
Distributed Functional Programming in Scheme

by

Alex Schwendner

S.B., Massachusetts Institute of Technology (2009)

Submitted to the Department of Electrical Engineering and Computer Science
in partial ful�llment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

Massachusetts Institute of Technology

June 2010

© Alex Schwendner, MMX. All rights reserved.

The author hereby grants to MIT permission to reproduce and to distribute
publicly paper and electronic copies of this thesis document in whole or in

part in any medium now known or hereafter created.

Author .
Department of Electrical Engineering and Computer Science

May 21, 2010

Certi�ed by. .
Saman Amarasinghe

Professor of Computer Science and Engineering
Thesis Supervisor

Accepted by .
Dr. Christopher J. Terman

Chairman, Department Committee on Graduate Theses

2

Distributed Functional Programming in Scheme

by
Alex Schwendner

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 2010, in partial ful�llment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, we present a framework for writing distributed computer programs in Scheme
using simple �future� semantics. This allows a Scheme program originally written for exe-
cution on a single computer to be run in a distributed manner on a cluster of computers
with very little modi�cation to the program. The structure of the computation can be ex-
tremely general and need not be speci�ed in advance. In order to provide this programming
environment, we implemented a system of job execution servers which transparently execute
arbitrary Scheme code written in a functional or mostly functional style. The use of a func-
tional, side e�ect free style of programming simpli�es the challenges of data consistency. A
number of demonstrations of the system are presented, including a distributed SAT solver.
The performance of the system is shown to increase roughly linearly with the number of
servers employed.

Thesis Supervisor: Saman Amarasinghe
Title: Professor of Computer Science and Engineering

3

4

Acknowledgments

First of all, I would like to thank my thesis supervisor, Saman Amarasinghe, for his patience
and guidence. I would also like to thank my academic advisor, Professor Peter Szolovits;
Anne Hunter; Vera Sayzew; and Professors Rob Miller and Srini Devadas for their help in
Course IV. A number of my friends were kind enough to talk about my thesis with me,
including David Benjamin, Anders Kaseorg, and many others, and for that I am immensely
grateful. I would like to thank all of my friends who have made my time at MIT so special.
Above all, I thank my parents, for everything.

5

6

Contents

1 Introduction 13

1.1 Existing Approaches . 14
1.2 The Promise of Functional Programming . 14
1.3 Future Semantics for Distributed Computation 15
1.4 Our Work . 15
1.5 Contribution . 15

2 Distributed Inter-process Communication 17

2.1 Requirements . 17
2.2 Local Synchronized Variables . 18

2.2.1 mvar operations . 18
2.3 Consistent Distributed Variables . 20

2.3.1 Local dbox representation . 20
2.3.2 Network communication . 21
2.3.3 dbox operations . 22
2.3.4 dbox serialization . 22
2.3.5 dbox server architecture . 23

2.4 Extensions to Variable Semantics . 26
2.4.1 Motivation . 26
2.4.2 Admissible values . 26
2.4.3 Idempotent updates . 27
2.4.4 Non-idempotent updates . 28

3 The Scheme Computation Server 29

3.1 Job Serialization . 29
3.1.1 PLT Scheme serialization framework 29
3.1.2 Serializable closures . 30
3.1.3 Job representation . 33
3.1.4 Remote serialization & deserialization 34

3.2 Job Management State . 35
3.2.1 Thread-local state . 35
3.2.2 Manager state . 35

3.3 Task Threads . 36

7

3.4 Control Flow . 38
3.5 Scheme Server Communication . 39

4 Applications 43

4.1 SAT solver . 43
4.2 Game playing programs . 44

5 Metrics 47

5.1 Benchmark . 47
5.2 Multi-core Platform . 47
5.3 Cloud Computing Platform . 49

6 Conclusion 59

6.1 Future Work . 59

Bibliography 60

8

List of Figures

2-1 Scheme de�nition of an mvar . 18
2-2 Scheme de�nition of a dbox descriptor . 21
2-3 Example of dbox value propagation . 24

3-1 Serialized representation of a dbox descriptor 31
3-2 Example of a serializable closure . 32
3-3 Scheme de�nition of a job object . 33
3-4 Scheme code for starting a new job . 37
3-5 Scheme code for touch . 40
3-6 Example control �ow for computing fib(4) 41

4-1 SAT solver Scheme code for a single computer 45
4-2 SAT solver Scheme code modi�ed to use the distribution framework 45

5-1 Scheme code for computing Fibonacci numbers on a single computer 48
5-2 Scheme code for computing Fibonacci numbers using the framework 48
5-3 Speed of computing Fibonacci numbers on an 8-core computer 50
5-4 Speed of computing Fibonacci numbers on Amazon EC2 51
5-5 CPU utilization for each instance in two di�erent EC2 runs 53
5-6 Network tra�c between servers on EC2 in a �good� run 54
5-7 Network tra�c between servers on EC2 in a �bad� run 55

9

10

List of Tables

5.1 Speed of computing Fibonacci numbers on an 8-core computer 56
5.2 Speed of computing Fibonacci numbers on Amazon EC2 57

11

12

Chapter 1

Introduction

Getting better performance for computationally challenging tasks is getting progressively
more di�cult. Microprocessors have stopped getting faster at executing single-threaded code
on a single computer. While computational power still increases, it does so with more cores
per computer chip and with cheaper hardware. Thus, to bene�t from advances in computing,
we must use approaches which allow us to use multiple cores and multiple computers in a
distributed manner.

Of particular importance is developing applications that leverage commodity hardware to
solve problems too large for a single computer. Progressively cheaper hardware has made this
a very attractive approach. Moreover, with more computation moving to cloud computing
environments, it is becoming ever easier (and more necessary) to take advantage of large
amounts of commodity hardware.

Yet, developing distributed programs is di�cult. Better tools and frameworks are needed
to enable the development of distributed software applications. While paradigms are emerg-
ing for parallel, shared memory architectures [BJK+95], programming for distributed, private
memory environments remains challenging. Especially challenging are the heterogeneous en-
vironments presented by cloud computing. Computer and communication parameters vary
between cloud computing environments. Thus, what is needed are better ways to abstract
the complexities of heterogeneous cloud computing environments and present powerful ab-
stractions for distributed computation.

In this work, we present a solution based on functional programming. We show how
functional programming can be used to easily write distributed programs using clean, natural
semantics. We demonstrate an instantiation of this idea in the functional programming
language Scheme by providing a framework of distributed Scheme computation servers which
can run very general Scheme code with minimal modi�cation. We provide examples of our
system, showing how natural it is for writing distributed programs.

Before describing our work in more detail, we �rst further motivate our project by charac-
terizing existing approaches and considering how functional programming is uniquely suited
to writing distributed systems.

13

1.1 Existing Approaches

Two general approaches have generally been used to write distributed programs. The �rst
is to analyze the speci�c problem to be solved and to write a bespoke system to break up
the problem into subtasks and to distribute, solve, and combine the subtask results. This
can yield good results for a speci�c problem, but requires a large amount of code to be re-
written for each distributed program. This makes the creation of such a distributed program
a time consuming and di�cult process which is only attempted by experienced programmers.
Examples of this approach include [CW03] and [FMM91]. While tools � such as the Message
Passing Interface � exist which aid the development of such applications, they still view a
distributed application as a collection of individual programs rather than as a uni�ed whole.
For speci�c problems of high importance, this approach may be acceptable, but it is not a
practical way for most programmers to e�ciently write distributed applications.

The second approach is to restrict the structure of programs which can be written in
such a way as to pigeonhole distributed algorithms into a small class of allowed solution
techniques. Perhaps the best known example of such an approach is MapReduce [DG04].
Another example is [IBY+07]. While such approaches have been successful at streamlining
the programming of a large class of distributed computations, their restrictiveness and se-
mantics leave something to be desired. On the one hand, such approaches generally force
programmers to rigidly de�ne the structure of their computation in advance, something which
may be possible for some types of problems but not for others. On the other hand, it forces
programmers to write code in a very di�erent style than they are used to. These systems are
often awkwardly embedded in a host programming language. Idioms which are common in
the host certain programming language lead to syntactically valid but semantically broken
programs when executed in the distribution framework.

1.2 The Promise of Functional Programming

Our approach to distributed computation also restricts the style of allowed programs, but it
does so in a natural way which is already familiar to many programmers, namely functional
programming. Programming in a functional style without mutation or side e�ects simpli�es
distribution semantics. No longer is data consistency a problem: if there is no mutation,
then data values cannot change and consistency is automatic. Data may be freely copied
between computers and computations may be performed anywhere.

Additionally, programs written in a functional programming language, such as Scheme,
can be statically checked for safety by simply removing mutation primitives from the pro-
gramming environment. Programs which compile in such a setting are thus purely functional
and guaranteed to behave similarly in a distributed setting as on a single computer. Alter-
natively, programs can be written using limited use of mutation and side e�ects so long as
it is understood that such side e�ects only apply to local variables, not to global variables
shared between subproblems.

Prior examples of using functional programming to simplify distributed computation

14

include Glasgow Parallel Haskell [AZTML08] and Kali Scheme [CJK95].

