
Improved Uncertainty Estimates for Geophysical

Parameter Retrieval

by

Zuoyu Tao

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2010

© Massachusetts Institute of Technology 2010. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 18, 2010

Certified by. .
William J. Blackwell

Senior Staff
Thesis Supervisor

Certified by. .
David H. Staelin

Professor
Thesis Supervisor

Accepted by .
Dr. Christopher J. Terman

Chairman, Department Committee on Graduate Theses

2

Improved Uncertainty Estimates for Geophysical Parameter

Retrieval

by

Zuoyu Tao

Submitted to the Department of Electrical Engineering and Computer Science
on May 18, 2010, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Computer Science

Abstract

Algorithms for retrieval of geophysical parameters from radiances measured by in-
struments onboard satellites play a large role in helping scientists monitor the state
of the planet. Current retrieval algorithms based on neural networks are superior
in accuracy and speed compared to physics-based algorithms like iterated minimum
variance (IMV). However, they do not have any form of error estimation, unlike IMV.
This thesis examines the suitability of several different approaches to adding in con-
fidence intervals and other methods of error estimation to the retrieval algorithm,
as well as alternative machine learning methods that can both retrieve the param-
eters desired and assign error bars. Test datasets included both current generation
operational instruments like AIRS/AMSU, as well as a hypothetical future hyper-
spectral microwave sounder. Mixture density networks (MDN) and Sparse Pseudo
Input Gaussian processes (SPGP) were found to be the most accurate at variance
prediction. Both of these are novel methods in the field of remote sensing. MDNs
also had similar training and testing time to neural networks, while SPGPs often took
three times as long to train in typical cases. As a baseline, neural networks trained to
estimate variance were also tested, but found to be lacking in accuracy and reliability
compared to the other methods.

Thesis Supervisor: William J. Blackwell
Title: Senior Staff

Thesis Supervisor: David H. Staelin
Title: Professor

3

4

Acknowledgments

I want to thank my supervisor, Bill Blackwell, for introducing me to the field of remote

sensing, for his support and encouragement throughout my work on the thesis, and

for his thoughtful comments and suggestions on the thesis itself.

I would also like to thank my faculty supervisor, Prof. David Staelin, for the help

he gave me in finding a good thesis question, for answering all my questions, and for

his guidance and advice while writing the thesis.

The people at Lincoln Lab were extremely helpful while I was working on the

thesis. I’d especially like to thank Mike Pieper for his help in obtaining the datasets

I used and for the many interesting discussions we had.

A special thanks for Ed Snelson, who kindly made available his implementation

of SPGP, as well as answering the questions I had about SPGP.

Last but not least, I want to thank my parents for their support and advice both

on the thesis and in all matters beyond.

5

6

Contents

1 Introduction 23

1.1 Thesis outline . 24

2 Statistical Retrieval Methods 25

2.1 Remote Sensing . 25

2.2 Linear Regression . 27

2.2.1 Quadratic Regression . 28

2.3 Neural Networks . 28

2.3.1 Overfitting . 30

2.3.2 Neural Network parameters 31

2.4 Results and Description of Datasets 31

2.4.1 ECMWF/Aqua dataset description 31

2.4.2 ECMWF/Aqua results . 34

2.4.3 HyMAS dataset description 35

2.4.4 HyMAS dataset results . 37

2.4.5 Precipitation dataset description 39

2.4.6 Precipitation dataset results 39

2.5 Conclusion . 40

3 Variance Estimation Neural Networks and Bayesian Neural Net-

works 43

3.1 Variance Estimation Neural Networks 44

3.2 Introduction to Bayesian Neural Networks 45

7

3.2.1 Bayesian Methods . 46

3.2.2 Intrinsic Noise . 46

3.2.3 Priors . 47

3.2.4 Evaluating the Output Distribution 48

3.2.5 Gaussian Approximation Method 49

3.2.6 Hyperparameter Estimation 50

3.3 Results . 53

3.3.1 Variance as a function of latitude 53

3.3.2 Geophysical Parameter Prediction accuracy 54

3.3.3 Variance prediction performance 54

3.3.4 Consistency and Hyperparameters 62

3.3.5 Discussion of Results . 68

4 Additional Confidence Estimation Methods 69

4.1 Mixture Density Networks . 69

4.1.1 Gaussian Mixture Models . 70

4.1.2 MDN Structure . 72

4.1.3 MDN training . 75

4.1.4 MDN “hyperparameters” . 78

4.1.5 Network weights initialization 78

4.2 Sparse Pseudo-Input Gaussian Process regression 79

4.2.1 Gaussian Process Regression 79

4.2.2 SPGP Predictions and Derivatives 84

4.2.3 SPGP with Dimensionality Reduction and Heteroscedasticity . 87

4.2.4 SPGP training . 88

4.3 Results on the Datasets . 92

4.3.1 Metric used . 93

4.3.2 Residual Estimation SPGP and MDNs 95

4.3.3 ECMWF/Aqua dataset results, temperature 100

4.3.4 ECMWF/Aqua results, water vapor 105

8

4.3.5 HyMAS results, temperature 110

4.3.6 HyMAS results, water vapor 117

4.3.7 Precipitation results . 124

4.4 Discussion . 128

4.4.1 Accuracy performance . 128

4.4.2 Speed performance . 131

5 Conclusion 133

5.1 Future Work . 134

A Gradients 137

A.1 Neural Network Gradients . 137

A.2 MDN Gradients . 138

A.3 SPGP Gradients . 139

A.3.1 Derivatives of Hyperparameters in the Kernel 140

A.3.2 Noise Derivative . 140

B Matlab Code 141

B.1 Neural Networks . 141

B.2 Bayesian Neural Networks . 151

B.3 Mixture Density Networks . 158

B.4 SPGP code . 163

9

10

List of Figures

2-1 A simple neural network . 28

2-2 This is the a priori standard deviation of temperature on the ECMWF/Aqua

dataset. The x-axis is in degrees kelvin, while the y-axis is in millibars. 33

2-3 This figure shows the RMSE profile of several methods estimating tem-

perature on the ECMWF/Aqua dataset. The RMSE is in degrees

kelvin. The pressure is in millibars, with the surface at the bottom of

the chart. 33

2-4 This figure shows the RMSE profile of several methods estimating wa-

ter vapor on the ECMWF/Aqua dataset. The RMSE is in normalized

mass mixing ratio. The pressure is in millibars, with the surface at the

bottom of the chart. 34

2-5 The a priori standard deviation of temperature on the HyMAS dataset.

x-axis is in degrees kelvin, y-axis is millibars. 36

2-6 This figure shows the RMSE profile of several methods estimating tem-

perature on the HyMAS dataset. The RMSE is in degrees kelvin. The

pressure is in millibars with the surface at the bottom of the chart. . 36

2-7 This figure shows the RMSE profile of several methods estimating tem-

perature on the HyMAS “golden days” dataset. The RMSE is in de-

grees kelvin. The pressure is in millibars with the surface at the bottom

of the chart. 37

11

2-8 This figure shows the RMSE profile of several methods estimating wa-

ter vapor on the HyMAS dataset. The RMSE is in units of normalized

mass mixing ratio. The pressure is in millibars with the surface at the

bottom of the chart. 38

2-9 This figure shows the RMSE profile of several methods estimating wa-

ter vapor on the HyMAS “golden days” dataset. The RMSE is in units

of normalized mass mixing ratio. The pressure is in millibars with the

surface at the bottom of the chart. 38

3-1 This figure compares the RMSE performance of Bayesian neural net-

works versus neural networks while predicting temperature on the

ECMWF/Aqua dataset. RMSE is in degrees kelvin, and pressure is in

millibars. 55

3-2 This figure compares the RMSE performance of Bayesian neural net-

works versus neural networks while predicting water vapor on the

ECMWF/Aqua dataset. RMSE is in units of normalized mass mixing

ratio, and pressure is in millibars. 55

3-3 This figure shows the performance of the methods on estimating water

vapor on the HyMAS dataset on pressure level 460 mb. RMSE is in

normalized mass mixing ratio. 57

3-4 This figure shows the performance of the methods on estimating water

vapor on the HyMAS dataset on pressure level 83 mb. RMSE is in

normalized mass mixing ratio. See section 3.3.1 for an explanation of

the black line (the function of latitude). 58

3-5 This figure shows the performance of the methods on estimating water

vapor on the HyMAS dataset on pressure level 706 mb. RMSE is in

normalized mass mixing ratio. 58

12

3-6 This is the same problem as depicted in figure 3-5, except that the

RMSE of cases in each 5 percent bin is shown, instead of the cumulative

RMSE of the cases in all previous bins. Predicted standard deviation

is now also in units of normalized mass mixing ratio. 58

3-7 This figure shows the performance of the methods on estimating water

vapor on the HyMAS dataset on pressure level 535 mb. RMSE is in

normalized mass mixing ratio. 59

3-8 This is the same problem as shown in figure 3-3, except the Bayesian

neural networks is tested on the HyMAS “golden days” test set. RMSE

is in units of normalized mass mixing ratio. 61

3-9 This figure shows repeated trials of training a Bayesian neural network.

RMSE is in units of normalized mass mixing ratio. 63

3-10 This figure shows repeated trials of training a Bayesian neural network.

The anomaly is due to the RMSE of the cases with the 5 percent lowest

predicted variance, which is much higher than predicted. RMSE is in

degrees kelvin. 64

3-11 This figure shows the effects of scaling the hyperparameter ratio after

the Bayesian neural network has been trained. RMSE is in units of

mass mixing ratio. 65

3-12 This figure is based on the same concept as 3-11, except in this case the

default hyperparameters appear to be sub-optimal in terms of allowing

the Bayesian neural network to estimate the difficulty of the cases.

RMSE is in degrees kelvin. 66

4-1 This is an example of the type of data that could benefit from being

modeled by an MDN. This is a simple synthetic toy dataset, and so

the x-axis and y-axis units are not important here. 70

13

4-2 A contour plot of the output distribution of a MDN with three Gaus-

sian components modeling the same dataset as in figure 4-1. This plot

shows the distribution p(y, x), from which it is easy to obtain p(y|x)

for any x by simply multiplying by a normalization factor p(x). . . . 71

4-3 The red non-Gaussian distribution is revealed to be a weighted sum of

two Gaussian ones . 71

4-4 This shows the structures of a mixture density network. The param-

eter vector x refers to the weights oi, the means µi and the standard

deviations σi. This figure was taken from the MDN paper by Bishop [4] 72

4-5 This figure shows a toy dataset, as well as the contour plot of the

output distribution of a MDN with one Gaussian component. The

MDN assigns the lone data point indicated by the arrow very low

variance. 74

4-6 This figure shows three different runs of a MDN with three Gaussian

components (figures 4-6(a),4-6(b), and 4-6(c)), as well as an MDN

with only a single Gaussian component (figure 4-6(d)) on the same toy

dataset. The data points are indicated with the crosses. 76

4-7 This figure shows five repeated trials of training MDN to estimate

water vapor on the HyMAS dataset, pressure level 535 mb. RMSE is

in units of normalized mass mixing ratio. 77

4-8 A simple example of GPR. On the left, a few sample functions from

the prior are shown, along with the implied standard deviation (the

gray area). The rightmost figure shows sample functions drawn from

the posterior after conditioning on the data marked by the crosses. . . 80

4-9 This figure shows how the RMSE (in normalized mass mixing ratio)

and variance estimate of SPGP evolve over 80 iterations of gradient

descent. The x-axis represents the training time. The 2D y-z plane

shows the RMSE as a function of the predicted variance. As training

time increases, the slope in the y-z plane becomes steeper, representing

better variance estimation. 91

14

4-10 This figure shows 5 repeated trials of training SPGP to estimate water

vapor on the HyMAS dataset, pressure level 535 mb. RMSE is in units

of normalized mass mixing ratio. 93

4-11 This figure shows various variance estimation methods on the HyMAS

golden days dataset, pressure level 753 mb. RMSE is in degrees kelvin.

Note that the SPGP estimating temperature directly (green) has a

steeper slope than SPGP estimating the temperature residuals (red),

but the green SPGP has a slightly higher overall RMSE (the RMSE

at x = 1) than the red SPGP. However, NLPD of the green SPGP is

1.07, lower than the 1.17 for the red SPGP, which is consistent with

our intuition that the green SPGP is “better” overall because of its

superior performance at predicting variance. 94

4-12 A block diagram showing how MDNs and SPGPs can be used to es-

timate the variance, so as to take advantage of the neural network’s

superior parameter estimation. The targets are scaled up by 5 because

I found that doing so helped prevent the residual estimation SPGP

from being trapped in local minima, possibly due to the initializations

of the hyperparameters that I used. Of course, later the predicted

mean and standard deviation are scaled down by 5 to compensate. . . 97

4-13 The y-data is generated from two different functions of x, but the

additional noise is the same in both. 98

4-14 The figure on the left shows the toy dataset created by taking a function

(red) and adding some random noise, as well as showing the function

predicted by the neural network (blue). The neural network parameters

were deliberately chosen to allow overfitting. The figure on the right

shows the residuals on the data points, which are all near zero. From

the figure on the right, the variance (the added noise) looks as if it

would be zero, if it were to be predicted by any residual estimation

method. 100

15

4-15 This figure shows the RMSE profile in the ECMWF/Aqua dataset

when estimating temperature. RMSE is in kelvins and the pressure

level is in millibars. 101

4-16 This figure shows the NLPD profile of MDNs and SPGPs on the prob-

lem of temperature estimation. NLPD is in kelvins and pressure level

is in millibars . 101

4-17 This figure shows the performance of the methods on the problem

of estimating temperature on the ECMWF/Aqua dataset at pressure

level 954 mb. The RMSE and predicted standard deviations are in

degrees kelvin. 102

4-18 This figure compares the performance of various techniques to estimate

variance on the problem of temperature retrieval on the ECMWF/Aqua

dataset at pressure level 448 mb. The RMSE is in degrees kelvin. . . 103

4-19 This figure shows the performance of the methods on the problem of

estimating temperature on the ECMWF/Aqua dataset at pressure level

954 mb. The RMSE is in degrees kelvin. This is the same problem as

in figure 4-17, except graphed by cumulative RMSE instead of RMSE

by bins. 104

4-20 This figure shows the RMSE profile in the ECMWF/Aqua dataset

when estimating water vapor, using MDNs, SPGPs, and neural net-

works. RMSE is in units of mass mixing ratio, and pressure is in

millibars. 106

4-21 This figure shows the NLPD profile of MDNs and SPGPs on the prob-

lem of water vapor estimation. NLPD is in units of mass mixing ratio. 107

4-22 This figure shows the performance of various variance estimation meth-

ods on estimating water vapor on the ECMWF/Aqua dataset at pres-

sure level 113 mb. RMSE is in units of normalized mass mixing ratio. 108

4-23 This is the same problem as depicted in figure 4-22, except that pre-

sented with the RMSE of each group of cases instead of the cumulative

RMSE of the cases. RMSE is in units of normalized mass mixing ratio. 108

16

4-24 This figure compares the performance of various methods on estimating

temperature on the HyMAS test dataset. The y-axis represents the

pressure level in millibars (surface is at the bottom). The RMSE is in

degrees kelvin. 111

4-25 This figure compares the performance of various methods on estimat-

ing temperature on the HyMAS golden days test dataset (see text for

dataset details). The y-axis represents the pressure level in millibars

(surface is at the bottom). The RMSE is in degrees kelvin 111

4-26 This figure shows the NLPD profile of MDNs and SPGPs on the prob-

lem of temperature estimation. NLPD is in degrees kelvin, and pressure

is in millibars. 112

4-27 This figure shows the NLPD profile of MDNs and SPGPs on the prob-

lem of temperature estimation on the golden days set. NLPD is in

degrees kelvin, and pressure is in millibars. 113

4-28 This figure compares various methods for estimating variance on the

HyMAS test dataset, with respect to temperature at pressure level 223

mb. RMSE is in degrees kelvin. 114

4-29 This figure compares various methods for estimating variance on the

HyMAS golden days test dataset, with respect to temperature at pres-

sure level 223 mb. Compare to figure 4-28. RMSE is in degrees kelvin. 114

4-30 This figure compares various methods for estimating variance on the

HyMAS test dataset, with respect to temperature at pressure level 639

mb. RMSE is in degrees kelvin. This figure is presented in cumulative

RMSE as opposed to RMSE per bin to facilitate comparisons between

the various methods (see section 3.3 for an explanation of the two

presentation schemes). 115

4-31 This figure compares various methods for estimating variance on the

HyMAS golden days test dataset, with respect to temperature at pres-

sure level 639 mb. Compare to figure 4-31. RMSE is in degrees kelvin. 116

17

4-32 The figures compares various methods for estimating variance on the

HyMAS golden days test dataset, with respect to temperature on pres-

sure level 39 mb. The RMSE is in degrees kelvin. 117

4-33 These charts compare the performance of the methods in estimating

water vapor on the HyMAS test dataset (see text for dataset details).

The y-axis represents the pressure level in millibars (surface is at the

bottom). RMSE is in normalized mass mixing ratio. 118

4-34 These charts compare the performance of an SPGP estimating water

vapor to a neural network on the HyMAS golden days test dataset

(see text for dataset details). The y-axis represents the pressure level

in millibars (surface is at the bottom). RMSE is in normalized mass

mixing ratio. 119

4-35 This figure shows the NLPD profile of MDNs and SPGPs on the prob-

lem of water vapor estimation. RMSE is in normalized mass mixing

ratio, and pressure is in millibars. 119

4-36 This figure shows the NLPD profile of MDNs and SPGPs on the prob-

lem of water vapor estimation on the golden days set. RMSE is in

normalized mass mixing ratio, and pressure is in millibars. 120

4-37 This figure compares various methods for estimating variance on the

HyMAS test dataset, with respect to water vapor at pressure level

535 mb. The predicted standard deviation as well as the RMSE is in

normalized mass mixing ratio. 121

4-38 This figure compares various methods for estimating variance on the

HyMAS “golden days” dataset, with respect to water vapor at pres-

sure level 535 mb. Compare to figure 4-37. The predicted standard

deviation as well as the RMSE is in normalized mass mixing ratio. . . 122

4-39 This figure compares various methods for estimating variance on the

HyMAS test dataset, with respect to water vapor. This is the same

problem as depicted in figure 4-37, except the y-axis here is cumulative

RMSE in units of normalized mass mixing ratio. 123

18

4-40 The same figure as figure 4-39, except here the variance estimation

neural network is using only 5 hidden nodes, as opposed to 10 before. 124

4-41 This shows the results of 5 trials of training a variance estimation

neural network on estimating water vapor on pressure level 535 mb on

the HyMAS dataset. RMSE is in units of normalized mass mixing ratio.125

4-42 This shows the performance of variance estimation neural network

(blue) at estimating variance when the temperature is not normal-

ized (the default that I used for all the other figures). See figure 4-43

for the performance when temperature was normalized. The RMSE is

in degrees kelvin. 126

4-43 This shows the performance of variance estimation neural network

(blue) at estimating variance when the temperature was normalized.

