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BOILING AND CONDENSATION IN A
LIQUID-FILLED ENCLOSURE

by

Avram Markowitz

ABSTRACT

A combined experimental and analytical investigation of boiling and con-
densation in a liquid-filled enclosure, with water and Freon- 113 as the work-
ing fluids, is described. The operating characteristics of a boiling system,
utilizing a condenser submerged in the fluid, are presented and related to
specific operational modes and thermal transport mechanisms.

A lower bound of operation, corresponding to natural convection heat

transfer at both the heated and condenser surfaces, is identified. Similarly,
for the commonly encountered range of system operation, a condensive upper

bound is identified and shown to correspond to vapor space condensation.

A nondimensional vapor bubble collapse length, L /W, is found to governc
the rate and mechanism of heat transfer at the submerged condenser surface.

L
CValues of w<< are associated with natural convection heat transfer at the

L c
submerged condenser. For -~ I the presence of a substantial vapor frac-w
tion in the bulk liquid leads to augmented convection, while for values of
L

C >> 1 condensation is found to dominate thermal transport at the condenser

surface.

4 possible technique for augmenting condensation heat transfer on hori-

zontal surfaces is examined in an attempt to raise the condensive upper bound

of submerged condenser operation. A doubly-rippled surface with small,

constant radius of curvature undulations is shown to yield a factor of two

increases in the rate of vapor space condensation based on the projected area

of the condenser surface.

A systematic design procedure for submerged condenser systems utilizing

the proposed models and correlations is described and related to typical

design considerations.
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NOMENCLATURE

a - Acceleration

A - Area

B - Bubble collapse parameter, Ja _K
R 0 Ap

c - Arbitrary constant

c - Specific heat at constant pressure
p

Csf - Boiling constant

Cd - Bubble departure constant

D - Diameter

De - Equivalent diameter, (4 x flow area)/(wetted perimeter)

D - Bubble departure diameter

F' - Buoyant force per unit volume

Fr - Froude number v/4gT

Gr - Grashof number, g 8 (A T) L p /y

g - Gravitational acceleration

g - Gravitational constant, 32. 17 lb ft/lb sec2
0 m f

h - Heat transfer coefficient

h - Latent heat of condensation or evaporation

hI - h +0.68 c (Ts-Tc)
fg fg p s c

Ja - Jacob number, c p (T s-Tb )/hfg v

k - Thermal conductivity

K - Thermal diffusivity, k/pc~
p

L - Length

L - Bubble collapse length
C

n - Exponent
hL hD

Nu - Nusselt number, k or

*
Nu - Augmentation parameter, Nu aug/Nunc

iv
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P - Pressure
c 11

Pr - Prandtl number
k

q - Rate of heat transfer

q" - Heat flux

Q - Volumetric flow rate

r - Radius of curvature of undulation

Ro - Bubble departure radius

Ra - Rayleigh number, Gr Pr

Rt - Thermal resistance

S - Distance along curved surface

T - Temperature

t - Time

t - Bubble collapse period

V - Volume

V - Enclosure Volumee

v - Velocity

vb - Bubble rise velocity

v. - Vapor jet velocity
J

W - Separation distance between heated and condenser surfaces
2

We - Weber number, r p v /-g

x, y - Coordinate axes

z - Independent variable

a - Volumetric vapor fraction

a - Angle

- Thermal coefficient of volumetric expansion

- Bubble contact angle

r - Mass rate of condensate flow per unit width

y - Bubble collapse ratio, D/D0
y - Condensate film thickness in undulation trough

6 - Condensate film thickness on undulation crest

- Vapor generation parameter

0 - Configuration factor
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A - Modified configuration factor

A - Nondimensional condensate film thickness

- Absolute viscosity

p - Mass density

a- - Surface tension

T - Nondimensional bubble collapse period

- Nondimensional parameter

-Angle

- Nondimensional angle

Subscripts

b - Bulk

c - Cold surface, condenser surface

e - External

f - Fluid

h - Hot surface, heater surface

i - Internal

1 - Liquid

m - Mean

nc - Natural convection

s - Saturation

T -Total

v - Vapor

Note: Unsubscripted fluid properties refer to the liquid phase.
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ERRATA

Page

i "Lc " "Lc "
1, 95 line 12, 13 and 14 - should be

w W

line 21 "increaser" should read "increase"

vi line 20 's' should be 's, SAT'

line 17 'L' should be I

x, 35 Figure 19 "vapors flow . . . " should read "vapor flow"

6 Delete arrows at cover

28 line 10, 13, 14 all 'Gr' should be 'Gr 'L
32 equation 7 Pr exponent should be 5. 1 for water,

1. 0 for other fluids

36 line 3 "bouyant" should read "buoyant"

line 5 "bouyancy" should read "buoyancy"

37 equation 13 'P ' should be 'pv v

38 1st equation was obtained by simplifying equation 12

47 equation 31, 32 'aug' refers to augmented

51 abssica 'J ' should be 'Ja'

52 line 27 . . is of necessity . . . " should read ". . is necessary

54 equation 46 'amb' refers to ambient

59 line 8 "A rigorous for 6 (x) . . . " should read

"A rigorous solution for 6 (x) . . .

65 line 33 "Though obviously . . ." should read "Obviously, any

augmentation must be weighed . . .



UNCLASSIFIED

TABLE OF CONTENTS

ABSTRACT...................

ACKNOWLEDGMENTS............

NOMENCLATURE...............

1. INTRODUCTION.............

1. 1 Electronic Cooling........

1. 2 Pool Boilers............

1.3 Submerged Condenser . ....

1. 4 Present Investigation . ....

2. OPERATING CHARACTERISTICS C
APPARATUS...............

2. 1 Apparatus and Procedure

2. 2 Operating Characteristics

2.3 Bulk Temperature........

3. OPERATIONAL MODES........

3. 1 Mode I - Natural Convection

3. 2 Mode II - Subcooled Boiling

3. 2. 1 At the Heated Surface

3. 2. 2 In the Bulk.........

Page

iv

EXPE R

3. 2. 3 At the Condenser Surface.....

3. 2. 4 Condensive Limit of Mode II

4. CONDENSATION ON A RIPPLED SURFACE.

4. 1 Introduction...................

4. 2 Experimental Apparatus and Procedure

4.3 Analysis. .....................

4. 3. 1 At the Undulation Crest.......

4. 3. 2 At the Undulation Trough......

IMENTAL
10

10
13

21

27

27

30

30

38

43

55

64

64

68

69

69

. . . .'. . . . 75

Vii



UNCLASSIFIED

TABLE OF CONTENTS (Cont.)

4. 4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . .

4. 4. 1 Condensate Film Thickness..................

4. 4. 2 Condensive Limit. ......................

5. DESIGNING A SUBMERGED CONDENSER SYSTEM...........

5.1 Introduction..................................

5. 2 Design Considerations. .... .. ..................

5. 3 Design Procedure. .... ... .. ..................

5. 4 Additional Considerations

5. 4. 1 Increasing Effective Condenser Area . . . . . . . . . . . .

5. 4. 2 Presence of Noncondensables ..

5. 4. 3 Changing the Physical Scale

5. 4. 4 Heater Configuration. ....................

5. 4. 5 Two-Fluid Submerged Condenser System . . . . . . . . .

CONCLUSIONS........ ..... ... .. ................. -

REFERENCES......................................

APPENDIX

EXPERIMENTAL APPARATUS AND PROCEDURE.....

BIOGRAPHY ,................. ..... ... . . ... .-.-.

Page

77

77

80

83

83

84

85

89

89

92

93

93

93

100

107

Viii



iii

UNCLASSIFIED

LIST OF ILLUSTRATIONS

Figure Page

I Pool Boiler for Electronic Components with Vapor Space
Condenser (1) 3................................3

2 Completely Filled Container with Submerged Heat
Exchanger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Pool Boiler for Electronic Components with Side Wall
Cooling ....... ... ............. ........................ 6

4A Side-Wall, Air-Cooled Power Supply Module (1)........... 9

4B Submerged Condenser System (1) . . . . . . . . . . . . . . . . . . . . 9

5 Schematic of Experimental Submerged Condenser
Apparatus . . . . . . . . . . . . . . . . . . . . - - - - - - . . . . . .11

6 Photograph of Experimental Submerged
Condenser Apparatus .... ... ................... 12

7 Operating Characteristics of a Submerged Condenser
System - Water, One Heater . . . . . . . . . . . . . . . . . . . . . . . 14

8 Operating Characteristics of a Submerged Condenser

System - Water, Two Heaters . . . . . . . . . . . . . . . . . .. . . . 15

9 Operating Characteristics of a Submerged Condenser
System - Freon-113, One Heater ................... 16

10 Operating Characteristics of a Submerged Condenser
System - Freon-113, Two Heaters . . . . . . . . . . . . . . . . . . . 17

11 Submerged Condenser Operating Mode Ia - Water,
One Heater. .... .. ........ ..-.-.-.-.-.-.-.-.-.-. 19

12 Submerged Condenser Operating Mode IIb - Water,
One Heater......................... . - - - - - - - - - - . .20

13 Bulk and Heated Surface Temperature Variation with
Condenser Heat Flux - Water, One Heater . . . . . . . . . . . . . . 22

14 Bulk and Heated Surface Temperature Variation with
Condenser Heat Flux - Water, Two Heaters . . . . . . . . . .. . 23

15 Bulk and Heated Surface Temperature Variation with
Condenser Heat Flux - Freon-113, One Heater . . . . . .. . . . . 24

16 Bulk and Heated Surface Temperature Variation with
Condenser Heat Flux - Freon-113, Two Heaters ......... 25

17 Mode I - Convection in Submerged Condenser System -

Water, One Heater . . . . . . . . . . . . . . . . -.. . . 29



-~ ,~. -'~ A ~ a ~ .-WARS~

UNCLASSIFIED
LIST OF ILLUSTRATIONS (Cont.)

Figure Page

18 Pool Boiling of Water.................................. 31

19 kStages in the Transition from the Region of Isolated
Bubbles to the Region of Continuous Vapor Columns
(vapors flow increasing from a to e) .. ... .... ... ...... 35

20 Collapse Distance of Bubbles for Varying Bulk Sub-
cooling - Water, Freon-113 .. .. ... .... .... ... ...... 44

121 Variation of Condenser Heat Transfer Coefficient with
Dimensionless Collapse Length - Water, One Heater ..... 46

22 Augmented Natural Convection in Water .. .. ... .... ..... 51

23 Calculated Bulk Temperature Variation with Condenser
Heat Flux - Freon-113. .. .. ... .... ... .... ... ...... 53

24 Condensive Limit on Horizontal Surface. .. ... ... .... ... 56

25 Model and Coordinate System for Vapor Gap Analysis. .. ..... 58

26 Heat Transfer Rate as a Function of Angle at a Temperature
Difference of 40OF. .. ... .... ... ... .... ... ...... 62

27 Condensive Limit on an Inclined Surface .. .. ... ... ...... 63

28 Photograph of Doubly-Rippled Surface .. .. .. ... ... ...... 66

29 Schematic and Coordinate System for Doubly-Rippled
Surface .. .. ... ... .... .... ... .... .... ... ...... 67

30 Nondimensional Film Thickness Along Crest of Sinusoidal
Undulation................. ... ... ..... 74

31 Condensate Film Thickness on Crest of Sinusoidal and
Gregorig Type Profiles. .. ... ... .... .... ... .... ... 79

32 Condensive Limit for Doubly-Rippled Horizontal Condenser
Surface .. .. ... ... .... .... .... ... .... ... ...... 81

33 Bulk Temperature Variation with Condenser Heat Flux -

Water .. .. ... ... .... .... ... .... .... ... .... ... 90

18

424



UNCLASSIFED

1. INTRODUCTION

1. 1 Electronic Cooling

The advent of modern, high speed, high power electronic components

has generated growing interest in boiling heat transfer for electronic cooling.

Most first-generation electronic devices and some of today's standard units

are adequately cooled by the natural circulation of ambient air. The cooling

requirements of many others can be met by the forced flow of air or other

standard fluids in conjunction with highly conductive thermal paths through

appropriate structural elements (so-called cold-plates, cold-bars, etc.).

However, a growing number of thermal and electrical constraints can be

met only by direct immersion of the components and/or devices in a

dielectric coolant chosen to provide boiling heat transfer at the heated sur-

faces. This technique can be applied in two distinct electronic device cate-

gories differing widely in dissipated power per unit. The first is typified by

high-voltage power supplies for ground and airborne radar transmitters

typically dissipating 1-5 kilowatts which must operate successfully over a

wide range of environmental conditions and where volumetric and weight

considerations are paramount [1]. The second is comprised of solid-state

devices in high speed, data processing, logic and memory equipment typically

dissipating 200-800 milliwatts where the need to reduce wiring delays [2)

and the increased power consumption per gate associated with high switching

frequency [3] have led to more compact devices and heat fluxes at the sub-

strate level approaching 200 W/in. 2 [4].

In both of the above categories, the relatively small temperature differ-

ences inherent in boiling transfer, play a crucial role in reducing thermal

cycling. Substantial spatial and temporal power variations can thus be

tolerated without increasing component failure rates. In the cooling of high-

power components as, for example, in temperature sensitive power tubes,

the nearly constant surface temperature is essential to proper operation. In

many memory units the maintenance of a relatively narrow temperature range
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at the core, despite variations in power dissipation, facilitates precise
determination of the required driving current. This in turn reduces powker
input to the system while, simultaneously, decreasing heat dissipation within
the memory by eliminating special circuits otherwise required to compensate
for thermal drift [1, 5].

