is most likely a result

of the fact that our PI is a viscoelastic rather than a purely elastic material. As mentioned, the

active feedback control loop in the FSR makes it possible to delay failure to even larger Hencky

strains as shown also in Figure 6.

Figure 8 shows the results of the same experiments as in Figure 7, including the results for
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the highest elongational rate experiments (0.6 ≤ ε̇ ≤ 5s−1) but now plotted as the transient

elongational viscosity against time together with the linear viscoelastic prediction. Figures 7 and

8 both show that the elongational behavior changes radically at an elongational rate of around

ε̇ = 0.2s−1.

This is visually seen as stabilization of the elongating polymer �lament, i.e it does not rupture

for Hencky strains εN < 4. The measured elongational forces also increase so the tensile stress

di�erence exceeds not just the Doi-Edwards prediction but also the linear viscoelastic envelope. We

interpret this as a sign of strain hardening for elongational rates 0.6s−1 and higher; corresponding

to DeR ≥ 0.67× 0.6 = 0.4.

The experiments in Figure 8, at elongational rates ε̇ < 0.6s−1, are performed on samples with

an initial aspect ratio of Λ0 = 14.3, whereas the experiments for ε̇ ≥ 0.6s−1 are performed on

samples with Λ0 = 2.0. The reason for this change has already been discussed in Section 4.2.

When stretching the samples to Hencky strains, εN > 1.2, the local kinematics in the sample can

change and the imposed deformation rate decreases for strain-hardening samples with large aspect

ratios. This progressive evolution in the kinematics is reduced for aspect ratios close to unity. This

improves the homogeneity of the elongational stretch history, and is why we use smaller aspect

ratios in the fastest experiments. In Figure 9 we make a comparison between the measured tensile

stress di�erence in the startup experiments performed with two di�erent aspect ratios, Λ0 = 14.3

and Λ0 = 2.0. It can be seen that the stresses superpose well until total strains of ε = 3. However

beyond this point the measured stresses for Λ0 = 14.3 begin to plateau as the e�ective strain rate

in the sample is progressively reduced (as shown by the local slope (d log H/dt) in Figures 3 and

4. By contrast, for Λ0 = 2, the extensional stress continue to grow approximately exponentially.

The di�erence in elongational stresses between tests at the same strain rate with aspect ratios

Λ0 = 14.3 and Λ0 = 2.0 is less than 35% up to a Hencky strain of εN = 4. This implies that the

stress measurements are not severely a�ected by the pronounced local change in kinematics seen
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in Figure 4.

The transient elongational viscosities plotted in Figure 8 do not show any tendency to level o�

and approach a constant steady state elongational value in any of the experiments. At elongational

rates, ε̇ < 0.2s−1 the cut o� values in the viscosities are related to sample rupture, and the highest

measured viscosity is therefore not representative of a steady state elongational viscosity. At

elongational rates ε̇ ≥ 0.6s−1 we are able to measure the transient elongational viscosity to much

higher Hencky strains. However, the stress growth in Figure 9 appears to increase monotonically

with strain at all strains archived experimentally.

A potential problem that one may encounter when using a rotational device such as the SER

or EVF is that at Hencky strain units above εN = 3.8 the polymer �lm has made one entire

revolution on the cylindrical drum and will thus wrap completely around the clamps and come

back in contact with itself. This will change the e�ective diameter of the drum, and thereby change

the imposed elongational rate. This is a signi�cant challenge to observing a smooth transition into

a steady state viscosity for EVF and SER measurements as opposed to using a �lament stretching

rheometer, which in principle has no mechanical inherent restrictions on the maximum Hencky

strain available. However Bach et al. (2003) showed that it may by necessary to adjust the rate

of end-plate separation to achieve a constant elongation rate.

The fact that we have not been able to reach steady values of the stress in any nonlinear

extensional experiments may be due to the very large molar mass of the PI sample. Given the

number of entanglements Z = 280 and number of Kuhn steps N = Za2
0/b

2 = 15000 we estimate

that the strains needed to orient all tube segments and stretch all tube segments could be as

high as 1
2
ln Z ≈ 2.8 and 1

2
ln N ≈ 4.9 respectively. However reliable viscosity data have not been

obtained for nominal strains above 3.8 due to inherent limitations with the EVF and SER �xtures

due to low signal to noise ratio especially for low aspect ratios as seen in Figure 4.
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4.5 Stress relaxation after small strain

Nielsen et al. (2008) have recently reported stress relaxation measurements after elongational

�ow up to a total Hencky strain of ε3 performed in an FSR with online control of the plate

motion. They found that the cessation of �ow at the mid-�lament was only possible by carefully

adjusting the end plate separation in the relaxation phase. Without such end-plate control the

nonlinear relaxation in the sample induces a slow �ow that ultimately results in sample rupture as

demonstrated in their Figure 2. Also Wang et al. (2007) employed an SER �xture on a rotational

rheometer to characterize four entangled monodisperse polymer melts in extensional deformation.