Compared to figure 4-42, there is minimal difference in the performance

of the variance estimation neural network. RMSE is in degrees kelvin. 127

4-44 This figure shows the distribution of precipitation rates in the entire

dataset. The distribution is heavily skewed, with most cases having

between 0 and 1 mm/hour of precipitation. Note the logarithmic scale

on both the x and the y axes. 128

4-45 Variance estimation performance on the test dataset of various meth-

ods on the problem of precipitation retrieval. RMSE is in mm/hour. . 129

4-46 Variance estimation performance on the training dataset of various

methods on the problem of precipitation retrieval. Compared to figure

4-45, this figure shows the RMSE by bin instead of the cumulative

RMSE. RMSE is still in mm/hour. 129

19

20

List of Tables

2.1 Precipitation retrieval performance of neural networks, linear regres-

sion, and quadratic regression. 40

4.1 Precipitation retrieval performance of neural networks, MDNs, and

SPGPs. 126

4.2 The testing and training times in this table was derived from applica-

tion of the methods on the precipitation dataset. Note that the testing

time and training time scaling for all methods should be linear in the

number of training data and testing data. The last three columns are

problem dependent and are necessarily subjective personal judgments

on the effectiveness of the methods compared. 132

21

22

Chapter 1

Introduction

As the sensor capabilities of weather satellites improve, there is need for faster al-

gorithms to convert the raw data from the satellites into useful measurements like

temperature and humidity [6]. This is known as the retrieval problem. Better algo-

rithms that solve this retrieval problem could lead to more accurate weather forecasts,

and could help us better understand the earth’s climate as a whole [2].

For the most part, retrieval algorithms are still based on models of the underlying

physics [24]. However, there has always been interest in statistical techniques like

simple linear regression [26], because of the speed advantage such statistical methods

have (after training is completed). Recently researchers have successfully used neural

networks, a certain kind of nonlinear regression, in many retrieval problems of interest

[1] [6]. Neural networks were found to be considerably faster than physical techniques

and had comparable, or better, accuracy in most cases.

Unfortunately, current neural network retrievals are hampered by the inability to

judge how accurate their predictions are, unlike the older retrieval algorithms based

on physical models. Because it is useful for numerical weather prediction models

to understand how reliable an estimate is, predictions that include a probability

distribution, confidence intervals or variance predictions could greatly improve the

utility of retrievals in that setting [17]. Overall, having estimates of the prediction

error would also lead to greater acceptance and use of statistical retrieval methods [1],

providing a way to quantify their stability and to make sure the retrieved quantities

23

are physically possible.

In this thesis, I will investigate several statistical retrieval methods that can be

used to assign uncertainty estimates to predictions and then test their suitability to

some representative retrieval problems.

1.1 Thesis outline

Chapter 2 covers the remote sensing problem in slightly more detail. It also in-

troduces baseline statistical retrieval methods–linear and quadratic regression, and

neural networks. The retrieval problems and the datasets are then presented, and the

performance of the retrieval methods on those datasets evaluated.

Chapter 3 describes Bayesian neural networks, a method previously used with

some success on retrieval problems like the type covered. Its suitability and perfor-

mance on the datasets is discussed. Unfortunately, the presence of heteroscedastic

noise in retrieval problems degrades the performance of Bayesian neural networks,

and motivates the search for other techniques to assign error bars.

Chapter 4 reviews two methods, Mixture Density Networks (MDNs) and Sparse

pseudo-input Gaussian processes (SPGP), that have not been used before in the

retrieval problems. Their performance is evaluated on the datasets in terms of both

retrieval accuracy and the accuracy of the predicted error bars.

Finally, Chapter 5 concludes the thesis and includes a few recommendations for

future work.

24

Chapter 2

Statistical Retrieval Methods

In this chapter, I will briefly review the basic principles of remote sensing before

reviewing a couple of statistical retrieval algorithms. I will then introduce three

representative remote sensing datasets and discuss the performance of the statistical

methods on those retrieval problems.

2.1 Remote Sensing

Modern weather satellites measure spectral radiance–the power flux at a particular

frequency. From this, retrieval algorithms are expected to produce the more use-

ful geophysical parameters. These include temperature throughout the levels of the

atmosphere (known as a “profile”), humidity profile, precipitable water, surface tem-

perature, cloud liquid water content, and so on [2]. This is possible because each

frequency is sensitive to those quantities at different altitudes.

Although the so-called “inverse problem” of retrieving these geophysical parame-

ters from the measured radiances is hard, the reverse—predicting the measured radi-

ances given the geophysical parameters—is much easier. The physics are well-known,

and there a multitude of packages, such as the Standalone AIRS Radiative Transfer

Algorithm (SARTA), that can quickly simulate infrared radiances based on exten-

sively validated models (AIRS is the Atmospheric Infrared Sensor, an instrument).

Similar packages exist for simulating the observed radiances of microwave instruments

25

as well [22]. The relative ease of the reverse problem is the basis of many physics

based retrieval methods, such as iterated minimum-variance, or IMV [18].

At each iteration, IMV essentially guesses at the geophysical parameters, simu-

lates the resulting radiances, and adjusts the guess based on the differences between

the simulated and the actual radiances. One of the practical advantages of this ap-

proach is that errors due to instrument noise or uncertainty in the model can be

accounted for. Unfortunately, the algorithm takes many, time-consuming, iterations

until convergence, even with a good first guess of the parameters.

The slowness of the physical retrieval methods motivates the search for alternative

approaches to retrieval of geophysical parameters. As mentioned before, the reverse

problem is relatively easy, allowing us to build up large datasets of simulated data.

Geophysical parameters from the thousands of available radiosondes (instruments

mounted on weather balloons), or from numerical weather prediction models, can also

be synced with satellite observations to create datasets. With the easy availability of

large datasets, it is natural to look at statistical retrievals as an alternative to physics-

based inversion. This idea is not new—linear regression has been used to retrieve

parameters of interest from the radiances from a microwave instrument since at least

the 1970s [26]. As long as the training dataset is comprehensive enough, statistical

retrievals should give good accuracy while taking much less time to perform retrievals

on new test cases. Recently though, there has been an burgeoning interest in neural

networks in the context of remote sensing, primarily because in many applications

they are much superior in speed and at least equal in accuracy to operational physics-

based algorithms such as IMV [7].

In the following, I will review a couple of common statistical retrieval methods,

linear regression and neural networks. I will then discuss the datasets I used to

evaluate their performance. The neural network’s performance will serve as a good

baseline for comparison with other statistical retrieval methods in later chapters, and

the results from linear and quadratic regression should give a good indication as to

how nonlinear the retrieval problem is.

The convention used throughout the thesis is that D will represent the training

26

dataset of n cases, split into the set T of training targets ti (or ti if there are multiple

outputs, so that the targets are a vector and not a scalar) and a set X of training

inputs xi, where i = [1, n]. The function and the outputs estimated by the regression

model will be denoted y.

2.2 Linear Regression

Linear least squares regression is a commonplace statistical retrieval method, guaran-

teed to be optimal for linear problems with Gaussian noise. The underlying function

is assumed to be of the form

t = βX + ε; (2.1)

Where ε is the Gaussian noise, and t is a vector consisting of the training targets ti.

The model itself is of the form

y = βX; (2.2)

Where y is either a 1 × n vector (one output) or a c × n matrix (c outputs). X is

a d × n matrix of inputs, with d rows for each dimension of the input. β is a c × n

matrix of inputs. If the columns of X are not zero-mean, a bias term can be included

by appending an extra row of ones to X.

The best linear fit can be determined by taking the derivative of β with respect

to the error function (this is simply the sum of the squared residuals):

E =
∑

xi,ti∈D

(ti − βxi).
2 = (t− βX)(t− βX)T (2.3)

and setting the derivative of E with respect to β to zero. Then, after applying some

common matrix derivative identities:

0 =
dE

dβ

∣∣∣∣
β=β̂

= tXT − βXXT (2.4)

β = tXT (XXT)−1 (2.5)

27

2.2.1 Quadratic Regression

Quadratic regression is much the same as linear regression, except that the matrix

of inputs now has additional rows representing the squared inputs, so that it is now

[x2,x], where x2 is the matrix of the squared inputs. Obviously, this can be generalized

to even higher order terms if desired, or other indeed any other function of the inputs.

However, for extremely nonlinear problems, a neural network may be preferable due

to the fact that it assumes much less about the shape of the function.

2.3 Neural Networks

Neural networks are a powerful nonparametric regression technique well suited for

nonlinear problems. A neural network consists of “nodes”. Each node is connected to

other nodes—the “strength” of such a connection is determined by a variable called

the weight. These weights are adjusted during the training phase. In figure 2-1, wij

and wjk are two weights. The nodes themselves take in a scalar input and applies

a so-called activation function before passing on the outputs to the next node it is

connected to. The output is multiplied by the weight of that connection before being

used as the input of the next node.

Figure 2-1: A simple neural network

Multiple nodes are arranged into layers, with all nodes in a particular layer (except

28

for the final output layer) having connections to nodes in the next layer closer to the

output layer. All layers besides the input and output layers are usually referred to

as hidden layers, and the nodes in them as hidden nodes. All nodes in a layer have

the same form of activation function. In figure 2-1, f(a) and g(a) are two different

activation functions.

Although the current neural network uses only one hidden layer, the neural net-

work can have an arbitrary number of layers. However, increasing numbers of layers

leads to increasing numbers of local minima when training. It has also been shown

that a neural network with a single hidden layer can approximate any real-valued

continuous function to arbitrary accuracy given enough hidden nodes [5]. From pre-

vious work on problems similar to the ones discussed here, there is also evidence that

having a single hidden layer with enough hidden nodes does not significantly change

performance on retrieval problems compared to having multiple hidden layers [6] [1].

Thus, for the rest of the thesis, all the network structures have one hidden layer.

Once the structure of the neural network has been selected, the network must

be trained to fit the data. It is useful to first introduce some notation. Let the

input layer I have nodes with activation function f(a), and let hidden layer H have

activation function g(a) (for regression problems like ours, g(a) is often of the form

1
1+e(−a)

, and f(a) is linear). Then, given an d-dimensional input x = [x1, ..., xi, ...xd],

the c-dimensional output y = [y1, ..., yk, ..., yc] of a one hidden layer neural network

can then be expressed as

yk =
∑
j∈H

f(wjkaj) (2.6)

aj =
∑
i∈I

g(wijxi) (2.7)

where wjk is the weight between hidden node j and output node k, and wij is the

weight between input node i and hidden node j. Often, y is written as y(x) to

emphasize that y represent the neural network function of x, although here this is

omitted for brevity.

During conventional neural network training, the goal is to minimize a cost func-

29

tion over a training dataset D. The usual cost function is the sum-squared error

E(~w) =
1

2

n∑
i=1

(ti − yi)
2 (2.8)

where ~w is a vector of all the weights in the neural network, and ti is the target vector

for the input vector xi. Sometimes, a regularization term α
2
‖~w‖2 is added to prevent

weights from becoming too extreme. Although I did not choose to do this for network

training, weight regularization will be a factor later on in Bayesian neural networks.

It is easy to find the gradients ∂E(~w)
∂ ~w

(see Appendix A.1 for details). Conventional

training methods are then mostly variations of gradient ascent, or some other function

optimization method, to minimize the cost function over the space of the weight

vector ~w. Common training algorithms used in this thesis are Levenberg-Marquardt

and scaled conjugate gradient, although those are certainly not the only possibilities.

2.3.1 Overfitting

Because there are so many more parameters in neural networks than in linear regres-

sion, and the function is not nearly as constrained, there exists the possible problem of

overfitting. This is the problem where a function models the training data extremely

well due to learning features of the data that are only present in the training dataset

(random noise, for example), but does much poorer on test datasets. As a crude

example, if there are d parameters in a linear regression (d dimensions), and only d

data points, the linear regression can model the data perfectly, but is very unlikely

to extrapolate well since it has not really learned anything beyond the training data.

To prevent overfitting in the neural network, early stopping was used. The RMSE

(or the relevant performance metric) of a separate validation set of roughly the same

size as the test set was evaluated at each iteration of the optimization process, and if

the performance metric increased instead of decreased for too many iterations in a row,

training was stopped. Although there have been no strong theoretical justification

for this in the literature, there has been plenty of empirical support for the efficacy

of early stopping, and it is ubiquitous in many practical applications [6] [5] [20]. It

30

can been seen as a form of regularization, leading to “smoother” functions [20].

Because early stopping proved so successful at preventing overfitting, I used early

stopping on all the later methods discussed in this thesis as well.

2.3.2 Neural Network parameters

The number of nodes in the hidden layer was determined fairly arbitrarily. Limited

testing with different numbers of nodes was done to ensure that the number of nodes

was not too small as to cause the network to underfit, but it is quite possible that

the number of nodes is more than is actually needed for a good fit to the data (early

stopping should lessen the possibility of overfitting though). Based on that and earlier

work on using neural networks on similar datasets, I chose to use 20 hidden nodes.

The neural network weights were initialized using the Nguyen-Widrow method.

This initialization has been found to speed up convergence during training on many

problems [15].

2.4 Results and Description of Datasets

In the following, I use as a performance metric the root mean square error (RMSE)

of the test cases. If the set of cases D are enumerated as input-target pairs (xi, ti)

and the predictions of the method as y(xi), where i ∈ D, then:

RMSE(D) =

√√√√ 1

n

n∑
i=1

(y(xi)− ti)2 (2.9)

If the mean of the residuals y(xi)− ti = 0, then the RMSE is exactly equal to the

standard deviation of the residuals.

2.4.1 ECMWF/Aqua dataset description

The ECMWF(European Center for Medium Ranged Weather Forecasts)/Aqua dataset

consists of 33198 training cases, 4149 validation, and 4149 test cases (the test cases

31

were obtained by taking every fifth case from the training set, then removing those

cases from the training set; the validation cases were obtained in a similar manner).

The inputs are the 25 most significant principal components 1 of the 588 stochas-

tically cloud cleared radiances 2 measured by the operational AIRS (Atmospheric

InfraRed Sensor) and AMSU (Advanced Microwave Sounding Unit) sensors aboard

the NASA Aqua satellite.

The targets are temperature and water vapor concentration. The European Center

for Medium Ranged Weather Forecasts (ECMWF) provides the parameters used as

the truth. Both the inputs and the truth are available for 60 distinct pressure levels,

ranging from just above the surface (about 1013 mb) to the stratosphere (0.1 mb).

The dataset was subsampled from a much larger set, so only near-nadir measure-

ments (the satellite was directly overhead) taken over “ocean” (which includes large

inland seas and lakes as well) between 60N and -60S latitude were included. Ice-

covered samples were deliberately excluded, due to the different radiances obtained.

Furthermore, because this dataset contains actual radiances from the satellite, no

additional simulated instrument noise was added to the outputs.

The a priori standard deviation of temperature is shown on figure 2-2. In a sense,

this also represents the worst possible RMSE for a statistical retrieval method, since

the standard deviation would be the RMSE achieved if the temperature estimation

for every case was simply the mean.

Water vapor was expressed as mass mixing ratio (a dimensionless unit), but nor-

malized by the standard deviation of the water vapor at each pressure level, so that

the a priori standard deviation is unity throughout the atmosphere.

32

Figure 2-2: This is the a priori standard deviation of temperature on the
ECMWF/Aqua dataset. The x-axis is in degrees kelvin, while the y-axis is in mil-
libars.

Figure 2-3: This figure shows the RMSE profile of several methods estimating temper-
ature on the ECMWF/Aqua dataset. The RMSE is in degrees kelvin. The pressure
is in millibars, with the surface at the bottom of the chart.

33

Figure 2-4: This figure shows the RMSE profile of several methods estimating water
vapor on the ECMWF/Aqua dataset. The RMSE is in normalized mass mixing ratio.
The pressure is in millibars, with the surface at the bottom of the chart.

2.4.2 ECMWF/Aqua results

Temperature estimation on the ECMWF/Aqua dataset is a fairly linear problem, with

the neural network showing only a small increase in performance over either linear

or quadratic regression (see figure 2-3). Surprisingly, quadratic regression performs

much the same as linear regression on this problem (both on the test set and on

the training set) perhaps indicating the non-linear aspects of the problem involve

higher-order terms than just 2nd order.

Water vapor estimation on the ECMWF/Aqua dataset is much more nonlinear

than temperature estimation (see figure 2-4). The neural network does much bet-

ter than either linear or quadratic regression. Overall then, water vapor is a more

challenging problem for statistical retrieval methods.

1The principal components are a linear transformation and dimensional reduction that best pre-
serves the original data. The principal components are ranked by the amount they contribute to
the variance in the original data, as judged by the eigenvalues of the covariance matrix of the input
dimensions.

2The details of the stochastic cloud clearing algorithm can be found in the 2006 Cho and Staelin
paper [9].

34

2.4.3 HyMAS dataset description

The HyMAS (the name comes from the Hyperspectral Microwave Atmospheric Sounder

[8]) dataset consists of 30000 training cases, 5000 validation cases, and two different

test datasets. The first, which I will call simply the test set, consists of 5000 cases

and is obtained by taking every fifth sample from the training cases, much like in the

case of the ECMWF/Aqua dataset. The second, which I will call the “golden days”

set, consists of 40000 cases that are taken from several years not represented in the

training set at all. It is known as the “golden days” dataset due to its usage as a

benchmark of sorts by the AIRS science team. This “golden days” set should be a

much more independent test set.

The inputs are the 25 most significant principal components of 88 simulated ra-

diances from the hypothetical HyMAS instrument, simulated from ECMWF ground

truth. It is again only over ocean between -60S and 60N in latitude, and is simulated

with only nadir soundings. There are 96 distinct pressure levels, from near the sur-

face (1013 mb) to the stratosphere (roughly 0.0384 mb). However, I only examined

every fifth pressure level for temperature. For water vapor, I examined every fourth

pressure level, but only starting from roughly 18 mb to the surface.

Since this was a simulated dataset, simulated instrument noise (random samples

from a Gaussian with mean 0 and standard deviation equal to the predicted instru-

ment noise) was added to the “clean” simulated radiances to create the training,

testing, and golden days datasets ultimately used to train and test the various meth-

ods. For the neural network methods, different samples were added to the “clean”

radiances from the training set at every iteration during training. Such a procedure

was found to improve neural network accuracy and prevent overfitting [7].

The a priori standard deviation of temperature is shown in figure 2-5.

As before, water vapor is normalized mass mixing ratio, so a priori standard

deviation is unity throughout the atmosphere.

35

Figure 2-5: The a priori standard deviation of temperature on the HyMAS dataset.
x-axis is in degrees kelvin, y-axis is millibars.

Figure 2-6: This figure shows the RMSE profile of several methods estimating tem-
perature on the HyMAS dataset. The RMSE is in degrees kelvin. The pressure is in
millibars with the surface at the bottom of the chart.

36

Figure 2-7: This figure shows the RMSE profile of several methods estimating tem-
perature on the HyMAS “golden days” dataset. The RMSE is in degrees kelvin. The
pressure is in millibars with the surface at the bottom of the chart.