1.2 Pool Boilers

In the design of pool boilers for electronic assemblies, the coolant may
be considered expendable or unexpendable. In the expending type the vapor
generated is allowed to escape through a pressure control valve [6]. Obvi-
ously, the use of such a system is limited to tasks in which the required life
is short, since the supply of liquid is rapidly depleted and as the liquid level
falls, components are exposed to vapor. For systems requiring a high level
of reliability and longer operating life, the generated vapor must be con-

densed and recirculated.
Initially, such cooling systems had been designed with remote condensers

or condensing surfaces placed in the vapor space above the boiling fluid as

shown in Fig. 1. There are, however, two major drawbacks associated with

a vapor space condenser: packaging height is limited to the liquid height at

minimum temperature and the presence of even small quantities of noncon-

densables (e. g., air) can cause a dramatic degradation in condenser per-
formance [7] leading to higher system pressures and temperatures. Con-

sequently, elaborate filling and degassing procedures must be specified for

these systems, thus increasing maintenance costs and decreasing overall

reliability.
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1. 3 Submerged Condenser

It is possible, though to overcome these drawbacks by completely filling
the pool boilder and incorporating an expansion chamber in the design, as

shown in Fig. 2. The condenser is thus submerged at all times in the liquid
and liquid level variations with temperature are eliminated. In this config-
uration, the condenser surface serves primarily to subcool the liquid in the
pool boilder and vapor bubbles generated at the surfaces of the dissipative

electronic components rise and begin to condense in the fluid. The presence

of noncondensables dissolved in the liquid reduces the collapse rate of the

vapor bubbles, but the noncondensables can be removed at the submerged

condenser surface by slightly pitching the surface (~ 5*) towards the expan-

sion chamber inlet. The small gas bubbles impinging on the surface slide

along the surface and are vented into the expansion chamber. As a result,

noncondensables do not substantially affect heat transfer at the submerged

condenser surface. This is in sharp distinction with the vapor space con-

denser in which the noncondensables accumulate in the vapor space and impede

the flow of vapor toward the condenser surface. The elimination of the vapor

space thus significantly reduces the effect of noncondensables on the thermal

performance of the system and, in addition, results in considerable economics

in volume and weight [8, 9] . Similar advantages can often be realized by

utilizing the side walls of the container as the primary cooling surfaces, as

shown in Fig. 3, or as secondary cooling surfaces in conjunction with the

horizontal submerged condenser.
As in other boiling systems, the dissipative elements in the submerged

condenser system experience only moderate increases in temperature as a

result of large increases in their dissipated power. Furthermore, low

dissipation or thermally passive components immersed in the bulk fluid

undergo only slight changes in temperature for large variations in the total

system power dissipated. The major obstacle to widespread use of this

technique has been the absence of explicit information on significant design

parameters and on the rate of heat transfer at the submerged condenser

surface.

Fairbanks et al. [101 have provided a basis for research in this field.

Their investigation of a finned condenser submerged in water, FC-75, or

a mixture of water and ethylene glycol and placed above boiling surfaces,
4
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Fig. 2 - Completely Filled Container with Submerged Heat Exchanger
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revealed that in the absence of a vapor space the heat transfer coefficients
at the condenser surface could attain "50% of the values that would be con-

puted for normal filmwise condensation in a vapor space" [10]. A finned
copper plate with 0. 25 in. deep and 0. 125 in. wide fins spaced 0. 125 in.

apart with the principal area on the vertical surface of the fins served as the
condenser surface. The system was vented to atmospheric pressure and the

heat input at the boiling surfaces varied between 0. 5 and 1. 0 kilowatts,
yielding a maximum condenser heat flux based on projected area of approxi-

4 2
mately 1. 9 x 10 Btu/hr-ft2. Utilizing a trial-and-error dimensionless

parameter approach, Fairbanks et al. found that data for all three fluids

could be correlated in terms of 3 dimensionless parameters:

h pvh pqc

h 2 pc (T -T ) 3 p h pLnc s c v fg

with

1 c(42  3 x)y

to generally within 20 percent. However, the values of x, y, and c were

found to vary with the number of heat sources. This latter dependence

seriously constrained the usefulness of their correlation and suggested the

need for a more fundamental exploration of the thermal mechanisms active

in the system.

Simons and Seely [6] investigated the relative performance of several

electronic cooling systems, including a submerged condenser system, for a

particular electronic packaging configuration. Their results indicate that at

a given condenser surface temperature more vapor can be condensed in a

system employing a vapor-space condenser than in a system relying on a

submerged condenser. The difference in performance between the two

systems was small and possible vapor channeling due to the particular

packaging configuration substantially reduces the generality of their results.

Despite the absence of a rational design procedure, the inherent advan-

tanges of submerged condenser systems have been recognized and are being

presently utilized in the appropriate industrial applications. Raytheon

7
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Company, in particular, has designed a number of submerged condenser
systems for cooling high-power radar components [1, 11] , as shown in
Fig. 4, and continues to specify submerged condenser systems for future
applications. However, a fundamental understanding of the thermal nechan-
ism active in submerged condenser systems is necessary if optimum size,
cost and efficiency are to be achieved.

1.4 Present Investigation

The aim of this investigation is, then, to conduct a combined analytical
and experimental study of the thermal mechanisms active in a submerged
condenser system, to define its operational limits and gain explicit informa-

tion on significant design parameters.

In Chapter 2 the overall operating characteristics of an experimental

submerged condenser system utilizing water and Freon-113 as the working

fluids are discussed and illustrated with photographs, sketches, and graphs.

The relevant thermal mechanisms are examined in detail in Chapter 3.

These mechanisms are related to specific operational modes and shown to

accurately define the upper and lower bounds of operation. Chapter 4

examines a possible technique for improving the upper bound of operation,

and Chapter 5 incorporates the experimental and analytical results in a

design procedure for submerged condenser systems.

T

- 8
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67-38280

Fig. 4A - Side-Wall, Air-Cooled Power Supply Module (1)

66-35190

Fig. 4B - Submerged Condenser System (1)
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2. OPERATING CHARACTERISTICS
OF EXPERIMENTAL APPARATUS

2. 1 Apparatus and Procedure

The preceeding chapter has briefly reviewed the cooling requirements
of electronic devices and components and shown that a particular need exists
for submerged condenser cooling systems. However, no analytic or comn-
prehensive design procedure is as yet available. In the present investigation
the operating characteristics of a submerged condenser were obtained with
the aid of the apparatus shown in Figs. 5 and 6.

The apparatus consisted of five cylindrical heaters, 0.25 inch in diameter,
electrically powered and oriented horizontally in an insulated Plexiglas and

brass container 6 inches on a side. Degassed water and Freon-113 were

chosen as the working fluids. The flat, horizontal condensing surface was

at the top of the container, approximately 4. 5 inches from the heaters, and

incorporated a cooling coil through which city water at nearly 60*F inlet

temperature was circulated. A liquid reservoir located on top of the con-

tainer served to maintain a nearly constant average system pressure of

14. 9 psi. The ratio of total heated to condenser surface area varied from

0. 14 to 0. 71 depending on the number of heaters activated. Flow meters,

voltmeters, ammeters, and a stripchart recorder were used as required.

The average condenser surface temperature was determined with

thermocouples located 0. 030 inch below the surface. The average heated

surface temperature was determined by the use of an especially prepared,

hollow, thin-walled heater with thermocouples in the center. The approp-

riate extrapolations based on thermal conductivity and heat flux were made

in each case to obtain the average surface temperatures. The bulk tempera-

ture of the working fluid was measured by sheathed thermocouples inserted

through the base of the container into the fluid.

The operating characteristics and other data were obtained in a series

of data runs for each working fluid and heater configuration. Prior to each

series of runs the working fluid was carefully degassed. For each run the

10
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Fig. 6 - Photograph of Experimental Submerged Condenser Apparatus

(U)
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heat input at the heaters and, hence, the condenser and heated surface heat
flux, was maintained constant while the average condenser surface tempera-

ture was varied by varying the flow of city water through the condenser

cooling coil. Further details on the experimental apparatus and procedure

can be found in the Appendix. These experiments served to establish the

sequence of thermal transport mechanisms active in the submerged condenser

system and defined its operational limits.

2.2 Operating Characteristics

The results of this investigation can be best understood by reference to

families of operating curves relating the condenser heat flux, q", to the

temperature difference, Th - Tc, between the heater and condenser sur-

faces. Such operating curves for water and F-113 and 1 and 2 heaters are

presented in Figs. 7, 8, 9, and 10. The four figures are seen to be essen-

tially similar differing only in the magnitude of the parameters.

Examing Fig. 7, which is for I heater in water, in greater detail, it is

apparent that the thermal behavior of a submerged condenser system can be

bounded by a proper choice of the limiting heat transfer mechanisms in an

enclosed and nearly isobaric liquid. The lower bound of operation (Mode I)

corresponds to heat transfer by natural convection at both the heated and

condenser surfaces and is associated with relatively low condenser heat

flux, q". As q" increases, while the condenser surface temperature T is
c c c

held constant, Th increases past the incipience temperature and subcooled

boiling is initiated at the heated surface. For further increases in q', fully
c

developed boiling is achieved at the heater while natural convection augmented

by bubble pumping occurs at the condenser surface (Mode Ila). As q" isc
increased still further, the generated vapor bubbles impinge and condense on

the condenser surface (Mode IIb) and heat transfer at the surface is achieved

primarily by condensation.

The locus of Mode II for Tc = constant essentially follows a boiling curve

but its exact shape in the isolated bubble as well as in the fully-developed

boiling regions is sensitive to the degree of bulk liquid subcooling. The

variation of bulk temperature with q" is examined in Subsection 2. 3.

13
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The thermal behavior of a submerged condenser system is subject to

one of two possible upper bounds depending on the range of system operation.

For low values of T and/or low heater to condenser surface area ratios,
the upper bound is established by the critical or "burnout" heat flux at the

heated surface. Alternatively, high values of Tc and/or area ratios

approaching unity, result in an experimentally observed upper bound which

is significantly below the critical heat flux and apparently due to a condensa-

tion limit associated with vapor blanketing at the condenser surface. This

sequence of heat transfer mechanisms is illustrated in the series of photo-

graphs and accompanying sketches shown in Figs. 11 and 12.

Doubling the heater to condenser surface area ratio by using two heaters

rather than one affects the operating characteristics only slightly as can be

verified by comparing the two-heater, water data of Fig. 8 with the one-

heater, water data shown in Fig. 7. The behavior of the system is again

seen to be bounded by a lower convective bound from which distinct T =

constant curves emerge as q" increases. However, at a given value of q",
c c

along a Tc = constant curve, Th is necessarily somewhat lower and slight

alterations in the locus of Mode II are also apparent due to the lower heat

flux, q1, at each heater.

For area ratios much greater than 1, the condensive limit dominates

the entire range of operation. The maximum q decreases to a small fraction

of the critical heat flux and may, in fact, fall below the flux level necessary

to initiate even saturated pool boiling. The operating characteristics shown

in Figs. 7 through 10 can not be expected to represent thermal behavior in

such systems. But for typically encountered area ratios, the essential

operating characteristics are as shown in the above figures and are nearly

independent of heater configuration.

Submerged condenser operation in Freon-113 with one and two heaters,

represented in Figs. 9 and 10, was similarly found to follow the same modes

and be bounded by the same operating limits but necessarily at a q" magnitude

appropriate to that fluid.
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2. 3 Bulk Temperature
The temperature of the bulk fluid essentially determines the temperature

of the low dissipation and thermally passive elements in the system. While
the operating curves relating q" to Th ~ T discussed above contain the basicc h c
system information, the bulk subcooling is only implicitly presented through
its effect on the boiling curves of Mode II. More precise information on the
bulk temperature is presented in Figs. 13 through 16 where Tb and Th are

related to q" at constant condenser surface temperature, Tc, for one and two

heaters in water and Freon- 113. Obviously, some care must be taken in

defining the bulk temperature as significant differences exist between the

temperature of the heated and condenser surface boundary layers. However,

experimental measurements have shown that in the region between the

boundary layers the liquid temperature is nearly uniform (± 0. 5*F) due to

convective circulation and bubble-pumping effects. It was this nearly uniform

temperature that was defined as the appropriate bulk temperature. The curves

thus obtained are again seen to be essentially similar to each other despite
differences in working fluid and heater configuration.

Examining Fig. 13 for one heater in water, in greater detail, reveals

that the bulk temperature increases asymptotically towards the saturation

temperature which is attained at the condensation limit. At the left of the

figure is the bulk temperature profile that would result from pure natural

convection heat transfer at the condenser surface. The experimentally

determined bulk temperature profile thus gives clear evidence of augmented

heat transfer at the condenser resulting from bubble pumping and condensa-

tion effects.

Fig. 14 for two heaters in water indicates that at the same heat flux

through the condenser the value of Tb is slightly higher than for one heater

but the difference is greatest in the midrange of q" and decreases as the

natural connection bound on the one hand and condensive limit on the other

are approached. As expected, the analogous curves for Freon-113 are

similar.
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The foregoing has identified the thermal mechanisms active in a sub-

merged condenser system, but considerable analytic and empirical data is

necessary before a design procedure can be specified. In subsequent sec-

tions, the controlling mechanisms will be examined in detail and, where

possible, related to existing models and correlations.
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3. OPERATIONAL MODES

The operational limits and thermal performance of an experimental sub-
merged condenser system were outlined in Chapter 2. However, a thorough
knowledge of the specific thermal mechanisms active in the system and their
possible interactions is required if the experimental results are to be used
in evolving a rational design procedure. As shown in Figs. 7 through 10, a
lower bound of operation (Mode I) corresponding to natural convection heat
transfer at both the heated and condenser surfaces can be defined. Similarly,

one of two possible upper bounds, corresponding to a condensive limit at the

condenser surface or burnout at the heater, can be shown to exist in sub-

merged condenser systems. For values of q" within the envelope of opera-
C

tion (Mode II), lines of constant Tc are found to correspond to pool boiling

curves modified by subcooling effects, while pool subcooling is determined

by the heat transfer rate at the condenser surface. In the following sections

the controlling mechanisms in the operational modes will be explored and,

where possible, related to existing correlations. The results will then be

combined to yield a prediction of the performance characteristics of sub-

merged condenser systems.

3. 1 Mode I - Natural Convection

At low heat flux through the heated surface, thermal transport by natural

convection is sufficient to maintain the surface temperature below that

required to nucleate vapor bubbles in surface cavities. The fluid in the

enclosure circulates under the influence of a thermally induced density

gradient and boundary layers are formed at the heated and cooled surfaces.

