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Problem #1: Partial Dislocations and Cross-Slip 
 
In an FCC metal, a screw dislocation approaches an obstacle and is momentarily stuck.  After the 
stress is increased, the screw dislocation can bypass the obstacle by cross slipping: 
 
 
 
 
 
 
Part A  If the same screw dislocation were initially dissociated into two partials: 
 
 
 

 
Can cross slip happen in this scenario?  Why or why not? 
 
Cross slip can only happen in this situation if the applied stress is high enough to force 
recombination of the partial dislocations.  As partials, no cross slip can occur. 
 
Part B  Would this obstacle be more effective in copper (low stacking fault energy) or aluminum 
(high stacking fault energy)? 
 
This obstacle would be more effective in copper.  Aluminum would have a small stacking fault 
that would happily recombine (at lower applied stress) and cross-slip over the particle.  On the 
other hand, copper would have a large stacking fault (requiring a large applied stress for 
recombination) that would prohibit cross-slip, thus blocking the motion of the dislocation. 
 



Problem #2: Stress/Strain Field of a Dislocation 
 
In class we discussed the strain and stress fields of edge and screw dislocations separately.  In 
this problem you will draw a picture of the stress field around a mixed dislocation, which is 
equally composed of edge and screw character.   
 

z 

y 
 
 
 x 
 
Please Note:   
(i) at any point in space, the total stress is just the sum of the two contributions (edge and screw) 
(ii) the equations for the edge and screw dislocations are given at the back, but you don’t 
necessarily need them to answer this question; physical intuition will suffice. 
 
Part A:  Draw contours of the σxx stress component in the above coordinate system 
 
Part B:  Draw contours of the σxz stress component in the above coordinate system 
 
For edge component:    σxx =    σxz = 0 
 
For screw component:  σxx = 0   σxz ~ 1/r 
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Problem #3: Dislocation Dynamics 
 
Here is a wee little specimen that has only a handful of dislocations in it, all of which have their 
line vectors pointing into the page: 
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The Burger’s vector is shown next to each dislocation; • is out of the page and ⊗ is into the page. 
 
Screw dislocations will move at 45º to the stress axis, and positive and negative screws will 
move in opposite directions from each other.  Only the edge dislocation with its burgers vector 
not perpendicular or parallel to the stress will move.   
 
Part A: If a tensile stress is applied as shown, indicate on the above picture how each dislocation 
would move. 
 
Part B: If the specimen were NOT deformed, but put directly into a furnace and annealed, draw 
how the configuration would change.  Add some labels or description to note what mechanisms 
are occurring. 
 

• 
• 

•
⊗

⊗
⊗

• 

⊗ 

 
 
 
 
 
 
 
 
 
 
The pairs of screw dislocation with red arrows between them will cross-slip and annihilate.  The 
edge dislocations may climb to appropriate slip planes and glide together to annihilate each other 
as indicated by blue arrows.  Other dislocations may migrate to form a lower-energy structure.   
 
 
 
 
 



Problem #4: Microstructural Evolution During Annealing 
 
A polycrystalline metal specimen is deformed and annealed, during which the following events 
occur in sequence: 
 

(i) recovery processes build a subgrain structure, which coarsens for some time 
(ii) recrystallization commences 
(iii) recrystallization runs to completion and structural coarsening continues 

 
Draw two plots that depict (a) the average size of subgrains as a function of time and (b) the 
average size of legitimate grains, separated by high-angle boundaries, as a function of time.  
Synchronize the plots in time, and label each part of the curve with the events taking place.  
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Problem #5:  Recrystallization Nuclei 
 
Consider the assemblage of square subgrains shown below.  There are sixteen unique grain 
orientations (labeled a-p).  These orientations are all indicated on the stereographic triangle at the 
right.   
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Five of the subgrains have been shaded.  From among these five, which subgrain will most likely 
be a nucleus for recrystallization?  Why?   
 
The subgrain with the most high-angle boundaries will be the most like nucleus for 
recrystallization.  If adjacent grains are to have a high-angle boundary between them, their 
orientations should be far apart on the stereographic triangle.  By comparing each grain with its 4 
nearest neighbors, its clear that grain g has an orientation VERY different from all of its 
neighbors, resulting in 4 high-angle boundaries.  Its neighbors are shown on the projection 
below.   
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Problem #6:  Unphysics 
 
The four situations described below are all unphysical.  For each, please identify with a short 
description the reason that it is unphysical.   
  
a.  The picture below is of a specimen with large lattice curvature and the dislocation array 

that is present to accommodate the deformation.   
 

If the lattice is curved as shown, the 
dislocations should have their extra half-
planes all pointing down to accommodate 
this deformation.   

 
 
b.  The microstructure below is the projection of the dislocations in an unstressed specimen. 
 

If there is no applied stress, the dislocation 
lines should be straight, in order to minimize 
their length and strain energy. 

 
 
 
 
c.  The diagram below shows several dislocation lines and their burger’s vectors (indicated 

by the arrows).   
 

The dislocation network does not obey 
Frank’s rule.  The burgers vector that meet 
at a junction of three dislocations do not sum 
to zero.   

 
 
 
 

d.  A uniaxial tensile stress is applied to a tungsten rod (body-centered cubic, density = 19.25 
g/cm3, coefficient of thermal expansion = 4.5 x 10-6 K-1, melting temperature = 3695 K) 
and the stress-strain curve labeled (1) is recorded.  The stress is then removed (2) and the 
W rod sits at room temperature for one day.  The next day, a tensile stress is applied 
again (3) and the stress-strain behavior is shown on the same graph.   

σ 
  

Tungsten’s melting temperature is very high 
and recovery would not be able to occur at 
room temperature in 24 hours.  When the 
stress is reapplied, the stress strain curve 
should have followed line (2) back to a 
higher yield point. 
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Problem 7:  Deformation Mechanistics and Stress-Strain Behavior 
 
A single crystal of an HCP metal is loaded in uniaxial tension, and the following stress-strain 
curve is recorded: 
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Using your vast knowledge of deformation physics in HCP metals, identify the likely 
mechanisms operating in this specimen over the course of the test.  Be sure that your answer 
explains each detail of the above curve. 
 
The HCP single crystal initially demonstrates elastic deformation until yielding occurs.  The 
shear stress will be high enough to activate slip on the primary slip system.  The horizontal part 
of the curve corresponds to deformation by “easy glide” – where dislocations are gliding on 
parallel planes and not intersecting.  As the deformation progresses, the crystal is rotating so that 
the slip direction lines up with the stress axis.  The dip in the curve happens as the HCP single 
crystal twins in response to the rotation.  After it has twinned, it’s essentially polycrystalline.  
Slip now occurs on multiple slip systems in the different grains and normal work hardening 
occurs.  



Problem #8:  The Frank Loop Dislocation 
 
The ‘Frank Loop’ dislocation is nothing more than a disk of vacancies that lies in a {111} plane 
of an FCC crystal.  Looking down on the {111} plane it looks like a loop, with its Burger’s 
vector pointing out of the page: 
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Looking at a cross section of the loop
this: 

Where the stacking sequence of {111
 
Part A:  Can Dr. Frank’s dislocation
 
No, the dislocation can not move at l
possible.  Also, the temperature is to
 
Part B:  Can it move at high tempera
 
Yes, the loop can move at high temp
can grow or shrink through climb.   
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