2.4.4 HyMAS dataset results

The temperature estimation performance on the training and the test dataset (see

figure 2-6) is reminiscent of the results on the ECMWF/Aqua dataset. The neural

network does slightly better than either linear or quadratic regression. It seems

having a hyperspectral microwave sensor as opposed to a combination of infrared

and microwave radiances does not appreciably change the linearity of the problem.

The real surprise comes from the performance on the golden days test set (see figure

2-7). There are several pressure levels between 23 mb and 170 mb where quadratic

and linear regression outperform neural networks (note that all methods perform

worse in terms of RMSE on the golden days dataset). This suggests that the neural

network is overfitting to some features that were present in the training set but not

the golden days dataset, perhaps due to the training set not being comprehensive

enough. Overall, the golden days set should also provide an interesting test for

variance estimation methods; good estimation methods should assign high uncertainty

to cases which are not similar to those in the training set.

The relative performance of the methods on estimating water vapor is very similar

37

Figure 2-8: This figure shows the RMSE profile of several methods estimating water
vapor on the HyMAS dataset. The RMSE is in units of normalized mass mixing
ratio. The pressure is in millibars with the surface at the bottom of the chart.

Figure 2-9: This figure shows the RMSE profile of several methods estimating water
vapor on the HyMAS “golden days” dataset. The RMSE is in units of normalized
mass mixing ratio. The pressure is in millibars with the surface at the bottom of the
chart.

38

on the golden days and the test dataset (see figures 2-8 and 2-9). In both, the neural

network significantly outperforms quadratic regression, and quadratic regression sig-

nificantly outperforms linear regression. This is expected, as water vapor estimation

is a very nonlinear problem. The lack of any significant difference in relative perfor-

mance of the methods between the golden days and the regular test set suggests that

the water vapor problem is sufficiently complicated that overfitting is not as large a

concern here as underfitting.

2.4.5 Precipitation dataset description

The precipitation dataset is subsampled from the Pennsylvania State University -

National Center for Atmospheric Research Mesoscale Model (MM5), a database of

106 storms. The inputs are 8 simulated AMSU-A and 5 AMSU-B microwave sounder

radiances. The targets are the surface precipitation in millimeters per hour. There are

a total of 38266 cases, of which 29762 were used as training cases, and the remaining

cases split evenly between test and validation sets.

2.4.6 Precipitation dataset results

Rain rate retrieval is a nonlinear and fairly hard problem. Competitive algorithms

often have multiple stages, based on factors such as terrain type, latitude, and temper-

ature radiances of specific channels [23]. Because I was primarily interested in using

this dataset to illustrate the differences between the methods for estimating variance,

rather than accurate rain rate retrieval, I did not use any pre or post-processing ex-

cept for a principal components transform of the inputs. Thus, the performance of

the following retrievals can certainly be much improved.

As in the Surussavadee and Staelin paper [23], the performance of the methods

is shown by the RMSE binned by the actual precipitation values (see table 2.1).

The total RMSE in precipitation retrieval is often heavily biased by cases with the

highest rainrates, and the majority of cases have no precipitation. So although linear

regression and quadratic regression are only slightly worse than neural networks when

39

MM5 Range
(mm/hr)

Number of
Cases

Neural Net-
work RMSE

Linear Regres-
sion

Quadratic Re-
gression

[0 0.125) 2875 0.4025 0.9712 0.6223
[0.125 0.25) 212 0.9885 1.59 1.43
[0.25 0.5) 226 2.004 1.81 2.00
[0.5 1) 301 1.192 1.50 1.19
[1 2) 279 1.792 1.76 1.82
[2 4) 195 2.666 2.35 2.49
[4 8) 100 5.037 3.81 4.98
[8 16) 40 5.964 7.04 7.16
[16 32) 17 12.85 14.68 16.71
[32 75) 7 25.29 31.45 20.77
All 4252 1.911 2.27 2.02

Table 2.1: Precipitation retrieval performance of neural networks, linear regression,
and quadratic regression.

all cases are considered, the RMSE is in general much higher than neural networks

in cases with relatively low rainfall, which also happens to make up the majority of

the cases. A more principled approach to “patch” this flaw might be to introduce

a classifier to separate out precipitating from non-precipitating cases. However, I

chose not to both because it would add extra complexity that would not directly

contribute to determining the best method for variance estimation later, and because

this introduces nonlinearities that might serve as an interesting test for the later

methods in testing retrieval accuracy.

2.5 Conclusion

The results from these datasets show that neural networks generally offer substantial

improvements over linear and quadratic regression, making neural network perfor-

mance a good baseline for comparison. The temperature estimation problems are for

the most part much more linear than the water vapor estimation, which is useful to

keep in mind as the performance of various statistical retrieval techniques are evalu-

ated. Precipitation retrieval is also a highly nonlinear problem, although part of the

40

reason is due to the large number of non-precipitating cases.

An important theme underlying the results is the tradeoff between the power

of the model and the danger of overfitting. Techniques such as early stopping and

weight regularization, as well as cruder methods like reducing the number of inputs or

hidden units (in the case of neural networks) can force a smoother, more regularized

output function that is less prone to overfitting. However, too much regularization

can also lead to worse performance, as shown by the performance of the much simpler

linear regression versus the neural network on complicated problems like water vapor

estimation.

41

42

Chapter 3

Variance Estimation Neural

Networks and Bayesian Neural

Networks

Although neural networks are very successful at estimating the geophysical param-

eters, there is no guarantee of the quality of any individual prediction, such as an

estimate of the full probability distribution of the outputs, or an estimate of the

variance (equally as informative if we assume that the output distribution is Gaus-

sian). Such an estimate could be used in many ways. One important application is

based on the operation of the current operational AIRS algorithm, which divides its

“data products” (the retrieved geophysical parameters) into three quality categories,

varying in their estimated reliability [10]. Even this relatively coarse division into

only three categories allows the AIRS data to be used with more confidence, so that

it is much more likely to be incorporated into numerical weather prediction mod-

els and help make forecasts more accurate [17]. A good variance estimation scheme

can conceivably improve on this, allowing users to divide the retrieved geophysical

parameters into as many quality categories as they wished.

Contributors to increased variance and error in remote sensing retrieval can come

from many sources. There is the inherent noisiness of the measurements, the non-

uniqueness of possible outputs due to retrievals being an inverse problem, and other

43

physical sources of noise like dust or volcanic ash interfering with the radiance mea-

surements. There is a good chance that the influence of some of these sources of noise

are dependent on the input radiances measured. For example, some radiances are

known to be sensitive to dust, and noise due to dust would then be dependent on

the inputs having that “dust” characteristic. A function with such input-dependent

variance is known as a heteroscedastic function.

Another possible source of variance in statistical retrieval methods could be due

to uncertainty in the parameters of the model. For example, lack of training data

could lead to an ill-posed problem. A good variance estimation method should assign

higher variances for outputs where the lack of training data might affect performance.

Aires has demonstrated Bayesian neural network techniques to give confidence in-

tervals, but the main focus of the paper was on the uncertainty in the neural network,

rather than the total uncertainty in the retrieval [1]. Although the reliability of the

retrieval method is certainly very useful to know, there are many other factors that

can affect the quality of a retrieval that are not accounted for.

Thus, an ideal variance estimation method should account for both heteroscedastic

variance and model uncertainty. In this chapter, I will introduce first a baseline

technique for estimating variance, the variance estimation neural network, and then

describe Bayesian neural networks, a method which has been used with some success

before to estimate variance in the remote sensing context.

3.1 Variance Estimation Neural Networks

One simple way to estimate the variance is to treat the variance as an target, and

try to estimate it on the basis of the inputs, essentially turning variance estimation

into another regression problem. This regression problem can then be solved by

another neural network, which I termed a “variance estimation neural network”.

The variance estimation neural network takes the same inputs as the original neural

network, but the targets are now the square of the residuals of the first neural network

(on the training cases). Given enough training cases, the square of the residuals should

44

approach the true variance of the data.

The advantage of this approach is that it can easily take into account heteroscedas-

ticity. However, it would have no conception of model uncertainty, since it would be

solving an almost unrelated regression problem. It is possible that if there is a lack

of training data only in certain areas of the input space, the extra uncertainty can

be picked up by the variance estimation neural network. For example, if data in the

polar region are lacking (which will cause large residuals in the first neural network),

the variance estimation neural network can account for that noise.

In the problems, I used a variance estimation neural network with 10 hidden

nodes, based on testing on a few sample problems. The lower number of nodes was

chosen to discourage overfitting to the squares of the residuals, and also because a

higher number of nodes did not improve performance on the sample problems tested.

Intuitively, it seems plausible that the variance should be a far smoother function of

the inputs than the mean (the mean in this case is the geophysical parameter). The

weights were initialized using the Nguyen Widrow algorithm, the same way as the

regular neural network.

Overall, the simplicity and ease of implementation make the variance estimation

neural network a good benchmark to judge the performance of more complicated

variance estimation methods. Another approach that is perhaps more theoretically

justified, is made to account for parameter uncertainty, and has been used with success

in the past [1] is Bayesian neural networks.

3.2 Introduction to Bayesian Neural Networks

As stated before, during conventional neural network training, the goal is to minimize

a cost function of the weights ~w over a set of training examples D. If we think of

the possible weights as a distribution over a multi-dimensional “weight space”, the

resulting weights ~w that are found by conventional training are the most likely weights

given the training data D.

45

3.2.1 Bayesian Methods

In Bayesian training, the goal is to find the entire distribution of p(~w|D), instead of

just the most likely weights, the arg max p(~w|D). Because Bayesian training does not

explicitly model the distribution of the inputs x, it is convenient to separate D into

T , the set of targets, and X, the set of inputs x. All the following probabilities are

implied to be conditional on X. We can now write

p(~w|T) =
p(T |~w)p(~w)

p(T)
(3.1)

where p(~w) is a prior distribution that reflects our belief on ~w before we see the data.

Usually, this prior distribution is taken to be a Gaussian to simplify calculations,

although it can be any probability distribution. p(T) =
∫
~w
p(T |~w)p(~w)d~w is just a

normalization factor, so the focus will be on the terms in the numerator.

Once we have evaluated equation (3.1), we can use the distribution p(~w|T) to

compute the predictive distribution of an output t given an input x.

p(t|x, T) =

∫
p(t|x, ~w)p(~w|T)d~w (3.2)

p(t|x, ~w) is a measure of the intrinsic noise in the data, and is reviewed in the next

section.

3.2.2 Intrinsic Noise

p(T |~w) = p(T |~w,X) can be rewritten as p(t1, ...tj..., tn|~w,X). Since the training

samples are independent, this can be written as

p(T |~w) =
n∏
j=1

p(tj|xj, ~w) (3.3)

The individual probabilities p(tj|xj, ~w) were seen earlier in equation (3.2), and rep-

resent the variability of tj based on intrinsic error or noise, for fixed values of ~w.

Essentially, we assume that the target observations t are noisy, and even if we model

46

the underlying function h(x) perfectly with the neural network, the actual targets

t = h(x) + ε, where ε is the intrinsic noise. Then the probability of seeing the target

observation t given x is simply p(ε). In other words

p(t|x, ~w) = p(ε) (3.4)

In the literature, it is assumed that the intrinsic error is simply a zero-mean

Gaussian noise, so ε comes from the distribution

p(ε) =
1

Z
exp(−βε2) (3.5)

Z is a normalization constant, and β is the inverse variance. Then, if the neural

network is a good fit for h(x) (so that we can replace h(x) with y(x), the neural

network function), we can write ε = t− h(x), and consequently

p(tj|xj, ~w) = p(ε) = p(yj(xj, ~w)− ~tj) =
1

Z
exp(−β(yj(xj, ~w)− ~tj)2) (3.6)

Substituting in equation (3.6) into equation (3.3), we get that

p(T |~w) =
∏
j∈D

p(tj|xj, ~w) =
1

ZD
exp(−β

∑
j∈D

(yj(xj, ~w)− ~tj)2) =
1

ZD
exp(−βE(~w))

(3.7)

where ZD = Zn, and the mean error term

E(~w) =
∑
j∈D

(yj(xj, ~w)− ~tj)2 (3.8)

Note that E(~w) is simply the cost function in conventional training (equation (2.8)).

3.2.3 Priors

The prior p(~w) represents a guess at the distribution of weights before seeing the

training data. Because such a guess is often difficult, the most popular priors p(~w)

47

are either the uniform distribution, or a simple Gaussian prior:

p(~w) =
1

ZR
exp(
−α
2
‖~w‖2) (3.9)

where ZR is the appropriate normalization constant. α is a scalar constant to be

discussed later. A Gaussian prior prevents any weight from growing too large and is

equivalent to regularization in conventional training.

If we assume that the prior is Gaussian, we can use equations (3.7) and (3.9) to

write equation 3.1 as

p(~w|T) =
1

ZS
exp(−β

∑
j∈P

(yj(xj, ~w)− ~tj)2 − α

2
‖~w‖2) =

1

ZS
exp(S(~w)) (3.10)

where ZS is the appropriate normalization constant (had we used a uniform prior,

we would simply remove the term −α
2
‖~w‖2 from equation (3.10)). It is convenient to

write the term in the exponential as simply S(~w), so that

S(~w) = −βE(~w)− α

2
‖~w‖2 (3.11)

3.2.4 Evaluating the Output Distribution

Substituting in equations (3.7) and (3.10) into equation 3.2, we get

p(t|x) =
1

ZS

∫
p(−β(y(x, ~w)− t)2)p(S(~w))d~w (3.12)

Unfortunately, this integral is sufficiently complicated that analytic integration is

impossible. In the literature, there are two major approaches to dealing with this

problem. One is to approximate exp(S(~w)) as a Gaussian by replacing S(~w) with

its second-order Taylor expansion. Afterwards, equation (3.12) can be evaluated

analytically. This approach, pioneered by Mackay, has been used in various “real

world” applications [14] [25] [1]. Indeed, this is the approach used by Aires to train

a neural network for a remote sensing task similar to the problems studied here [1].

48

This was also the approach I ultimately decided to use on the various datasets.

An alternative is to numerically integrate equation (3.12) using Markov Chain

Monte Carlo (MCMC) techniques. Radford Neal tried this using hybrid Monte Carlo

(HMC) and it has been expanded upon by others [12] [11]. However, it is invari-

ably slower than the approximation method. As far as I know, this method has not

been tried in any large scale problem, due to the computational cost of using MCMC

methods on a probability distribution in a high-dimensional space. Because the com-

putational cost was simply too high compared to regular neural networks (on a small

test problem of 1000 training samples, the HMC approach took nearly 20 times as

long as Gaussian approximation approach to get values for the hyperparameters), I

did not pursue MCMC methods any further.

3.2.5 Gaussian Approximation Method

To approximate exp(S(~w)) as a Gaussian, we replace S(~w) with its second-order

Taylor expansion around a minima (this minima is usually found by conventional

neural network training methods). If we let ~wmin denote the arg minS(~w), we can

then write

S(~w) = S(~wmin) +∇S(~w)∆~w + ∆~wT (∇∇S(~w))∆~w (3.13)

where ∆~w = (~w − ~wmin). Note that at a minima, the gradient ∇S(~w) = 0 by

definition. The Hessian ∇∇S(~wmin) is composed of the Hessian of the error E(~wmin)

(see equation (3.8)) and a regularization term resulting from the Gaussian weight

prior.

∇∇S(~wmin) = β∇∇E(~wmin) + αI (3.14)

Next, y(x, ~w) is linearly approximated as y(x, ~wmin) + g∆~w, where the gradient

g ≡ ∇~wy. Straightforward conventional methods exist to find the gradient g [5].

With those two approximations, the integral (3.12) can be analytically evaluated

to give yet another Gaussian of the form

p(t|x, T) =
1√

2πσ2
exp

(
−(t− y(x, ~wmin))2

2σ2

)
= N(y(x, ~wmin), σ2) (3.15)

49

Where the variance is:

σ2 = β−1 + gT (∇∇S(~w))−1g (3.16)

The standard deviation of the Gaussian, σ, can be used now as a confidence inter-

val for the prediction y(x, ~wmin), which is the mean of the Gaussian. It is worthwhile

to note that the function y(x, ~wmin) has weights ~wmin that are exactly the minima

found by gradient descent during training. Thus, the Bayesian neural network predic-

tion should be the same as any regular neural network with the same sum of squares

error metric and weight regularization. But whereas a regular neural network gives

only one number, the most probable output, the Bayesian neural network gives the

entire distribution.

3.2.6 Hyperparameter Estimation

In the preceding sections, α and β have been treated as fixed constants, but in reality

they are rarely known in advance and it would be wise to adjust them to best fit the

data. In the literature, they are known as hyperparameters, so called because they

control the distribution of the parameters (weights) [5]. In the experiments, I used

Mackay’s “evidence” approach to estimating the hyperparameters, although there

are other possible approaches. The evidence approach assumes that the distribution

p(α, β|T) is sharply peaked enough to be approximated by a delta function centered

around the most probable hyperparameter values αMP , βMP . Then:

p(~w|T) =

∫ ∫
p(~w|α, β, T)p(α, β|T) dαdβ (3.17)

≈ p(~w|αMP , βMP , T) (3.18)

which implies that the hyperparameters have no effect on the probability distribution

of the weights, and thus no effect on the optimal weights chosen during training.

Essentially, with the approximation of p(α, β|T) by a delta function, we can then find

the optimal hyperparameters independently of finding the optimal weights.

50

To find the optimal hyperparameters, we start with an application of Bayes rule:

p(α, β|T) =
p(T |α, β)p(α, β)

p(T)
(3.19)

The denominator p(T) is not dependent on α or β, and if we assume a uniform,

improper prior p(α, β), then to maximize p(α, β|T) we only have to maximize the

“evidence” term p(T |α, β). This is equivalent to the likelihood; it’s somewhat intuitive

that the best hyperparameters should be ones that maximize the likelihood of the

training data.

Since p(ti|xi) = p(ti|α, β) = N(yi, σ
2
i) (see equation (3.15)), we can write the

likelihood as

p(T |α, β) =
n∏
i=1

N(yi, σ
2
i) (3.20)

Unfortunately equation (3.20) is not easy to evaluate to maximize α and β. In-

stead, rewrite p(T |α, β) with explicit dependence on ~w to allow us to substitute terms

that were previously evaluated:

p(T |α, β) =

∫
p(T |~w, β)p(~w|α) d~w (3.21)

=

∫
1

ZR
exp(
−α
2
‖~w‖2)

1

ZD
exp(−βE(~w)) d~w (3.22)

=
1

ZRZD

∫
exp(
−α
2
‖~w‖2 − βE(~w)) d~w (3.23)

=
1

ZRZD

∫
exp(S(~w)) d~w (3.24)

where in the second step we substitute in the equations (3.7) and (3.9), and in the

third step substitute in equation (3.11). ZR and ZD are defined in equations (3.9) and

(3.7), respectively. If we continue to accept the Gaussian approximation of exp(S(~w)),

then
∫

exp(S(~w)) d~w is the normalization term of a Gaussian. Then we can rewrite

p(T |α, β) as:

p(T |α, β) =
(α

2π

)W
2

(
β

2π

)n
2

(2π)
W
2 |∇∇S(~wmin)|−

1
2 exp(−S(~wmin)) (3.25)

51

where W is the number of elements (weights) in the vector ~w and n is the number

of cases in T . We can then take the derivative of this with respect to α and β to

maximize p(T |α, β). In practice, it is easier to maximize ln(p(T |α, β))

ln(p(T |α, β)) = −α(‖~wmin‖2)− βE(~wmin)− 1

2
ln |∇∇S(~wmin)|

+
W

2
ln(α) +

n

2
β − n

2
ln(2π)

(3.26)

If we assume that there is no dependence of the eigenvalues of ∇∇S(~wmin) on α, the

derivative with respect to α is

2α ‖~wmin‖2 = W −
W∑
i=1

α

λi + α
= γ (3.27)

where λi is the ith eigenvalue of ∇∇S(~wmin) and

γ ≡ W −
W∑
i=1

α

λi + α
=

W∑
i=1

λi
λi + α

(3.28)

γ has an interpretation as the number of well determined weights, which are weights

that are determined more by the training data than the weight prior.