The rate of heat transfer is determined by conduction through the boundary

layers at the surfaces of interest and has been studied extensively for various

geometries and fluids as summarized in [12, 13]. Assuming side-wall effects

to be negligible, it is possible to determine the rate of heat transfer through

the enclosure by appropriately combining heat transfer coefficients based on
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the average bulk temperature at the hot and cold surfaces. For the present
configuration, heat transfer by natural convection from horizontal plates

and cylinders must be examined.

Natural convection data for heat transfer from horizontal plates (hot

facing up or cold facing down) can be represented as a continuous function

of Gr LPr, for which the power dependence of Nu on Gr Pr increases with

increasing Gr LPr. To facilitate computation, this function is often separated

into a laminar and a turbulent range. For Pr between 1 and 10

1/4
Nu = 0. 56 (GrLPr)

4 9
in the laminar flow range, 10 < Gr Pr < 10

and

1/3
Nu = 0. 13 (Gr LPr) (2)

in the turbulent flow range, 10 < Gr Pr < 10 Data for horizontal

cylinders with 103 < Gr Pr < 109 have, similarly, been found to be adequately

correlated by Eq. (1) if I- is substituted for the length L in the dimension-

less groups [7].

Solving the above equations for the appropriate heat transfer coefficients,

h h and h , combining these as
hheater an condenser

A

(3)
T \h/ h c

to yield the overall heat transfer coefficient, httal, based on the condenser

area and substituting in the thermal transport relation results in:

q" = h (T - T) (4)
c T h c

Eq. (4) is plotted in Fig. 17 for Tc = 70*F in water and found to compare

favorably with data for water which were visually determined to be in the

convection mode (Mode I).
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3.2 Mode II - Subcooled Boiling

3. 2. 1 At the Heated Surface

As the heater heat flux increases beyond q!'. thermal transport
incip) hra rnpr

by natural convection is no longer sufficient to maintain the surface tempera-

ture below that required to nucleate vapor bubbles in surface cavities. Con-

sequently, despite subcooling in the bulk liquid vapor bubbles begin to grow

in the superheated layer adjacent to the surface. The relation between heat

flux and wall superheat is subcooled nucleate boiling is discussed in great

detail in [7, 14, 15] and may be visualized as a perturbation of the saturated

pool boiling curve. The saturated and subcooled boiling data for water

obtained in this investigation are shown in Fig. 18.

It is important to note at this point that typical design criteria for

submerged condenser systems, including available heat sink temperatures

and the need to reduce condenser surface area, usually operate to restrict

liquid subcooling, and, hence, the magnitude of the perturbation on the

saturated pool boiling curve is generally small.

The initial portion of the saturated boiling curve is associated with

natural convection and can be successfully correlated as:

Sq" = h (T - T) (5)h h s

where the heat transfer coefficient is evaluated from the natural convection

data. The presence of pool subcooling can be simply accounted for by an
additional temperature driving force as:

q = h [(Th -T) + Tb)] (6)

where h is evaluated from natural convection data [15] . For some geometries

it may be necessary to include a cross flow velocity, due to additional fluid

circulation effects, in the determination of the heat transfer coefficient [ 4]
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Fig. 18 - Pool Boiling of Water
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The wall superheat required to initiate the growth of vapor bubbles

in degassed liquids is dependent on the heater surface characteristics, fluid

properties and pool subcooling. A precise determination of the nucleation

superheat or of the heat flux required to initiate bubble growth on an arbitrary

surface is not yet possible. Alternately, it is possible to locate the nuclea-

tion point, with reasonable accuracy by smoothly joining the natural convec-

tion curve and the full-developed boiling curve, as shown in Fig. 18. The

visually determined boiling incipience points are seen to lie above the con-
vective curves, suggesting the presence of some additional circulation effects

previously neglected. It must be noted, moreover, that visual incipience, can-

not generally be expected to correspond to true incipience, but may be found to

lie somewhat further along the boiling curve.

While the water data shown in Fig. 18 does not evidence any tem-

perature discontinuities, the phenomenon of temperature hysterisis is a

major concern in the boiling of many fluids including Freon-113 [4]. When

temperature overshoot hysterisis is present, convective heat transfer per-

sists past the intersection of the convective and fully-developed boiling

curves and suddenly reverts to fully-developed boiling along the entire sur-

face. This behavior is thought to result from the existence of metastable

vapor bubbles and the quenching of large cavities during subcooling [4] . The

likelihood of boiling hysterisis in some surface-fluid combinations, necessi-

tates the use of the decreasing-heat-flux boiling curves in discussing their

boiling characteristics.

Heat transfer in saturated pool nucleate boiling has been correlated

by several investigators. One of the more widely used correlation was

developed by Rohsenow [7] and based on a bubble-pumping mechanism. The

correlation, shown below, utilizes one empirical constant, C , evaluated

for each surface-fluid combination.

C3

q" 1 P g(p 1 -p) (T - T ) (7)
3 h r5.4 w s

Cf hf3Pr ga
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A considerable number of values C have been determined and tabulated by
investigators of boiling phenomena. However, for many surface-filuid
combinations of interest, C must be determined experimentally, if an
accurate prediction of boiling transfer is desired. Hence, the correlation
is of limited utility unless used to extrapolate experimental results to other
pressure levels.

While some success has thus been achieved in correlating and

describing saturated pool boiling, a description of the precise effects of

subcooling has so far eluded investigators. As shown in Fig. 18, the data

for moderately subcooled pools deviate to some extent from the saturated

pool data. However, the direction and magnitude of this shift appears to

depend strongly on heater geometry and pool convective conditions [15] .

For tubular heaters the subcooled boiling curves cross the saturated curve

and in the fully-developed region yield higher wall superheats than the

saturated curve. This trend is apparent in Fig. 18 and is in agreement with

earlier investigations [16, 17] . Subcooled boiling curves for horizontal flat

plates, on the other hand, do not cross the saturated curve and yield wall

superheats which are lower than the saturated wall superheats over the

entire range of nucleate boiling [18] . Due to a scarcity of data and the

inability to precisely identify induced circulation effects, it is thus essential

that an experimental determination of the subcooling effects be made for each

geometry of interest.

The peak, critical or burnout heat flux marks the end of the nucleate

boiling regime. In spite of substantial research there is still no universal

explanation for the phenomenon, as even carefully controlled experimental

data show considerable scatter. The critical heat flux is known to depend on

many factors including the pressure, induced convection effects, diameter

and orientation of the heater, but it is especially sensitive to the degree of

bulk subcooling.

Zuber's [ 19] assumption that the critical heat flux results when

sufficient liquid can no longer flow past the vapor columns to the heated

surface due to the hydrodynamic instability of the liquid-vapor interface,

suggests that qr can be set equal to:
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S 0 .1 8 
-h [ g g _ _ u(p - _p ) 11/ 4 -P 1/ 2

crit v fg [ 2 p J (8)

Experimental results for many fluids are close to the range of magnitude
indicated by this relation [14] . In the present investigation saturated pool
burnout for a 0.25 inch OD, horizontal cylindrical heater in water was
achieved at approximately 4. 3 x 105 Btu/hr-ft2 versus 4. 9 x 10 5 predicted

by Eq. (8).

For the boiling of subcooled liquids, Ivey and Morris [20] proposed

the simple expression:

1/4
crit, sub + 0. 1 -- I -- b (9)
crit, sat T1 h p

Heat transfer in the isolated bubble regime for moderate subcooling,

as well as saturated pool conditions, results primarily enthalpy transport by

vapor bubbles departing from the surface [15, 21]. For heater heat flux,

q1, slightly greater than the incipience flux, qci and for moderatelyho incip'
subcooled pools, vapor bubbles formed in isolated surface cavities, depart

from the surface individually. However, as the flux increases and more

surface cavities are activated, the process of vapor removal from the

surface changes from an intermittent to a continuous one and vapor columns

form [22] . The stages of transitions are illustrated in Fig. 19, and have

been related by Moissis and Berenson [22] to the decreasing bubble separa-

tion with increasing vapor flow. Utilizing expressions derived by Moissis

and Griffith [23] for consecutive bubble agglomeration, it was shown [22

that, for typical surface finishes, the transition heat flux for saturated pool

boiling can be expressed as:

0.5 o 1/4
" = 0.11p vh fg (10)
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Fig. 19 - Stages in the Transition from the Region of Isolated Bubbles to
the Region of Continuous Vapor Columns (vapors flow increasing

from a to e) [ 22]

35

I



UNCLASSIFIED

The transition flux for a subcooled pool can be expected to differ from this
result, but for moderate subcooling the difference should not be substantial.

Bubble departure in isolated bubble boiling is governed by bouyant,
dynamic and surface tension forces. Fritz [24] , on the basis of earlier work,
equated surface tension and bouyancy forces at departure, and obtained rela-

tion for the departing bubble diameter as:

1/2
g o-

D = cd %F2 [ ( (
0g {P~Pv

where cd was found to be 0.0148 for H2 and H2O [13].

Eq. (11) provided an adequate departure criteria, but more recent

efforts have further refined the correlation by accounting for dynamic effects.

In particular, Cole and Rohsenow [25] have included data with substantial

pressure variation and proposed that the departure diameter for saturated

pools be expressed as:

g a pc T 5/4

D = c o p s (12)o [~. g (p-pv [Pvhfg
where

-4
c = 1. 5 x 10 for water

c = 4.65 x 10~4 for other liquids

and showed Eq. (12) to be in good agreement with available data.

In subcooled pools, the reduction in bubble growth rate and the con-

sequent decrease in the inertia of the surrounding liquid acts to increase the

departure diameter. However, the increased pool circulation and greater

buoyant force acting on the departing bubble can be expected to lead to some-

what smaller departure diameters. These possible effects have not been

fully studied and no correlation for the influence of subcooling on the bubble

departure diameter exists at this time.
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The total number of bubbles generated at a particular heat flux,
q1, is far more difficult to determine. While departure frequency and

nucleation site density data can be combined to yield an approximate result,

the departure frequency is not constant [ 26] and, as yet, no practical method

exists for predicting the nucleation site density. Alternately, it is possible

to estimate the rate of vapor generation as some fraction of the heat flux,

according to:

Q q''
v _h (13)

A pvhfg

where r 0 for high subcooling and low heat flux but for q h greater than

20 percent of the critical heat flux q > 0. 5 [27] and increases to = 1 at the

critical flux.

For heat flux, q h, greater than qlr, vapor columns rooted in the

boiling surface appear. Initially, the diameter of the columns is equal to

the departure diameter of the bubbles, but with increasing heat flux the

column diameter increases to accommodate vapor flow [22] . In a recent

study, Gaertner [28] found that in post transition (q1 > q saturated pool

boiling, vapor ''mushrooms'' each fed by several vapor columns appeared

above the boiling surface. Observations in this investigation showed a

similar trend and the cylindrical heaters used appeared to be nearly vapor

blanketed on the upper surface for high flux rates. The vapor bubbles thus

formed were substantially larger than pre-transition bubbles and appeared

similar to bubbles formed in film boiling. Studies by Zuber [19, 29] and

Berenson [30] indicate that in film boiling the diameter of vapor bubbles

formed at the liquid-vapor interface is within the range:

r a 1/21/
3. 14 g0 (- 1v 2 D 5. 45 [g 04a 1/2 (14)

g (p I - pv) 0 g (P I - Pv)_

The average diameter is thus approximately four times the departure diam-

eter in the isolated bubble region (Eq. (12)) and is in qualitative agreement

with the observations.
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3. 2. 2 In the Bulk

In the subcooled boiling mode (Mode II) the vapor bubbles generated

at the heater surface rise and condense in the bulk liquid. Their height of

penetration into the liquid, and consequently their effect on heat transfer at

the condenser surface, is directly related to their initial diameter, rise

velocity, and the prevalent collapse mechanism.

3. 2. 2. 1 Departure Diameter

As noted above, the available correlations indicate that the

departure diameter varies from approximately

gu
1.1

g (p - V

in isolated bubble boiling from typical surfaces, to perhaps four time that

value in columar boiling when vapor "mushrooms" cover the surface.

3.2.2.2 Rise Velocity

The rise of vapor bubbles is, as all else in boiling transfer,

difficult to evaluate. The rise velocity of an undisturbed bubble in the diam-

eter range of interest can be approximated [31] as:

Vb 1/3 N 2gD (15)

However, the presence of neighboring bubbles, fluid circulation, and slide

walls can exert a profound influence on the rise velocity. These and other

influences have been qualitatively and sometimes quantitatively evaluated,

but their combined effect on bubble rise velocity can not yet be predicted.

3. 2. 2. 3 Collapse Mechanism

The mechanics of vapor bubble collapse under spherically

symmetrical conditions have received extensive attention. Recent investiga-

tions [3 2, 33, 34] have shown that the collapse mode was controlled alternately

NNOWl- - I
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by liquid inertia, heat transfer or both, depending on system conditions.

The effects of noncondensable gas and translatory bubble motion have also

been recently incorporated into the appropriate bubble collapse relations [32]

A dimensionless parameter, B,

B Ja 2  q (16)

where

cp (Ts - Tb)
Ja = f ~

h fgpv

representing the ratio of the time duration of inertia effects to that of heat

transfer effects in the collapse process has been defined [34] and found to

characterize the prime mode of collapse. For B < 0. 05 heat transfer

dominates the collapse process while a value of B > 10 indicates the pre-
dominance of inertia effects.

Inertia controlled collapse is governed by the classical Rayleigh

solution [34]

1 3/2
T 1 31 2/ dx (17)

J (1-x

where

T 
21/2

I R 3 p

R
R

0

The collapse rate is high and continues to increase as the collapse proceeds.