1.3 Future Semantics for Distributed Computation

We wish to use functional programming to provide as natural a set of semantics as possible.
The semantics which we have chosen for are work are those of futures. A future represents
a value which will be needed at some time in the future. The future may potentially be
evaluated before it is needed. The creation of a future spawns a task or a job for the
evaluation of the future's value. In a single-threaded context, this job will be lazily executed
when its value is needed. In a parallel or distributed context, the job may be started
immediately, or at least before its value is required, if su�cient computing resources are
available.

Future semantics �t naturally with functional programming. A number of functional
programming languages have implementations of futures for parallel, shared memory com-
putation, including PLT Scheme [Mor96] [Swa09] and Haskell [HMJ05]. As an example of
the semantics of futures, consider the example of computing the Fibonacci numbers shown
in Figures 5-1 and 5-2. Figure 5-1 shows a trivial Scheme function to compute the Fibonacci
numbers in a single-threaded manner. Figure 5-2 shows the same program rewritten to use
futures.

1.4 Our Work

In the subsequent chapters of this document, we present our work. First, in Chapter 2, we
build a distributed variable abstraction suited to functional programming which we will �nd
useful in building our system. This distributed variable abstraction, which we call a dbox,
represents a single value which may be read from any computer and written to from any
computer, but which may only be written to once. (In Section 2.4, we relax this restriction
somewhat.) Representations of this variable are serializable and may be transfered from
computer to computer just like ordinary data.

Then, in Chapter 3, we show how to build a framework of Scheme computation servers
implementing our intended semantics. We explain how to serialize functions and compu-
tational tasks and transfer them transparently between computers. We then build a task
management framework for executing jobs, performing job context switches, and transferring
jobs to di�erent computers. We also explain how we use work stealing to implement a simple
protocol for balancing load among multiple computers.

Lastly, we review applications of our system and provide some data on its performance.

1.5 Contribution

Our contribution, in this thesis, is that it is, in fact, possible to de�ne simple yet powerful
semantics for distributed computation. That, more than anything else, is our message.

15

Whether or not future systems resemble ours, we hope that paradigms are developed which
make programming distributed applications elegant.

Our other main message is that functional programming is a useful way of thinking about
computation, and distributed computation in particular. Functional programming vastly
simpli�es many of the complexities associated with writing distributed applications. While
requiring functions to be side-e�ect free and variables to be immutable may seem restrictive
to some, functional programming has already proven to be an extremely successful paradigm
for writing applications on a single computer. It is even more powerful for writing distributed
applications.

More speci�cally, we provide a particular model for distributed functional programming
centered on the notion of functional futures. This model is simple and easy, yet powerful
enough to describe the parallelism demanded. We instantiate this model as a framework of
Scheme computation servers evaluating dependent tasks. We shall see how easy it is to write
an e�ective distributed program using such a system.

16

Chapter 2

Distributed Inter-process

Communication

When a job is created, a future object is returned. Since this job might be evaluated on a
di�erent computer, we needed a way to return the result of the job. Moreover, the future
might be passed inside an argument to the creation of a new job. This means that we needed
to be able to serialize the future and copy it to another computer, and that any computer
with the future should be able to get the result of the job once it has been evaluated.

This section describes how we supported these requirements with our dbox abstraction.
The requirements themselves are detailed in Section 2.1. In Section 2.2, we describe mvars,
semaphore-protected variables for safe concurrent access on a single computer. Lastly, we
present the implementation of our dbox distributed variable abstraction in Section 2.3.

2.1 Requirements

We speci�cally needed a kind of distributed variable with the following semantics:

� The variable descriptor can be serialized on one computer, transfered to another com-
puter, and deserialized, yielding an equivalent descriptor.

� The variable can be read from any computer which has a descriptor for the variable. If
no value has yet been assigned to the variable, the read can be performed with either
blocking or polling semantics.

� The variable may be used as an event, notifying user code when the variable has a value.
This allows programmers to implement event-driven rather than polling semantics.

� The variable can be written to from any computer which has a descriptor for the vari-
able. Only one distinct value may ever be written to the variable. If multiple di�erent
values are written, the variable may become inconsistent across di�erent computers.

17

2.2 Local Synchronized Variables

We implemented an mvar abstraction in Scheme, based on Haskell's MVar [PGF96]. An
mvar may be thought of as a box, which may be either empty or full. An empty box may be
�lled with a value, or a full box may be emptied, returning a value. The mvar is protected
by two semaphores, one signalling the box as full and the other signalling the box as empty.
See Figure 2-1. An mvar may be read from or written to multiple times in multiple threads,
but only on the same machine. An mvar is not serializable.

(define-struct mvar
([value #:mutable] ; :: any
; The value of the mvar, if full, or some arbitrary value, if
; empty.
full ; :: semaphore?
; A semaphore which is ready when the mvar is full.
empty ; :: semaphore?
; A semaphore which is ready when the mvar is empty.
))

Figure 2-1: The Scheme de�nition of an mvar. An mvar stores a value and two semaphores.
When the mvar is full, the full semaphore has value 1 and the empty semaphore has value
0. When the mvar is empty, the full semaphore has value 0 and the empty semaphore
has value 1. Both semaphores are required in order to support operations which require
the mvar to be full (e.g. take-mvar) and operations which require it to be empty (e.g.
put-mvar).

2.2.1 mvar operations

An mvar supports the following fundamental operations:

new-mvar Constructs a new mvar which begins full with a supplied value.

new-empty-mvar Constructs a new empty mvar.

take-mvar! Blocks until the mvar is full and then empties it and returns its value.

try-take-mvar! If the mvar is full, empties it and returns its value. If the mvar is
empty, immediately returns some speci�ed failure result. The failure result is #f by
default.

put-mvar! Blocks until the mvar is empty and then �lls it with a given value.

try-put-mvar! If the mvar is currently empty, �lls it with a given value and returns #t.
Otherwise, immediately returns #f.

18

put-mvar-evt! Creates a new synchronizable event which becomes ready when the mvar
is empty. Synchronizing the event �lls the mvar with a given value.

prop:evt A structure property specifying how the mvar can be used as a synchronizable
event, which becomes ready when the mvar is full. The PLT Scheme sync procedure
can be used to choose between multiple synchronizable events in a similar manner to
that in which the select() system call may be used to choose between multiple �le
descriptors. [PLT] Synchronizing the mvar empties the mvar and returns its value.

Additionally, some select combinations of the above operations are provided as atomic
operations. For instance, a read-mvar operation is provided which combines take-mvar
with put-mvar but which maintains the lock across both operations and prevents another
thread from writing a new value to the mvar in between. The compound actions provided
as atomic operations include:

read-mvar Blocks until the mvar is full and then returns its value without modifying the
mvar.

try-read-mvar If the mvar is currently full, returns its value without changing the mvar.
Otherwise, immediately returns some speci�ed failure result. The failure result is #f
by default.

read-mvar-evt Returns a fresh synchronizable event which becomes ready when the
mvar has a value. Synchronizing the event returns the value without modifying the
mvar.

swap-mvar! Atomically swaps the value in the mvar for another value and returns the
previous value. If the mvar is empty, blocks until the mvar is full.

with-mvar Atomically gets a value from the mvar, applies a function to it, and returns
the result of the function. This operation does not itself change the value stored in the
mvar, although the applied function might mutate it. If the evaluation of the function
fails, the mvar is left in an unusable state.

In general, it is not always possible to construct correct concurrent procedures using
only an mvar. This is a consequence of the fact that, as noted by [HMPJH05], locks do
not compose. However, the most common use case for an mvar is to protect access to a
single object, such as a hash table. A procedure needing access to the object takes the
value from the mvar, performs any number of operations on the object, and then writes the
value back into the mvar. As long as no procedure maintains a reference to the object after
writing it back into the mvar and as long as no distinct objects are written to the mvar,
each procedure using the mvar will have exclusive access to the object and mvar during
its execution. This corresponds most directly to the map-mvar and with-mvar functions
listed above.

19

2.3 Consistent Distributed Variables

The mvar abstraction is useful for a single computer, but its failing is that it is not serializable
and cannot be used to synchronize data across multiple computers. Therefore, we built an
abstraction on top of mvars which was serializable. We now present our dbox � short
for distributed box � abstraction for distributed variables with write once, read anywhere
semantics.

A dbox is a variable which may be created on any computer in the network and is
initially empty. A dbox descriptor may be serialized, transfered to another computer, and
deserialized to a corresponding dbox descriptor. All such dbox descriptors across multiple
computers represent the same variable and share consistent semantics. Any process on any
computer with a dbox descriptor may write a value to the dbox and all other computers
with the dbox will receive the value. In order to manage this, all computers in the network
run dbox server processes which communicate with other computers to propagate values.
Only one distinct value should ever be written to the dbox, among all computers in the
network.

2.3.1 Local dbox representation

A dbox descriptor on a single computer contains four �elds:

� A randomly assigned 128-bit unique identi�er (a version 4 UUID). Using a 128-
bit identi�er space ensures that the system is extremely unlikely to have a collision
between two di�erent dbox identi�ers as long as the number of dbox variables does
not approach 264.

� Anmvar holding the local version of the variable. The mvar synchronizes the variable
for concurrent access on a single computer. This ensures that only one value can be
written to the dbox from a single computer. It also provides blocking and event
semantics which can be used to notify threads when the a value arrives in the dbox.

� The hostname of the computer which originally created the dbox. If the dbox was
created locally, this contains an external hostname which may be used to access the
dbox server.