The derivative with respect β is

2βE~w = n− γ (3.29)

Since we know the derivatives must be zero at the maximum, we can optimize the

hyperparameters by periodically re-estimating them using the equations

α =
γ

2 ‖~wmin‖2 (3.30)

β =
n− γ

2E~wmin

(3.31)

This re-estimation is usually done between iterations of our favorite neural network

training algorithm (for these problems scaled conjugate gradients was used).

52

Finally, note that approximating exp(S(~wmin)) with a Gaussian distribution is

clearly not accurate, since there are multiple local minima. However, we can think

of each local minima leading to different, but equally valid, interpretations of the

data [14]. The hyperparameters chosen will then be specific to that particular local

minima.

3.3 Results

To quantify the performance of the various methods, I sorted the cases by the variance

predicted by a particular method. Then, I graphed the RMSE of the n percent of cases

with the lowest predicted variance, so that it is easy to see at a glance the RMSE of the

“best” n percent predicted by that method. This particular presentation was chosen

partly based on ease of comparison to the way the operational AIRS algorithm divides

the cases into quality categories. Because of the discrete categories, it is natural to

throw out all cases with poor quality and calculate the RMSE of the leftover cases,

something which is also easy to see in figures presented in this manner. I called this

presentation style “graphed by cumulative RMSE”.

Note that this presentation does not show the actual variance predicted, only the

relative quality of the predictions. Therefore, I also used another presentation of the

figures, where I sorted the cases into 20 bins based on their predicted variance, much

as before. However, I then graphed the RMSE of each bin individually against the

average predicted standard deviation of the cases in each bin. This style I called

“graphed by RMSE by bin”. The optimal variance estimation method should give

a straight line such that the RMSE is equal to standard deviation. In a sense, the

previous presentation style, showing the cumulative RMSE, is the “integral” of this

presentation.

3.3.1 Variance as a function of latitude

For some of the problems, there is sometimes a high correlation of the variance with

some function of the latitude. I thought it was interesting enough to include as a

53

baseline. In the figures, the function of latitude is given in the legend. The cases are

then sorted by that function of the latitude, divided into bins, and the RMSE of the

cases in those bins are plotted. Note that the latitude is not an input to any of the

retrieval methods or variance estimation methods tested, although it is possible that

it may improve performance were it an additional input.

3.3.2 Geophysical Parameter Prediction accuracy

The Bayesian neural network gives comparable accuracy to a regular neural network

when estimating geophysical parameters like temperature and water vapor on the

ECMWF/Aqua and the HyMAS datasets. Indeed, on the ECMWF/Aqua dataset the

Bayesian neural network actually performs slightly better (see figure 3-1 and figure

3-2), suggesting that the weight regularization parameters, α, help to avoid overfitting

(the HyMAS dataset includes added noise, but the ECMWF/Aqua dataset does not).

Nevertheless, the overall difference is slight, as expected given that the early stopping

should also help mitigate overfitting.

Another advantage of Bayesian neural networks is that the performance metric and

the training is exactly the same as regular neural networks, save for some additional

calculation required to re-estimate hyperparameters.

3.3.3 Variance prediction performance

I show the performance of the methods on one pressure level at a time. Each pressure

level can be thought of as a separate problem, since one instance of each method is

trained for each level. Although multitask learning could conceivably be applied in

the case of the variance estimation neural network, that is a task for future work.

I used two main types of charts in this thesis. The first shows the cumulative

RMSE of the cases, where the cases are sorted by their predicted variance. The y-

values are the RMSE, while the x-values are the fraction of profiles used to calculate

that RMSE. For example, the y-value at x = .5 corresponds to the RMSE of the

profiles with a predicted variance less than the median predicted variance. The y-

54

Figure 3-1: This figure compares the RMSE performance of Bayesian neural networks
versus neural networks while predicting temperature on the ECMWF/Aqua dataset.
RMSE is in degrees kelvin, and pressure is in millibars.

Figure 3-2: This figure compares the RMSE performance of Bayesian neural networks
versus neural networks while predicting water vapor on the ECMWF/Aqua dataset.
RMSE is in units of normalized mass mixing ratio, and pressure is in millibars.

55

value at x = 1 is simply the RMSE of all profiles. The advantage of this is that

it is easy to see how removing cases with the highest variances affects the overall

RMSE, suggesting how best to set up the quality categories like in the operational

AIRS algorithm. The primary disadvantage is that cases with low variance have a

disproportionate influence on the shape of the graph, due to the cumulative RMSE

metric.

If the predicted variance is accurate, then it is expected that the RMSE of profiles

with lower predicted variance should be lower than the RMSE of the profiles with

higher predicted variance, so that the slope should be positive. For a given problem

(or pressure level), the quality of a method at predicting variance can be judged by

how steep the slope is. This represents how well the method can separate problematic,

high-error cases from easy cases.

The second shows the RMSE of groups of cases with a particular predicted stan-

dard deviation, instead of the cumulative RMSE. More precisely, I sorted the cases by

predicted variance and divided up the cases into 20 groups, each containing 5 percent

of the total cases. The predicted standard deviation of each group was then graphed

against the actual RMSE of cases in that group. The x-values are now the predicted

standard deviations of that group of cases, while the y-values are the actual RMSE

of those cases. If the groups of cases are large enough, the ideal method would have

the predicted standard deviation equal to the actual RMSE, so as to form a straight

line y = x. The advantage of this graph is that if a method is particularly bad at

estimating the variance of cases with low RMSE, it does not skew the graph like with

the cumulative RMSE graph. This graph also shows the actual predicted variance.

On the other hand, this type of graph is much more prone to noise due to the smaller

sizes of the groups of cases, and it is sometimes harder to tell what method is better

because of that.

I will primarily judge performance based on how well the Bayesian neural net-

work can separate out the cases with the lowest RMSE from the cases with the

highest RMSE based on the predicted variance of the Bayesian neural network. By

that standard, the variance prediction performance of Bayesian neural networks is

56

inconsistent on both the ECMWF/Aqua and the HyMAS datasets. For example, on

the HyMAS water vapor estimation problem, on some levels, such as pressure level

459 mb, Bayesian neural networks show skill in separating out the higher RMSE

cases from the easier ones (see figure 3-3). In fact, there are levels where the Bayesian

Figure 3-3: This figure shows the performance of the methods on estimating water
vapor on the HyMAS dataset on pressure level 460 mb. RMSE is in normalized mass
mixing ratio.

neural network’s performance is as good or better than that of a variance estimation

neural network (see figure 3-4). On other levels, the performance is mostly good

except for a few cases that have high RMSE but relatively low predicted variance. A

good example of that is on pressure level 706 mb (see figure 3-5). There, if the cases

with the lowest 10 percent of the predicted variance (it is perhaps easier to see this

on figure 3-6, which shows the RMSE of the cases instead of the cumulative RMSE)

are ignored, the variances of the rest of the cases are better estimated; cases with

higher variance prediction also have higher RMSE. As discussed later, this may be

due to poorly estimated hyperparameters. On still others, such as pressure level 535

mb (see figure 3-7), the variance predicted by Bayesian neural networks show little

correlation to the RMSE. Although these examples only showed HyMAS water vapor

results, the results are typical across both temperature and water vapor prediction

on both the HyMAS and the ECMWF/Aqua datasets.

57

Figure 3-4: This figure shows the performance of the methods on estimating water
vapor on the HyMAS dataset on pressure level 83 mb. RMSE is in normalized mass
mixing ratio. See section 3.3.1 for an explanation of the black line (the function of
latitude).

Figure 3-5: This figure shows the perfor-
mance of the methods on estimating water
vapor on the HyMAS dataset on pressure
level 706 mb. RMSE is in normalized mass
mixing ratio.

Figure 3-6: This is the same problem as de-
picted in figure 3-5, except that the RMSE
of cases in each 5 percent bin is shown, in-
stead of the cumulative RMSE of the cases
in all previous bins. Predicted standard
deviation is now also in units of normal-
ized mass mixing ratio.

58

Figure 3-7: This figure shows the performance of the methods on estimating water
vapor on the HyMAS dataset on pressure level 535 mb. RMSE is in normalized mass
mixing ratio.

One important thing to note is that even when the Bayesian neural net shows skill

at separating out harder from easier cases based on predicted variance, the predicted

standard deviation itself is always in a very narrow range compared to the actual range

of RMSE of those cases. A typical case is on pressure level 459 mb for the HyMAS

water vapor prediction. There the predicted standard deviations ranges from roughly

0.132 to 0.141, but the RMSE spans a range from 0.07 to 0.27. Now, the RMSE

for all cases on that particular levels is 0.125, which is close to the range predicted

(in fact, β, the inverse of the variance, is equal to 1
.1222

), but the Bayesian neural

network clearly does not give accurate variance predictions for the cases, which can

be a problem for applications where we are primarily interested in the variance, and

not just in weeding out the worst performing cases or creating quality categories.

This small range of predicted variance is a common problem amongst all the

datasets. Recall that the equation for variance was:

σ2 = β−1 + gT (∇∇S(~w))−1g (3.32)

Since β is constant across the different cases, the only thing that varies is the second

59

term gT (∇∇S(~w))−1g, which is only dependent on the uncertainty of the model

parameters, ~w, at that input point. Given how small the range of variances are,

the model uncertainty must also be relatively constant throughout the input space,

implying that the density of points in the 25 dimensional input space is also fairly

constant (recall that the density, or sparsity, of inputs is a partial contributor to the

model uncertainty [5]).

In a few cases, the Bayesian neural network even gives negative variance pre-

dictions. Normally, this would be impossible if a minima is found during network

training. But because we use early stopping, we may not stop at a minima. Al-

though these negative variance predictions are few, their utility is questionable since

they represent a failure in the approximations, so it’s not obvious whether the actual

variance of that case is high or low. With the variance estimation neural network, a

negative variance prediction unambiguously indicates the actual variance of the case

is thought to be extremely low. Luckily, negative variance predictions by the Bayesian

neural network are extremely few, numbering no more than 0.1 percent of cases.

Given the problems that the Bayesian neural network has on some levels in mod-

eling variance, or even just separating out the cases, it is apparent that model un-

certainty alone is not enough to account for the variance. Heteroscedasticity must

be considered as well, which the Bayesian neural network cannot model, but which

the variance estimation neural network can. Moreover, the various approximations

made to simplify calculations must also degrade the final performance of the Bayesian

neural network.

Still, despite all that, the Bayesian neural network is clearly very successful on

some pressure levels of the problems, as mentioned above (see figure 3-4), if not for

all the pressure levels. Its performance is even stable when confronted with data

not originally in its training set, as evidenced by its performance on the HyMAS

“Golden Days” dataset (an example level is shown in figure 3-8). On that example,

the Bayesian neural network performance on the golden days set is similar to the

performance on the test set (see figure 3-3). This suggests that whatever correlation

it has discovered between the inputs and the variance was not just due to artifacts in

60

Figure 3-8: This is the same problem as shown in figure 3-3, except the Bayesian
neural networks is tested on the HyMAS “golden days” test set. RMSE is in units of
normalized mass mixing ratio.

the training data.

To explain why the Bayesian neural net still sometimes does well at separating

out the cases despite being unable to predict the actual variance well, recall that

the hyperparameters are ultimately optimized using a maximum likelihood metric

(the likelihood is given in equation (3.20)). p(T |α, β) will be maximized by having

the predicted variances σ2 as close as possible to the true variances of the cases.

Given enough data, the true variance in a certain region of the input space can be

approximated as the RMSE of cases in that region, so to maximize the likelihood, σ2

should be approximately be that RMSE.

Now, in the problems where Bayesian neural nets do well, there must be still be

some correlation between the density of the input data in some region (of course,

how dense the data needs to be is dependent on how complicated the function of the

inputs is) and the RMSE of the cases in that region. The hyperparameters would

then be optimized to take advantage of that correlation.

However, as mentioned before, in all problems the predicted variance σ2
n was

dominated by a constant term 1
β
, so that the predicted variance was relatively constant

compared to the actual RMSE, which is certainly not optimal in a maximum likelihood

61

sense. The key here is that the input data density must simply too uniform to allow

for large differences in model uncertainty and thus allow for the predicted variance

to accurately match the RMSE. At best, the Bayesian neural network can assign

slightly higher variance to cases with high RMSE, which is still an improvement in

the maximum likelihood over assigning constant variance to everything. In a sense,

the Bayesian neural network is doing the best it can while constrained by the lack of

a heteroscedastic term in the variance prediction.

3.3.4 Consistency and Hyperparameters

A possible concern, given the very small range of predicted variances, is whether the

Bayesian neural network can consistently be trained to discover that correlation. If

we suppose that all cases are separated into quality categories, a minor change in

the predicted variance of a case might lead to a large change in the designation of

quality of that case. Thus, it is important to ask whether the variance predictions

are generally stable across different trials, and whether the ordering of the cases by

predicted variance is consistent as well across trials.

A major cause might be the weights being in a non-optimal local minima during

training. This should be no more likely than it is for a regular neural network, since

they share roughly the same training algorithm. Another factor could be unoptimized

or poorly estimated hyperparameters, which could arise from deficiencies in the evi-

dence approximation used. Of course, if the correlation between data density and the

variance is strong enough, incorrectly estimated hyperparameters should only cause

the predicted variance to be either too low or too high, but should not have a major

effect on the ordering of the cases by predicted variance.

Empirically it appears that on levels where the Bayesian neural network shows no

skill, repeated trials do not help. An example is shown for water vapor prediction on

the ECMWF/Aqua dataset, where in all the trials the actual RMSE of the various

cases has little to do with the predicted variance (see figure 3-9). In that figure,

although the variance predicted by each Bayesian neural network is slightly different,

none of them show any particular skill at estimating variance (note the y-axis scale

62

Figure 3-9: This figure shows repeated trials of training a Bayesian neural network.
RMSE is in units of normalized mass mixing ratio.

in figure 3-9).

However, on levels where the Bayesian neural network perform well, there are

occasional trials where the hyperparameters are sometimes less than optimal. In the

problem shown in figure 3-10 (estimating temperature on the ECMWF/Aqua dataset

at 958 mb), this leads to a situation where the cases with the lowest predicted actu-

ally have relatively high RMSE (high only relative to other cases with low predicted

variance; the RMSE is still slightly lower than the average RMSE of all cases). In this

particular case, setting the hyperparameter ratio lower brings the variance estimation

performance more in line with the other Bayesian neural networks. The differences

in the results are likely due to finding different local minima in the weight space.

Recall that in Mackay’s approach to hyperparameter estimation, each local minima

should have its own set of optimal (with respect to maximizing likelihood) hyperpa-

rameters, and it seems that some local minima have optimal hyperparameters that

do not separate out the cases well. Following is a more detailed discussion of why the

“optimal” hyperparameters are chosen and how perturbing them affects the variance

63

Figure 3-10: This figure shows repeated trials of training a Bayesian neural network.
The anomaly is due to the RMSE of the cases with the 5 percent lowest predicted
variance, which is much higher than predicted. RMSE is in degrees kelvin.

predictions.

This leads to the question of how sensitive the variance predictions are to changing

the hyperparameters of a Bayesian neural network. If we subscribe to the approx-

imation that there is no dependence of the minima ~wmin on α, then changing the

hyperparameters after training should be the same as starting with those hyperpa-

rameters before training. Of course, this approximation is not true except for the

most basic linear neural networks [5], but it simplifies the following analysis quite a

bit.

Since the term 1
β

has a constant effect on all variance predictions, the only term

we need to look at is gT (∇∇S(~w))−1g. The gradients g with respect to the weights ~w

are not dependent on the hyperparameters, but the Hessian ∇∇S(~w) can be written

as β(∇∇E + α
β
I), where E is the error function (given in equation (3.14)). Since

we are more interested in the predicted variance relative to the other cases and not

the accuracy of the actual number itself, the main factor affecting the Hessian (and

thus the variance) is the ratio of the hyperparameters α
β
. Increasing this ratio will

“regularize” the Hessian more, by increasing the contribution of I. Figure 3-11 shows

the results of varying this ratio on a Bayesian neural network predicting water vapor

64

Figure 3-11: This figure shows the effects of scaling the hyperparameter ratio after
the Bayesian neural network has been trained. RMSE is in units of mass mixing ratio.

on the ECMWF/Aqua dataset on pressure level 940 mb. The “flatness” of that

particular graph implies the Bayesian neural network assigns the same variance to 60

percent of the cases.

One notable consequence of raising the hyperparameter ratio is that the RMSE

of the cases with the lowest predicted variances increases dramatically when the hy-

perparameter ratio is raised slightly from the optimal setting. One factor is that as

the hyperparameter ratio increases, the increasingly dominant I term in the Hessian

will lead to the variance being dominated by the magnitude of the output gradient

gTg. If the magnitude of the gradient is not positively correlated with the RMSE,

then it would certainly be expected that the variance prediction performance would

be degraded as the hyperparameter ratio increased, and that the lowest predicted

variances would be the first to be changed by the increasingly dominant magnitude

term.

However, this also occurs even when the magnitude of the gradient happens to

be correlated with RMSE, such as on the problem of predicting temperature on

ECMWF/Aqua dataset at 958mb (see figure 3-12). On that problem, the variance

prediction improves when the hyperparameter ratio increases, especially when it is

65

Figure 3-12: This figure is based on the same concept as 3-11, except in this case the
default hyperparameters appear to be sub-optimal in terms of allowing the Bayesian
neural network to estimate the difficulty of the cases. RMSE is in degrees kelvin.

increased so much that the magnitude of the gradient starts to completely dominate

the variance prediction. However, when the hyperparameter ratio is decreased, the

variance prediction performance on the first few bins is improved as well. Thus, had

we started with the hyperparameter ratio at 1
2

its actual value, increasing the hyper-

parameter ratio (to its actual value) would have lead to worse variance estimation,

even though the gradient magnitude term would theoretically be more dominant than

before. So a small increase (or indeed, any perturbation at all) in the hyperparameter

ratio could potentially lead to worse variance estimation regardless of whether or not

the gradients are correlated with RMSE.

This is mostly because the effect on the Hessian from a small change in the hyper-

parameters is primarily dependent on the non-diagonal entries, and those are unfor-

tunately not predictable or consistent from problem to problem. This is exacerbated

by the small range of variances predicted, which means that even the tiniest shift in

the Hessian can potentially lead to a major reshuffling of the cases when ordered by

the magnitude of the predicted variance.