Translatory motion does not materially affect the collapse rate in this mode,

but the presence of a noncondensable gas can substantially reduce the rate of

collapse. Cavitation bubbles and vapor bubbles collapsing in highly subcooled

liquids appear to be primarily inertial controlled.
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Heat transfer controlled collapse is governed by:

T 2 .1 y (z)) y (z)

1 = 1/2 JaT dz (18)
0 [ y (y)dy]

z

T Kt ,y R/R
R

0

An exact solution for Eq. (18) can be obtained by direct numerical integra-

tion [32] . Alternately, it is possible to obtain an upper bound on the collapse

rate by assuming the existence of a thin thermal boundary layer and utilizing

the Plesset-Zwick temperature integral [35] . The latter approach [34]

yields a manageable expression for y as:

1 2 2
T 3 y + - - 3 (19)h 3

where

4 2 Kt
Th= - Ja

h T R 2

In this mode, the collapse rate is relatively slow and decreases further as

collapse proceeds. Translatory motion of the bubble, such as usually results

from buoyancy, increases the collapse rate, especially when the liquid sub-

cooling is small and the collapse rate slow [32] . The presence of noncon-

densables always retards the collapse, but its effect is manifested earlier

when the translatory velocity is high and is, in any event, a highly nonlinear

influence on the collapse rate [32] . Bubbles collapsing in moderately sub-

cooled liquid (Ja 50) are predominantly heat transfer controlled and it is,

hence, this mode which is of prime importance in submerged condenser

systems.

IMMMM_ - I
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Due to the asymptotic nature of heat transfer controlled

collapse, no precise criteria exists for the definition of a collapse period.

However, since it is the bubble volume which is of prime interest, and at

y = 0. 2 the bubble volume is only one percent of its departure volume, the

collapse period Tc can be defined as:

T ( + y2 - 3) 2.3 (20)
c 3y

y = 0. 2

and

2. 3 or

c 4  Ja2 K

It must be further noted that the use of Eq. (19) and the neglect of transla-

tional velocity effects have yielded a strictly conservative collapse criteria

(in the absence of noncondensables).

3. 2. 2. 4 Height of Penetration

Utilizing the above relations for bubble departure diameter,

rise velocity and rate of collapse, it is now possible to determine approxi-

mately the height of penetration of the vapor bubbles and the approximate

vapor fraction in a moderately subcooled liquid-filled enclosure free of

noncondensable gas.

The collapse length L equals:
c

t

L f vb dt (21)

0

Substituting

4 2 K
T - Ja 2 -t (22)

T R 
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into Eq. (21)

Ro T0
C 4 Ja 2 K I cVb d T(

Introducing Eq. (15)

R 2

LC 2K
4 Ja K

I C
0

R 2

C 2Ja K

q-NJDd T

c

NTD d T

y = D/D0

R 2 gc

L c =K JgDJa2K0f

D 5 C
L 7T 0 I f

Lc 8 2 K
JaK K

0

Numerical integration of the integral yields:

NJy d T

yd T

T =2. 3

f Ny dT= 1. 38 (28)

And, therefore

D 5/2

C ~ Ja 2K

7T

(24)

and with

(25)

(26)

(27)

(29)

MMMMM- -I
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In the isolated bubble regime D0 is calculated from Eq. (12) while in the

vapor column regime Eq. (14) can be utilized. The collapse length Lc as a

function of bulk subcooling is plotted in Fig. 20 for both bubble generation

regimes.

3. 2. 3 At the Condenser Surface

The rate of heat transfer at the condenser surface determines the

bulk temperature and, hence, the degree to which the boiling curves of

Mode II deviate from the saturated pool boiling curve. In Subsection 2.2,

heat transfer at the condenser was shown to proceed through a series of

transport mechanisms. In Mode I natural convection was sufficient to

accomplish the necessary thermal transport. In Mode II, however, the

presence of collapsing vapor bubbles in the bulk fluid leads to heat transfer

rates substantially greater than those associated with natural convection.

The bubble collapse length, determined approximately in Eq. (29),

and more specifically the ratio of collapse length to the distance separating

the heated and condenser surfaces, Lc/W, plays a crucial role in determining

the rate and mechanism of condenser surface heat transfer. For Lc/W<< 1,

all the generated vapor bubbles collapse near the heated surface. Conse-

quently, the bubbles have only a negligible effect on heat transfer at the

condenser surface and the observed transfer rate should correspond approxi-

mately to those associated with natural convection. For Lc/W 5 1, the vapor

bubbles collapse at or near the condenser surface, but a substantial vapor

fraction exists in the bulk fluid which induces augmented convection at the

condenser surface. In this range, the condenser heat transfer coefficient

could be expected to lie above the natural convection coefficient and to

increase with increasing values of Lc/W. As Lc/W increases past unity,

the vapor bubbles begin to impinge on the form vapor pockets at the sub-

merged condenser surface. The heat transfer coefficient on that fraction of

the surface covered with vapor can be determined from existing vapor space

condensation correlations. At values of Lc/W only slightly greater than

unity, the vapor pockets occupy only a very small fraction of the surface.

As a result, heat transfer in this region is still accomplished primarily by
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Fig. 20 - Collapse Distance of Bubbles for Varying Bulk Subcooling -
Water, Freon-113
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augmented convection. However, as L c/W increases, the vapor pockets

grow and for Lc/W >> 1 condensation would dominate thermal transport at

the condenser surface and high transfer coefficients should be expected.

Finally, as L c/W - oo, nearly the entire condenser surface is blanketed by

vapor and the heat transfer coefficient should correspond to that associated

with vapor space condensation.

In Fig. 21 the experimentally determined variation of the condenser

heat transfer coefficient, h , is related to the approximately calculated

Lc/W for one heater in water and for q11 > q r. It should be noted that in the

experimental apparatus the natural convection heat transfer coefficient for
2

water at the condenser was typically 220 Btu/hr-ft while the vapor space

condensation heat transfer coefficient was approximately 1500. It would,

consequently, appear that for values of Lc/W < 0. 15 heat transfer at the

condenser was achieved almost exclusively by natural convection. The

region 0. 15 < Lc/W < 6 appears to correspond to the region of bubble-

pumped augmented convection, while values of Lc/W > 6 would seem to lie

in the condensation region. Considering the many assumptions inherent in

the calculation of the collapse length and in particular the failure to include

the pool circulation effects on the rise velocity, the results are very good

and clearly support the general model. A definite progression from the

natural convection of Mode I to augmented convection and then to condensa-

tion at or near the surface in Mode II can be seen in Fig. 21. These two

regions of Mode II are examined in detail below.

3. 2. 3. 1 Mode Ila - Augmented Convection

The rate of heat transfer in free convection at the cold surface

is governed by the height of the thermal boundary layer which is determined

by the rate of fluid circulation in the liquid-filled enclosure. This circula-

tion is induced by an unstable density gradient and its equivalent buoyant

force which normally results from a temperature gradient in the fluid.

However, the presence of a vapor fraction in the fluid introduces an addi-

tional buoyant force which can dramatically increase the rate of fluid cir-

culation and, hence, the rate of heat transfer at the cold surface.
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As discussed earlier, the rate of heat transfer in natural con-

vection has been correlated by relating the Nusselt Number, Nunc , to the

Rayleigh Number, Ra = GrPr, according to:

Nunc = c (Ra)n (30)

where

n = 1/4 for laminar flow

n = 1/3 for turbulent flow

c is a geometric constant different for laminar and turbulent flow

It is, consequently, reasonable to expect that the augmented transfer can

be expressed as:

Nu = c (Ra )n (31)aug aug

or

Nu au Ra auaug =Nu' u 2

Nunc N Ra (32)

For thermally induced natural convection, the circulation

driving force, expressed within the Ra, can be defined as a buoyant force

per unit volume, F , equal to:

F' = gAp = gp (Tb - T ) (33)
t b c

For natural convection induced only by the presence of a vapor

fraction, the buoyant force per unit volume, F' , would equal:

V
VF' g (p, - PV )V (34)
e
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Summing for the presence of both driving forces and substituting
a V VC to account for the volumetric vapor fraction

F1 = [gp 0 (Tb - T) + Og (pI - pv)a] (35)

where 0 is a configuration factor allowing for the variable location of the
vapor fraction relative to the convective cells.

Substituting the above expression in Eq. (32), the ratio of

augmented to natural convection heat transfer rate is found to equal:

(p, pv) a n
Nu = + ( T (36)

pO (T b - T C)

While Eq. (36) expresses Nu in an apparently straightforward

manner, the determination of a and 0 requires considerable effort. The

steady-state volumetric fraction of vapor in the liquid-filled enclosure, a,

is dependent on the rate of vapor generation at the heater and the rate of

vapor condensation in the subcooled liquid. The evaluation of 0 is, on the

other hand, best left to empirical methods.

3. 2. 3. 2 Evaluating the Vapor Fraction

Utilizing expressions derived above, it is possible to approxi-

mately determine the volumetric vapor fraction a as:

V
a -- [(bubble generation rate) x (bubble residence

V V
e e time) x (average bubble volume)] (37)

I (vapor generation rate) -3
V (bubble departure volume) x tc '

e

bubble departure volume) (38)
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introducing Eqs. (13), (20)

TrR 2 T c 3

e v hfg 4 Ja2K c Tc f ydT (39)

f0
c

C

0

and, therefore,

0.36 3 iT (2. 3) R 2 q (41)
4 )(V epyvh fgK Ja 2

It is, consequently, possible to approximately determine a to within one

constant.

3. 2. 3. 3 Evaluating Nu

Substituting a from Eq. (41) into Eq. (36):

Nu = 1 + 0.08407 ( v fgK) ( P )(T c (42)

Or, separating the fluid parameters from the system parameters and letting

X = 0.084 (07):

p -pJ /p qR02
Nu' = (1aghK 2 ) (43)

Due to the nature of 0 and q, it is not possible to completely determine X .

However, the experimental data for the augmented convective mode, Mode II,

should be correlatable in terms of one constant A for each geometry, where

X is evaluated so as to provide the best fit to the data.
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The results of this approach are shown in Fig. 22 where it is

seen that, considering the complexity of the model and the assumption made,

adequate agreement is obtained between the experimental and calculated

values of Nu when distinct values of X are used for one, two and three

heaters.

The presence of distinct constants for different heater

geometries recalls the results obtained by Fairbanks et al. [10] for a finned

submerged condenser surface. This similarity suggests that the prediction

of convective augmentation, whether by the dimensionless parameter approach

of Fairbanks [10] or the bubble buoyant force model of this investigation,

suffers from an inability to determine a priori the relevant configurational

factor. It is conceivable that further testing will establish guidelines for

evaluating this factor, but for the present, A must be evaluated experimentally

for each configuration of interest.

3. 2. 3. 4 Mode IIb - Condensation

As the bulk subcooling decreases and the collapse length

increases beyond the distance of separation between the heated and condenser

surfaces, L c/W > 1, vapor bubbles begin to impinge on the form vapor

pockets at the submerged condenser surface. This is at once the most pre-

valent region of submerged condenser operation and the least susceptible to

analysis. Heat transfer by condensation initially involves only a small frac-

tion of the condenser surface and must be properly averaged with the aug-

mented convection transfer on the greater part of the surface. However,

the high transfer rates associated with condensation soon come to dominate

heat transfer in this mode. Experimental results, discussed above, suggest

that the condensation region may begin in the vicinity of Lc/W = 5.

The need to determine the bulk subcooling is the prime reason

for examining the heat transfer coefficient at the condenser surface. How-

ever, the interaction of convective and condensive thermal transport in

Mode Ilb and the dominance of the condensive coefficient at the condenser

combine to make this task extremely difficult. The rate of heat transfer on

that fraction of the surface covered with vapor can be determined from
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existing condensation heat transfer correlations while the heat transfer
coefficient on the remainder of the surface can be determined as in Sub-
section 3. 2. 3. 1. Consequently, the overall condenser surface heat transfer
coefficient, h , can be set equal to:

h = --- [(h ) (A +
c Ac condensation condensation

(haug conv) (A c - A condensation)

However, the surface fraction involved in condensation is not known and is
not easily determined. Alternately, since it is the bulk temperature which
is being sought, a graphical technique may be used to determine the bulk
subcooling in the condensive region (Mode HIb), i. e., in the region where

L /W > 5.

In Figs. 13 through 16, which relate the bulk and heated surface

temperature to the condenser heat flux at constant condenser surface tem-

perature, the bulk temperature is seen to vary nearly linearly with q" asC
the condensive limit is approached. The slope of the bulk temperature

curve in the linear region varies with the number of heaters and working

fluid but the curve can be established by joining T at the condensive limit
sat

with the bulk temperature at L c/W = 5. Using Eq. (29) for L c, the appro-

priate subcooling for L c/W = 5 can be determined. Using that subcooling

in Eq. (43) the augmented heat transfer coefficient and, hence, the condenser

heat flux at that subcooling can be determined. The procedure is illustrated

in Fig. 23.

3. 2. 3. 5 Volumetric Expansion

In a constant pressure system the presence of substantial

amounts of vapor in the bulk fluid must result in an increase in system

volume or the displacement of fluid. A knowledge of this volumetric expan-

sion is of necessity to the design of optimum submerged condenser systems.

However, an approximate or upper limit determination of the volumetric

expansion is adequate for this task.
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The vapor columns and bubbles in the liquid and the vapor

pockets at the condenser together comprise the vapor fraction and account

for the major part of the volumetric expansion. The thermal expansion of

the bulk fluid may also be of consequence in some systems. The difficulties

in evaluating the volumetric vapor fraction were discussed earlier in Sub-

section 3. 2.3. 1. Nevertheless, an upper limit for the vapor volume in the

bulk can be calculated by assuming that no vapor condensation occurs in the

bulk. Consequently, the bulk vapor volume can be determined as

V q(44)
v, b pv h W

where 7 is again not precisely known but can be taken to equal one for pur-

poses of this calculation and vb is calculated by Eq. (15).

The maximum vapor volume at the condenser surface is

achieved at the condensive limit when vapor blankets the entire surface.

Letting 6 equal the depth of the vapor layer, the vapor volume is simply

V = 6A (45)
v, c c

where 6 is determined in Subsection 3. 2. 4. 2.