To investigate stress relaxation they halt the drum rotation after a given Hencky strain. They

observed that when the applied initial Hencky strain is of order unity and higher the sample

ultimately ruptures during the stress relaxation phase.

However, for small total strains, it is possible to measure viscoelastic stress relaxation using the

SER and EVF devices by simply halting the rotation of the drums. For small strain the sample

is described by the linear viscoelastic model, it may then be shown that, in the absence of �uid

inertia, the �uid motion ceases as soon as the drum rotation is halted. It is an extension of the

similar situation for Stokes �ow of Newtonian �uids and follows in fact from the correspondence

principle of linear viscoelasticty (Pipkin (1972)) as delineated in Appendix A. To demonstrate

the application of the SER for stress relaxation after small strain we have included in Figure 8

experimental measurements of stress relaxation after total Hencky strains of 0.26, 0.23 and 0.345

compared with the relaxation predictions from the multimode linear Maxwell model. It is seen,

that the data agree well with the predictions, which indicates that the entire �uid motion is in fact

halted with no nonlinear relaxation in the sample. Keep in mind, however that in the LVE limit

there is no new information in stress relaxation that we have not obtained in SAOS. The agreement

between the stress relaxation experiments and the LVE predictions in Figure 8 is therefore in this

situation just an internal check.
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4.6 Thermal e�ects

When stretching the PI sample, the rate of work input to the sample would, under adiabatic

conditions, result in a temperature increase as considered also by Bach et al. (2003). We assume

initially that the sample is su�ciently thin to have a uniform temperature T throughout its width.

A simple energy balance[5] then gives

V0ρCp
dT

dt
= (σzz − σrr)ε̇V0 − hcAc(T − T∞) (10)

where V0 = WHL is the constant sample volume and Ac = 2HL is the vertical area of the sample

over which heat transfer to the environment can take place. Here W = W0 exp(−ε/2) is the

thickness and H = H0 exp(−ε/2) is the height of the sample, D0 and H0 being the initial values.

Also ρ is the density, Cp the speci�c heat capacity of PI, hc is the heat transfer coe�cient from

the vertical sides of the sample and T∞ is the temperature of the surroundings. For simplicity we

assume a constant Nusselt number Nu = hcH/kair where kair is the thermal conductivity of the

surrounding air. Equation 10 may be reformulated in the form,

d∆T

dε
+ βeε∆T =

1

ρCp

(σzz − σrr) (11)

where β = 2Nukair/(ρCpH0W0ε̇) is a dimensionless coe�cient controlling the e�ectiveness of heat

transfer from the sample and ∆T = T − T∞. Equation 11 can be integrated to give

∆T (ε) =
1

ρCp

∫ ε

0

exp
(
−β(eε − eε′)

)
(σzz(ε

′)− σrr(ε
′)) dε′ (12)

We use the values Cp = 1930J/kgK and ρ = 830kg/m3 (Fetters et al. 1994 and van Krevelen

1990) for PI and kair = 0.026W/mK for air. As an example we consider W0 = 0.7mm, H0 = 2mm

and ε̇ = 5s−1 corresponding to the highest stretch rates reported in the present work. To evaluate
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Eq. 12 we need to determine the values of the coe�cient β. With a length scale of 2 mm,

radiation alone will give a Nusselt number of about 0.5. Conduction corresponds to Nu ≈ 1

while the rotation of the �xture will create a convective contribution to the heat transfer that

we estimate from the Reynolds number (Re ≈ 5 for the EVF rotating �xture) and the Prandtl

number Pr ≈ 0.7 by Nu ≈ 0.6Re1/2 Pr1/3 ≈ 1.3. As a conservative estimate we let the composite

Nusselt number, Nu = 2.5 with the result that our estimate for β is about 0.01 for this experiment.