Overall, these examples suggests that there are “good” values of the hyperparam-

eters, good in the sense that they lead to variance predictions which can accurately

66

sort out the cases with the lowest RMSE from those with higher RMSE. In some

problems, these good hyperparameters are NOT the hyperparameters found by the

Bayesian neural network, which is maximizing the likelihood.

A natural question is why the Bayesian neural network did not find the good

hyperparameters. One factor could be simply that the approximations made (both the

approximation that p(α, β|T) is sharply peaked, and that the eigenvalues of H have

no dependence on α) are not valid enough here. However, even if the approximations

were valid, it is possible that the “good” value of the hyperparameters actually leads

to a lower likelihood of the data.

To see why, pretend to adjust the hyperparameters from the results. β is hard

to adjust since it represents the average RMSE well. However, α can be increased

so that the the hyperparameter ratio increases (thus letting the Hessian approach I

and letting magnitude of the gradients dominate the variance). Unfortunately, this

also regularizes the Hessian and squeeze the variance range even smaller, so that the

likelihood P (T |α, β) might be lower than otherwise. The opposite (decreasing α) may

not occur due to similar scaling issues. We can write the predicted variance as:

σ2 =
1

β
+

1

β
g(∇∇ED +

α

β
I)−1gT (3.33)

If α, or more precisely the hyperparameter ratio α
β

decreases, the diagonal entries of

the inverse Hessian should increase, most likely causing the term g(∇∇ED + α
β
I)−1gT

to increase. This in turn would throw off the actual variance predicted, since even

if β was decreased (of course assuming α
β

was kept at the same decreased level) to

try and compensate for g(∇∇ED + α
β
I)−1gT increasing, it would be impossible to

adjust the 1
β

and the 1
β
g(∇∇ED + α

β
I)−1gT term independently of each other. Again,

the variance predicted for cases will be unpredictably different, and so the maximum

likelihood under the new setting of hyperparameters might be lower than before.

Thus, it is certainly possible that in the presence of heteroscedastic noise, a set-

ting of the hyperparameters that leads to worse variance estimation performance (as

judged by the ability of the predicted variance to sort the cases in order of increasing

67

RMSE) actually has higher maximum likelihood. Ultimately then, it seems that for

Bayesian networks the maximum likelihood metric might be less suitable when the

goal is to sort cases by their predicted variance instead of comparing the predicted

variance to the actual variance. The central assumptions of Bayesian neural networks

is that β should account for any intrinsic noise in the outputs, and that α, which con-

trols the prior of the weights, should be less relevant as the amount of data increases.

Both of these assumptions appear to be violated in these problems.

3.3.5 Discussion of Results

Overall, the results suggests that a Bayesian neural network is not well-suited to

estimating variance on geophysical parameter retrieval problems. The nature of the

problem suggests a strong heteroscedastic element to the variance, and the results

obtained by the Bayesian neural network confirms this. Even when the Bayesian

neural network does well at estimating the relative difficulty of a case (as judged

by the residual of that case), the estimation is often unstable, as shown both by

the effects of perturbing the hyperparameters and by the results of multiple trials.

This suggests that any correlation between model uncertainty and the RMSE is not

very strong, as otherwise it should be able to withstand small perturbations in the

hyperparameters. Finally, the predicted standard deviation is often limited to a small

range, and does not correspond well to the actual RMSE of the cases.

Most of the problems with Bayesian neural networks stems from its assumption

that the noise is constant throughout, and the only source of non-constant variance

should be from model uncertainty caused by lack of data. Although this assumption

may be true for some problems, the datasets examined here have enough data to

make the main strength of Bayesian neural networks less useful. This motivates the

need for methods that can take into account heteroscedasticity.

68

Chapter 4

Additional Confidence Estimation

Methods

As previously mentioned, Bayesian neural network’s main weakness is its inability to

adapt to heteroscedasticity. In remote sensing the reliability of, say, a temperature

retrieval can be much lower in the presence of heavy clouds or heavy dust cover, both

conditions which also lead to detectable changes in the radiance inputs. Methods

that are to accurately estimate confidence must therefore take this heteroscedasticity

into account.

In this chapter, I will review two such confidence estimation methods, Mixture

Density Networks and Sparse Pseudo Input Gaussian Process Regression (SPGP). As

far as I am aware, these methods have not been tried before in remote sensing. I will

discuss the theoretical strengths and weaknesses of each approach, and then present

the results on the datasets previously discussed.

4.1 Mixture Density Networks

Mixture density networks (MDNs) are a variation on the classic neural network. In-

stead of estimating the targets directly, mixture density networks attempt to estimate

the parameters of a Gaussian mixture model (GMM) which describes the target dis-

tribution. In theory, the GMM is general enough that a MDN can model any sort

69

Figure 4-1: This is an example of the type of data that could benefit from being
modeled by an MDN. This is a simple synthetic toy dataset, and so the x-axis and
y-axis units are not important here.

of output distribution, even inverse problems involving a one-to-many mapping. A

simple example is shown in figure 4-1, and the contour plot of the actual predicted

output distribution of the MDN is shown in figure 4-2. There, we can see that the

arcsine-like function is impossible to model correctly with a regular neural network,

because the center portion has multiple y-values for any single x-value. However,

theoretically an MDN can model the distribution of data in the center using a triple

peaked Gaussian mixture model.

4.1.1 Gaussian Mixture Models

Gaussian mixture models are a probabilistic model for density estimation using Gaus-

sian distributions as the mixture components. As a trivial example, if the distribution

we wanted to model was actually Gaussian with mean µ and standard deviation σ,

the ideal (in terms of Bayesian likelihood) GMM would consist of one mixture com-

ponent: a Gaussian with mean µ and standard deviation σ. A more complicated,

non-Gaussian probability distribution would be modeled by the sum of several Gaus-

sian components. For example, if a probability distribution is double-peaked, there

70

Figure 4-2: A contour plot of the output distribution of a MDN with three Gaussian
components modeling the same dataset as in figure 4-1. This plot shows the distri-
bution p(y, x), from which it is easy to obtain p(y|x) for any x by simply multiplying
by a normalization factor p(x).

Figure 4-3: The red non-Gaussian distribution is revealed to be a weighted sum of
two Gaussian ones

could be two Gaussian components in the GMM, one for each peak. Another inter-

esting case is shown in figure 4-3, where the complicated non-Gaussian distribution

is modeled by the sum of two Gaussian distributions.

For more flexibility, a GMM is usually a weighted sum of the Gaussian compo-

nents, and the weights themselves are also parameters to be determined. Thus, we can

fully parametrize a Gaussian mixture model as the means and standard deviations of

71

Figure 4-4: This shows the structures of a mixture density network. The parameter
vector x refers to the weights oi, the means µi and the standard deviations σi. This
figure was taken from the MDN paper by Bishop [4]

the g Gaussian distributions, as well as the g weights in the weighted sum (these are

not the same as the neural network weights). Mathematically, the distribution can

be written as

p(t) =

g∑
i=1

oiN(µi, σi) =

g∑
i=1

oi
1√

2πσi
exp

(
−||t− µi||

2

2σ2
i

)
(4.1)

4.1.2 MDN Structure

Structurally, an MDN (shown in figure 4-4) is very similar to a regular neural network.

The primary difference is that instead of one output, the MDN has three groups

of outputs, which correspond to the weights, means, and standard deviations that

72

parametrize a Gaussian mixture model. The actual number of outputs depends on

the number g of Gaussian components, which is specified beforehand. Since there

are g weights, g means, and g standard deviations, there are 3g outputs, as opposed

to one output for a typical neural network. Call these outputs z, with the outputs

controlling the weights being zo, the outputs controlling the standard deviations as

zσ and the means as zµ.

Because the outputs are parameters of a Gaussian mixture model, they must obey

certain rules. To this end, the actual neural network outputs z are transformed into

the parameters of the Gaussian mixture model.

The weights, oi, must lie within [0, 1] and sum to unity. To enforce this, the neural

network outputs zo are transformed to o via a softmax function:

oi =
exp(zoi)∑
j exp(zoj)

(4.2)

The variances σ must be positive, so we exponentiate the outputs zσ:

σi = exp(zσi) (4.3)

This has the additional important benefit of making it harder for standard deviations

to go to zero, which can potentially be a large problem when maximizing the likelihood

later on.

Finally, the means µi are just directly the outputs, so that µi = zµi .

To train this neural network, we minimize the log-likelihood of the training targets

T , which is:

ET =
∑
t∈T

− log(p(t|x)) (4.4)

where p(t|x) is the same as equation (4.1), except that the dependence of σi(x), wi(x),

and µi(x) on the inputs x is made explicit. The derivatives of the outputs z with

respect to this error function ET can be obtained in a manner similar to regular neural

networks, and the MDN can then be trained by similar gradient ascent methods by

maximizing likelihood (see appendix A.2 for details). Note that due to the lack of

73

Figure 4-5: This figure shows a toy dataset, as well as the contour plot of the output
distribution of a MDN with one Gaussian component. The MDN assigns the lone
data point indicated by the arrow very low variance.

any model complexity penalties, given enough Gaussians components in the GMM,

the highest likelihood would be achieved with 0 standard deviation Gaussians exactly

centered around the input data. The earlier transformation σi = exp(zσi) helps to

combat this by making it impossible for standard deviations to reach zero.

MDNs should be ideal for modeling the full distributions of the target outputs

provided there is enough training data. Unfortunately, like a variance estimation

neural network, MDN variance predictions on inputs that are different enough from

the training inputs are not trustworthy. Furthermore, if input data are lacking (for

example, there is only one training point in some area of the input space), the MDN

can “pinch in” on the training point, estimating very low variance, due to the fact

that the maximum likelihood Gaussian output distribution at that point would es-

sentially be a delta function (see figure 4-5). This can be a problem depending on

the characteristics of the dataset.

74

4.1.3 MDN training

In the problems that I used MDNs on, I found that having more than one mixture

component leads to unnecessary complications. Inverse problems where a single x

is mapped to multiple y-values often have multiple local minima if we optimize the

likelihood, especially if there is not enough data. With multiple Gaussian components

and not enough data density, the MDN often tended towards multi-valued solutions,

whether warranted or not. For example, there were many instances of the MDN pre-

dicting a multi-modal distributions, but with at least one of the Gaussian’s predicted

variance being extremely small. Figure 4-6 shows three different trials of a MDN with

three Gaussian components on a toy dataset that exhibits heteroscedastic behavior.

In all three trials, the MDN predicts multi-modal output distributions which seem

unnecessarily complex. Moreover, the three trials give wildly different results, sug-

gesting local minima is a large problem when optimizing MDNs that have multiple

Gaussian components. The reason this pathological behavior did not occur on the

sinusoidal dataset (figure 4-1) was because the data density is extremely high there,

which is not the case in the toy dataset here, and more importantly is not the case

on the actual datasets. The aforementioned lack of a complexity penalty term to

penalize complex output distributions hurts the MDN performance here.

We have already seen that the MDN with multiple Gaussian components tends

towards multi-modal output distributions. However, the predicted mean with one

mixture component and a multitude of mixture components should be one and the

same, and having multiple components does not give more useful outputs unless the

target function is indeed strongly multi-valued. In the remote sensing problems that

I studied, such multi-valued functions seemed rare, if they existed at all. One factor

could be the noisiness of the data obscuring any such distribution. It could also be

the case that there is not enough data to unambiguously make the case for a multi-

valued function rather than simply a very noisy or complex one-to-one function, such

as what seemed to happen for the dataset in figure 4-6.

Finally, having multiple mixture components imposes the problem of interpreting

75

(a) A contour plot of the predicted output dis-
tribution of a trained MDN with three Gaussian
components

(b) A contour plot of the predicted output dis-
tribution of a trained MDN with three Gaus-
sian components, starting with different initial
weights

(c) A contour plot of the predicted output dis-
tribution of a trained MDN with three Gaus-
sian components, starting with different intial
weights

(d) A contour plot of the predicted output dis-
tribution of a trained MDN with one Gaussian
component

Figure 4-6: This figure shows three different runs of a MDN with three Gaussian
components (figures 4-6(a),4-6(b), and 4-6(c)), as well as an MDN with only a single
Gaussian component (figure 4-6(d)) on the same toy dataset. The data points are
indicated with the crosses.

76

the predicted standard deviation for any particular input. Since we don’t know the

actual shape of the output distribution short of actually graphing and examining it,

the predicted standard deviation may not be of much use in terms of summarizing

the distribution.

Overall, I found that having only a single mixture component was enough for

my purposes, while simultaneously also reducing the training time and increasing

the robustness of the final result to local minima. The obvious downside is that it

cannot accurately model any non-Gaussian noise, which may be a problem for some

applications.

MDN consistency

Once there is only a single Gaussian component, the performance of MDN is fairly

stable across retraining the hyperparameters on the same problem. Although there

are indeed many local minima, they seem to give roughly the same performance in

variance estimation. As an example, I ran five trials of MDN on the HyMAS water

vapor dataset, shown in figure 4-7.

Figure 4-7: This figure shows five repeated trials of training MDN to estimate water
vapor on the HyMAS dataset, pressure level 535 mb. RMSE is in units of normalized
mass mixing ratio.

77

4.1.4 MDN “hyperparameters”

Recall from section 2.3 that all the networks I used have only one hidden layer.

I chose the number of hidden nodes (20) of the MDN to be the same as that of any

other neural network, and initialized the weights similarly also. The intuition for the

latter is that the MDN I used (with only one Gaussian component) is simply a neural

network with a different error metric, so that the optimal settings of the weights

should still be roughly the same as before, at least for estimating the mean of the

Gaussian. The weights that optimize the variance of the Gaussian with respect to the

likelihood of the data may be different, but after MDN training the magnitude of the

weights was similar to conventional neural networks, indicating that the initializations

were sound.

The number of hidden nodes was chosen fairly arbitrarily. The main motivator

was that 20 hidden nodes was a good choice for regular neural networks, and the

performance of the neural network seemed fairly insensitive to the number of hidden

nodes past a certain number. However, there could certainly be room for improvement

here in terms of reducing the number of hidden nodes, if training time is of paramount

concern.

4.1.5 Network weights initialization

For the most part, the network weights (including the biases) were initialized by

taking random samples from a normal distribution, with the standard deviation set

to the square root of the number of nodes in the layer (so that the sum of the weights

in a particular level would be a normal with unity standard deviation). However,

the bias terms of the output layer was set to be the appropriate initial parameters of

the Gaussian “mixture” model. In this case, since there was only one Gaussian, the

mean and the standard deviation were set to the mean and standard deviation of the

targets.

78

4.2 Sparse Pseudo-Input Gaussian Process regres-

sion

Overall then, MDNs should be a powerful method for modeling variance. However,

the fact that MDNs cannot take into account the model uncertainty (the uncertainty

due to lack of data) was the motivation for looking into other methods, like SPGP.

Sparse Pseudo-input Gaussian Process regression (SPGP for short) is a relatively

recent regression technique that scales the highly successful Gaussian Process regres-

sion to be tractable on large data sets (> 10000 training profiles). To understand

SPGP, it is helpful to first discuss Gaussian processes and how they can be used for

regression.

4.2.1 Gaussian Process Regression

Gaussian Process regression, or GPR, is a way to do Bayesian inference using Gaussian

processes. Gaussian processes themselves can be thought of as infinite dimensional

Gaussian distributions. The Gaussian process defines a probability distribution over

functions y(x), in much the same way that a multivariate Gaussian distribution is

defined over vectors x [16]. It is perhaps intuitive to think of functions as an infinite

dimensional vector, such as the coefficients of the Fourier transform or the Taylor

series.

The (infinite) functions defined by the Gaussian processes (the prior) are then

conditioned on the training data, so that only functions which match the training

data are left (the posterior). This (also infinite) number of functions is then used for

predictions. The mean of these functions is the predicted function, and the standard

deviation is derived similarly. A simple example can be seen in figure 4-8. A few

sample functions from the prior are shown, along with the implied standard deviation

(the gray area). The rightmost figure shows the posterior function and the implied

standard deviation. As expected, the standard deviation is zero at the training data,

and grows larger away from the data.

79

Figure 4-8: A simple example of GPR. On the left, a few sample functions from the
prior are shown, along with the implied standard deviation (the gray area). The
rightmost figure shows sample functions drawn from the posterior after conditioning
on the data marked by the crosses.

Of course, it would be inconvenient to write out infinite dimensional vectors and

infinite numbers of functions, so in the context of GPR, Gaussian processes are often

written as the output distribution at a particular point we are interested in, like so:

GP(y(x)) = N(µ,K(x,x′)) (4.5)

where µ is a mean, and K is the covariance, also known as a “kernel” in this context.

The covariance matrix consists of n×n entries k(x, x′), where k is the kernel function

and x are the individual input values contained in the vector x. The previous equation

focused on the values of the function y(x) on only the finite vector of input values x,

which had a multivariate Gaussian distribution with mean µ and covariance K.

Since the Gaussian process is a probability distribution, it can then be used as a

prior over possible functions to model the data. Often, priors over the functions are

p(y) = N(0, K) (4.6)

with mean 0 and covariance K (µ is often taken to be 0 for simplicity [21]; we

can always subtract the mean from the targets so that the mean of the transformed

80

targets is 0). Now, assume that the noise in the training targets t is distributed

normally with variance σ2. In this case, the notation t is a vector consisting of all

the targets ti (essentially, t is the vector form of all the training targets T). Then we

have that

p(t|y) = N(y, σ2I). (4.7)

Finally, ∫
p(t|y)p(y)dy = p(t) = N(0, K + σ2I) (4.8)

This quantity is also known as the marginal likelihood, much like the similar

quantity in Bayesian neural nets (note that there is also a similar variance term).

It is the probability that we see the training targets, given the possible underlying

functions.

To perform predictions tt on a test set (although the notation tt implies that

these are the test targets, this is somewhat unfortunate since these are actually the

predictions), we form the joint marginal likelihood p(t, tt) of the test set and training

sets (which is Gaussian), and then find the conditional probability p(tt|t). Here is

where the use of Gaussian processes comes in handy, because

p(tt|t) =
p(t, tt)

p(tt)
(4.9)

is also a Gaussian process (this is a property of Gaussian distributions). Thus, we

can write

p(tt|t) = N(µ,Σ) (4.10)

To find the parameters µ and Σ, we first examine the joint prior probability p(y,yt)

(the notation (y,yt) means it is a single, concatenated vector)

p(yt,y) = N(0, Kn+t) (4.11)

81

where Kn+t is a block matrix

Kn+t =

 K Ktn

Knt Kt

 . (4.12)

K is the previous square covariance matrix consisting of the training data. Kt is

similar, but consisting of the test data only. Ktn and its transpose Knt are rectangular

matrices that are the covariances of the training with the test data, with entries

k(x,xt), where x are the inputs of the training set and xt are the inputs of the test

set.