Summing all these contributions, the maximum volumetric

expansion in a submerged condenser system can be determined as

AV = ( - + 6A + p3 (T - T (46)
pv hfg W c b amb

It is to be anticipated that the volumetric expansion thus calculated will sub-

stantially exceed any normal operating volumetric expansion since no system

will be designed to operate at the condensive limit. At operating points

somewhat below the condensive limit, the vapor fraction in the liquid and at

the condenser is dramatically reduced from the maximum value calculated

above.
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3.2.4 Condensive Limit of Mode II

As the heat flux through the condenser and heated surface increases,

the vapor region adjacent to the condenser surface grows and finally blankets

the surface, as is shown in Figure 12b. Any further increases in q" beyond

the vapor blanketing point results in a rapidly thickening vapor layer and the

displacement of an increasing volume of fluid. This is the condensive limit

apparent in Figs. 7 through 10 and it appears to correspond to the rate of

heat transfer associated with film condensation on a downward facing (with

respect to gravity) horizontal surface. At the condensive limit the vapor

layer blanketing the condenser surface necessarily insulates the bulk liquid

from the cold surface and the bulk attains the saturation temperature as is

clear in Figs. 13 through 16.

3. 2. 4. 1 Horizontal Surface

Film condensation on the underside of a horizontal surface is

governed by thermal conduction through a thin liquid film. An analysis based

on the Taylor instability at the liquid-vapor interface performed by Gerstman

and Griffith [36] yields an expression for the heat transfer coefficient as:

( a 1/2 gp (p1 - tv) h' g 3/2~ 1/4
gh - 0. 26 fg1~0v 0-

k g(pI -p v)' kt (Ts - Tc) \1(p Pv) 1(47)
Eq. (47) is plotted in Fig. 24 and compared with the condensive

limit data obtained in this investigation. The agreement with both Freon and

Water data is excellent, thus leaving no doubt as to the nature of this limit.

3. 2. 4. 2 Determining the Vapor Gap Depth

As discussed above, a knowledge of the depth of the vapor gap

at the condensive limit is necessary for the determination of the maximum

volumetric expansion in the submerged condenser system. An approximate

method for calculating the width of the vapor gap, 6, at the condensive limit

is presented below.
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Fig. 24 - Condensive Limit on Horizontal Surface
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Assuming that all the vapor is generated in a line source at

distance W from the condenser surface and referring to the coordinate

system of Fig. 25, it is obvious that, in general, the vapor flow rate,

vapor velocity, vapor gap width, and pressure will vary with x along the

condenser surface. Due to the existence of a thin liquid film on the condenser,

the vapor must flow in a region bounded by liquid. Referring to the control

volume in Fig. 25 and establishing a force balance:

2 T L dx = dx L6 (48)o dx

or

To 6(49)0 2 dx

Assuming a parobolic velocity profile

v = 1.5X S- ( ) 2

And substituting

- Q
v =

v = -. 3 5Q [62 - 4y ]
63L

Evaluating -r,

c L

dV
XI

dy 6
Y=2

= - . 6 - 4]
6 Lg

Equating Eq. (49) with Eq. (53)

3
6 _ 3 Qp

4 - 6 Lg
c dx
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Fig. 25 - Model and Coordinate System for Vapor Gap Analysis
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or with

6 << 1

6 1/3 (55)
Lge 

(55

At the line of vapor impact on the condenser surface the vapor pressure

equals the stagnation pressure while at X , where the vapor flow rate is
zero, it is equal to the system pressure. Consequently:

X
20 ~PV.2J dx = p 3 (56)fi dx v 2g0

A rigorous for 6 (x) including the x variation of all parameters is beyond the

scope of this investigation and of only limited practical significance.

Alternately, an approximate solution for an average value of

6 based on average values of Q and dp/dx is easily obtained and quite suf-

ficient for most practical applications. Assuming:

1
Q (x=O) = Q

2 v

Q = (57)v p hv fg

- 1 __h_

v 4 pv hg

and

- p p v.

dx X 2g X
0 0 0
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q. (55) yields:

1/3
q 2 g X'12 h 0 o

6 4 h P Lg 2 (58)
fg v o p V.v j

or

1/3

6 6 b v (59)
hfg P

At low heater heat fluxes, qjI 5 q"', V ~ V and equation (15) can be used. Forh-tr j b

qj' < q" -5 q", by analogy to Zuber's [26] q" analysis, V. can be set
h crit crit

equal to

16 q
V. = (60)

3 fg

The resulting gap width for typical operating conditions are in qualitative

agreement with observations and are of the order of 0. 5 inch for water and

F-113.

The vapor gap resulting from a point source can be determined

in a completely analogous manner and shown to equal:

1/3

6 8.5 2 qh2 (61)

(v hf g Vj

3. 2. 4. 3 Moderate Inclination

While the submerged condenser system is designed to operate

with the condenser surface horizontal, on occassion, as a result of error or

structural defect, the surface may be inclined as much as 10 to 15 degrees

to the horizontal. The Gerstmann-Griffith [36] model for heat transfer on

an inclined surface in a vapor space indicates a rapid deterioration of transfer

rate at slight inclination and a later partial recovery due to an initial
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thickening of the liquid film, as shown in Fig. 26. The data obtained in the

submerged condenser apparatus shown in Fig. 27, however, did not provide

evidence of this deterioration. This discrepancy can be explained by the

partial submerging of the inclined condenser surface and the sloshing of

liquid in the enclosure. The sloshing action alternately washing the surface

and exposing it to vapor results in a transient condensation which is not com-

parable to condensation on an inclined surface in a quiescent vapor space.

It is, therefore, not surprising that a deterioration in heat transfer rate did

not occur, although a precise analysis of this phenomenon would be required

to fully interpret the experimental results.
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Fig. 26 - Heat Transfer Rate as a Function of Angle at a Temperature
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4. CONDENSATION ON A RIPPLED SURFACE

4. 1 Introduction

The operation of submerged condenser systems was examined in detail

in Chapters 2 and 3 and shown to possess two possible upper bounds. For

large values of condenser surface subcooling and/or low heater to condenser

surface area ratios, the upper bound is established by the critical heat flux

or "burnout" at the boiling surface. For low values of condenser surface

subcooling and/or high area ratios, however, a condensive limit exists which

has been found to correspond to the heat flux associated with film condensa-

tion on a downward facing horizontal surface. Typical design criteria for

submerged condenser systems including available heat sink temperatures

and the need to reduce condenser surface area, usually result in system

operation in the region bounded by the condensive limit. It is, consequently,

significant to examine techniques for augmenting condensation heat transfer

on horizontal surfaces.

Condensation occurs when a subcooled surface is exposed to saturated or

supersaturated vapor. The liquid condensate formed at the surface normally

spreads out and establishes a stable film. Condensation then occurs on the

vapor-liquid interface and the heat released is conducted through the liquid

film to the condenser surface. However, when the liquid does not wet the

surface, individual droplets form, condensation occurs on the drop surface

and the released heat is conducted through the liquid drops to the condenser

surface. Most of the heat transfer in dropwise condensation occurs through

drops in early stages of growth and as a result, heat transfer coefficients

in dropwise condensation are typically one to two orders of magnitude higher

than in film condensation [38] . Dropwise condensation thus appears to be

the obvious technique for increasing the condensive limit. However, in order

to maintain this mode of condensation on a condensing surface, the surface

must be treated with a so-called promoter which repels the liquid molecules

while being strongly attracted to the surface itself. A substantial amount

of work has been done in identifying successful promoters, but research
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has unfortunately been restricted to dropwise condensation of water vapor.

It is, consequently, not yet possible to promote dropwise condensation of

the dielectric inert fluids which must be used in electronic cooling and other

augmentation techniques must be examined.

In film condensation the rate of heat transfer is governed by thermal

conduction through the liquid film adhering to the surface. Consequently,

if augmentation of film condensation is to be achieved, some way must be

found to thin the liquid film. In 1953, Gregorig [39] while studying conden-

sation on wavy surfaces noted that surface tension could give rise to large

pressure gradients in the liquid film due to the varying curvature of the con-

densate surface. Large pressure gradients necessarily lead to thin films

and coefficients of heat transfer several times greater than in normal film

condensation were achieved. Gregorig thus proposed that improved vertical

condenser tubes could be made by placing grooves of the proper geometric

form parallel to the tube axis. The profile suggested by Gregorig [39]

utilized a gradually decreasing solid surface curvature to produce a very

thin but nearly uniform condensate film. However, the general concept is

also valid for a solid surface of constant curvature which is far easier to

form in practical applications. This general technique has since been extended

to horizontal condenser tubes [40] and other geometries, but can not be

directly applied to horizontal surfaces.
In previous applications of this augmentation technique, surface tension

forces were used to reduce the film thickness but gravity forces were then

used to drain the condensate from the surface. On downward facing horizontal

surfaces condensate removal is normally accomplished by drop formation

resulting from the growth of disturbances on the liquid-vapor interface. Con-

sequently, it is not sufficient to provide undulations on the condenser surface,

but rather a two-dimensional profile as shown in Figs. 28 and 29 would appear

to be required if the surface tension forces are to produce the desired result.

The doubly-rippled surface of Fig. 28 was prepared and tested to determine

whether the heat transfer coefficients for film condensation on a downward

facing horizontal surface could be improved by surface tension effects.

Though obviously any obtained augmentation of the heat transfer rate must

be weighed against the considerable cost of fabricating this surface.
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Fig. 28 - Photograph of Doubly-Rippled Surface
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4.2 Experimental Apparatus and Procedure

The doubly-rippled surface shown in Figs. 28 and 29 was used as the

4 test surface. The undulations were of constant curvature with a radius of

0.015 in., while the arches were 0. 125 in. in radius. The total area of the
surface was 2. 38 times its projected area. The test surface was soldered

to the water-cooled plate and incorporated into the submerged condenser

apparatus shown in Figs. 5 and 6 and described briefly in Subsection 2. 1.

The apparatus consisted of five cylindrical heaters, 0. 25 in. in diameter,

electrically powered and oriented horizontally in an insulated Plexiclas and

brass container 6 inches on a side. Freon-113 was used as the working

fluid. The doubly-rippled surface was at the top of the container, approx-

imately 4. 5 in. from the heaters, and incorporated a cooling coil through

which city water at nearly 60'F inlet temperature was circulated. A liquid

reservoir located on top of the container served to maintain a constant

average system pressure of 14. 9 psi. The ratio of total heated to con-

denser surface area varied from 0. 14 to 0. 71 depending on the number of

heaters activated. Flowmeters, voltmeters, ammeters and a stripchart

recorder were used as required.

The average condenser surface temperature was determined with

thermocouples located 0.005 in. below the root of the surface undulations.

The temperatures recorded at these locations were extrapolated to an imagi-

nary plane passing through the root of the undulations at the top of the grooves

and a weighted average condenser surface temperature determined. It must

be noted that this temperature does not correspond to the true surface tem-

perature along the groove. Rather, it is somewhat lower and encorporates

the temperature difference associated with thermal conduction through the

'ribs' separating the grooves.

The average heated surface temperature was determined by the use of an

especially prepared, hollow, thin-walled heater in whose center thermo-

couples were placed. The appropriate extrapolations based on thermal con-

ductivity and heat flux was made to obtain the average surface temperatures.

The bulk temperature of the working fluid was measured by sheathed thermo-
couples inserted th container into the fluid.

hrough the base of the
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The condensive limit data were obtained in a series of data runs. Prior

to each run the working fluid was carefully degassed. For each run, the

heat input at the heaters and, hence, the condenser and heated surface heat

flux, was maintained constant while the average condenser surface temperature

was slowly increased by decreasing the flow of city water through the con-

denser cooling coil. The condensive limit was attained when the doubly-

rippled surface was completely blanketed by vapor and large quantities of

vapor were seen to be rising into the liquid reservoir. Further details on

the experimental apparatus and procedure can be found in the Appendix.

4. 3 Analysis

An investigation by Gregorig [39] in 1953 indicated that film condensation

may be augmented by utilizing the powerful surface tension forces which

4 arise during condensation on an undulated surface of varying curvature. In

the present investigation an attempt was made to extend this principle to

condensation on a downward facing horizontal surface containing undulations

of constant curvature.

4. 3. 1 At the Undulation Crest

The condensate on a surface undulation shown in Fig. 29 forms a

laminar film which flows along the surface. Considering a small angular

segment r0d$ and neglecting 4j -direction momentum changes, a force

balance may be written in the LP -direction as:

-y - rd$ =-g (p-pv) sin $ (6 -x) r d5 + d$ (6-x)

(62)

Assuming that the gravitational force can be neglected relative to the surface

tension force and simplifying:

dv d (6-x) (63)
dx d$ r
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Throughout the analysis the condensate film will be assumed very

thin 6<< r and, hence, changes in the center of curvature of the interface

will be neglected. Furthermore, the analysis will be restricted to o < <
2'

With these assumptions, the pressure difference across the curvature of

the liquid-vapor interface is given by:

P-P = r (64)v r + 6
0

But pv is constant and, consequently,

- d6 (65)
d$ 2 d$(r + 6) d)

Or, for 6<<r ,

dp -o d6 (66)
dLe r 2 d(6

And

Sd (6 -x) (67)
r 3 dL

0

Integrating over x to find V

2

V = c 9- (6x- ) (68)$ 3 d5j 26qj r y 1

The mean velocity

V 1f V, dx (69)

is found to equal:

2
- a d6 6  (70)

3 d$ 3r y
70



UNCLASSIFIED
By continuity

r = 6

Or, differentiating:

dT = pd [ 6

and

3 12
ro p

3
r0

d d 4[d 4

d 6 6 3

Applying the energy equation by equating the heat released at the interface

with the heat conducted through the filn and assuming a linear temperature

profile in the film:

dr=
k (T - T ) r dq

6 h .