� The port number of the dbox server socket on the originating host.

These �elds are represented in Scheme code as shown in Figure 2-2.
Additionally, the dbox server maintains some local state for all dbox variables which

have descriptors present on the computer. This state includes:

dbox-table A hash table mapping unique identi�ers to dbox descriptors. This hash table
is used to intern dbox descriptors so that at most one descriptor exists on any one
computer for a given dbox.

20

(define-struct dbox
(id ; :: uuid?
; The unique identifier for this dbox.
mvar ; :: mvar?
; An mvar which contains the value of the dbox or is empty.
hostname ; :: string?
; The hostname for reporting/getting the value.
port-no ; :: exact-nonnegative-integer?
; The port number for reporting/getting the value.
))

Figure 2-2: The Scheme de�nition of a dbox descriptor. Each dbox descriptor has a
unique identi�er which is a randomly-generated (version 4) 128-bit UUID, an mvar to hold
the local version of the variable and synchronize access, and the hostname and port number
of the originating dbox server.

listener-table A hash table mapping unique identi�ers to lists of listeners. Each lis-
tener is a thread who cares about the value of the dbox. When the dbox is �lled with
a value, the dbox descriptor is sent as a message to each listener thread.

2.3.2 Network communication

The dbox servers on the computers in the network communicate over TCP using an S-
expression-based text protocol with two basic types of messages:

(listen ID) A message installing a listener on the receiving computer for the dbox
with unique identi�er equal to ID, where ID is written in a standard hexadecimal
format. If the dbox has a known value on the receiving computer, then that value is
immediately returned with a post message. Otherwise, the value will be returned in
a post message as soon as the value is known on the receiving computer. Note that
the receiving computer is not required to already have a descriptor for the dbox: if
a listen message is received before any descriptors for the corresponding dbox are
present, the receiving computer will maintain the listener until the dbox descriptor
has been received and has a value.

(post ID VALUE) A message informing the receiving computer of the value of the dbox
with unique identi�er equal to ID, where ID is written in a standard hexadecimal for-
mat. The value VALUE is a structured S-expression representation of the dbox's value
as serialized using the PLT Scheme serialization framework. If there is no descriptor
for the dbox on the receiving computer then the post message is ignored. If the
received value of the dbox is already known by the the receiving computer, then the
message is ignored. If a value for the dbox was already known and a di�erent value
was received, then a warning is logged.

21

The use of these messages in order to implement serialization and deserialization is de-
scribed in Section 2.3.4. An example interaction between dbox servers is shown in Figure
2-3.

2.3.3 dbox operations

The dbox module provides the following operations:

new-dbox Creates a new (empty) dbox based on the local machine and returns its de-
scriptor.

dbox-get Blocks until the dbox has a value and then returns it.

dbox-try-get If the given dbox has a known value on the local machine, returns that
value. Otherwise, immediately returns some speci�ed failure result. The failure result
is #f by default.

dbox-post! Puts a value into the dbox, which should be empty on all computers in the
network. If the dbox has a known value on the local machine, this function throws an
error. It is possible for the dbox to be globally full but locally empty, in which case
there will be a consistency error if a di�erent value is posted to the dbox. Only one
distinct value should ever be posted to this dbox among all computers in the network.

dbox-install-listener Installs a listener for the dbox with a given unique identi�er.
When the dbox has a known value, the dbox descriptor will be sent as a message to
the listener thread. If the dbox already has a known value on the local machine, the
dbox descriptor is immediately sent to the listener thread.

prop:evt A structure property specifying how the dbox can be used as a synchronizable
event, which becomes ready when the dbox has a known value on the local machine.
Synchronizing the dbox returns its value. Synchronizing the dbox is equivalent to
synchronizing the underlying mvar.

We note that these supported operations closely match the requirements speci�ed in Section
2.1.

2.3.4 dbox serialization

We designed the dbox abstraction speci�cally so as to allow dbox descriptors to be serialized
and transferred between computers. Moreover, we integrated our dbox serialization proce-
dures with PLT Scheme's serialization framework so as to allow the serialization of complex
data structures which include one or more dbox descriptors. PLT Scheme's serialization
framework is capable of serializing heterogeneous, cyclic data structures into structured S-
expressions which can be deserialized to produce equivalent data structures. [PLT] Making
a structure serializable within this framework generally requires implementing three proce-
dures:

22

� A serialization procedure which takes an instance of the structure and returns a
vector, each of whose elements is itself serializable, representing the instance's contents.

� A deserialization procedure which takes the elements of such a vector and produces
a equivalent instance of the structure.

� A cyclic deserialization procedure which updates an empty instance of the structure
with given data. This is used to break cycles in serialized data structures.

Complicating the implementation of these procedures is the additional state maintained
by the local dbox server. Serialization is simple: the dbox descriptor's unique identi�er,
hostname, and port number are serialized, along with the currently known value of the dbox,
if any. To deserialize a dbox descriptor, we �rst lookup its unique identi�er in dbox-table.
If the dbox is already known locally, then we return the existing dbox descriptor. Otherwise,
the dbox descriptor is deserialized and added to dbox-table. A connection is made to
the home host and port of the dbox and a listen message is sent, so that the local
computer will receive any update to the value of the dbox which is posted from another
computer. Lastly, a listener is installed in listener-table which will report any changes
in the status of the dbox to the dbox's home host and port. Thus, any local updates will
be propagated to the rest of the network and any remote updates will be reported to the
deserializing computer.

For an example of how dbox value are propagated, see Figure 2-3.

2.3.5 dbox server architecture

The dbox module is designed to support multiple concurrent accesses to dbox data by
client threads. Thus, the dbox module is written with a small number of mvar-protected
global variables which can be accessed by exported dbox functions called from client code.
These global variable are dbox-table and listener-table, described in Section 2.3.1.
The exported dbox operations (described in Section 2.3.3) do not directly make use of the
network but do send messages to server threads which do communicate over the network.

The server threads maintained by the dbox server are:

� An accepting connections thread which listens on the server's TCP port. When a
remote host connects to the server, this thread creates socket reader and writer threads
for the connection.

� Socket reader threads which read messages from a particular TCP connection and
process them. The types of messages are described in Section 2.3.2.

� Socket writer threads which accept messages from their thread mailboxes and forward
them to the remote hosts. A dbox received in the thread mailbox is automatically
translated into a post message sent to the remote host.

23

(a) A new dbox is created on host 10.0.0.2. The dbox hostname and and port number are
those of the local dbox server. The dbox is initially empty and has no listeners.

(b) The dbox descriptor is serialized and sent to hosts 10.0.0.1 and 10.0.0.3, where it is
deserialized by the dbox module. The deserializer on each computer installs the socket handler for
the connection to 10.0.0.2 as a listener for the dbox in listener-table.

(c) Both 10.0.0.1 and 10.0.0.3 send listenmessages to the dbox creator asking to be noti�ed
of the eventual value of the dbox.

Figure 2-3: An example of dbox value propagation. In this example, the network contains
three hosts. A dbox is created on one of the hosts, serialized, and sent to the other two
hosts. When a value is put in the dbox by one host, all receive the value.

24

(d) Host 10.0.0.3 posts a value to the dbox. The local value on 10.0.0.3 is changed to 17 and
a post message is sent to each listener. The only listener is the socket handler for the connection
to 10.0.0.2. After sending the post messages, the list of listeners is emptied.

(e) Host 10.0.0.2 receives the post message. Since it has no local value for the dbox, it sets the
value to 17 and sends post messages to all of the listeners installed.

(f) Hosts 10.0.0.1 and 10.0.0.3 receive the post messages from 10.0.0.1. Since 10.0.0.3
already has the value of the dbox, it ignores the message. Host 10.0.0.1 receives the message and
sets the value to 17. Since 10.0.0.1 has 10.0.0.2 registered as a listener, it sends a postmessage
to 10.0.0.2 to inform it of the value. (Host 10.0.0.1 does not remember that 10.0.0.2 already
has the value 17.) Host 10.0.0.2 receives this post message and ignores it.

25

In addition to the dbox-table and listener-table hash tables, the dbox server
maintains the writer-table hash table which maps hostname/port pairs to socket writer
threads. This hash table is used to reduce the number of extraneous connections which must
be made by storing all current connections.

2.4 Extensions to Variable Semantics

Our dbox abstraction nicely represents distributed variables without mutation. However,
there are some cases in which it is di�cult to implement an e�cient parallel algorithm
without mutation. This section considers how to support a limited, safe form of mutation
with the dbox abstraction.

2.4.1 Motivation

Suppose that we wish to write a game playing program using alpha-beta pruning. With
alpha-beta pruning, alpha-beta values discovered in one branch of the game tree may be
used to prune a di�erent branch of the game tree. How do we represent this functionally?

The straightforward solution would be to introduce a dbox variable for each alpha-beta
value. When considering two di�erent branches of the game tree, the �rst branch may set
one or more alpha-beta values by posting them to the corresponding dbox variables. The
second branch may then read the alpha-beta values from the dbox variables and prune
accordingly.

However, this destroys the parallelism we are trying to achieve. By making the second
subproblem dependant on the completion of the �rst subproblem, we force the subproblems
to be evaluated in serial rather than in parallel.