Analogous to before (equation (4.8)), the joint marginal likelihood is then:

p(t, tt) = N(0, Kn+t + σ2I) (4.13)

Using the previously mentioned theorem on Gaussian distributions, the conditional

probability can be extracted from the joint:

p(tt|t) = N(µ,Σ) (4.14)

µ = Knt(K + σ2I)−1t (4.15)

Σ = Kt −Ktn(K + σ2I)−1Knt + σ2I (4.16)

Thus, for any particular input vector xt, we get the full probability distribution

p(tt) of possible outputs, which is a multivariate Gaussian distribution. The most

likely tt is the mean Knt(K + σ2I)−1t. The predicted variance is diag(Kt −Ktn(K +

σ2I)−1Knt+σ2I), since we usually do not care about correlations amongst the various

output cases.

Kernels

The covariance matrices, or the kernels, completely parametrize the Gaussian process

function priors. In the literature, the squared exponential (or Gaussian) kernel is

82

often used, having the form:

K(x,x′) = a2 exp

(
−||x− x′||2

2λ2

)
(4.17)

where x and x′ are vectors. a and λ are hyperparameters which are the same for

all elements in K, and that are assumed to be fixed for now. Selection of suitable

hyperparameters will be discussed later.

One desirable property of this kernel is that points that are close together (in x)

are highly correlated, which is intuitively appealing. The speed of the dropoff in the

correlation is controlled by λ.

Of course, there are many other possible kernels that could be used as well, but

the squared exponential kernel has been successful in a wide variety of nonlinear

regression and classification tasks [21] [19] [3], and is the one used in this thesis.

Hyperparameter Optimization

One attractive property of Gaussian process regression is that optimizing hyperpa-

rameters can be done through gradient descent instead of through more time con-

suming methods like cross-validation. The quantity to be optimized (maximized) is

usually the log of the marginal likelihood expressed in equation (4.8) (this is of course

the same as maximizing the likelihood, but is more numerically stable and easier to

simplify). We rewrite it as a function of the hyperparameters, θ:

L = log p(t|θ) = logN(0, K + σ2I) (4.18)

L = −1

2
(tT (K + σ2I)−1t + log |K + σ2I|+ n

2
log 2π) (4.19)

The hyperparameters θ are included in the kernel matrix K.

The gradients of L with respect to each individual hyperparameter θi in θ is then:

∂L

∂θi
=

1

2
(tTK−1∂K

∂θi
K−1t− tr(K−1∂K

∂θi
)) (4.20)

83

where ∂K
∂θi

is a matrix of derivatives that is dependent on the choice of the kernel.

We can then use any gradient based optimization method, like the popular LBFGS

(Low memory Broyden-Fletcher-Goldfarb-Shanno algorithm) [13], to optimize the

likelihood and find the “best” hyperparameters. Note that the marginal likelihood

(equation (4.19)) is composed of two terms that ultimately end up in the derivative:

tT (K + σ2I)−1t and log |K + σ2I| (the third term n
2

log 2π) is just a normalization

term and has no dependence on any hyperparameters). The first term increases as

the model better fits the data. The latter term log |K + σ2I| is independent of the

data and is effectively a complexity penalty that favors less “extreme” settings of the

hyperparameters [16]. In this sense, it is much like the weight regularization term in

Bayesian neural networks.

4.2.2 SPGP Predictions and Derivatives

The primary weakness of Gaussian process regression as presented is its inability

to scale to large data sets. Setting aside the time it would take to optimize the

hyperparameters, the prediction of new data requires the inversion of (K + σ2I) (see

equation (4.14)), which is a n × n sized matrix, where n is the number of training

cases. Since matrix inversion requires O(n3) computation, this does not scale well

past 10000 entries or so on modern computers. Moreover, a 20000 by 20000 matrix

of double precision floats would be 3 gigabytes, which is difficult to fit into memory.

Yet in remote sensing, databases of millions of simulated cases are not uncommon.

Even though full Gaussian process regression would not be tractable on such

datasets, approximations to Gaussian process regression might be. In the literature,

such approximations often take the form of replacing the kernel matrix K with a

lower rank matrix Q. The simplest is perhaps just discarding parts of the dataset, an

approach known as subset of data (SD) [16]. Perhaps a more sophisticated approach

is to use only part of the data, say m cases, to approximate K, so that Q becomes

Q = Qn = KnmK
−1
m Kmn (4.21)

84

This is known as the Nystrom construction [21] [16], and is quite common in many

approximation schemes [27]. The trick is selecting the best m cases, because the

approximation will decrease in accuracy away from those m inputs. Another way to

think about this is to regard the function predicted by Gaussian process regression

as function of the input cases:

tt(xt) = Knt(K + σ2I)−1t =
n∑
i=1

αik(xi,xt) (4.22)

Then, the approximation is to simply replace the n terms αik(xi,xt) with m terms,

creating a simpler approximation to the original function.

In SPGP, the m vectors are not necessarily inputs, but are instead known as

pseudo-inputs. Pseudo-inputs, denoted as x̄i, where i ∈ [1,m], can be thought of as

hyperparameters to be optimized later, and are not necessarily part of the original

training data. The pseudo-inputs (combined with appropriate pseudo-outputs) make

up an alternative, smaller dataset that best summarizes the features of the original

data, in a sense.

To start, it is assumed that there is no noise on the pseudo-outputs ȳ, since

they are not real data. Now, if we apply Gaussian process regression to the pseudo-

dataset, the predicted probability of an output target tt for a test input xt would be

the following:

p(tt(xt)|ȳ) = N(Kmt(Km)−1ȳ, Kt −Ktm(Km)−1Kmt + σ2) (4.23)

This is exactly the same as the prediction of equation (4.14), except with the noise

term σ2I removed from the kernel. If the test inputs xt are now taken to be the actual

training data xi, the full likelihood of the training targets is

p(t(x)|ȳ) =
n∏
i=1

p(ti(xi)) = N(Kmn(Km)−1ȳ, diag(Kn −Qn) + σ2I) (4.24)

Qn is given in equation (4.21). It turns out that the pseudo-outputs ȳ can be easily

85

integrated out if a Gaussian prior is placed upon them

p(ȳ) = N(0,Km) (4.25)

This is effectively the same prior placed upon the actual outputs in regular Gaussian

process regression (see equation (4.6)). Then, we can integrate out the pseudo-outputs

to get the marginal likelihood p(t), in much the same way that we did in equation

(4.8):

p(t) =

∫
p(t(x)|ȳ)p(ȳ)dȳ = N(0, Qn + diag(Kn −Qn) + σ2I) (4.26)

The derivation of the predicted distributions again closely follows that of the

Gaussian process regression. We form the joint marginal likelihood after considering

the joint prior, much like in equation (4.13):

p(t, tt) = N(0, Qn+t + diag(Kn+t −Qn+t) + σ2I) (4.27)

By the same theorem as before (see equation (4.10)), SPGP gives a Gaussian

process for the test data, with predicted mean and variance

p(tt) = N(µ, c2) (4.28)

µ = Qtn[Q+ diag(K −Q) + σ2I]−1t (4.29)

c2 = Ktn −Qtn[Q+ diag(K −Q) + σ2I]−1Qnt + σ2 (4.30)

where c2 is the variance of the distribution.

So far, the hyperparameters (mostly, the pseudo-inputs) have been assumed to

be fixed, but we can again find the hyperparameters that maximizes the marginal

likelihood (equation (4.26)) by using gradient ascent just as in Gaussian process

regression (see appendix A.3 for details).

86

4.2.3 SPGP with Dimensionality Reduction and Heteroscedas-

ticity

The speed of SPGP can be further improved with dimensionality reduction (DR).

Since the number of hyperparameters to optimize scales linearly with the size of

the input dimension, high input dimensions can lead to very slow performance as the

optimizer is forced to work over an increasingly high dimensional manifold. Moreover,

the possibility of being trapped in an undesirable local minima increases as well.

The idea of dimensionality reduction is to reduce the number of input dimensions,

which also reduces the dimensions of the pseudo-inputs (they have the same dimen-

sions as the real inputs), leading to a reduction in the number of hyperparameters

to optimize. Dimensionality reduction is accomplished by a linear transformation of

the inputs, much like PCA. The components of the linear transformation matrix P

are then additional hyperparameters to be optimized. Note that the pseudo-inputs

need not be transformed, since we can just make them have the required number of

reduced dimensions. Thus, the kernel matrix Km is unchanged from this addition.

On the other hand, the kernel matrix Knm is now composed of terms:

Knm(i, j) = K(xi, x̄j) = a2 exp(−1

2
(Pxi − x̄j)

2) (4.31)

Where P is the linear transformation matrix. P should be of size r × d, where d is

the original number of input dimensions (for example, there are 25 input dimensions

in the ECMWF/Aqua dataset), and r is the number of reduced dimensions. Nothing

else need change from before. As a side effect, the projection matrix P can scale the

input dimensions, so that the lengthscale parameter in the square exponential kernel

is subsumed into P.

Empirical results show that DR is effective in reducing training and prediction

times without compromising accuracy [21]. Moreover, if the entries in the projection

matrix are then optimized by gradient descent on the likelihood function, it turns

out that using P is markedly superior to PCA for reducing the number of input

dimensions [21].

87

Another extension of SPGP is to deal with heteroscedasticity. So far, Gaussian

process regression is much like Bayesian neural networks in that it primarily accounts

only for variance from model uncertainty. Now, SPGP can partially account for

heteroscedasticity by the positioning of the pseudo-inputs–since the variance increases

further away from the pseudo-inputs, theoretically the SPGP can best optimize the

likelihood by placing pseudo-inputs in places with low variance and moving pseudo-

inputs away from places with high variance. Unfortunately, since the SPGP function

tends to the uninformative prior (ie. the constant zero function) further away from

the pseudo-inputs, moving pseudo-inputs away from high variance areas could also

potentially lead to underfitting in those areas.

An addition of a term hi to each diagonal entry of the kernel matrix Km can allow

SPGP to somewhat compensate for this. There will be m such terms, one for each

pseudo-input. As hi increases, the row and column that contain the kernels of the ith

pseudo-input in the inverse kernel K−1
m tends to 0. Thus, the contribution from that

pseudo-input to the approximate kernel Q disappears. At hi = 0, the ith pseudo-input

acts the same way as before. This leads to a gradation of a pseudo-input’s contribution

to the prediction and to the predicted variance, allowing for heteroscedasticity to be

modeled while at the same time allowing for the function to be accurately modeled

in that region as well.

This affects the kernel only, and we again can treat hi as hyperparameters that

can be optimized by gradient ascent.

4.2.4 SPGP training

From the preceding sections, it’s clear that most new hyperparameters introduced by

SPGP can be automatically optimized. However, the number of pseudo-inputs and

the number of reduced dimensions must be chosen manually, akin to selecting the

number of hidden nodes in a neural network. For the various problems, I have chosen

numbers through limited testing on particular pressure levels on the ECMWF/Aqua

dataset, but they are not guaranteed to be optimal throughout the atmosphere, and

certainly not optimal for different datasets.

88

Hyperparameter Initialization

One important consideration in SPGP training is the initialization of hyperparame-

ters. The gradient descent portion of SPGP, like many other schemes that rely on

maximizing likelihood, is theoretically vulnerable to being trapped in undesirable lo-

cal minima [21]. Even if the manifold is accommodating enough that local minima are

not a problem (unlikely in our high-dimensional problems with large training sets),

it is still in our interest to initialize the SPGP hyperparameters so that gradient de-

scent can finish as soon as possible, since SPGP is more time consuming than neural

network training.

I initialized the hyperparameters in the following manner. For the projection

matrix P, I chose to initialize it using the PCA matrix, reasoning that the best

linear dimensionality reduction technique should provide a good baseline to improve

upon. Of course, there is much room for improvement here. For example, I do not

take into account the SPGP-DR’s use of the P as a substitute for the length-factor

hyperparameters in regular SPGP without DR. A better initialization might scale P

so that the points in the projected space are closer together in more “informative”

dimensions.

For the hyperparameters h = [h1, ..., hi, ..., hm] that control the heteroscedasticity

of SPGP, I initialized by choosing a group of 100 points near each pseudo-input and

computing their standard deviation of the targets. Intuitively, this would seem to

generate good h values because h should be large for those pseudo-inputs that are

in regions of with a fair amount of noise, since we might expect the variance of

cases in that region to be higher. Although the initial h values may then not be

scaled correctly, I compromised by simply dividing all the initial h by the mean. In

case the standard deviation of the targets are extremely high or extremely low, this

normalization of h will ensure that the mean of the h values is not affected, hopefully

allowing for a more consistent and probable starting h and thus faster convergence

during training.

Empirically, the initialization of hyperparameters mostly affects the training time

89

of SPGP. For example, randomly initializing the projection matrix (instead of using

PCA to initialize) increases the training time (time until validation failure), but does

not change the final log likelihood a significant amount (not more than what changes

between separate trials). However, empirically there was a twofold increase in training

time, so it is still important to have a good starting point for the hyperparameters.

Dimension and Pseudo-Input selection

Unlike the other hyperparameters, the number of dimensions and the number of

pseudo-inputs must be fixed beforehand and cannot be found via gradient descent.

Thus, the natural way to select good numbers is by exhaustively testing different set-

tings on a validation set. Unfortunately, given the time-consuming nature of training,

it was impractical to do this for each pressure level, just like it would be impractical

to change the neural network structure at each level. Therefore, the parameters were

chosen by limited testing of different hyperparameters on a chosen pressure level on

the ECMWF/Aqua test set only. From that experience, the number of dimensions

and number of pseudo-inputs only had very limited impact on the actual RMSE and

variance prediction past a certain setting of the hyperparameters. Instead, the main

tradeoff here is between accuracy of the results (both the parameter and variance

predictions) and training and testing time (with larger values of the hyperparameters

leading to slightly more accurate results). Clearly, this result is problem dependent,

and it is essential to do more hyperparameter testing on any new remote sensing

problem with more input parameters or a fundamentally different output.

For all the SPGPs I used 8 reduced dimensions, and 100 pseudo-inputs 1.

SPGP Training by Iteration

It is helpful to understand how the mean prediction and variance estimate of SPGP

evolves as the hyperparameters are optimized to increase the likelihood. There are

1Since this was optimized for the ECMWF/Aqua dataset, with d = 25 inputs, this may be more
than the optimal number of reduced dimensions for the precipitation dataset, which only has d = 13
inputs. However, there was no sign of overfitting on that dataset when comparing performance of
the SPGP on the training and test set.

90

two distinct stages to SPGP training. First, the root mean square error (RMSE)

of the targets compared to the predictions is reduced by optimizing the projection

matrix P and the location of the pseudo-inputs. The predicted variance is generally

constant and the same for all profiles. Then, the RMSE stays relatively constant

while the variance estimates become more refined.

Figure 4-9: This figure shows how the RMSE (in normalized mass mixing ratio) and
variance estimate of SPGP evolve over 80 iterations of gradient descent. The x-axis
represents the training time. The 2D y-z plane shows the RMSE as a function of the
predicted variance. As training time increases, the slope in the y-z plane becomes
steeper, representing better variance estimation.

As an example, figure 4-9 shows how the RMSE and variance estimates evolve on

the particular problem of estimating water vapor near the surface. The figure is set

up so that the 2D slice at each iteration represents a graph of the cumulative RMSE.

The numbers represent the percentage of profiles used to calculate the RMSE; the

profiles chosen have the lowest estimated variance. For example, we can see that after

80 iterations, the 50 percent of profiles with the lowest estimated variance have an

RMSE of around 0.12.

The general trend evident is that the RMSE (the right side of the figure) decreases

91

rapidly in the first ten or so iterations. However, past that RMSE remains relatively

constant. By contrast, the quality of the variance (as measured by the steepness of

the surface from left to right) is low in the first 10 iterations, but improves thereafter.

The quantity that SPGP is optimizing, the log-likelihood of the data, decreases the

most rapidly during the phase when RMSE is improving, and much more slowly

thereafter (see figure 4-9).

This has some implications for SPGP training. Unlike the RMSE metric used by

neural networks, the raw log-likelihood is not directly related to the quality of the

retrieval. It is possible for the log-likelihood to be lower for some particular SPGP,

but the variance prediction of that same SPGP could be poorer than another SPGP

with a higher log-likelihood (although the RMSE would likely be better). It is also

important to keep in mind during SPGP training that although the log-likelihood does

not seem to be improving much per iteration later on, the actual variance predictions

could still be improving quite dramatically.

SPGP consistency

The performance of SPGP is fairly stable across retraining the hyperparameters on

the same problem, probably due to hyperparameter initializations biasing the opti-

mization method toward certain local minima. Although there are indeed many local

minima, they seem to give roughly the same performance in both variance estimation

and parameter estimation. As an example, I ran five trials of SPGP on the HyMAS

water vapor dataset, shown in figure 4-10. The SPGP is extremely consistent on that

example.

4.3 Results on the Datasets

The dataset used in the subsequent section are the ECMWF/Aqua dataset and the

HyMAS dataset, which were described in detail in chapter 2. Both datasets consist

of detected radiances as inputs and geophysical parameters as targets.

92

Figure 4-10: This figure shows 5 repeated trials of training SPGP to estimate water
vapor on the HyMAS dataset, pressure level 535 mb. RMSE is in units of normalized
mass mixing ratio.

4.3.1 Metric used

I used the same two presentation methods for the figures described in section 3.3. I

also again used functions of latitude as a baseline for comparison (see section 3.3.1).

However, to compare between variations of the same general method (SPGP using

different hyperparameters, for example), it can be advantageous to use the negative

log-predictive density (NLPD) as an alternative metric to RMSE. The NLPD is de-

fined for n test cases as:

NLPD =
1

n

n∑
i=1

(
1

2
log

(
(2πσ2

i) +
(ti − yi)2

2σ2
i

))
(4.32)

where σi, ti, yi are the variance prediction, the truth, and the mean prediction,

respectively of the ith test case. The NLPD is simply the likelihood that the set of

cases are generated by the Gaussians with the predicted parameters. Empirically, the

NLPD does very well at summarizing the performance of SPGP variants with a single

number (see figure 4-11), which is to be expected given that SPGP picks parameters

that maximizes the likelihood that the data is generated by a Gaussian process. Based

93

Figure 4-11: This figure shows various variance estimation methods on the HyMAS
golden days dataset, pressure level 753 mb. RMSE is in degrees kelvin. Note that
the SPGP estimating temperature directly (green) has a steeper slope than SPGP
estimating the temperature residuals (red), but the green SPGP has a slightly higher
overall RMSE (the RMSE at x = 1) than the red SPGP. However, NLPD of the green
SPGP is 1.07, lower than the 1.17 for the red SPGP, which is consistent with our
intuition that the green SPGP is “better” overall because of its superior performance
at predicting variance.

on the same principle, it is also useful to compare between different MDNs with only

one Gaussian component (MDNs with multiple Gaussian components do not predict

Gaussian output distributions).

However, it is important to keep in mind that the two metrics (the plots and the

NLPD) are not completely interchangeable. If the predicted variance is scaled by

some factor, the graph of RMSE vs predicted variance will not change, but NLPD

will. Because of this, NLPD is unfortunately not as useful in comparing between the

neural networks and SPGP, at least not in the context of our problem. The variance

predicted by neural networks on test sets is often too low, which causes the NLPD to

be extremely large.