Equating (73) and (74)

(74)

d26 4
6 2 =

4
12 gir k (T - T)

p c- h

This second order differential equation for 6 , the film thickness,

can be solved numerically by finite difference techniques when two boundary

conditions, chosen for historical and physical reasons to be 6 and its first
d6

derivative , are specified at $ 0. By symmetry, at the top of the
d6

undulation, 5 = 0, the slope of the interface, g equals zero. The value

of 6 0 is not so easily determined, though it can be found by two different

approaches.
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The first approach utilizes the definition of surface curvature to

yield:

d26
-2 = r + r

d42 o (76)

Returning to Eq. (75) and modifying it slightly

d 6 3 d6
6- i6 I

43 y r0 k (T - TC)

or p h fg
(77)

But at $ = 0, 6 = 6 , and = 0; therefore,0 dL4

4 d26
d6

3 y r k (T s - T C)

o p h fg
(78)

And substituting Eq. (76) into Eq. (78)

0 [ 33 gr k (T - T )

Sphfg

31<4

(79)

Alternately, it is possible to determine 6 by analogy to gravity

dominated condensation on a cylinder where

(80)

In the present investigation, surface tension forces have replaced gravity

as the driving force for condensate removal from the surface. It would,

therefore, appear appropriate to replace the gravity term in the denominator

of Eq. (80) by a surface tension term. Utilizing r as the characteristic

length and multiplying together the traditional nondimensional groups

Fr x We 2
72
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gP 
-

Inserting Eq. (81) into Eq. (80)

6 -

3yk (T - T ) r

o- p h fg

311/4
The alternate derivations for 6 , Eqs. (82) and (79), are now seen to yield

identical results. At atmospheric pressure and 10*F surface subcooling

on an undulation or horizontal cylinder with a 2 x 10- in. radius of

curvature, Eq. (82) yields 60 = 2 x 104 in.

Returning to the governing equation for 6 and nondimensionalizing

it with

A 4

(r)

(83)

c./ '

where

12 1 k (Ts - Tc)

p c- hfg r

leads to:

2 ^

A 1/4 d A

dqj
1 (84)

A 1/4 A
The solution for (X) as a function of 5 obtained by finite difference tech-

A _c~-

niques in the range 0 < $ < 2 ' is shown graphically in Fig. 30 for

several values of A.
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The heat transfer coefficient, h , in film condensation is equal to:

c

k
h k (85)

c 6

A
Relating back to the nondimensional film thickness, X,

k
h = /(86)c ^ 1/4

(0) r

Therefore, the average heat transfer coefficient on a segment of the surface
A A

0 < Lb < $ , equals:

k/r
h =k o - (87)

c A A 14

'm #1 r4 (A ) kd

L o

On the upper part of the undulation, shown in Fig. 29, the pressure

gradient resulting from surface tension forces leads to an extremely thin

condensate film. However, for +j > 2 the solid surface curvature reverses

and the film thickness is substantially increased. In this region, the film

thickness, 6, can no longer be considered very small in relation to r and,

consequently, the above analysis no longer applies. However, little addi-

tional condensation occurs in the troughs and heat transfer in this thick

film region can be neglected. As a result, it is the thin film region that

accounts for most of the heat transfer on this surface, and the analysis

presented above can be used to calculate the approximate rate of heat

transfer over the entire surface when proper account is taken of the fraction

of the area occupied by the undulation crests.

4. 3. 2 At the Undulation Trough

The vapor condensed on the crest of an undulation is pumped by

surface tension into the undulation trough. From the trough the condensate

flows by gravity along the specified arch and then drips off the doubly-rippled

7
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surface at the base of the arch. The height of the liquid layer in the trough,

y , increases along the arch and reaches its maximum value at the base of

the arch. For values of y r , the condensate flowing in the trough may

wash or "flood" the undulation crest and substantially increase the film

thickness on the crest. However, the relatively short path length along the

arch suggests that the condensate film remains thin and that flooding is not

achieved at commonly employed values of condenser surface subcooling.

The condensate film thickness in the trough can be determined approximately

in the following manner.

Referring to the differential element in Fig. 29 and assuming the

liquid-vapor interface to be at a uniform height above the surface (equivalent

to a thin film assumption), a force balance in the a direction yields

y g (p-pv) cos a (Y -x) (88)

Integrating across x to find the fluid velocity in the a direction

x
2

V dx= (p-p ) cos ( x (89)
dx y fv 2

0

The mean fluid velocity can now be found as

2
vdx = (p-p v cos eY 3 (90)

I 0o

By continuity

3
- pg (p- v) cos a (91)

However, if condensation in the trough is neglected the condensate flowing

in the trough is equal to the condensate draining off the undulation crests.

Consequently,
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Ih (T -T )Rac s r og PCs 3
h' 3 v) os a- 7(92)

fg

And simplifying

1/3
3 y h 3h(T -T ) Ra

(93)
h p (P-Pv g cos a

The insertion of numerical values in Eq. (93) reveals that for commonly

encountered values of surface subcooling, y at the base of the arch is still

small as compared to r. However, y is somewhat greater than 6 at the

inflection point in the curvature and an artificial discontinuity thus exists.

For the range of r0 likely to be chosen in practical applications, y is

approximately 50 percent greater than A at that point. The magnitude of

this discontinuity suggests that it could be easily smoothed by surface tension

forces without substantially effecting 8 on the crest of the undulation. The

analysis in Subsection 4. 3. 1 is thus valid for the film thickness on the

crest and the rate of heat transfer on the doubly-rippled surface can be

approximately determined.

4.4 Results and Discussion

In the preceding sections of Chapter 4, a method was presented for

determining the condensate film thickness on a surface with 3-D sinusoidal

undulations. The film thickness was found to increase rapidly along the

crests of the undulations, suggesting that an approximate rate of heat transfer

for the entire surface could be obtained by neglecting condensation in the

undulation troughs.

4.4.1 Condensate Film Thickness

Previous attempts to exploit surface tension forces to produce thin

condensate films have utilized surfaces of varying radii of curvature. The

surfaces were shaped to produce uniform thickness condensate films along
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the entire crest surface [39, 401 with 5 equal to the value attained at the

top of the crest. Due to the difficulties associated with accurately machining

such a surface, the use of sinusoidal undulations appeared attractive.

Regardless of the precise surface profile, the evaluation of the

film thickness at the top of the undulation crest, 60, is central to any

determination of heat transfer on the surface. Gregorig [39, 4 1] specified

no direct method for calculating 6 . The value of 6 determined by Eq. (79)

is compared in Fig. 31 with the value suggested by Gregorig [39, 41] for an
-2

undulation with an initial radius of curvature equal to 2. 36 x 10 in. For

steam saturated at 85*F and a surface subcooling of 0. 955'F, Eq. (79)
-4

yields 5 =2. 3 x 10 in., while Gregorig determined a value of 1. 97 x
-4 0

10 in. Further comparison would be desirable but the literature contains

only this one calculated value. Nevertheless, the approach followed in

deriving Eq. (79) appears to be valid and yields accurate results.

As is clear from Eqs. (64) and (65), maintaining the surface

curvature, r , constant requires that 6 the film thickness, increase with
0

* to produce the desired pressure gradient in the film. Consequently, the

use of a sinusoidal undulation rather than a profile with a variable radius of

curvature can be expected to result in a larger mean film thickness. The

condensate film thickness on the crest of a sinusoidal and variable radius

of curvature undulation with initial radius of 2. 36 x 10 in. are compared

in Fig. 31. For the conditions stated above, the sinusoidal profile yields

a film thickness which increases to 4 times the minimum value at the inflec-

tion point of the undulation. The mean film thickness for the sinusoidal

profile is thus approximately 3 times greater than the comparable film

thickness on the Gregorig-type profile [391 , but still nearly a factor of 3

less than the average filim thickness for the same conditions on a smooth,

horizontal surface. It is apparent, then, that the use of a sinusoidal rather

than a variable radius of curvature profile does lead to considerably lower

rates of heat transfer. However, the results of the analysis are in qualita-

tive agreement with expectation and indicate that sinusoidal undulations of

sufficiently small radius can be used to substantially reduce the film thick-

ness and, hence, significantly increase thermal transport in film condensa-

tion on horizontal surfaces.
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4. 4. 2 Condensive Limit

In previous chapters the operation of the submerged condenser

system was found to possess a conderisive limit in the most significant range

of operation. It became essential, therefore, to examine techniques for

augmenting condensation heat transfer on horizontal surfaces. Since dropwise

condensation is not yet possible with the standard dielectric fluids, a sinu-

soidally undulated surface was investigated.

The experimental results obtained for the condensive limit of a

system employing a doubly-rippled condenser submerged in Freon-113 are

presented in Fig. 32. The condenser heat flux based on the projected area

of the undulated surface is seen to correspond to nearly twice the heat flux

associated with film condensation on a smooth horizontal surface of the

same projected area, (Eq. (47)). The condensive limit of the experimental

submerged condenser system was, thus, raised by a factor of 2.

However, the augmented performance is almost 40 percent lower

than was anticipated on the basis of the analysis in Subsection 4. 3. While

some "flooding" of the undulation crests may have occurred and while some

of the undulations are rendered ineffective by flat regions, it is unlikely

that these factors could cause such a dramatic discrepancy between analysis

and'data. Alternately, the presence of noncondensables, primarily air,

could very well have led to the observed deterioration in thermal performance.

As discussed earlier in Subsection 4. 2 and in the Appendix, the

Freon-113 used as the working fluid was degassed prior to filling the sub-

merged condenser system and then degassed for approximately one hour in

the system. This procedure appears to have worked successfully for the

smooth condenser surface since, as shown in Fig. 24, the condensive limit

data correspond closely to film condensation on that surface. However, the

numerous undulations present on the doubly-rippled surface may have

trapped a substantial number of small air bubbles during system degassing

and led to the observed discrepancy. The presence of small amounts of

noncondensables has long been known to cause dramatic degradation in

condenser performance [7) , but noncondensables are especially troublesome

in condensers with nonuniform heat fluxes. As a result of spatial variations
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4 . F-113 COND. ON DOUBLY-RIPPLED SURFACE

ANALYTICAL PREDICTION
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in heat flux the noncondensables collect near the regions of initially high

heat flux and thus prevent high rates of condensation in those regions [42]

Degradation in thermal performance of 50 to 100 percent are not uncommon.

The implications for the doubly-rippled condenser surface which is strongly

dependent on nonuniform heat flux are clear and may help explain the observed

performance.

If noncondensables are, indeed, the cause of the observed dis-

crepancy between the predicted and observed condensive limit on the sinu-

soidally undulated surface, then greater success could be achieved by using

more sophisticated degassing equipment. However, the experimental

apparatus used throughout this investigation attempted to duplicate as closely

as possible a practical submerged condenser system for cooling of electronic

components. The degassing procedure was again modelled after common

techniques utilized by installation and maintenance personnel. It would,

consequently, appear that no easily maintained submerged condenser system

could operate at peak efficiency with the doubly-rippled condenser surface.

Though obviously some improvement over the observed performance could

be obtained by judicious redesign of the condenser surface, operation at

50 to 60 percent of the theoretical limit may well be typical of practically

attainable performance levels for condenser surfaces of this type.
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5. DESIGNING A SUBMERGED CONDENSER SYSTEM

5. 1 Introduction

The rapidly increasing use of high speed, high power electronic com-

ponents has necessitated the development of electronic cooling systems

which employ boiling heat transfer to dielectric fluids. While initially pool

boilers were designed to operate with remote condensers, as shown in

Fig. 1, difficulties with noncondensables and varying liquid level have led

to the use of condensers submerged in the liquid. In a submerged condenser

system, shown in Fig. 2, the condenser surface serves primarily to subcool

the liquid in the pool boiler and vapor bubbles generated at the surfaces of

the dissipative electronic components rise and begin to condense in the fluid.

Due to the elimination of a vapor space, considerable economics in volume

and weight can be realized [8, 9] and the presence of noncondensables is bf

significantly less consequence.

As in other boiling systems, the dissipative elements in the submerged

condenser system experience only moderate increases in temperature as a

result of large increases in their dissipated power. Furthermore, low

dissipation or thermally passive components immersed in the bulk fluid

undergo only slight changes in temperature for -large variations in the total

power dissipated. The operation of the submerged condenser system has

been found to possess two possible upper bounds. For large values of

condenser surface subcooling and/or low heater-to-condensersurface area

ratios, the upper bound is established by the critical heat flux or "burnout"

at the boiling surface. For low values of condenser surface subcooling and/or

high area ratios, however, a condensive limit exists which has been found to

correspond to the heat flux associated with film condensation on a downward

facing horizontal surface. Typical design criteria for submerged condenser

systems including available heat sink temperatures and the need to reduce

condenser surface area, usually result in system operation in the region

bounded by the condensive limit.
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The preceding chapters have presented in detail the operating character-
istics of an experimental submerged condenser system, shown in Figs. 5
and 6. The thermal mechanisms active in the system, its operational limits

and significant design parameters have been identified, explored and, where

possible, related to available heat transfer correlations. The working fluids,

water and Freon- 113, were chosen to span the range of fluid and thermal

properties and the similarity in the operating characteristics for the two

fluids enhances the generality of the obtained results. Utilizing the proposed

models and correlations, it is now possible to establish a systematic design

procedure for electronic pool boilers, of the type shown in Figs. 2 and 4b,

employing hori7ontal condensers submerged in dielectric fluids. Although,

it must be noted that some allowance should be made in Modes I and Ha for

heater geometry and orientation.

5. 2 Design Considerations

The heat transfer or packaging engineer called upon to design a submerged

condenser system for the cooling of electronic components and/or devices by

boiling transfer, is generally required to operate within a closely constrained

environment. The heat dissipation of the components to be cooled, their tar-

get temperatures, and the operating environment are all specified. In

addition, the system must be easy to maintain, transport and operate while

its weight and physical dimensions must be compatible with adjacent and

interrelated systems. It is the task of the design engineer to develop or

choose hardware to meet these specifications.

In describing the operational behavior of the components and/or devices

to be cooled, several aspects are of prime interest. The component or device

geometry including the dimensions and physical structure, as well as mount-

ing method and mounting density, establishes the physical size of the cooling

system. The rate of heat dissipation by the components and/or devices and

level of heat flux including time-averaged and peak values, as well as the

time history or duty cycle, establishes the range of required heat removal

capability.