As a second example of this problem, consider a DPLL SAT-solver. In such a solver, rules
may be learned when exploring one branch of the search tree. These rules will constrain the
remainder of the search, speeding it up. How do we represent this? As with the alpha-beta
pruning example, we could introduce one or more dbox variables for the rules learned. But,
as before, if one subproblem writes to a dbox and another subproblem reads from it, this
forces the subproblems to be evaluated in serial rather than in parallel.

2.4.2 Admissible values

To �x this, note that these applications do not require a speci�c correct value: they can each
produce the correct answer given a range of admissible values. A game playing program will
return the correct value for a given game state so long as each alpha value is less than or
equal to the true value and each beta value is greater than or equal to the correct value.
(In particular, α = −∞ and β =∞ are always admissible assignments.) Likewise, a DPLL
SAT-solver will correctly determine whether a boolean formula is satis�able so long as each
rule in its inferred rule set is a valid rule. (In particular, the empty set is always a valid set
of inferred rules.)

26

Thus, we introduce the notion of a dbox with multiple possible admissible values. Any
computer may post to this dbox at any time, potentially multiple times. The values posted
to the dbox by di�erent computers or at di�erent times need not be the same; they need only
be admissible, for some de�nition of admissibility which will vary from problem to problem.

Each such dbox can be equipped with a law of combination (an update function) which
describes how to merge di�erent updates to the dbox. In the case of alpha-beta pruning,
the correct way to merge two alpha values is to take their maximum; the correct way to
merge two beta values is to take their minimum. In the case of a DPLL SAT-solver, the
correct way to merge two sets of learned rules is to take the union of the two sets. Thus,
values posted on one computer will eventually be propagated to other computers. During
this process, di�erent computers may have di�erent values for the dbox, but all values will
be admissible.

2.4.3 Idempotent updates

In order to implement distributed admissible variables, we need the law of combination �
the update rule � to have two key properties at a low level:

� Updates should be commutative. That is, it should not matter in what order the
updates are performed. Di�erent computers will receive the updates at di�erent times,
and so the order of updates must not change the �nal result.

� Updates should be idempotent. That is, after an update has been applied, repeated
applications of that update should have no e�ect.

Examples of update functions (i.e. laws of combination) with these properties include:

� Minimum and Maximum

� Set union and set intersection

� Maintaining the k largest/smallest distinct elements

These update functions can support, among other applications, alpha-beta pruning (with
min/max) and DPLL learning (by taking the union of learned rules, or alternatively just the
k best rules).

An noteworthy update function which does not have these properties is addition. Al-
though addition is commutative, addition is not idempotent. If a computer receives multiple
extraneous messages for the same update, it will think that they represent multiple updates
and perform multiple additions, yielding a value larger than it should be. As shown in Figure
2-3, our system does indeed generate redundant messages for the same update. Although
our system could potentially be redesigned, it will still be the case that we may need to send
the same message multiple times in the event of network errors. Thus, extraneous update
messages should not corrupt the variable. The idempotence property guarantees this.

27

2.4.4 Non-idempotent updates

It is also possible to support non-idempotent updates by adding a deduplication layer to
variable updates. Thus, if there are multiple messages for the same update, the receiving
computer will know to only perform the update once.

Each unique update is assigned a random update identi�er. On each computer, the
variable's update function maintains the set of updates performed so far. To combine two
variables, we take the union of the two sets of updates. As before, updates should be
commutative.

Examples of non-idempotent updates which we can support in this fashion include:

� Addition

� Logging

28

Chapter 3

The Scheme Computation Server

In this chapter, we discuss how our system manages jobs, performs job context switches,
and transfers jobs to di�erent computers. Overall, this chapter describes the workings of a
Scheme computation server. The distributed variables described in Chapter 2 are used as
building blocks for communication both on a single computer and across computers.

We �rst describe the PLT Scheme serialization framework in further detail. This frame-
work is used to serialize jobs and their attached code and is central to the workings of the
Scheme server. We then show how to de�ne a job in such a way that we will able to serialize
it using this framework.

Next, we describe how the Scheme server manages jobs. The Scheme server has an
associated manager which maintains the collection of all jobs to be processed. Multiple jobs
may be in progress at any one time, but only one job is running at a time. The manager tracks
the dependencies of jobs on other jobs and restarts blocked jobs when their dependencies are
ready. Lastly, the manager packages and provides useful semantics to the running job for
creating other jobs and for getting their values. Overall, the manager represents a managed
code framework for jobs running in the system.

Lastly, we describe the networking activities of the server and how it communicates with
other servers and shares jobs.

3.1 Job Serialization

In order to transfer jobs from one computer to another, we must have some way to serialize
and deserialize jobs and a way to return the result of the job to the originating computer.
This section describes how this is done.

3.1.1 PLT Scheme serialization framework

PLT Scheme includes a powerful serialization framework capable of serializing heterogeneous,
cyclic data structures into structured S-expressions [PLT]. These S-expressions can later be

29

deserialized to produce equivalent data structures. The serialization framework can serialize
many types of data, including:

� Booleans, numbers, characters, symbols, character strings, byte strings, �le paths, and
the empty list.

� Pairs and lists.

� Vectors (i.e. arrays).

� Hash tables.

� Any structure with the prop:serializable structure property (e.g. dbox, as
explained in Section 2.3.4).

Primitive data types are self-contained in their serialization: they need no external re-
sources present in order to be deserialized. However, serialized structures contain references
to the deserialization information for the corresponding structure type and to the module
in which this information is de�ned. For the dbox descriptor structure, this information
is the pair (lib "alex/thesis/dbox.ss") . deserialize-info:dbox-v0).
The �rst element of the pair names the module in which the deserialization information
can be found and the second element is the identi�er for the deserialization information
within that module. As an example, see Figure 3-1.

3.1.2 Serializable closures

The PLT Scheme serialization framework, as described in Section 3.1.1, already supports
most of the basic data types needed for distributing purely functional programs. However,
there is one key omission: closures (functions) are not typically serializable. Thankfully, this
can be �xed. Instead of a primitive Scheme function, it is possible to de�ne a PLT Scheme
structure type with the prop:serializable structure property (hence serializable) which
also has the prop:procedure structure property. Such a structure can be serialized but
can also be used as a procedure.

A sophisticated implementation of this idea can be found in the PLT Web Server collec-
tion [McC], which de�nes a serial-lambda macro which acts like a lambda but which
produces a special serializable procedure instead of a regular procedure. The macro takes the
formal function arguments and body, analyzes the body to identify the free variables, and
captures and explicitly stores the free variables in the procedure structure. Serializing this
structure produces the captured free variables and a reference to the binding of the function
speci�cation in the de�ning module. For an example, see Figure 3-2.

Helpful though serializable closures are, they do not, by themselves, allow closures to be
serialized on one computer and deserialized on a di�erent computer, as the source �le paths
for the closures will be invalid on the receiving computer. In order to account for this, we
need to keep track of the source code and code path of a job. This is addressed in Section
3.1.3.

30

((2)
2
(((lib "alex/thesis/dbox.ss")

.
deserialize-info:dbox-v0)
((lib "alex/thesis/uuid.ss")
.
deserialize-info:uuid-v0))

0
()
()
(0
(1
(u
.
#"\304\242\263\247B\362F\267\241\236\220\374\37*\232\372"))

#f
#f
(u . "128.30.60.231")
39994))

Figure 3-1: The serialized representation of a dbox descriptor. The serialization is a
structured list. The �rst element of the list, (2), is a version number. The second element
of the list is the number of distinct structure types serialized. The third element of the list
is a list of pairs, each pair describing a structure type. Typically, the �rst element is the
module in which the deserialization information for that structure type is de�ned and the
second element of the pair is the name of the binding for the deserialization information
within that module. The following elements of the list represent the (possibly cyclic) data
graph and the type of the output. In the last element, the numbers 0 and 1 are indices into
the list of structure types. Thus, 0 represents a dbox structure while 1 represents a UUID
structure.

31

(define (foo x)
(serial-lambda
(y)
(+ x y)))

(serialize (foo 5)) =⇒

((2)
1
((#"/home/alex/temp/serial-lambda-example.ss"

.
"lifted.1"))

0
()
()
(0 5))

Figure 3-2: An example of a serializable closure. The foo function creates and returns a
new serializable closure which captures the value of the argument x. A serializable closure
is created for x = 5 and the closure is serialized.
The serialization includes a single structure type, namely the serializable structure type
representing the procedure (λ (y) (+ x y)). This structure type is represented in the
serialization as a pair. The �rst element of this pair is a byte string representation of the
�le path in the local �le system of the source �le in which the procedure is de�ned. The
second element is a generated name identifying which serializable closure structure type in
the source �le is intended.
Lastly, the value of the serialization is (0 5), where this represents an instance of the
structure type de�ned at index 0 instantiated with �eld 5. The 5 is the value captured by
the closure, which is explicitly stored by the serializable closure.

32

(define-struct job
(f ; :: serializable?
; The function to compute, which must be serializable
; and must return a serializable result.
args ; :: (listof serializable?)
; The function arguments, which must be serializable.
code ; :: bytes?
; A bytestring representing a tar.gz archive containing
; the code for the program corresponding to the job.
codepath ; :: string?
; A string representing the path in the local filesystem of the
; root of the job's code. This should correspond with the root
; of the code archive.
dbox ; :: dbox?
; A dbox accepting the result of the computation when
; finished. The result should be one of:
; (value . [VALUE])
; (exn . [STRING])
; (raise . [VALUE])
))

Figure 3-3: The Scheme de�nition of a job object. Each job object contains the function
to apply, the function arguments, the source code, the code path, and a descriptor for the
dbox receiving the value of the job.