The most useful characteristic of NLPD is comparing between two methods that

94

give fairly accurate estimates of the variance, such as MDNs and SPGPs. If a prob-

lem demands an accurate estimate of the variance and any noise is assumed to be

Gaussian, then NLPD can conceivably replace the other metrics used. Still, to give

fair consideration to variance estimation neural networks, I did not use NLPD as the

main metric for comparison.

4.3.2 Residual Estimation SPGP and MDNs

The most straightforward way to use SPGP or MDN is to apply it directly to the

problem at hand, as a substitute for neural networks or linear regression. The inputs

and the targets are the same as those given to a neural network. Although simple,

this approach leads to some mixed results. In general, both the SPGP and the MDN

are weaker in terms of estimating total RMSE than a neural network. For example,

figure 4-20 compares the performance of SPGP and MDNs versus neural networks in

estimating water vapor on the ECMWF/Aqua dataset.

However, another possibility for using the two methods described is as a substitute

for the variance estimation neural network, so that the targets for the SPGP or

MDN are now the residuals of the parameter estimation neural network. The SPGP

(or MDN) thus becomes a post-processing stage, with the inputs the same as for

the neural network, and the target function being the residuals of the parameter

estimation neural network (see figure 4-12). Assuming that the parameter estimation

neural network is unbiased in its estimation of the data, the residuals will have a

mean of zero. But the SPGP or MDN should still be able to model the variance

of the residuals, which should reflect any heteroscedasticity. Moreover, the SPGP or

MDN variant can also still model any uncertainty caused by lack of data, an advantage

over a variance estimation neural network.

A minor advantage of this approach is that the SPGP or MDN may be able

to improve upon the performance of the parameter estimation neural network if it

can model any pattern in the residuals. This is only possible if the neural network

underfit. However, in the problems that I tested, subtracting the predictions of the

residual estimation methods from the neural network prediction did not improve the

95

RMSE significantly (or at all, in some cases). Thus, in the following I only looked at

the variance predictions of the residual estimation methods.

The most compelling reason for this approach over the direct approach is that we

do not need to discard any previous neural networks, especially when they have been

working well at estimating parameters (temperature, water vapor), and estimating

them more accurately than the SPGP and MDN. There can be a significant difference,

especially for difficult problems like the HyMAS water vapor estimation.

Discussion of residual estimation SPGP

For SPGP, an additional slight advantage is that the time required to optimize hy-

perparameters for SPGP is often reduced. This is related to how SPGP training

proceeds, where precipitous decreases in negative log likelihood first occur due to in-

creasingly more accurate parameter estimation, and only later does the log likelihood

decrease due to optimizing the predicted variance. In the case of residual estimation

SPGP, the first part of the training (learning to estimate the parameters correctly)

is effectively skipped, since there should be theoretically be no more improvement

possible in parameter estimation. However, in a few problems, adding the mean pre-

dicted by SPGP does improve the overall RMSE by a very small amount, indicating

that the neural network was stuck in a suboptimal local minima.

One potential objection to this method in the case of SPGP is that the model

uncertainty (uncertainty from lack of data) is dependent on the complexity of the

function at that point. If a function is varying rapidly, the intuitive expectation is

that the uncertainty increases very quickly when extrapolating. On the other hand,

if a function is mostly constant, there should be a higher degree of confidence in the

extrapolation. For example, imagine being asked to predict the trajectory of a fighter

jet engaged in a dogfight versus that of car driving along a straight stretch of highway.

The residual estimation SPGP uses the residuals as the targets, and the mean of the

residuals (the “car trajectory” we are estimating) is on average constant and zero.

On the other hand, the actual geophysical parameter function is not constant and is

changing rapidly as a function of radiance. Thus, it is possible that the predicted

96

Figure 4-12: A block diagram showing how MDNs and SPGPs can be used to estimate
the variance, so as to take advantage of the neural network’s superior parameter
estimation. The targets are scaled up by 5 because I found that doing so helped
prevent the residual estimation SPGP from being trapped in local minima, possibly
due to the initializations of the hyperparameters that I used. Of course, later the
predicted mean and standard deviation are scaled down by 5 to compensate.

97

(a) This shows the GPR estimate of an approxi-
mately constant function with additional Gaus-
sian noise. The hyperparameters are learned by
optimizing the likelihood. The predicted stan-
dard deviation is fairly constant.

(b) The inputs are the same as in figure 4-13(a),
but the target is now a sinusoid. The predicted
standard deviations are clearly different from 4-
13(a) even though the added noise is the same.

Figure 4-13: The y-data is generated from two different functions of x, but the addi-
tional noise is the same in both.

variance is lower than it should be in areas where we need to extrapolate, since the

SPGP is estimating the uncertainty in the trajectory of the car, when it should be

estimating uncertainty in the trajectory of the fighter jet.

Of course, it is true that a standard Gaussian process regression should predict the

same standard deviation regardless of the target values of the training samples, since

the target-values y only appear in the equation for the posterior mean (see equation

(4.30)), and not in the equation for the standard deviation. However, this result

depends on the hyperparameters being the same. Optimizing the hyperparameters

using the likelihood as the metric can lead to very different hyperparameters if there

are different target values, as intuition should suggest. An extreme example is shown,

comparing a flat, constant function (figure 4-13(a)) to a sinusoid (figure 4-13(b)).

The predicted standard deviations of figure 4-13(a) are clearly different from figure

4-13(b) even though the added noise is the same in both. This shows that optimizing

the hyperparameters using the likelihood as the metric can lead to very different

hyperparameters, and thus different variance predictions, if there are different target

values, as intuition should suggest.

Unfortunately, because the hyperparameters are optimized via gradient descent,

98

it is not possible to say exactly how the variance estimate will be changed by using

the SPGP as a post-processing stage as opposed to using it to estimate parameters

directly. Any problems can only be identified empirically. One notable problem

was the initially poor performance of residual estimation SPGP on some water vapor

estimation problems due to being trapped in local minima, which was fixed by scaling

all the target residuals by 5. This seems to be mostly due to the initializations I used

for the hyperparameters–presumably using different initializations would have had

the same desired result of avoiding local minima.

Discussion of residual estimation MDNs

For MDNs, there is no potential pitfall of underestimating variance due to the smoother

target function, since it would not take into account model uncertainty in the first

place. However, both residual estimation MDNs and residual estimation SPGP would

still be vulnerable to another problem, that of the neural network overfitting. If the

neural network overfits, it is very likely that the variance predictions from MDN or

SPGP will also be compromised, since low residuals on the training data could simply

be due to overfitting and not due to low variance in that area (see figure 4-14 for a

crude example). In that example, the MDN or SPGP that is employed to estimate

the variance of the neural network will predict low variance, whereas an MDN or

SPGP predicting the data directly may have predicted much higher variance. The

MDN or SPGP would have no way to detect whether the low residuals of the neural

network was due to overfitting or due to low variance if their targets were neural

network residuals rather than the actual geophysical parameters themselves.

These potential weaknesses are useful to keep in mind when deciding how to apply

MDNs and SPGPs to future problems.

99

Figure 4-14: The figure on the left shows the toy dataset created by taking a function
(red) and adding some random noise, as well as showing the function predicted by
the neural network (blue). The neural network parameters were deliberately chosen
to allow overfitting. The figure on the right shows the residuals on the data points,
which are all near zero. From the figure on the right, the variance (the added noise)
looks as if it would be zero, if it were to be predicted by any residual estimation
method.

4.3.3 ECMWF/Aqua dataset results, temperature

Parameter estimation performance

Figure 4-15 shows the RMSE profile when estimating temperature on this dataset.

The SPGP slightly trails neural networks by an average of 1.4 percent, although there

are a few levels in which the SPGP does better than the neural network. The MDN

trails by roughly 1 percent. Overall, there does not seem to be a large advantage for

using a neural network in this case, especially considering that different runs of the

neural network can change the RMSE by more than 2 percent.

Variance prediction performance

For a quick comparison between the two most successful methods of MDN and SPGP,

see figure 4-16, which shows the NLPD of both methods for all pressure levels. All

methods perform roughly equally, although the residual estimation methods may have

a slight advantage in the lower atmosphere due to their more accurate temperature

estimation.

Generally, it appears that SPGP and MDN can better predict the low-variance

100

Figure 4-15: This figure shows the RMSE profile in the ECMWF/Aqua dataset when
estimating temperature. RMSE is in kelvins and the pressure level is in millibars.

Figure 4-16: This figure shows the NLPD profile of MDNs and SPGPs on the problem
of temperature estimation. NLPD is in kelvins and pressure level is in millibars

101

cases. If the predicted variance of a group of profiles is low, the actual RMSE of that

group is usually also low. In contrast, on many levels the variance estimation neural

network shows very little skill below a certain variance; all the profiles with predicted

variances below that have roughly similar RMSE.

Figure 4-17: This figure shows the performance of the methods on the problem of
estimating temperature on the ECMWF/Aqua dataset at pressure level 954 mb. The
RMSE and predicted standard deviations are in degrees kelvin.

For example, on pressure level 954 mb (see figure 4-17), the RMSE of the 50

percent of the samples with the lowest predicted variance by the neural network is

actually the same in all bins, meaning that the neural network shows no skill in

estimating the difficulty of 50 percent of the cases. The SPGP variants both have

superior variance estimation on that problem.

In fact, SPGPs and MDNs consistently show skill in predicting variance for all

cases. The primary result in temperature is that the neural network can identify

the most troublesome or noisy cases, but lumps all the easier cases together without

distinction. SPGP and MDN can separate those easier cases out more finely.

The two different approaches to using SPGPs or MDNs, the residual estimation

method and using the method to predict the parameters directly, exhibit varying

102

Figure 4-18: This figure compares the performance of various techniques to estimate
variance on the problem of temperature retrieval on the ECMWF/Aqua dataset at
pressure level 448 mb. The RMSE is in degrees kelvin.

performance throughout the atmosphere. In general, the residual estimation method

is equal or slightly inferior in variance prediction to that of the method predicting

the temperature directly, if allowance is made for the fact that direct temperature

estimation is sometimes worse than that of a comparable neural network. Still, at

some pressure levels in the upper atmosphere (see figure 4-18), the higher RMSE of

MDNs or SPGPs (compared to neural networks) becomes a major concern. There,

the residual estimation method may be a better option.

On the other hand, on some pressure levels, notably from 730 to 940 mb, SPGP

and MDN actually gives superior RMSE to neural networks in estimating tempera-

ture, so that the major advantage of residual estimation method is no longer applica-

ble (see figure 4-15). Finally, from 940 mb to the surface, SPGPs and MDNs simply

gives much better results at estimating variance than the residual estimation meth-

ods, by virtue of being able to accurately identify the least troublesome cases with

the lowest RMSE. This trend shows up in the training dataset (albeit less strongly)

as well as the test dataset, so it is not completely a problem of overfitting on the part

103

Figure 4-19: This figure shows the performance of the methods on the problem of
estimating temperature on the ECMWF/Aqua dataset at pressure level 954 mb. The
RMSE is in degrees kelvin. This is the same problem as in figure 4-17, except graphed
by cumulative RMSE instead of RMSE by bins.

of the residual estimation SPGP.

Here, it appears that the problem is that of the neural network overfitting, because

the residual estimation MDN also exhibits poorer variance estimation than the MDN

estimating temperature directly. As mentioned before, neural network overfitting can

lead to residual estimation MDN or SPGP predicting low variance based on overfitted

training data. The symptom of that is poorer variance estimation for cases with lower

variance, which is exactly what happens on the pressure levels 940mb to the surface.

An example of that is shown in figure 4-19, which is the same problem as figure 4-17,

except graphed by cumulative RMSE to better show the poorer variance estimation

of the residual estimation methods.

The only major difference between the performance of SPGP and MDN in the case

of temperature estimation is the relative performance of the methods on the training

and the test set. MDN tends to do slightly better on the training set, perhaps an

indication of overfitting, whereas the performance of the SPGP in both the training

104

and test sets are roughly equal.

Overall, the residual estimation methods do not offer a huge advantage over simply

using a SPGPs or MDNs directly for estimating temperature, mostly because the

SPGP or MDN RMSE is quite competitive with that of a neural network. However, for

variance estimation, both SPGP and MDN are clearly better than a neural network.

For a fairly linear problem like temperature estimation, either SPGPs or MDNs are

a good choice to characterize uncertainty.

4.3.4 ECMWF/Aqua results, water vapor

Water vapor was normalized, so a priori standard deviation is unity throughout the

atmosphere.

This was also the dataset where I tested different settings of the SPGP hyperpa-

rameters. In particular, I used the problem of estimating water vapor content near

the surface. I chose the hyperparameters (number of reduced dimensions, number of

pseudo-inputs) mainly to optimize RMSE while keeping the training time as short as

possible.

Parameter Estimation Performance

Estimating water vapor is considered a harder problem than that of estimating tem-

perature. In the water vapor estimation problem, using the same ECMWF/Aqua

dataset, the SPGP does worse than the neural net by a slightly larger margin, aver-

aging 4.5 percent worse throughout the atmosphere, and 5.7 percent worse at pres-

sures below 200 millibars (see figure 4-20). The MDN also lags slightly behind neural

networks, doing on average 3.82 percent worse throughout the atmosphere and 4.9

percent worse at pressures below 200 millibars, but overall this is still better than

SPGP.

105

Figure 4-20: This figure shows the RMSE profile in the ECMWF/Aqua dataset when
estimating water vapor, using MDNs, SPGPs, and neural networks. RMSE is in units
of mass mixing ratio, and pressure is in millibars.

Variance estimation performance

For a quick comparison between the two most successful methods of MDN and SPGP,

see figure 4-21, which shows the NLPD of both methods for all pressure levels. Here,

the MDN is generally the best method according to this metric.

In terms of comparisons between SPGP and variance estimation neural networks,

an interesting case occurs on a few levels: the SPGP (including residual estimation

SPGP) shows great skill at predicting what the easiest cases are, but has difficulty in

separating out the high variance cases (at least, it does worse at this than a variance

estimation neural network). Visually, the lines representing cumulative RMSE of

the SPGP and the neural network often intersect at some point before 100 percent

of the cases are included. Afterwards, the slope of the SPGP line becomes flatter as

compared to that of the neural network. A good example is at pressure level 132.5 mb

when estimating water vapor (see figure 4-22), where the SPGP line and the neural

network line cross over at x = 0.55. In those cases, the neural network is better able

106

Figure 4-21: This figure shows the NLPD profile of MDNs and SPGPs on the problem
of water vapor estimation. NLPD is in units of mass mixing ratio.

to estimate variance of cases with high RMSE, but does worse at estimating variance

of cases with low RMSE. A plot of the actual predicted variance versus the RMSE

confirms this (see figure 4-23).

Note that both SPGP variants predict high, but similar, variance for the 30 percent

hardest cases, whereas the variance estimation neural network separates out these

harder cases more finely. It is possible that the SPGP predicts a smoother function

of the variance as a function of the inputs (so that all cases in a region of the input

space are predicted to have a similar high variance), while the variance estimation

neural network attempts to model a much more complicated function (so that for the

same region the neural network predicts a much broader range of variances), possibly

due to the extra emphasis the RMSE metric would place on modeling high residuals

well. A contributing factor to this may be that SPGP is simply not be able to model

more complicated function of the variance due to the restrictions of having only 100

pseudo-inputs to work with, although upping the number of pseudo-inputs to 200 did

not appreciably change anything on this level.

107

Figure 4-22: This figure shows the performance of various variance estimation meth-
ods on estimating water vapor on the ECMWF/Aqua dataset at pressure level 113
mb. RMSE is in units of normalized mass mixing ratio.

Figure 4-23: This is the same problem as depicted in figure 4-22, except that presented
with the RMSE of each group of cases instead of the cumulative RMSE of the cases.
RMSE is in units of normalized mass mixing ratio.

108

Finally, note that SPGP predicts high variance in two distinct cases: one where

the heteroscedastic nature of the problem dominates, and one where uncertainty due

to lack of data dominates. In the latter case, the actual RMSE from the test set

data may actually be low, even though we do not have as much confidence in the

prediction. On the other hand, the variance estimation neural network, and indeed

the MDN also, would simply extrapolate the variance to be low, even if there is not

much data available. Although it is certainly desirable to know where the model is

uncertain of its predictions due to lack of data, the advantage this brings cannot be

quantified in our chosen metric, and so the SPGP may be penalized.

There are a few levels where MDNs also exhibit slightly poorer variance estimation

of high error cases than neural networks, though the gap in performance is smaller

than between the SPGP and the neural network. It seems both MDNs and SPGPs,

methods that optimize the maximum likelihood, give similar answers when modeling

complicated variance functions. Still, because of the other SPGP specific problems

mentioned, MDNs may be better choice than SPGP for modeling the variance of more

complicated functions, if there is confidence that the training data thoroughly covers

all possible test cases, and it is not feasible to incur extra training time by increasing

the number of reduced dimensions in SPGP.

In general the MDN and the SPGP do no worse than neural networks when

estimating variance, and in many cases does much better when separating out cases

with low RMSE. Barring the few problematic levels discussed before, the variance

estimation performance of residual estimation MDNs is also quite similar to that of

residual estimation SPGP on both of the ECMWF/Aqua problems.

However, the MDN does not suffer as much from poor water vapor estimation, so

it is unnecessary to use a residual estimation MDN here over directly applying MDN.

On the other hand, because SPGP is not as good as a neural net when estimating the

actual relative water vapor content, it may a good idea to use a residual estimation

SPGP on fairly nonlinear problems like water vapor estimation.

109

4.3.5 HyMAS results, temperature

Recall that the HyMAS dataset consists of both the normal test data, draw from the

same overall dataset as the training data, and a completely separate “golden days”

test dataset.

Temperature estimation performance

In the test dataset, for the pressure levels studied, the neural network RMSE is on

average 9.83 percent better in estimating temperature RMSE than SPGP (see figure

4-24). MDNs on average lag behind by 9.25 percent. Both MDNs and SPGP perform

noticeably worse here than in the results of ECMWF/Aqua. This could be due to

the HyMAS data being less noisy (the radiances only have simulated instrument

noise, and imperfect spatial matching is no longer a concern). Consequently, the

temperature could be a more complex function of the inputs since it can depend on

high order components of the PCs that were too noisy in the ECMWF/Aqua dataset.

The MDNs and the SPGP, which both rely on optimizing maximum likelihood instead

of the RMSE, could simply be less adept at modeling more complicated functions.

An more likely hypothesis is that the neural network is overfitting to the training

set (due to the dataset as a whole being simulated, and thus less noisy than the

ECMWF/Aqua data).

This latter explanation is supported by the performance of the methods on the

golden days set; the neural network is only better than SPGP by 1.4 percent and

better than MDN by 2.4 percent (see figure 4-25). This implies that either the

neural network was overfitting to the training dataset, or that there are features in

the golden days set that are simply not present in the training set (which is more

unlikely given that SPGP and MDN performance did not decrease nearly as much).

Regardless, both MDN and SPGP have learned the most broadly applicable features

of the training dataset, explaining its better relative performance. It seems the two

maximum likelihood optimization methods are more resistant to overfitting.