84



UNCLASSIFIED

The target component temperatures are the crux of the design. For

most electronic components and/or devices several temperature constraints

must be satisfied. First, an absolute maximum temperature, which if

exceeded will result in the destruction of the element, is specified. Next,
a desirable maximum temperature corresponding to the peaks in dissipation

rate and a desirable average or base temperature are specified or implied

through an element temperature - element reliability relation. Finally,
reliability arguments are again invoked to limit the maximum spatial and

temporal temperature variations within devices and components. These

temperature considerations as well as the heat flux levels specified earlier

help determine the thermal properties of the fluid in which the elements are

to be submerged.

However, the operating environment of the submerged condenser system

and electrical considerations also exert a profound influence on the choice of

primary coolant. The range of pressures in which the system must operate,

the nature of the secondary coolant available to cool the condenser, as well

as the temperature and flow rate of this coolant must all enter into considera-

tion. In addition, the dielectric constant of the primary coolant must be

sufficiently high to prevent electrical arcing between the container wall and

electrical elements or adjacent elements under the highest voltage differences

to be encountered.

It is important to note that this design process, as most others, does

not progress in a linear fashion. Some of the imposed constraints can be

relaxed or altered if necessary to facilitate a practical thermal design. It

will, therefore, be generally necessary to perform several cycles of calcula-

tions for slightly varying constraints, before the final design will emerge.

Nevertheless, the procedure to be followed in each cycle will be similar to

that indicated below.

5. 3 Design Procedure

The submerged condenser system to be designed is of the type shown in

Fig. 2 and is most appropriate for the cooling of power supplies and associated

equipmcnt. Judging from present submerged condenser systems it is antic-

ipated that the mean distance of separation between the dissipative elements
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and the condenser surface will be of the order of 4-6 inches and that a bellows

type expansion chamber will be provided above the condenser. The system

will be filled initially with a dielectric fluid which has been degassed by

boiling at the ambient pressure and sealed.

Special note must be made of the significant role played by the ambient

pressure in determining the operation of the submerged condenser system.

Substantial reductions in ambient pressure, such as could be encountered in

airborne applications, will influence both boiling and condensation in the

system. With decreasing pressure the boiling curve of Fig. 18 shifts to the

4 right, wvhile the critical heat flux decreases slightly, but more importantly

the reduction in T leads to considerably lower surface temperatures. On
sat

the other hand, for a given condenser surface temperature the thermal

driving force for condensation, T - T will be significantly reduced at
sat c'

lower ambient pressures and the condensive limit will be encountered at

lower values of condenser heat flux. Furthermore, at reduced ambient

pressure the lower vapor density will result in greater volumetric expansion

in the condensive region of Mode II and at the condensive limit. Consequently,

the range of environments within which the designed submerged condenser

system must operate should be carefully studied and the most severe environ-

ment for each aspect of submerged condenser operation should be identified.

1. Choosing a Primary Coolant

Examine the design constraints and choose a dielectric coolant for

which, at the highest pressure to be encountered, the maximum component

heat flux does not exceed the critical heat flux, q" < q" crit, and for
h, max

which the incipence heat flux is below the minimum component heat flux,

" p<q"i . LiI addition, determine that for the fluid chosen , the boilingq1incip <qh, rmin*
surface temperature at q" is at an acceptable level and the surface

h, max
temperature difference between the minimum and maximum heat flux levels

is within acceptable bounds.

2. Determining Condenser Surface Temperature

Use available information on the secondary coolant temperature,

flow rate, and thermal properties as well as the dimensions of the coolant
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passages in the condenser plate, in Eq. (94) below, to determine the heat

transfer coefficient on the coolant side of the condenser. Eq. (94) is typical

of the available forced convection correlations. For a particular geometry,

other more accurate correlations may be available.

8 4
hD pVD * pC

e - 03 ~(94)
e=0.023

k y k

Add the film resistance, thus determined, to the conduction resistance

through the condenser plate to establish the overall thermal resistance, Rt'

between the condenser surface and the secondary coolant.

Using the total maximum power dissipation rate in the system and

the average secondary coolant temperature in Eq. (95), determine the maxi-

mum average condenser surface temperature as a function of condenser

surface area.

q R
T T '+ t(95)c f A

C

3. Determining Flat Horizontal Condenser Area

Using Eq. (47) calculate the condensation heat transfer coefficient

as a function of surface subcooling at the lowest ambient pressure to be

encountered. The minimum condenser surface area, as a function of Tc

is thus equal to:

q q
A - t /4t (96)

c h c (Ts-T C (T-T )
2 s c

Eqs. (95) and (96) can now be solved simultaneously to yield the minimum

condenser surface area. To allow for the inevitable presence of some non-

condensables and for possible error in the estimation of dissipation rates,

increase the calculated condenser area by 15-25 percent.
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4. Determining Volumetric Expansion

The maximum volumetric expansion in the submerged condenser

system occurs at the condensive limit. Use Eq. (59) or (61) to determine

the vapor gap depth, 6, at the condenser surface. Introduce this value into

Eq. (46) along with the total dissipated power, the physical dimensions of the

system, and the fluid properties to determine the maximum volumetric

expansion.

5. Determining Heater Surface Temperature

Tabulate the peak and average heat flux level for all surfaces of

interest and, if possible, use Eq. (7) for saturated pool boiling to determine

the appropriate surface temperatures. However, as discussed in Subsection

3. 2. 1, for many surface-fluid combinations the value of C sf the constant

required for Eq. (7), and the effects of subcooling on wall superheats are

unknown. Consequently, if accuracy is required it may be necessary to

experimentally determine the boiling curve and subcooling effects for the

fluid and component geometries utilized in the designed submerged condenser

system.

To determine the surface temperature of low dissipation components,

a natural convection correlation such as Eqs. (1) and (2) is required. How-

ever, the actual heat transfer coefficients are likely to be considerably higher

than calculated due to bubble-pumped augmentation resulting from vapor

bubbles generated at the high dissipation components.

Steps 1-5 have served to establish the heater and condenser surface

temperatures and the minimum area for a horizontal submerged condenser

completely blanketed by vapor. However, as mentioned earlier, a prudent

design should include a safety margin of 15-25 percent. With this margin,

at the maximum design dissipation rates, the condenser will be only partially

blanketed by vapor and the bulk temperature of the primary coolant will be

below the saturation temperature. Furthermore, at off-design points result-

ing from average dissipation rates (as opposed to the maximum rates),

operation in improved external environments or device and component

startup, the condenser may be substantially free of vapor and rely primarily
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on bubble-pumped convection to transport the dissipated heat. Under these

conditions, an accurate knowledge of the bulk temperature is essential to

the determination of the surface temperatures of the dissipative elements

and the temperature of low dissipation control devices often present in the

system.

The subcooling of the primary coolant at one off-design condition can be

determined in the following manner:

a) Repeat Step 2 utilizing the off-design dissipation rates to

calculate the condenser surface temperature.

b) Follow the proc edure outlined in Subs ection 3. 2. 3. 2 and illustrated

in Fig. 23, to determine the required bulk temperature.

If a more precise knowledge of the bulk subcooling for a range of total

dissipation rates is required, the above procedure can be repeated several

times and a family of constant condenser temperature curves relating con-

denser heat flux to T - T can be generated as shown in Fig. 33 for I heaterb c
in water. As discussed in Chapters 2 and 3, at low condenser heat flux, heat

transfer at the condenser is achieved exclusively by natural convection.

Hence, the heat transfer coefficient at this lower bound can be determined

from Eqs. (1) and (2) and Tb - Tc calculated. At the condensive limit the

bulk is at the saturation temperature and T - T is known from Eq. (47).
sat c

As q" increases, T obviously increases towards T and the bulk tempera-
c b sat

tures calculated in Step 7 can be used to establish the necessary curves.

5. 4 Additional Considerations

5. 4. 1 Increasing Effective Condenser Area

Due to the many geometric constraints that must be satisfied in the

design of a submerged condenser system, it may not always be possible to

provide the required horizontal condenser area. Alternately, more compact

packaging of the dissipative components could be realized if the condenser

area could be reduced. A number of distinct approaches can be used to

achieve this goal. Vertical fins can be added to or used to replace the

horizontal surface. A doubly-rippled horizontal surface can be designed. The

side walls of the submerged condenser container can be used as additional

cooling surfaces. 89
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Fairbanks et al. [101 utilized a vertically finned condenser in their

study of submerged condenser operation. Vertical fins can be used in a

straightforward manner to increase the condenser area. However, the

benefits gained may be outweighed by the substantial increase in the vapor

volume as the condensive limit is approached and the loss of volumetric

compactness.

The doubly-rippled surface discussed in Chapter 4, utilizes surface

tension forces to improve the rate of condensation on a horizontal surface.

The particular surface tested, described in detail in Subsection 4. 2 and the

Appendix, led to a factor of two improvement in the condenser heat flux

based on the projected surface area. The observed performance was,

however, only 60 percent of the anticipated values due apparently to non-

condensable gas difficulties. Thus, while Eq. (84) can be used to determine

the theoretical performance characteristics of the doubly-rippled surface,

the actual performance in a submerged condenser system is not likely to

exceed 60 percent of that value.

The use of the side walls of the submerged condenser container as

additional transfer surfaces can often be an extremely attractive solution.

This approach was not explored in the present investigation, but it may be

possible to establish an upper bound on the augmented coefficient by analogy

to the present investigation. As discussed in Subsection 3. 1, the rate of

convective transfer increases with the increase in buoyant force per unit

volume resulting from the presence of a vapor fraction. The data available

on the horizontal surface for the experimental submerged condenser system

indicate that the highest augmented coefficient in the so-called convective

mode was 2. 5 times the natural convection coefficient. The mechanism of

augmentation on a vertical surface appears similar to that on a horizontal

surface in the convective mode and, hence, the augmented convection coeffi-

cient can possibly be expected to approach 2. 5 times the natural convection

coefficient in a system of similar dimensions.
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5. 4. 2 Presence of Nonconden sables

While all possible measures are to be taken to remove air and other
noncondensables, it must be anticipated that some noncondensables will be
present in the system. The design of the submerged condenser has, however,

severely reduced the impact of noncondensables on the performance character-

istics. When operating below the condensive limit the presence of nonconden-

sables dissolved in the liquid reduces the collapse rate of the bubbles and

small bubbles, containing primarily noncondensables, impinge on the conden-

ser surface. If the condenser surface is pitched slightly (~ 5 degrees) towards

the expansion chamber inlet, the gas bubbles slide along the surface and are

vented into the expansion chamber. As a result, noncondensables do not

substantially affect heat transfer at the submerged condenser surface. This

is in sharp distinction with the vapor space condenser in which the non-

condensables accumulate in the vapor space and impede the flow of vapor

toward the condenser surface.

As the condensive limit is approached, a vapor gap does form at the

condenser surface and some deterioration due to noncondensables may occur.

However, most of the noncondensables will have been removed in the earlier

stages of operation. Consequently, when noncondensables are present, the

performance of the submerged condenser system can be expected to exceed

that of a vapor space system even near the condensive limit.

While the effect of noncondensables on the performance character-

istics has, thus, been minimized, the dissolved gases will substantially

increase the system volumetric expansion as degassing of the coolant occurs.

Due to the high gas solubility of many commercially used dielectric fluids,

the resulting volumetric expansion might well be an order of magnitude

higher than obtained from Eq. (46). It is, hence, essential that every

reasonable effort be made to degas the working fluid prior to the commence-

ment of submerged condenser operation.
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5. 4. 3 Changing the Physical Scale

The physical scale of the submerged condenser system including

the heater to condenser surface area ratio and separation distance can

affect its range of thermal operation but the mechanisms described and

operational limits defined are obviously independent of scale. Furthermore,
small changes in the distance of separation between the heater and condenser

surfaces are not expected to significantly affect the heat transfer coefficient

at the condenser surface, although further research will be required to

firmly support this concept.

5. 4. 4 Heater Configuration

The heater geometry and configuration used in the experimental

apparatus were generally similar to the orientation and distribution of the

dissipative electronic components typically found in submerged condenser

systems. Nevertheless, locally dense and vertical packaging of components

could lead to vapor channeling and slight alterations in the operational modes

of the system. Of greater importance, however, is the effect of stacking one

component above another on the boiling surface temperature. A recent study

by Plevyak [43] , revealed that improved boiling transfer could be obtained

4 on a surface placed above a bubble-generating source. The surface superheats

in the nucleate boiling region were found to be significantly lower when the

bubble source was activated. While these results are not surprising, they

do point to a possible benefit to be derived from the judicious location in the

submerged condenser system of critical components.

5.4. 5 Two-Fluid Submerged Condenser System

While the use of a submerged condenser in pool boilers for electronic

cooling has been found to possess many advantag es, the high density of most

commercially available dielectric fluids may impose a weight penalty in

specific applications. It has, consequently, been proposed that two immissible
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fluids be used jointly in the system and that the electronic components be

immersed in the dense, dielectric fluid, while the condenser would be sub-

merged in a low density, high saturation temperature fluid.

The condensive limit of such a system using Freon- 113 and water

was obtained in the present investigation. At the limit, the Freon vapor

bubbles rose through the highly agita ted water layer, and a Freon- 113 vapor

gap was found to form at the condenser surface. The rate of heat transfer

was identical to that obtained with the pure Freon-113 submerged condenser

system discussed in previous chapters.

This result is at variance with the findings of Simons and Seely [6)

that, at a given condenser surface temperature, less vapor could be con-

densed in a two-fluid system than in a pure system and may suggest that the

condensive limit of such a system depends on the choice of fluids. In particu-

lar, since some of the secondary fluid vapor mixes with the dielectric fluid

vapor in the vapor gap, the vapor pressure of the low density fluid and the

diffusivity of the dielectric fluid vapor through vapor of the secondary fluid

can be expected to have some effect on the condensive limit.
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CONCLUSIONS

The foregoing has presented in detail the results of an experimental and

analytical investigation of boiling and condensation in a liquid-filled enclosure.