3.1.3 Job representation

A self-contained representation of a job comprises several �elds:

� The function to apply, which must be serializable as explained in Section 3.1.2.

� The arguments to which to apply the function, which must all be serializable.

� The source code tar.gz archive containing the code for the job.

� The code path of the local copy of the source code. This code path should be
consistent with the other �elds. In particular, the function (and any other closures
passes as arguments to the function) should be serializable closures referring to source
�les in the code path. Also, the contents of the code path should be the same as the
contents of the source code tar.gz archive.

� A descriptor for the dbox receiving the value of the job.

These �elds are represented in the Scheme de�nition of a job object as shown in Figure 3-3.

33

3.1.4 Remote serialization & deserialization

With our understanding for how the serialization of closures can be done, we can describe how
to serialize and deserialize job objects. We found that it was most convenient to de�ne the
serialization and deserialization of job objects outside of the Scheme serialization framework.

Looking at the �elds in Figure 3-3, we see that all of them are serializable within the
Scheme serialization framework. (Serialization of dbox variables is explained in Section
2.3.4.) However, the serialized form of the function refers to one or more paths in the local
�le system. Additionally, if any closures are included in or among the job arguments, then
the serialized form of the closure will similarly refer to one or more paths in the local �le
system. These will not trivially deserialize on a di�erent computer.

Thus, we establish a custom serialization procedure:

1. Gather together the job's dbox descriptor, the function, and the function arguments
as a list (list* dbox f args).

2. Serialize that list.

3. Examine all structure deserialization information contained in the serialization. Trans-
late any paths in the local �le system by removing the code path from the beginning
of the path. Leave system library paths unchanged.

4. Return a list of the code archive � encoded as a byte string using the Base64 en-
coding scheme � and the translated serialization of (list* dbox f args). This
description of the job is now self-contained and independent of the local �le system.

To deserialize such a representation of a job:

1. Hash the code archive and look it up in a hash table. If that code archive is already
known on the receiving computer, set the code path of the deserialized job to be equal
to the root of the existing local copy of the archive's contents. If the code archive is
not known locally, create a temporary directory and extract the code archive into it.
In this case, the code path is the newly created directory.

2. Translate the serialization of (list* dbox f args) by prepending any �le system
paths with current code path.

3. Deserialize (list* dbox f args).

4. Return a job with the given code path and other �elds.

By caching the code archives and by only extracting a given archive once, we reduce
the �le system usage and prevent module con�icts. Thus, if we have a single master job
with many subjobs, none of the deserializations of subjobs after the �rst deserialization will
require the use of the �le system.

34

3.2 Job Management State

Now that we have a representation of a job and can serialize and deserialize it, we must
describe how jobs are evaluated. Jobs are queued and evaluated by the server's manager.
The manager maintains enough state to decide which job should be run next and what
should happen with the result of the job. If a job should become blocked, waiting for the
value of a future which is the output of another job, the manager will suspend the currently
running job and run other jobs, returning to the previous job when it becomes ready.

In this section, we describe the state maintained by the manager.

3.2.1 Thread-local state

Some of the state required for job management is speci�c to the individual task threads
managed by the manager and is not directly used by the manager. The state components
with these properties are:

� The identity of the manager. Because the system supports multiple distinct man-
agers running simultaneously in the same Scheme instance, each managing some subset
of the instance's jobs, each task thread must have a reference to the manager which is
managing it.

� The job code. When a job spawns subjobs, these subjobs must be associated with
the job's source code. That way, if the job is serialized and transfered to another
computer, the function to apply can be deserialized using that source code.

� The local code path. The job code is stored in an archive with paths relative to
some code root (in our system, the root directory of the original computer running
the application). However, this archive will be extracted in some di�erent directory
of the local �le system of a remote computer. This means that the serialization paths
discussed in Section 3.1.2 must be updated when a job is transferred from one computer
to another. This requires that we maintain the local root directory for the code.

This state is constant for a given job and for a given task thread. Thus, a convenient
way to store each component is in a thread cell. Thread cells are a feature of PLT Scheme
which provide per-thread storage. A thread cell may be thought of as a box which may refer
to a di�erent value for each thread.

3.2.2 Manager state

The manager maintains three principle state components:

� A job queue of jobs waiting to be started.

� A job stack of currently active task threads which are ready to be resumed.

35

� A blocked jobs table, which is a hash table mapping job identi�ers to other jobs
which are blocking on them. This hash table stores all currently active jobs which are
blocking on the result of another job.

The distinction between the job queue and the job stack is twofold. First, the job queue
contains job objects for jobs which have not been started, while the job stack contains the
task threads of jobs which have already been started. Second, the two have di�erent control
�ow requirements. For fairness, all top-level jobs are processed in the order in which they
are received. Thus, we maintain a queue of unstarted jobs. However, once we have started
processing a job, we prefer to �nish that job, and all of its subjobs, before moving on to
other jobs. Thus, we choose a stack to minimize the number of active jobs in progress at
any one time.

3.3 Task Threads

Each job is executed in its own task thread. A job's task thread is responsible for initializing
its thread state, safely executing the job, and then reporting the result to the system and
updating the manager's state.

The task thread operates as follows:

1. Initialize the thread-local state, as described in Section 3.2.1. Speci�cally, set the
values of the thread cells corresponding to the manager, to the code archive, and the
code path.

2. Install exception handlers catching all serializable values thrown and all exceptions
thrown.

3. Run the job.

� If the job returned one or more values vs, then the result of the job is (cons
’values vs). (In the usual case of a function which returns a single value, vs
is a list of a single element.)

� If the job threw a serializable value v, the result of the job is (cons ’raise
v).

� If the job threw an exception e, the result of the job is (cons ’exn (exn-message
e)), where (exn-message e) is the string error message of the exception.
(Note that exceptions are not serializable.)

4. Write the result of the job to the job's dbox.

The Scheme code for starting a job and its corresponding task thread is given in Figure
3-4.

36

; Starts a job in a task thread and waits until it finishes or
; is suspended.
; run-job :: (-> job? void?)
(define (run-job job)

(let* ([f (job-f job)]
[args (job-args job)]
[code (job-code job)]
[path (job-codepath job)]
[td
(thread
(lambda ()
; Initialize the thread-local state
(thread-cell-set! manager-cell self)
(thread-cell-set! code-cell code)
(thread-cell-set! codepath-cell path)
(finish-job
job
(with-handlers*
([serializable?

(lambda (v)
(cons 'raise v))]

[exn?
(lambda (e)
(cons 'exn (exn-message e)))])

(cons 'value (apply f args))))))])
; Wait until the thread is finished or suspended.
(sync (thread-dead-evt td)

(thread-suspend-evt td))))
Figure 3-4: The Scheme code for starting a new job. The function extracts the job in-
formation from the job object, starts a new task thread, and waits for the task thread to
�nish or be suspended. The task thread initializes the thread-local state, installs exception
handlers, and then safely runs the job. Upon completion, the result of the job is written to
the job's dbox.

37

3.4 Control Flow

During the execution of a job, control will pass from the manager to the task thread, back to
the manager, and potentially back and forth several more times. The manager and its task
threads thus implement cooperative multithreading. At most one task thread is running at
any one time, and if a task thread is running then the manager is not running. Task threads
explicitly yield execution to the manager. The manager explicitly waits on the current task
thread.

The manager operates in a continual loop:

1. While there are active jobs on the job stack:

(a) Pop the top task thread o� of the job stack.

(b) Resume the task thread.

(c) Wait until the task thread is either �nished or suspended.

2. Wait until we either have a new job in the job queue, or we receive a signal. The signal
represents that some dbox has received a value which may unblock a suspended job.

� If we received a new job, start a new task thread, as described in Section 3.3.
Wait until the task thread is either �nished or suspended.

� If we received a signal, this signi�es that an active job may have been unblocked.
We check the blocked jobs table and push all jobs which were blocking on the
�nished job back onto the job stack.

3. Return to step 1.

The interesting question is: when running a job, how is control returned to the manager?
If the job does not spawn any subjobs and does not touch any futures (i.e. does not require
the results of any existing subjobs), then the job runs until it produces a result, at which
point the task thread posts the result to the job's dbox and �nishes. However, what if
the job requires the value of another job? We must arrange for the task thread to touch
the future corresponding to the value of the other job. Thus must be done such that the
current task is suspended, the prerequisite task is run, and the current task is subsequently
continued and �nished.

The touch operation, in which a task thread waits on the result of a job, works as follows:

� Access the table of blocked jobs. Add the current task thread to the list of jobs which
are blocking on another job. If the current job is the �rst job blocking on that job,
then install a listener with the dbox server for that job, so that the manager will be
noti�ed if the other job is �nished on a di�erent computer.

� Suspend the current thread, returning execution to the manager.

� When control returns to the task thread, it should be because the prerequisite job has
been �nished. Return its value.

38

The Scheme code for this can be seen in Figure 3-5. A simple example of control �ow can
be seen in Figure 3-6.