To facilitate integration of Eq.12 the measured evolution in tensile stress di�erence vs. Hencky

strain for ε̇ = 5s−1 was �tted by a sixth order polynomial. In Table 2 we give the resulting values

of the temperature increase of the PI sample obtained from eq. 12 for ε = 4.

We estimate the corresponding changes in time constants from time-temperature superposition,

τ(T + ∆T ) = τ(T )
aT+∆T

aT

.

The Williams-Landel-Ferry shift factors are given also in Table 2(Abdel-Goad et al. (2004)).

β 0 0.01 0.1 1.0
∆T [◦C] 37.3 28.8 6.6 1.0
a25◦C+∆T /a25◦C 0.14 0.16 0.61 0.93

Table 2: Estimates of the maximum possible temperature increase for adiabatically elongated
samples at high rates

It appears that one should aim for at least β ≥ 0.1 for this sample and that (since we have

estimated β ≈ 0.01) the measurements for ε̇ = 5s−1 should therefore be taken with considerable

caution.

In closing we may check our initial assumption that the temperature of the �lament is uniform

throughout the strip by computing the Biot number Bi = hcW0/kPI = Nu(kair/kPI)(W0/H0).

With the thermal conductivity of PI kPI = 0.134W/mK we get Bi ≈ 0.17 ¿ 1 indicating that

temperature variations across the �lament are indeed negligible.
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4.7 Rupture dynamics for EVF and SER instruments

When stretching the PI sample on the EVF or SER �xture we observe sample failure very close to

the maximum of the engineering stress at elongational rates below the inverse Rouse time, ε̇ < τ−1
R

whereas sample rupture occurs later for higher elongational rates. To quantify this phenomenon

more clearly, in Figure 10 we show the Hencky strain at failure, εfailure and the Hencky strain at

the maximum engineering stress εmax plotted against the Deborah number, DeR = ε̇ · τR, based

on the Rouse time (τR = 0.67s). Also shown in the �gure is the prediction for εmax obtained from

the Doi-Edwards model.

The measured values of εmax and εfailure are almost identical for DeR < 0.01 and are both

predicted quite well by the Doi-Edwards model. At DeR > 0.01 we see that sample failure εfailure

occurs progressively later and later compared to εmax, and the Doi-Edwards model is not able to

catch the upturn in εmax and εfailure. This progressive separation of εmax and εfailure is another

signature of the onset of the chain-stretching as DeR exceeds a critical value. Also shown in

Fig 10 by the dashed line is the empirical scaling observed by Wang et al. [24] in stretching

experiments with polyisoprene, εmax ∼ (τRε̇)1/3. This scaling also appears reasonably consistent

with our observations for DeR ≈ O(1).

5 Conclusion

The aim of this work has been to investigate the transient extensional rheology of highly entangled

linear polymer melts with narrow molar mass distribution. For this purpose we have utilized an

ultra high molecular weight polyisoprene with a very large number of entanglements (Z = 280).

We have measured the transient elongational stress growth using both a �lament stretching device

and a recently developed extensional technique in which the sample is elongated by two opposite

rotating cylinders. The following conclusions can be drawn:
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• The polyisoprene melt has been tested on three extensional rheometers: the SER, EVF and

the FSR. For three widely separated elongational rates of ε̇ = 0.003, 0.06, 0.2s−1 the three

rheometers obtain the same elongational properties to within 15%.

• The kinematics of the elongating melt in the EVF and SER rheometers are found to depend

on the dimensions of the elongating sample. By using high speed video microscopy it is

found that a high aspect ratio, (i.e. height-to-thickness ratio), results in a decrease in the

e�ective elongational rate in the sample with increasing extension. This e�ect can be avoided

or minimized by using samples with aspect ratios close to unity.

• We have not been able to attain values for a steady elongational viscosity for any of the

stretch rates investigated due to rupture of the sample.

• At stretch rates up to about DeR ' 0.02, the evolution in the tensile stress di�erence is well

described by the Doi-Edwards model.

• At stretch rates in the interval 0.02DeR < De < DeR the transient tensile stress di�erence

is signi�cantly above that predicted by the Doi-Edwards model. This regime corresponds to

that investigated by Bach et al. (2003) for a linear PS melt.

• At stretch rates smaller than the inverse Rouse time, DeR < 1, sample failure is observed in

general accordance with the Considère criterion, that is, at the maxima in the engineering

stress, or at most one Hencky strain unit later.