The operating characteristics of an experimental boiling system, utilizing

a condenser submerged in the fluid, were obtained and related to specific

operational modes and thermal transport mechanisms. The working fluids,
water and Freon-113, were chosen to span the range of fluid and thermal

properties.

A lower bound of operation, corresponding to natural convection at both

the heater and condenser surfaces, was identified. One of two possible

upper bounds was similarly shown to govern system behavior. For large

values of condenser surface subcooling and/or low heater-to-condenser area

ratios, the upper bound was established by the critical or "burnout" heat

flux at the heated surface. Alternately, low subcooling and/or area ratios

approaching unity, typical of practical systems, resulted in an experimen-

tally observed upper bound which was significantly below the critical heat

flux and due to a condensation limit associated with vapor-blanketing of the

condenser. Contrary to expectation, the condensive limit was found to be

nearly insensitive to moderate inclination of the condenser surface.

A nondimensional vapor bubble collapse length, Lc/W, was found to

govern the rate and mechanism of heat transfer at the submerged condenser
L

surface. Values of c << 1 were associated with natural convection heat
w L

transfer at the submerged condenser. For ~ 1, the presence of a substan-

tial vapor fraction in the bulk liquid led to augmented convection, while
L

for values of c >> I condensation was found to dominate thermal transport
w

at the condenser surface.

In the augmented convection region it was postulated that the presence

of a vapor fraction in the fluid introduces an additional buoyant force which

can dramatically increase the rate of heat transfer at the cold surface.

Utilizing the appropriate bubble dynamics relations, it was found possible
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to correlate the experimental results in terms of a single configuration

factor for each geometry. Furthermore, the augmented convection relation

was shown to facilitate the semiempirical determination of the bulk tenpera-

ture variation with condenser heat flux.

It was found possible to increase the condensive upper bound in the sub-

merged condenser system by enlisting surface tension forces to thin the

condensate film on the surface. A doubly-rippled surface with small, constant

radius of curvature undulations was shown to double the rate of vapor space

condensation based on the projected area of the condenser surface.

A systematic design procedure for horizontal submerged condenser

systems was presented and related to typical design considerations in the

cooling of dissipative electronic components and devices.
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APPENDIX

EXPERIMENTAL APPARATUS AND PROCEDURE

A. Apparatus

The apparatus used in the present investigation is shown in Figs. 5 and 6

and was chosen to simulate a practical submerged condenser system. De-

gassed water and Freon-113 were used as the working fluids. The apparatus

consisted of five cylindrical heaters, 0. 25 inch in diameter, electrically

powered and oriented horizontally in a Plexiglas and brass enclosure 6 inches

on a side.

A. I Construction

The side walls of the container were made of 0. 5 inch thick Plexiglas

assembled from two 7 in. by 6 in. and two 6 in. by 6 in. plates bonded together

with di-ethylene chloride and reinforced with screws. The top and bottomof

the container were made of 0. 5 in. brass plates, each 12 in. on a side. A

groove, 0. 25 in. deep and 0. 75 in. wide, was machined in the upper plate

to form a 5. 75 in. square plateau in the center of the plate.

Rubber gaskets were placed between the Plexiglas and brass plates

along the surfaces of contact. Four 0. 25 in. threaded brass rods and appro-

priately placed nuts were used to compress the gaskets and insure proper

sealing of the liquid-filled enclosure. The space remaining between the

upper brass plate plateau and Plexiglas side walls, approximately 0. 25 in.

deep and 0. 25 in. wide, was filled with liquid polyester resin which was

allowed to harden.

An open reservoir, consisting of a 3 in. diameter, Plexiglas cylinder

5 in. long, sealed at one end and connected by a short, 0. 375 in. diameter

brass pipe to the liquid-filled enclosure, was located on top of the container.

The reservoir served to maintain a nearly constant average system pressure

of 14. 9 psi despite fluctuations in the vapor fraction in the liquid. A valved

vent tube was also provided in the near, left corner for removal of noncon-

densables from the system.
100
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The entire apparatus was heavily insulated with glass fiber insula-

tion. The apparatus was then placed on a dexion and asbestos board stand

and raised approximately 4. 5 ft. above floor level. The asbestos board

provided thermal insulation for the lower brass plate and was in turn covered

with fiber glass insulation. The dexion stand also provided the submerged

condenser apparatus with a slight pitch (~.5*) towards the corner in which

the vent was located to facilitate the removal of noncondensables.

A. 2 Condensing Surface
2

The 0. 23 ft. plateau of the upper brass plate served as the con-

densing surface. A 10 in. maximum diameter, doubly-wound, helical coil

of 0. 25 in. copper tubing was soldered to the exterior of the brass plate.

City water at approximately 60*F inlet temperature and at a maximum flow

rate of I gpm was circulated through the cooling coil. The water flow rate

was measured with a Fischer-Porter Flowrator having a range of 0-6. 8 lb.

water/min,

A. 3 Heaters

Four of the five heaters used were 0. 25 in. in diameter and 8 in.

long, 7029 Superwatt, Hotwat cartridge heaters powered by a-c current and

rated at 940 watts each. Only the 6. 0 in. in the center of the cartridge

heaters was heated. The heaters were located 1. 5 in. above the bottom of

the enclosure and were inserted through Conax adapters in the Plexiglas side

walls. The fifth and central heater was an especially prepared, thin-walled,

304 stainless steel tube, 0. 212 in. I. D. , 0. 250 in. 0. D. , and 6 in. long.

The tube was held between two copper rods which were connected to bus

cables from a nearby d-c power source. The copper rods were inserted

through Conax adapters in the Plexiglas side walls. The power supplied to

the heater was determined by measuring the current and the voltage drop

across the tube. At the maximum current of 520 amps, 3.74 kilowatts were

dissipated in the tube wall.
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The surface of all the heaters was finished with 320 emery paper

prior to each series of runs. The ratio of total heated to condenser surface

area varied from 0. 14 to 0. 71 depending on the number of heaters activated.

The stainless steel tube heater was always one of the activated heaters and

was used to determine the heater surface temperature. When necessary the

tube heater was moved to alternate locations. When multiple heaters were

used they each dissipated the same amount of heat. Properly calibrated

ammeters and voltmeters were used to monitor the dissipated power in each

heater.

A. 4 Temperature Measurement

Two, 30 gauge copper-constantan thermocouples were positioned

inside the hollow tube by teflon discs inserted from alternate ends of the tube.

The teflon discs electrically insulated the thermocouple beads and insured

accurate measurement of the inside tube wall temperature. The average

heater surface temperature was, then, determined using Eq. (97), derived

in [441

In (r e/ri)

c Tk 47rL ~ (r 2
Tc2=T---I (97)

r/

El is the electrical power supplied to the tube, L the tube length, and k the

thermal conductivity.

The thermal conductivity of the 304 stainless steel in Btu units was
-4

taken as k = 8.7 (1 + 5. 25 x 10 T).

The average condenser surface temperature was determined with

three, 30 gauge copper-constantan thermocouples located 0. 03 in. below the

surface and at increasing distances (1. 00, 1. 6 25, and 2. 50 in. ) from the

center of the condenser surface along the central plane. The temperatures

recorded at these locations were extrapolated to the surface and a, weighted

average surface temperature determined. As anticipated, the condenser

surface was found to be somewhat cooler away from the center, due to non-

uniform heat flux near the ends of the plateau. However, the maximum
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difference between any meazured temperature and the average surface

temperature did not exceed 7*F and was then less than 10 percent of the
significant temperature driving force, T -Ts c

The bulk temperature of the working fluid was measured by four,
30 gauge copper-constantan thermocouples sheathed in 0. 072 in. 0. D.

stainless steel tubes. The thermocouple beads were exposed approximately

1/16 in. The sheathed thermocouples were inserted through Conax adapters
in the brass plate forming the base of the enclosure. The four bulk tempera-

ture thermocouples were free to travel vertically in the enclosure.

In addition to the abc.-ue measurements, the inlet and outlet tempera-

tures of the circulating city water were obtained by attaching insulated thermo-

couple beads to the inlet and outlet of the cooling coil. All the thermocouples

described above were connected individually to a Brown recording potentiom-

eter which was referenced to an ice junction. Periodic potentiometer tests

using a standard cell were made to insure accuracy.

Using the measured coolant flow rate and inlet and outlet tempera-

tures as well as the power dissipation of the heaters, an exact heat balance

could be performed on the submerged condenser system. A series of tests

indicated that a heat balance to better than 5 percent could be obtained due

to the heavy insulation on the apparatus. Consequently, in subsequent data

runs the dissipated power in the heaters was taken as the true heat input to

the system.

A. 5 Doubly-Rippled Condenser Surface

The doubly-rippled brass surface shown in Figs. 28 and 29 was used

in the condensation experiments described in Chapter 4. 'Ihe 0. 25 in. thick

and 5.75 in. square surface was assembled from 4 smaller squares and con-

tained both undulations and grooves. The undulations were of constant curva-

ture with a radius of 0. 015 in. and ran continuously along each groove. 'The

grooves were 0. 125 in. in radius and were spaced 0. 295 in. from center

to center. Two 0. 25 in. wide shoulders extended the entire length of the

surface, 5. 75 in. , and ran parallel to the grooves. The surface area of the
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doubly-rippled surface, excluding the two smooth shoulders, was approxi-
2mately 0. 51 ft. , while the total surface area equaled 0. 53 ft. or 2. 38 times

its projected area.

The doubly-rippled surface was silver-soldered to a 0. 5 in. thick

brass plate, 12 in. on a side. Che side of the brass plate contained a 0. 25 in.

deep trough, 6. 5 in. square. The undulated surface, described above, was

centered in the trough and silver-soldered to the brass plate. A 5.75 in.

square undulated plateau was thus formed at the center of the plate.

The brass plate containing the undulated surface was now used to

replace the upper brass plate in the submerged condenser apparatus. Rubber

gaskets were again used along the Plexiglas-brass surfaces of contact and

were compressed by tightening the nuts on the connecting rods. Liquid poly-

ester resin was used to fill the gap around the undulated plateau.

The undulated plateau served as the condensing surface in the

experiments described in Chapter 4. A doubly-wound helical groove,

0. 125 in. deep and 0. 25 in. wide was machined in the external side of the

brass plate and a 12 in. square, 0. 5 in. thick, Plexiglas plate was bolted to

the brass plate to form a closed cooling channel. City water at 60*F inlet

temperature was circulated through the channel.

The average condenser surface temperature was determined with

three, 30 gauge copper-constantan thermocouples located 0. 005 in. below

the root of the surface undulations at the top of the groove and at increasing

distances (0. 75, 1. 75, and 2. 75 in.) from the center of the condenser surface

along the central plane. The temperatures recorded at these locations were

extrapolated to an imaginary plane passing through the root of the undulations

at the top of the grooves and a weighted average condenser surface tempera-

ture determined. It must be noted that this temperature does not correspond

to the true surface temperature along the groove. Rather, it is somewhat

lower and incorporates the temperature difference associated with thermal

conduction through the "ribs" separating the grooves. The variation in surface

temperature from the top to the bottom of the undulation was calculated to be

less than 0. 5*F for the maximum heat flux encountered.

All other details of construction and instrumentation were identical

to those of the basic submerged condenser apparatus.
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B. Procedure

The operating characteristics of the submerged condenser apparatus and

other significant data were obtained in a series of data runs for each working

fluid and heater configuration. Prior to each series of runs, the working

fluid was carefully degassed.

B. 1 Degassing Procedure

Nearly complete degassing of the working fluid was accomplished

in a two-step procedure. One gallon of the working fluid was first poured

into a large beaker and placed above a gas burner. The fluid was brought

up to the saturation temperature and allowed to boil vigorously (for 5 minutes

in the case of Freon-113 and approximately 30 minutes for water). The boil-

ing fluid was then poured into the reservoir on top of the submerged condenser

apparatus and allowed to fill the enclosure. The air formerly occupying the

enclosure was allowed to escape through the open vent. Small additional

quantities of fluid were boiled in a similar manner and added to the reservoir

until all the air was driven out of the enclosure and the reservoir was half

filled with liquid. The vent was now closed.

Next, the four cartridge heaters were activated and the power

increased until boiling had commenced at each one. Large air bubbles col-

lected at the condenser surface near the vent and were periodically removed

by opening the vent valve. This procedure was repeated until a vapor gap

formed at the condenser surface and large quantities of vapor were seen to be

rising into the liquid reservoir.

Due to some leaks in the enclosure and the presence of an air-liquid

interface in the reservoir, complete degassing of the fluid could not be

achieved. Consequently, in the course of a series of runs, an air bubble

would form and slowly grow at the corner of the condenser surface in which

the vent was located. Periodic opening of the vent valve allowed the accumu-

lated air to escape and minimized the effect of the air on the condenser

performance.

Following each series of runs, the flow of water through the cooling

coil was stopped and the procedure described in the previous paragraph

repeated.
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B. 2 Operating Procedure

For each series of runs, the heat input at the selected heater con-

figuration and, hence, the condenser an.d heater surface heat flux, was

maintained constant. However, the flow rate of city water through the cooling

coil was varied. The initial run of each series was made with the full flow

of 1 gpm through the coil. When steady state was achieved, the condenser

surface, heater surface, and bulk temperatures as well as the inlet and

outlet water temperatures were recorded. As the water flow rate was

decreased, the average water temperature in the coil increased and the heat

transfer coefficient on the fluid side of the coil decreased. Consequently, the

condenser surface temperature increased and a new data point was obtained.

This procedure was repeated until the condenser surface was blan-

keted by vapor and large quantities of vapor were seen to be rising into the

liquid reservoir. At this point, the flow of cooling water was increased

somewhat so as to slightly reduce the condenser surface temperature. This

small change was performed so as to maintain the vapor gap at the condenser

surface but reduce to a minimum the amount of vapor rising into the reservoir.

This was defined as the condensive limit and any further increases in conden-

ser surface temperature resulted in large scale vapor transfer into the reser-

voir and a rapidly falling liquid level in the enclosure.
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