3.5 Scheme Server Communication

The Scheme server implements a very simple protocol for communicating with other Scheme
servers. This protocol allows jobs to be transfered between servers using work stealing [BL99].
In work stealing, each server performs its own work. The client application is itself a server,
and the application's tasks are enqueued in the local server's manager's job queue. Idle
servers in the network randomly query other servers asking for jobs. If an idle server queries
a busy server, the busy server will dequeue one of its unstarted jobs and give it to the idle
server.

Thus, our very simple protocol comprises just two types of messages:

(steal) This message is sent by an idle server to another server. The message asks for an
unstarted job to be given to the requesting server, if available.

(job JOB) This message is sent in reply to a steal message. It contains the serialization
of a job. The job is enqueued at the receiving server. If the receiving server is still idle,
the job is started immediately. If the server is now busy � perhaps with a job from a
di�erent server � then the job in enqueued.

In order to maximize e�ciency, we want all servers to have a roughly equal amount of
work, on average. We would never want job to be transfered among a small fraction of the
servers while other servers remain idle. In order to minimize the chance of this, the job
stealing process is randomized. When a server is �rst idle, it sends out a random number of
steal messages to random servers. In our implementation, the average number of steal
message sent at once was arbitrarily chosen to be 5. If no jobs are received in response, the
server then waits a random amount of time before sending additional steal messages. In
our implementation, the �boredom timeout� was randomly chosen between 1 and 2 seconds.
This randomization is important, as without it we observed certain cases of extremely poor
load balancing.

39

; Implements the special blocking required in case we're in the
; manager right now. If we're not in the manager, just blocks on
; the future. If we are in the manager, adds us to the list of
; jobs to be continued upon evaluation of the future. If the
; future is ready, then just return its value.
(provide/contract
[touch (-> future? any/c)])
(define (touch future)

(define manager (current-manager))
(cond

[(future-ready? future)
(future-get-now future)]
[manager
(let* ([this-thread (current-thread)]

[blocked-jobs-mvar
(manager-blocked-jobs-mvar manager)]
[code (current-code)]
[blocked-jobs (take-mvar blocked-jobs-mvar)])

; Add ourselves to the blocked jobs list...
(hash-update!
blocked-jobs (future-id future)
(lambda (rest) (cons this-thread rest))
(lambda ()
; (We're the first job who wants this value, so add a
; listener for this dbox.)
(dbox-install-listener (future-id future)

(manager-thread manager))
'()))

(put-mvar blocked-jobs-mvar blocked-jobs)
; ... suspend ourselves and wait to be woken up...
(unless (future-ready? future)
(thread-suspend this-thread))

; ...and we're back!
(future-get-now future))]

[else (future-wait future)]))

Figure 3-5: The Scheme code for the touch function, which blocks on the value of a future.
If the value of the future is known, just return its value. If the current thread is not managed,
simply wait for the future to have a value. If the current thread is managed, we must yield
to the manager so that the other task can be run. In this case, we add the current task
thread to the list of tasks to be continued when the future is ready. We then suspend the
current thread, allowing the manager to continue execution.

40

Figure 3-6: An example control �ow for computing fib(4) under the framework. This
diagram assumes that the base cases for fib(n) are n ≤ 2. First, the manager starts. The
manager receives the job fib(4) and starts it. The job fib(4) spawns o� two subjobs
which are placed on the manager's job stack. The job fib(4) then touches the future for
fib(3) which causes it to be suspended. Job fib(3) starts and creates subjobs fib(2)
and fib(1). It blocks on fib(2) and is suspended. Job fib(2) is evaluated and fib(3)
is continued. It blocks on fib(1) and is suspended. Job fib(1) is evaluated and fib(3)
is continued and �nishes. Job fib(4) is continued, blocks on fib(2), and is suspended.
Job fib(2) is evaluated and fib(4) is continued and �nished.

41

42

Chapter 4

Applications

Ideal applications of our system share certain common features.

� The problem should be computationally challenging and cannot be solved quickly
enough on a single computer.

� The problem should involve modest amounts of data so as to make the communi-
cations cost feasible.

� The problem should be solvable with a divide and conquer algorithm, with each
problem divisible into independent subproblems.

� The problem may potentially have an ad hoc structure in which the speci�c subprob-
lems are not known at the start of the computation.

Many problems have these features. Potential problems can be found among polynomial-
time problems (P), nondeterministic polynomial-time (NP) problems, and polynomial-space
problems (PSPACE), and other exponential-time problems (EXPTIME). We could not pos-
sibly list all such applications. However, we can give some key exemplars. In particular,
we shall brie�y discuss how our system can be used to approach SAT, as an NP-complete
problem, and various game playing problems, which are often PSPACE- or EXPTIME-
complete.

4.1 SAT solver

The boolean satis�ability problem (SAT) is an excellent application of our system. It is a real-
world problem with many practical applications, especially in electronic design automation.
Examples include circuit equivalence checking, test-pattern generation, and bounded model
checking [MSS00].

In SAT, we are given a boolean formula ϕ in some n variables x1 . . . xn. We wish to know
whether there exists an assignment of x1 . . . xn to True and False such that the formula ϕ
evaluates to True. Usually, instances of SAT are formulated in conjunctive normal form

43

(CNF), which is to say that the formula is a conjunction (�AND�) of clauses, where each
clause is a disjunction (�OR�) of literals. Each literal is either a variable xi for some i or the
negation of such. For example,

ϕ = (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

is a simple instance of CNF-SAT.

Both SAT and SAT restricted to CNF formulae are known to be NP-complete [Coo71].
Thus, it is unlikely that a polynomial-time algorithm exists. Nonetheless, it is both desirable
and practical to solve speci�c instances of SAT. Thus, considerable work has been done on
designing e�cient SAT solvers.

Most SAT solvers employ variants of the DPLL algorithm [DLL62], using a recursive
search with backtracking and learning, guided by various heuristics. In the DPLL algorithm,
possible variable assignments are tried until a solution is found or a contradiction is reached.
If a contradiction is reached, the algorithm tries to use the variables most directly involved
in the contradiction to infer a new clause, constraining the SAT problem. The exact details
of this learning process di�er between implementations.

Because SAT is a computationally challenging problem, we would like to use clusters of
computers to solve SAT more e�ectively. Indeed, distributed SAT solvers do exist; one such
is GridSAT [CW03]. Our contribution, as with all applications, is the ease with which a
distributed version of the application is built.

We implemented a SAT solver in PLT Scheme partly based on the open source DPLL-
based SAT solver MiniSAT, written in C++ [ES03]. Our solver uses many of the same
tricks for fast searching and backtracking, rewritten in a function style. Although our solver
does not currently implement learning, learning could potentially be implemented in a future
version using the extensions to our dbox semantics described in Section 2.4.

Our SAT solver is somewhat long � about 300 lines of Scheme code. However, the
modi�cations required to enable distribution in our framework are extremely minor. The
core functions of the SAT solver can be seen in Figure 4-1. The versions of those functions
modi�ed to use our distribution framework can be seen in Figure 4-2. No other changes are
required in our to use the framework.

4.2 Game playing programs

A broad class of applications of our system is in writing distributed game playing programs.
Searching a game state tree, typically using minimax, naturally decomposes into subprob-
lems, where each subproblem is a subtree of the game tree. Thus, game playing programs are
very amenable to parallel or distributed approaches. One distributed game playing program,
for chess, can be found in [FMM91].

Games generally have all of the properties required to make use of our system. Game
trees are generally exponential and exploring them is challenging. Moreover, the game
state can usually be simply described. Lastly, subtrees of the game tree can be evaluated

44

(define (search trail)
(let loop ([i 0])

(if (< i n)
(if (null? (vector-ref assigns (make-literal i #t)))

(or (assign search trail (make-literal i #t) #f)
(assign search trail (make-literal i #f) #f))

(loop (+ i 1)))
(for/list ([var (in-range n)])

(cons (literal->symbol (make-literal var #t))
(vector-ref assigns

(make-literal var #t)))))))

(define (assign cont trail lit from)
· · ·
)

Figure 4-1: SAT solver Scheme code for a single computer

(define search
(serial-lambda
(trail)
(let loop ([i 0])

(if (< i n)
(if (null? (vector-ref assigns (make-literal i #t)))

(let ([fT (spawn assign search trail
(make-literal i #t) #f)]

[fF (spawn assign search trail
(make-literal i #f) #f)])

(or (touch fT) (touch fF)))
(loop (+ i 1)))

(for/list ([var (in-range n)])
(cons (literal->symbol (make-literal var #t))

(vector-ref assigns
(make-literal var #t))))))))

(define assign
(serial-lambda
(cont trail lit from)
· · ·
))
Figure 4-2: SAT solver Scheme code modi�ed to use the distribution framework

45

independently. Generally, game playing programs using alpha-beta pruning, transposition
tables, and other techniques to speed the evaluation of later branches of the game tree.
However, since the evaluation of di�erent branches of the tree does not depend on other
branches for correctness, only for tree pruning, we can use our dbox extensions (see Section
2.4) to support alpha-beta pruning and transposition tables.

46

Chapter 5

Metrics

Here, we present our data on the performance of the system.

5.1 Benchmark

As a simple benchmark, we used a simple, exponential-time algorithm for computing the
Fibonacci numbers. Although this is a very simple benchmark, it captures the essence of
the paradigm well. The subproblems for computing the Fibonacci numbers are of di�erent
sizes and require di�erent computation depths. This makes the subproblems somewhat
heterogeneous, unlike in many other frameworks for distributed computation.