• At stretch rates higher than the inverse Rouse time, DeR > 1, the sample is stable to strains

substantially beyond the Considere criterion and signi�cant strain hardening in the transient

stress growth can be measured.

While we feel justi�ed to interpret the stabilization for stretch rates DeR > 1 to molecular stretch-

ing we do not o�er a unique explanation for the increase of the stresses above the Doi-Edwards
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model in the interval 0.02DeR < De < DeR. Two interpretations that have been proposed are

that some molecular stretching does take place also in this regime (Bach at al. (2003)) or that

the increased stresses are due to the tube pressure e�ect (Marrucci and Ianniruberto (2004)).

The latter interpretation does predict the lower limit for this region in reasonable agreement with

our data. However it may not be possible to distinguish between these two interpretations from

rheological measurements alone and it would be useful in the future to augment this data with

birefringence measurements.

24



6 Appendix: Application of the correspondence principle to

stress relaxation

The fact that no �ow will take place after the drum rotation is halted relies on two conditions.

First that inertia, gravity and surface tension are negligible, and second that the deformation is

small so the material is described by the theory of linear viscoelasticity. To illustrate the generality

of the situation, consider a viscoelastic material where the boundary is divided into two parts,

Γu on which the velocity v is given and Γf on which the surface force per unit area is speci�ed.

Assume furthermore, that the boundary conditions on Γv may be factorized into a spatial and

temporal component so that

v(Γv) = g(x)f(t)

for some given functions g and f . On Γf we assume equilibrium with the surroundings so that

n · σ(Γf ) + np(Γf ) = npatm

where n is an outward unit normal to Γ and patm is the air pressure.

In the absence of inertia, the linear momentum equation in the �uid domain reads

∇ · σ −∇p = 0

while the LVE constitutive equation is

σ(x, t) =

∫ t

−∞
G(t− t′)γ̇(x, t′)dt′ (13)
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We now try a solution of the form v(x, t) = v0(x)f(t) where f is the function speci�ed by the

boundary conditions. The corresponding stresses become

σ(x, t) =

∫ t

−∞
G(t− t′)f(t′)dt′ γ̇0(x) = µ(t) γ̇0(x)

where γ̇0(x) = ∇v0 + (∇v0)
† is the rate-of-deformation tensor corresponding to v0 and the

function µ(t) is de�ned for convenience. Let p = p0(x) µ(t) + patm. Then it follows that we need

to �nd solutions to the Stokes problem:

∇ · v0 = 0

∇2v0 −∇p0 = 0

v0(Γv) = g(x)

n · γ̇0(x)(Γf ) + np0 = 0

There is no time dependence in this problem, and solutions for v0 and p0 can, in principle, be

found. Therefore the trial solution v(x, t) = v0(x)f(t) is indeed a solution to the LVE �ow

problem. This implies, that in the absence of inertia, the �ow is stopped in the entire domain

as soon as f(t) = 0 corresponding in our situation to the stopping of the drum rotation. Thus

there is no sample �ow or deformation in the stress relaxation phase for small deformations. The

boundary conditions have been applied at �xed x values. That is, we have not taken into account

the deformation of the �uid domain that results from the drum rotation. This is in agreement with

the assumptions in the application of small strain linear viscoelasticity. The conclusion reached

above can also be made on the basis of the correspondence principle of linear viscoelasticty as

described by Pipkin (1972).The argument gives a theoretical basis for the application of the EVF,
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SER and FSR (without end-plate control) to the measurement of tensile stress relaxation in the

small strain limit.
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7 Figure captions

Figure 1: Measurements of G′ and G′′ obtained from small amplitude oscillatory shear experiment.

AR-G2 (TA Instruments) 25◦C. The solid lines (��) are the Milner McLeish prediction for

Z = 280, τe = 2.0 · 10−5s, and G0
N = 450kPa. The dotted lines (- - - -) are calculated from the

Maxwell spectrum, table 1, with imax = 10. The dash dotted line line is G′ = 860ω1/2.

Figure 2: Measurements of (a) G(t, γ) (b) G(t, γ)/h(γ), for discrete values of the applied strain

γ ∈ [0.01; 0.75] increasing from top to bottom. The dotted line is the predicted variation in

G(t) from the Maxwell coe�cients �tted to the small amplitude oscillatory shear measurements.

