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Solutions to Problem Set #4 

 
 
4.1 For a certain HCP metal, the shear stress required to activate twinning on a )1211(  

plane is three times the shear stress to activate slip on the basal plane.  Consider 
single crystals of this metal, pulled in tension on a stress axis that lies between [0001] 
and ]0211[ : 

]0211[

[0001] 

Stress axis θ 

 
 For some values of θ, twinning will be active, and for some θ slip will be active.  

Assuming that the twinning direction and slip direction are the same for all values 
of θ, calculate each of these ranges for an arbitrary assignment of c/a. 

 

We need to find the values of θ for which 3
slip

twinning >
τ

τ
.  In other words, what is the stress acting 

on the slip system and twinning system?  We can use the Schmid factor construction to 
determine this.  Lets call the angle between the twin plane normal and the stress axis ω. 
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Since they are acting in the same direction, cosφtwin = cosφslip.  Also, the slip plane is (0001), so 
that the angle θslip is just the given angle θ.  Now we have to find ω which will be a function of 
c/a and θ.   



 

 
Now, let’s plot cosω/cosθ for several c/a ratios… 
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For the different c/a ratios in the plot, the angles between slip and twinning are:  

c a δ (º) θ (º) θ(º) 
1 2 45.00 72.86 -79.20 
1 1 63.43 70.69 -75.45 
2 1 75.96 70.62 -73.34 
3 1 80.54 70.82 -72.69 

(The transition also occurs when at θ = θ + π)



4.2 Calculate how much energy can be stored as dislocations by deforming a metal.  
State your answer as a fraction of the elastic energy you can store in the same metal if it 
can sustain 1% shear strain prior to yielding.  State any assumptions you need in your 
calculation. 
 
Elastic energy (per unit volume) = ½Gγ2 =       where G is the shear modulus. G105 5−×
 
 
Assumptions used in calculating the energy of dislocations: 
 
- Dislocation density, ρ = 1016 m-2 
 
- b = 2 x 10-10 m 
 
- Strain energy of dislocation will be described as = Gb2 (ignores any prefactors) 
 
 
Since the dislocation strain energy is actually energy per unit length, we need to multiply by the  
length of dislocations per unit volume (the dislocation density).  Therefore: 
 

( ) ( =×=ρ= −− 2162102 m10m102GGb
volume
Energy ) G10 4−×   4  

 
Therefore, the ratio of the energy stored by the dislocations to the energy stored during elastic 
deformation is 8 (8 times more energy stored by dislocations).   
 
Note: Answers could have obviously varied greatly depending on what dislocation density you 
assumed.  Every order of magnitude difference in density results in an order of magnitude 
change in the relative weights of the two energy storage mechanisms.  



4.3 When edge dislocations stack up into a low angle subgrain boundary, the 
misorientation is a function of their spacing, d: 
 
 θ = b/d 
 
 The energy of such a stack of dislocations is: 
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In the “second stage” of polygonization, low angle boundaries combine.  Calculate 
the energy change when two low-angle boundaries combine into one, using the 
above equations. 

 
Calculate the energy for the following 2 configurations: 
 

(a) ┴(b) 
┴
┴
┴
┴
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(a)  Each low-angle boundary has an angle of 5º, but there are two boundaries, so the total 
energy of this configuration is: 
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(b)  There one boundary (with twice as many dislocations with half the spacing) has an angle 
of 10º, so its energy is: 
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These energies are obviously the same  there is no energy change associated with coarsening 
of the subgrain structure. 
 
4.4 On the basis of your calculation in 4.3, identify the driving force for coarsening of 

the subgrain structure in the second stage of polygonization.   
 
The driving force for coarsening of the subgrain structure can be seen by considering the stress 
fields around the dislocations.  The lateral spacing between boundaries is greater in (b), so the 
interaction energy between the boundaries decreases.  In other words, the lateral repulsion 
between the dislocations in adjacent boundaries is lower by virtue of the 1/x decay of the stress 
field.   