Our template code for computing the Fibonacci numbers is shown in Figure 5-1. We
modi�ed this code to use our distributed computation framework. The modi�ed code is
shown in Figure 5-2.

Our system ran this code with some modi�cations for pro�ling, reporting the total CPU
time used across all processes. The system was con�gured with a �star� pattern of network
connections, in which each Scheme computation server was connected directly to the original
client's Scheme server, but not to the other servers.

We ran the code with varying numbers of Scheme computation servers on two di�er-
ent platforms. The �rst platform was an 8-core computer comprising two quad-core Intel
Xeon E5345 processors running at 2.33GHz. The second platform was the Amazon Elastic
Compute Cloud (EC2), part of Amazon.com's cloud computing services. The results are
described in Sections 5.2 and 5.3, respectively.

5.2 Multi-core Platform

We ran the benchmark on an 8-core computer comprising two quad-core Intel Xeon E5345
processors running at 2.33GHz. Although all network tra�c was local, the full distribution
framework was used. Parallelism was provided by running multiple Scheme computation
servers � up to one server per core. The servers communicated with each other using

47

(define (fib n)
(if (< n 3)

n
(+ (fib (- n 1))

(fib (- n 2)))))
Figure 5-1: The Scheme code for computing the Fibonacci numbers on a single computer.

(define fib
(lambda
(n)
(cond
[(<= n 2) n]
[(<= n 41)
(+ (fib (- n 1))

(fib (- n 2)))]
[else
(let*

([f1 (spawn fib (- n 1))]
[f2 (spawn fib (- n 2))]
[v1 (touch f1)]
[v2 (touch f2)])

(+ v1 v2))])))
Figure 5-2: The Scheme code for computing the Fibonacci numbers using the distributed
computation framework. Here, the Fibonacci code has been modi�ed to use our framework.
Small problem instances are directly evaluated, without the creation on new jobs. Larger
instances are evaluated by spawning two subjobs, which may be evaluated in parallel. The
cuto� of n = 41 for switching to direct evaluation was chosen such that each leaf job required
on the order of 1 or 2 seconds of CPU time. Overhead is low and the granularity could easily
be made more �ne.

48

sockets. The results can be seen in Figure 5-3 and Table 5.1. Note how the speed increases
linearly with the number of servers running.

Generally, as the number of servers used increases, the number of jobs which are stolen
from one server by another server increases, as can be seen in Table 5.1. This is a randomized
process, so the growth is not uniform. The total number of jobs was 5167.

5.3 Cloud Computing Platform

We con�gured our system to run on Amazon.com's Elastic Compute Cloud (EC2). This
service hosts Xen virtual machines in an Amazon cluster. These virtual machines � called
�instances� � are available in various sizes. We used the �Small Instance� (m1.small), which
represents 1 EC2 compute unit, roughly the equivalent CPU capacity of a 1.0-1.2 GHz 2007
Opteron or 2007 Xeon processor. The host machine architecture is a 2.66GHz Intel Xeon
E5430. Since the virtual machine is sharing the host machine with other virtual machines,
the CPU time available to the virtual machine is substantially lower than the real time
elapsed. The cost for a Small �On-Demand� instance is currently $0.085 per hour. However,
�spot instances�, with slightly lower reliably guarantees, are typically available from Amazon
for only $0.030�$0.035 per hour.

The results can be seen in Figure 5-4 and Table 5.2. Note how the speed increases approx-
imately linearly with the number of servers running, but with some substantial variation.

The variation in performance is due to di�erences in load balancing e�ectiveness. Figure
5-5 shows the CPU utilization in two di�erent runs, each with 15 servers. In the run shown
in Figure 5-5(a), utilization is uniformly high. In the run shown in Figure 5-5(b), utilization
is approximately 70% for part of the run. This re�ects di�erent success at load balancing
between the servers. The load balancing algorithm is randomized and di�erent runs with the
same con�guration see di�erent results. Nonetheless, in all cases yet observed, total average
utilization has been in the range 75%�100%.

The load balancing issue is due to the network con�guration. Since all servers are con-
nected to the original client's server but not to each other, jobs need to be transferred through
the central server. In the �bad� run, in Figure 5-5(b), 14 of the 15 servers �nish their jobs
e�ciently. The last server has jobs remaining. The central server steals jobs o� of this server.
Thus, the utilization on the loaded server and the central server is high. Utilization on the
other servers is below 100% as the central server does not o�oad all of the jobs quickly
enough.

This dynamic can also be seen in Figures 5-6 and 5-7. Figure 5-6 shows the incoming
and outgoing network tra�c for each server in a typical �good� run. (The run shown used
20 servers.) Since all servers are connected to the initial client's server, that server has the
highest network tra�c. The initial server o�oads tasks to the other servers, with few tasks
going in the other direction. Thus, the other servers receive substantial incoming tra�c
from the initial server. The outgoing task objects include the source code archive and are
relatively large � approximately 1.5kb. The task results returned to the initial server are
quite small (less than 100 bytes), so network tra�c in that direction is lower.

49

1x

2x

3x

4x

5x

6x

7x

8x

 1 2 3 4 5 6 7 8
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

S
pe

ed

E
ffe

ct
iv

e
U

til
iz

at
io

n

Number of Scheme servers

Speed
Effective Utilization

Figure 5-3: This graph shows the results of computing the 57th Fibonacci number on an
8-core computer. The computation was run using between 1 and 8 Scheme computation
servers. The left axis shows the speed of the computation, less overhead associated with the
system, versus a single-threaded version. The right axis shows the e�ective utilization (i.e.
speed divided by number of servers). Note that the e�ective utilization stays very close to
1. The raw data for this plot is given in Table 5.1.

50

1x

2x

3x

4x

5x

6x

7x

8x

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
 0

 0.1

 0.2

 0.3

 0.4

 0.5

S
pe

ed
 (

ve
rs

us
 n

at
iv

e)

E
ffe

ct
iv

e
U

til
iz

at
io

n

Number of Scheme servers

Speed (versus native)
Effective Utilization

Figure 5-4: This graph shows the results of computing the 57th Fibonacci number on
Amazon EC2. The computation was run using between 1 and 20 instances (Xen virtual
machines) each running one Scheme computation server. Each instance is a �Small Instance�
with 1 virtual core. The left axis shows the speed of the computation as measured in CPU
time (less overhead) divided by real time. Because the virtual machine has only part of the
resources of the host machine, the e�ective speed of a single instance is less than 1. The
right axis shows the e�ective utilization (i.e. speed divided by number of servers). The raw
data for this plot is given in Table 5.2.

51

Figure 5-7 shows the network tra�c in a typical �bad� run. (The run shown used 15
servers.) Part way through, most of the servers have �nished their assigned tasks. One
server has not. The central server then begins stealing tasks from the loaded server. The
transfer of job objects out of the loaded server and back to the central server is the cause of
the high outgoing tra�c from the loaded server starting at around 14:15.

Future versions of the benchmark may connect all servers pairwise, to ensure that CPU
utilization is more consistently uniform. Alternatively, the load balancing algorithm could
be modi�ed to steal tasks more aggressively.

52

0%

20%

40%

60%

80%

100%

19:06 19:09 19:12 19:15 19:18 19:21 19:24 19:27 19:30 19:33 19:36 19:39

C
P

U
 U

til
iz

at
io

n

Time

(a) CPU utilization for each server in a �good� run with 15 servers.

0%

20%

40%

60%

80%

100%

13:57 14:00 14:03 14:06 14:09 14:12 14:15 14:18 14:21 14:24 14:27 14:30

C
P

U
 U

til
iz

at
io

n

Time

(b) CPU utilization for each server in a �bad� run with 15 servers.

Figure 5-5: The CPU utilization for each instance in two di�erent EC2 runs. Both runs
used 15 Scheme computation servers. In 5-5(a), the utilization is high and uniform for all
servers throughout the computation. In 5-5(b), the utilization is initially high but falls half
way through on most of the servers as they �nish their assigned jobs. Jobs are transfered from
the one busy server through the client's server to the other servers, keeping their utilization
at around 70%. The run shown in 5-5(b) is the run used in Figure 5-4.

53

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

07:06 07:09 07:12 07:15 07:18 07:21 07:24 07:27 07:30

In
co

m
in

g
N

et
w

or
k

T
ra

ffi
c

(B
yt

es
 p

er
 M

in
ut

e)

Time

(a) Incoming network tra�c.

 0

 50000

 100000

 150000

 200000

 250000

 300000

07:06 07:09 07:12 07:15 07:18 07:21 07:24 07:27 07:30

O
ut

go
in

g
N

et
w

or
k

T
ra

ffi
c

(B
yt

es
 p

er
 M

in
ut

e)

Time

(b) Outgoing network tra�c.

Figure 5-6: The network tra�c between servers on EC2 in a �good� run. The run shown
used 20 Scheme computation servers. Figure 5-6(a) shows incoming network tra�c for each
server while Figure 5-6(b) shows outgoing network tra�c. Since all servers are connected to
the initial client's server, that server has the highest network tra�c.