AR-G2 (TA Instruments) 25◦C.

Figure 3: Development of the normalized height of the polyisoprene �lm in the SER extensional

rheometer as function of nominal Hencky strain for four nominal elongational rates and initial

aspect ratio Λ0 = 14.3 (25◦C). Dotted lines are the predicted behaviour from the nominal elon-

gational rates assuming uniaxial extension. The elongational rates found from the initial linear

slope (on this semilogarithmic scale for , ε̇ · t < 1.2) are respectively ε̇ = 0.177s−1, ε̇ = 1.812s−1,

ε̇ = 6.77s−1 and ε̇ = 41.9s−1.

Figure 4: Normalized height of the polyisoprene �lm in the SER extensional rheometer as function

of the nominal Hencky strain for di�erent aspect ratios, Λ0 = 2.0, Λ0 = 9.6 and Λ0 = 14.3 at the

same nominal elongational rate of ε̇ = 3s−1 (25◦C). The data is taken from images obtained by

high speed video microscopy. The ideal uniaxial kinematic response is shown by the dotted line.

Ideal planar extension would correspond to a horizontal line. For Λ0 À 2.0 the deformation is

seen to be a mixture of uniaxial and planar extension.
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Figure 5: Black and white image frames from the video for Λ0 = 2.0 and Λ0 = 14.3 from the SER

instrument. The nominal elongational rate is ε̇ = 3s−1 in both experiments. Close inspection of

the frames show that the kinematics depend on the aspect ratio, as shown in Figure 4.

Figure 6: Measurements of the engineering stress for ε̇ = 0.003s−1, ε̇ = 0.06s−1 and ε̇ = 0.2s−1

as function of Hencky strain as determined by the EVF, SER and FSR instruments (25◦C). For

the EVF and SER, ε is nominal Hencky strain (Eq. 8) while for the FSR ε is computed from

the instantaneous �lament diameter. The Rouse Deborah numbers for the three experiments are

DeR = 0.002, DeR = 0.04 and DeR = 0.13, based on the Rouse time of τR = 0.67s. The solid line

is the Doi-Edwards prediction, equation 3, for Ded À 1, with G0
n = 450kPa

Figure 7: Transient growth of the engineering stress for elongational rates : ε̇ = 0.0003s−1 +,

ε̇ = 0.0006s−1 O , ε̇ = 0.001s−1 N , ε̇ = 0.003s−1 M, ε̇ = 0.006s−1 ♦, ε̇ = 0.01s−1 ◦, ε̇ = 0.03s−1

H, ε̇ = 0.06s−1 ¤ , ε̇ = 0.1s−1 ∗, ε̇ = 0.2s−1 ¥, and ε̇ = 0.6s−1 •. (EVF instrument, 25◦C). The

dotted lines are the prediction of the Doi-Edwards model for the seven lowest elongational rates,

and the solid line is the rapid stretching limit of the Doi-Edwards model, (equation 3) . The

bottom frames show the development of the polyisoprene sample at di�erent times stretched at a

rate of ε̇ = 0.2s−1.

Figure 8: Transient elongational viscosity for 12 elongational rates from ε̇ = 0.0006s−1 to ε̇ =

5.0s−1. The solid line is the linear viscoelastic envelope (EVF instrument, 25◦C). Also included is

the transient elongational viscosity measured during startup and stress relaxation for ε̇ = 0.1s−1

stretched to ¥ ε = 0.26, • ε̇ = 0.01s−1 stretched to ε = 0.23 and N ε̇ = 0.003s−1 stretched to a

�nal strain ε = 0.345. The dotted lines are the relaxation prediction during relaxation from the
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multimode linear Maxwell model.

Figure 9: Comparison between the transient extensional stress for elongational experiments per-

formed with initial aspect ratio of Λ0 = 2.0 and Λ0 = 14.3 respectively (EVF instrument, 25◦C).

The imposed elongational rates range from ε̇ = 0.6s−1 to ε̇ = 5s−1. The solid line is the Neo-

Hookean prediction, σzz − σrr = G0
N(e2ε − e−ε) and the dotted line is the rapid stretching limit

from the Doi-Edwards equation from eq. 3.

Figure 10: Measured values of Hencky strain at which the engineering stress goes through a

maximum (εmax) and Hencky strain at which the sample ruptures (εfailure). Also shown is the

Doi-Edwards prediction of εmax.
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