54

 0

 50000

 100000

 150000

 200000

 250000

13:57 14:00 14:03 14:06 14:09 14:12 14:15 14:18 14:21 14:24 14:27 14:30

In
co

m
in

g
N

et
w

or
k

T
ra

ffi
c

(B
yt

es
 p

er
 M

in
ut

e)

Time

(a) Incoming network tra�c.

 0

 50000

 100000

 150000

 200000

 250000

13:57 14:00 14:03 14:06 14:09 14:12 14:15 14:18 14:21 14:24 14:27 14:30

O
ut

go
in

g
N

et
w

or
k

T
ra

ffi
c

(B
yt

es
 p

er
 M

in
ut

e)

Time

(b) Outgoing network tra�c.

Figure 5-7: The network tra�c between servers on EC2 in a �bad� run. The run shown
used 15 Scheme computation servers. Figure 5-7(a) shows incoming network tra�c for each
server while Figure 5-7(b) shows outgoing network tra�c. Since all servers are connected to
the initial client's server, that server has the highest network tra�c. Additionally, another
server also has high tra�c as it has high load and spends the end of the computation trying
to give its tasks back to the central server.

55

Servers 1 2 3 4 5 6 7 8
Jobs 5167 5167 5167 5167 5167 5167 5167 5167
Job transfers over a socket 0 416 628 1136 1119 1320 1107 2154
Total CPU time (seconds) 7969 7945 7936 8480 7957 7927 7955 8110
Real time (seconds) 8204 4113 2766 2204 1669 1388 1194 1051
E�ective CPUs 0.97 1.93 2.87 3.85 4.77 5.71 6.67 7.71
E�ective utilization (%) 97.1 96.6 95.6 96.2 95.4 95.2 95.2 96.4

Table 5.1: This table shows the results of computing the 57th Fibonacci number on an 8-core
computer. The computation was run using between 1 and 8 Scheme computation servers.
The number of subjobs is the same for all runs. The number of jobs which were serialized
and transfered between computers is given in the �job transfers� line. The e�ective number
of CPUs is the total CPU time (across all jobs) divided by the real time. The e�ective
utilization is the e�ective number of CPUs divided by the number of cores. A plot of these
data can be seen in Figure 5-3. For comparison, a C++ program for computing the 57th

Fibonacci number (also using the exponential algorithm) takes 1574 seconds on the same
computer.

56

Servers CPU time Real time Speed Utilization
1 7434.73s 19639.20s 0.379x 37.9%
2 7151.28s 8824.60s 0.810x 40.5%
3 7208.14s 5824.74s 1.238x 41.3%
4 7444.81s 4406.99s 1.689x 42.2%
5 7174.01s 3515.75s 2.041x 40.8%
6 7199.08s 3206.13s 2.245x 37.4%
7 7189.30s 2686.28s 2.676x 38.2%
8 7200.47s 2364.20s 3.046x 38.1%
9 7425.61s 2271.59s 3.269x 36.3%
10 7188.80s 1767.60s 4.067x 40.7%
11 7347.79s 1811.08s 4.057x 36.9%
12 7171.81s 1476.00s 4.859x 40.5%
13 7217.64s 1378.30s 5.237x 40.3%
14 7330.73s 1458.53s 5.026x 35.9%
15 7403.51s 1478.41s 5.008x 33.4%
16 7258.04s 1209.85s 5.999x 37.5%
17 7248.08s 1129.99s 6.414x 37.7%
18 7392.60s 1253.36s 5.898x 32.8%
19 7402.66s 1216.32s 6.086x 32.0%
20 7197.00s 900.71s 7.990x 40.0%

Table 5.2: This table shows the results of computing the 57th Fibonacci number on Amazon
EC2. The computation was run using between 1 and 20 instances (Xen virtual machines)
each running one Scheme computation server. Each instance is a �Small Instance� with 1
virtual core. The number of subjobs is the same for all runs. The speed is the total CPU
time (across all jobs) divided by the real time. Because the virtual machine has only part of
the resources of the host machine, the e�ective speed of a single instance is less than 1. The
utilization is the speed divided by the number of servers. A plot of these data can be seen
in Figure 5-4. For comparison, a C++ program for computing the 57th Fibonacci number
(also using the exponential algorithm) takes 4647 seconds of real time and 1753 seconds of
CPU time.

57

58

Chapter 6

Conclusion

In this work, we �rst presented a distributed variable abstraction suited to functional pro-
gramming. Then, we showed how to use this abstraction to build a sophisticated system for
running distributed Scheme programs. This system used a network of Scheme computation
servers which ran individual tasks as part of a larger program. Our framework implemented
clean parallel �future� semantics for distributed computation on top of this network of servers.

6.1 Future Work

The two key next steps for this system are implementing better load balancing algorithms and
better reliability. Figure 5-5 shows the importance of load balancing. Better con�gurations
of network connections and better load balancing algorithms could improve performance by
approximately 25% for the �bad� cases.

Additionally, we would like to improve the reliability of the system. Both computers and
computer programs fail unpredictably. As the number of computers involved increases, so
does the chance of a failure somewhere. However, functional programming is well suited to
building a fault-tolerance distributed system. If jobs have no side e�ects, then a failed job can
be restarted freely if needed. Some existing distributed systems, such as MapReduce [DG04],
are similarly able to obtain fault-tolerance by eliminating side e�ects, and this is arguably a
key component of their success.

Further ahead, we would like to be able to support more data intensive applications. Our
system, as it is currently, is most e�ective on problems of high computational complexity,
with small data sets and large amounts of CPU time. This lends our system to exponential
search problems. However, we would also like to support problems which may not be as
CPU intensive but which may have vast amounts of data. In our system, a computation
starts on a single computer and move outwards. This would seem to require that the entire
problem description �t on a single computer. For many applications with large amounts of
data, such as web indexing, this may not be the case. Thus, we would like to augment our
system with distributed data storage and data structures such that a computation may be
performed on a data set which does not �t on a single computer.

59

60

Bibliography

[AZTML08] Abdallah D. Al Zain, Phil W. Trinder, Greg J. Michaelson, and Hans-Wolfgang
Loidl. Evaluating a high-level parallel language (gph) for computational grids.
IEEE Trans. Parallel Distrib. Syst., 19(2):219�233, 2008.

[BJK+95] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E.
Leiserson, Keith H. Randall, and Yuli Zhou. Cilk: an e�cient multithreaded
runtime system. SIGPLAN Not., 30(8):207�216, 1995.

[BL99] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded com-
putations by work stealing. J. ACM, 46(5):720�748, 1999.

[CJK95] Henry Cejtin, Suresh Jagannathan, and Richard Kelsey. Higher-order dis-
tributed objects. ACM Trans. Program. Lang. Syst., 17(5):704�739, 1995.

[Coo71] Stephen A. Cook. The complexity of theorem-proving procedures. In STOC
'71: Proceedings of the third annual ACM symposium on Theory of computing,
pages 151�158, New York, NY, USA, 1971. ACM.

[CW03] Wahid Chrabakh and Rich Wolski. Gridsat: A cha�-based distributed sat
solver for the grid. In SC '03: Proceedings of the 2003 ACM/IEEE conference
on Supercomputing, page 37, Washington, DC, USA, 2003. IEEE Computer
Society.

[DG04] Je�rey Dean and Sanjay Ghemawat. Mapreduce: Simpli�ed data processing on
large clusters. December 2004.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Commun. ACM, 5(7):394�397, 1962.

[ES03] Niklas Eén and Niklas Sörensson. An extensible sat-solver, 2003.

[FMM91] R. Feldmann, P. Mysliwietz, and B. Monien. A fully distributed chess program,
1991.

[HMJ05] Tim Harris, Simon Marlow, and Simon Peyton Jones. Haskell on a shared-
memory multiprocessor. In Haskell '05: Proceedings of the 2005 ACM SIG-
PLAN workshop on Haskell, pages 49�61, New York, NY, USA, 2005. ACM.

61

[HMPJH05] Tim Harris, Simon Marlow, Simon Peyton-Jones, and Maurice Herlihy. Com-
posable memory transactions. In PPoPP '05: Proceedings of the tenth ACM
SIGPLAN symposium on Principles and practice of parallel programming, pages
48�60, New York, NY, USA, 2005. ACM.

[IBY+07] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly.
Dryad: Distributed data-parallel programs from sequential building blocks.
March 2007. European Conference on Computer Systems (EuroSys).

[McC] Jay McCarthy. Web server: Plt http server. Version 4.2.5, PLT website. http:
//docs.plt-scheme.org/web-server-internal/.

[Mor96] Luc Moreau. The semantics of scheme with future. In ICFP '96: Proceedings of
the �rst ACM SIGPLAN international conference on Functional programming,
pages 146�156, New York, NY, USA, 1996. ACM.

[MSS00] ao P. Marques-Silva, Jo and Karem A. Sakallah. Boolean satis�ability in elec-
tronic design automation. In DAC '00: Proceedings of the 37th Annual Design
Automation Conference, pages 675�680, New York, NY, USA, 2000. ACM.

[PGF96] Simon Peyton, Andrew Gordon, and Sigbjorn Finne. Concurrent haskell. pages
295�308. ACM Press, 1996.

[PLT] Reference: Plt scheme. Version 4.2.5, PLT website. http://docs.
plt-scheme.org/reference/.

[Swa09] James Swaine. Scheme with futures: Incremental parallelization in a language
virtual machine. Master's thesis, Northwestern University, December 2009.

62