110

Figure 4-24: This figure compares the performance of various methods on estimating
temperature on the HyMAS test dataset. The y-axis represents the pressure level in
millibars (surface is at the bottom). The RMSE is in degrees kelvin.

Figure 4-25: This figure compares the performance of various methods on estimating
temperature on the HyMAS golden days test dataset (see text for dataset details).
The y-axis represents the pressure level in millibars (surface is at the bottom). The
RMSE is in degrees kelvin

111

Figure 4-26: This figure shows the NLPD profile of MDNs and SPGPs on the problem
of temperature estimation. NLPD is in degrees kelvin, and pressure is in millibars.

Variance estimation performance

For a quick comparison between the methods of MDN and SPGP, see figure 4-26,

which shows the NLPD of both methods for all pressure levels on the test set. On

that test set, the residual estimation methods are superior, due primarily to the poorer

temperature estimation performance of SPGPs and MDNs. Figure 4-27 shows the

NLPD of both methods on the golden days test set. There, the SPGP is generally

the best method, and both MDNs and SPGPs are superior to the residual estimation

methods.

The SPGP and neural network estimation of variance on the test set are for the

most part very similar to the results obtained on the ECMWF/Aqua dataset. In

all levels, the residual estimation SPGP either does the same, or better, than the

neural network doing the same. The residual estimation MDN had roughly the same

performance as the residual estimation SPGP (there were a few levels where the MDN

was better, and a few where SPGP was better). The residual estimation MDN did

have slightly better performance than the residual estimation SPGP on a few levels

on the training set, but this did not carry over to the test set, possibly indicating

some overfitting.

112

Figure 4-27: This figure shows the NLPD profile of MDNs and SPGPs on the problem
of temperature estimation on the golden days set. NLPD is in degrees kelvin, and
pressure is in millibars.

As mentioned before, both the MDN and the SPGP estimating temperature di-

rectly has much higher RMSE throughout, so that they are not competitive on the

test set.

The more interesting cases occurs in the golden days set. For the most part, the

neural network does much worse at estimating variance on the golden days set as

compared to the neural network. An extreme example occurs at pressure level 56

(see figure 4-28 for the test set, and figure 4-29 for the golden days set). Although

all methods underestimate the variance on the golden days dataset, the variance

estimation neural network severely underestimates variance, suggesting the variance

estimation network was overfitting on the training dataset.

The SPGP directly estimating temperature also becomes much more competitive,

as expected from the relative improvement in temperature prediction as compared

to the test set. In fact, on some levels such as pressure level 81 (see figure 4-30 for

the test set, and figure 4-31 for the golden days set), the SPGP is the best method

for estimating variance on the golden days set, although it was the worst performer

on the test set. The MDN also shows a large relative improvement compared to its

performance on the test set.

113

Figure 4-28: This figure compares various methods for estimating variance on the
HyMAS test dataset, with respect to temperature at pressure level 223 mb. RMSE
is in degrees kelvin.

Figure 4-29: This figure compares various methods for estimating variance on the
HyMAS golden days test dataset, with respect to temperature at pressure level 223
mb. Compare to figure 4-28. RMSE is in degrees kelvin.

114

Figure 4-30: This figure compares various methods for estimating variance on the
HyMAS test dataset, with respect to temperature at pressure level 639 mb. RMSE is
in degrees kelvin. This figure is presented in cumulative RMSE as opposed to RMSE
per bin to facilitate comparisons between the various methods (see section 3.3 for an
explanation of the two presentation schemes).

One possible explanation for the discrepancy in performance between the test set

and the golden days set is that the variance estimation neural network, much like the

parameter estimation neural network, has simply overfit to the training data. If this

is the case, it would mean that variance estimation neural networks may need much

more data than the 30000 training cases provided in order to get a stable estimate

of the variance. This can of course be mitigated somewhat by reducing the number

of model parameters (hidden nodes), but this strategy is complicated by the fact

that there is no obvious sign of overfitting on the test dataset (the training and test

performance are similar).

Another possibility, which is closely related, is that the golden days set is funda-

mentally different in some way. This is somewhat backed up by the fact that a simple

function of latitude, which guesses that the error is highest near the poles and the

tropics, is quite effective on the golden days set, while being completely ineffective on

115

Figure 4-31: This figure compares various methods for estimating variance on the
HyMAS golden days test dataset, with respect to temperature at pressure level 639
mb. Compare to figure 4-31. RMSE is in degrees kelvin.

the test set. It is also notable that there are several pressure levels higher up in the

atmosphere where no method show skill in estimating variance, suggesting a vastly

different variance function as a function of the inputs, at least on those levels (see

figure 4-32). Those were also the levels where the neural network performed worse

than linear regression at estimating the temperature (see figure 2-7), again suggesting

that there are some features, correlated with temperature, which are present in the

training dataset but not in the golden days dataset.

Still, whether the poor performance of the variance estimation neural network

stems from overfitting or from deficiencies in the training data, both MDNs and

SPGPs generalize much better on the golden days set. It is also notable that SPGP

achieves the best variance prediction performance by far on some levels in the golden

days dataset (such as pressure level 639 mb, shown in figure 4-30), possibly indicating

that the extrapolation required on those levels rewards SPGP’s ability to account for

model uncertainty. It could also be the case that the reduced degrees of freedom

due to only having 8 input dimensions prevents overfitting. However, the residual

116

Figure 4-32: The figures compares various methods for estimating variance on the
HyMAS golden days test dataset, with respect to temperature on pressure level 39
mb. The RMSE is in degrees kelvin.

estimation MDN and the residual estimation SPGP have similar performance despite

the residual estimation SPGP also having only 8 input dimensions, which seemingly

discounts overfitting being the main cause of the discrepancy in performance between

SPGP and the rest of the methods.

4.3.6 HyMAS results, water vapor

Water vapor estimation performance

The water vapor results mirror those of the temperature. Again the neural network

does much better than SPGP at estimating relative water vapor on the test set

(shown in figure 4-33), averaging 10.35 percent better RMSE than SPGP, but does

only slightly better than SPGP on the golden days dataset (shown in figure 4-34),

averaging 4.2 percent improvement in RMSE. Similarly, the MDN lags 7 percent

behind the neural network on the test dataset, compared to 5.5 percent worse RMSE

on the golden days dataset.

117

Figure 4-33: These charts compare the performance of the methods in estimating
water vapor on the HyMAS test dataset (see text for dataset details). The y-axis
represents the pressure level in millibars (surface is at the bottom). RMSE is in
normalized mass mixing ratio.

Variance Estimation Performance

For a quick comparison between the methods of MDN and SPGP, see figure 4-35,

which shows the NLPD of both methods for all pressure levels on the test set. On

the test set, the methods are all competitive, with MDN having a slight edge due to

its good water vapor estimation accuracy at a few levels. Despite the poor parame-

ter estimation performance of SPGP and MDNs, their superior variance estimation

performance compared to the residual estimation MDNs and SPGPs equalizes their

NLPD.

Figure 4-36 shows the NLPD of the methods on the golden days test set. The

methods are again all competitive.

Unlike the temperature results, the variance estimation neural network’s perfor-

mance on the golden days dataset is only slightly worse compared to its performance

on the test set. On the other hand, even on the test set the variance estimation

neural network has problems modeling variance well. This could be due to the water

118

Figure 4-34: These charts compare the performance of an SPGP estimating water
vapor to a neural network on the HyMAS golden days test dataset (see text for
dataset details). The y-axis represents the pressure level in millibars (surface is at
the bottom). RMSE is in normalized mass mixing ratio.

Figure 4-35: This figure shows the NLPD profile of MDNs and SPGPs on the problem
of water vapor estimation. RMSE is in normalized mass mixing ratio, and pressure
is in millibars.

119

Figure 4-36: This figure shows the NLPD profile of MDNs and SPGPs on the problem
of water vapor estimation on the golden days set. RMSE is in normalized mass mixing
ratio, and pressure is in millibars.

vapor variances being harder to estimate than the variance of temperature, since the

variance estimation neural network does not predict the variances well even on some

levels of the test set, such as pressure level 535 mb (see figure 4-37). On that example,

the variance estimation neural network (blue), shows little skill in separating out the

easiest 60 percent of cases, predicting a similar variance for those cases. The variance

estimation neural network’s performance is similar on the same level on the golden

days test set. (see figure 4-38).

Looking at the actual variance predictions of the neural network, we see that the

predicted variance is in fact negative on more than 50 percent of the cases. Since the

target residuals are never negative (so the optimal prediction should always be non-

negative), this suggests that the variance function predicted by the neural network

was complicated and unstable, so that when extrapolating, the variance prediction

became negative. Even on the training set, there are many negative variance predic-

tions (since noise was added at every iteration during neural network training, the

“training” cases being tested on are not the exact same cases that were used during

120

Figure 4-37: This figure compares various methods for estimating variance on the
HyMAS test dataset, with respect to water vapor at pressure level 535 mb. The
predicted standard deviation as well as the RMSE is in normalized mass mixing
ratio.

training).

By contrast, looking at levels where the neural network predicted water vapor

variance successfully, we see that the actual variance predicted at those levels was

usually positive, suggesting a much more accurate and plausible function.

Still, both the residual estimation MDN and the residual estimation SPGP do not

suffer the same problem as the variance estimation neural network, even though they

also estimate the residuals of the first neural network. It is not simply overfitting,

since the training set performance is close to the test set performance, and because

reducing the number of model parameters does not eliminate the problem (see figure

4-40: even with only five hidden nodes, this problem still happens, suggesting that

the original 10 hidden node variance estimation neural network was not overfitting).

Instead, it seems that the performance metric being used leads to the variance

estimation neural network being prone to undesirable local minima. Although this

problem of local minima must occur in all the other datasets as well, it is especially

121

Figure 4-38: This figure compares various methods for estimating variance on the
HyMAS “golden days” dataset, with respect to water vapor at pressure level 535 mb.
Compare to figure 4-37. The predicted standard deviation as well as the RMSE is in
normalized mass mixing ratio.

evident on this particular dataset. To get a sense of how unstable the RMSE metric

is, note that the RMSE (on the training set) of the variance estimation neural network

at pressure level 535 mb is 0.0952, but the a priori standard deviation of the square

of the residuals is already only 0.1081. Therefore, predicting a constant variance will

be already close to optimal, at least if judged by RMSE. Moreover, if we use the

variance predictions of the residual estimation MDN (which is clearly more accurate

at that pressure level) as a prediction for the neural network residuals, the RMSE

obtained is 0.1008, which is actually higher than the variance estimation neural net-

work. The MDN does not predict the mean squared error of some high residual cases

as accurately as the variance estimation neural network, leading to the higher overall

RMSE.

Even more telling, examine the variance estimation neural network’s performance

across multiple trials. Figure 4-41 shows the results of 5 trials of training a variance

estimation neural network on that pressure level, 535 mb. Clearly, one trial does

122

Figure 4-39: This figure compares various methods for estimating variance on the Hy-
MAS test dataset, with respect to water vapor. This is the same problem as depicted
in figure 4-37, except the y-axis here is cumulative RMSE in units of normalized mass
mixing ratio.

much better at estimating variance than the others. However, the RMSE for that

trial is 0.0848, whereas the RMSE for the trial that seemingly performs the worst at

variance estimation is actually lower, at 0.0843.

Thus, the RMSE metric is only weakly correlated to the quality of the variance

prediction. It is true that, given enough training data, the lowest RMSE should be

achieved when the predicted variance is equal to the actual variance of the cases.

However, this global minima is unlikely to be achieved, and a local minima that has a

lower RMSE could actually be worse at variance prediction than a local minima with

a higher RMSE. A potential fix could be to de-emphasize the higher residual cases by

changing the targets from the square of the residuals to some other function of the

residuals, such as the natural log of the absolute value of the residuals. Unfortunately,

then the “variance estimation” neural network would not be predicting the variance.

Another possible objection is that the small residuals (due to the normalization of

the dataset) encountered in water vapor estimation may throw off the neural network

123

Figure 4-40: The same figure as figure 4-39, except here the variance estimation neural
network is using only 5 hidden nodes, as opposed to 10 before.

training somehow by trapping it in undesirable local minima. After all, it is well

known that scaling input and output data can lead to different performance. However,

it is usually the case in literature that the data is normalized first, as was done

here [6] [5]. Moreover, in an experiment where I normalized temperature also, I

noticed no consistent difference in performance one way or the other, suggesting that

normalization is not the major factor here (see figures 4-42 and 4-43).

4.3.7 Precipitation results

Rain rate retrieval is a nonlinear and fairly hard problem. Competitive algorithms

often have multiple stages, based on factors such as terrain type, latitude, and tem-

perature radiances of specific channels [23]. Because I was primarily interested in

illustrating the differences between the methods for estimating variance, rather than

accurate rain rate retrieval, I did not use any pre or post-processing except for a prin-

cipal components transform of the inputs. Thus, the performance of the following

retrievals can certainly be much improved.

124

Figure 4-41: This shows the results of 5 trials of training a variance estimation neural
network on estimating water vapor on pressure level 535 mb on the HyMAS dataset.
RMSE is in units of normalized mass mixing ratio.

The a priori standard deviation of the rain rate on the test set was 2.884. However,

be aware that the distribution is heavily skewed, with nearly 85 percent of the test

cases having a precipitation rate of less than 1 mm/hour, and 28 percent cases having

no precipitation at all. See figure 4-44 for a histogram.

Precipitation retrieval performance

The performance of the various methods is shown in table 4.1. Although neural

networks perform the best at estimating rainrate, for a majority of cases (those with

minimal precipitation) it is actually the MDN that is superior, followed by the SPGP.

However, the neural networks have much better performance at estimating the cases

with the highest precipitation, followed by the SPGP and then the MDN. Once again,

it seems that both the SPGP and the MDN obtains a higher-bias solution than

125

Figure 4-42: This shows the performance of variance estimation neural network (blue)
at estimating variance when the temperature is not normalized (the default that I
used for all the other figures). See figure 4-43 for the performance when temperature
was normalized. The RMSE is in degrees kelvin.

MM5 Range
(mm/hr)

Number of
Cases

Neural Net-
work RMSE

MDN RMSE SPGP RMSE

[0 0.125) 2875 0.4025 0.0392 0.2914
[0.125 0.25) 212 0.9885 0.1247 1.102
[0.25 0.5) 226 2.004 0.2931 1.165
[0.5 1) 301 1.192 0.6561 1.288
[1 2) 279 1.792 1.377 1.771
[2 4) 195 2.666 2.682 2.746
[4 8) 100 5.037 5.632 4.218
[8 16) 40 5.964 11.99 6.907
[16 32) 17 12.85 22.58 15.64
[32 75) 7 25.29 49.72 37.06
All 4252 1.911 2.87 2.229

Table 4.1: Precipitation retrieval performance of neural networks, MDNs, and SPGPs.

the neural net. The MDN prediction is especially flat–the mean of the predicted

precipitation is only 0.04, compared to 0.78 for neural networks.

126

Figure 4-43: This shows the performance of variance estimation neural network (blue)
at estimating variance when the temperature was normalized. Compared to figure
4-42, there is minimal difference in the performance of the variance estimation neural
network. RMSE is in degrees kelvin.

Variance estimation performance

Figure 4-45 shows the variance estimation performance of the various methods on the

test set, while figure 4-46 shows the performance on the training set. Both SPGP and

MDN are effective at identifying cases with the lowest variance (which quite often

also happen to the be cases with the lowest precipitation), much more so than the

neural network. This again seems to be a failure of the RMSE metric, discussed under

the HyMAS water vapor results. The variance estimation neural network is better at

estimating the residuals of a few cases with very high residuals, while being poor at

estimating the variance of cases with low residuals simply because the latter do not

contribute as much to the RMSE.

Another trend is that the variance predicted by SPGP happens to be more ac-

curate than the MDN at higher values of the predicted variance, possibly because

the MDN cannot account for model uncertainty. There are a few cases with very

high precipitation that the MDN did not estimate well (thus leading to those cases

127

Figure 4-44: This figure shows the distribution of precipitation rates in the entire
dataset. The distribution is heavily skewed, with most cases having between 0 and 1
mm/hour of precipitation. Note the logarithmic scale on both the x and the y axes.

having large residuals). Those training cases would then be assigned high variance

by the MDN. Unlike SPGP, which would account for the fact that there are only a

few training cases with such high residuals (thus relying more on the prior than the

data), the MDN would simply predict that any future cases with inputs close to those

outliers would have high variance. Indeed, the variance predicted by MDN can be

quite high for certain cases, reaching 20000, while the variance predicted by SPGP is

more reasonable, topping out at 70 or so.

4.4 Discussion

4.4.1 Accuracy performance

Overall, it is clear that both MDNs and SPGPs are superior to the baseline “variance

estimation neural network” for confidence estimation. Not only do MDNs and SPGPs

demonstrate superior performance in predicting the difficulty of the cases, but the

variances that are predicted are usually very close to the actual variances. This is a

128

Figure 4-45: Variance estimation performance on the test dataset of various methods
on the problem of precipitation retrieval. RMSE is in mm/hour.

Figure 4-46: Variance estimation performance on the training dataset of various meth-
ods on the problem of precipitation retrieval. Compared to figure 4-45, this figure
shows the RMSE by bin instead of the cumulative RMSE. RMSE is still in mm/hour.

129

major weakness of using a neural network to predict variance, since that approach

consistently underpredicts the variance.

The variance estimation neural network is also likely to overfit, at least if we are

judging it based on its variance estimation performance. This necessitates caution

when choosing model parameters.The problem is likely that the metric used to opti-

mize the variance estimation neural network (the RMSE, with the targets being the

square of the residuals), only approaches the actual variance as the number of cases

increase to infinity. However, it seems that for many problems, the number of avail-

able cases is not enough to lead to stable estimates, as evidenced by the problems of

the neural network trying to predict variance on the HyMAS “golden days” datasets.

Moreover, with the current metric a variance estimation neural network is prone

to getting stuck in local minima, since a large improvement in variance estimation ac-

curacy leads to only small improvements in the metric being optimized. By contrast,

the MDN, which optimizes maximum likelihood instead of RMSE, offers much better

performance at fitting the variance, even though the network structure is identical

to that of the variance estimation neural network. Related to this problem of sub-

optimal local minima, the variance estimation neural network performance is often

inconsistent across multiple trials, whereas both SPGP and MDN were consistently

good at variance estimation across multiple trials on the same problems.

In many the remote sensing datasets that were tested, MDNs were roughly compa-

rable to SPGPs in terms of parameter prediction performance (RMSE) and variance

prediction performance. Given that the training time and the prediction time of

MDNs is shorter than that of SPGP for the hyperparameters chosen, MDNs are a

good choice for confidence estimation. However, the extrapolation performance of

MDNs remains uncertain and not guaranteed to be accurate, unlike SPGPs, so it is

wise to make sure that the training data is complete and thorough. MDNs do not

give any indication that the test vector is completely outside the training set (un-

like SPGP, which will predict extremely high variance). The precipitation retrieval

problem hints at the possible problems of MDNs if such conditions are not met.

Finally, residual estimation MDNs and SPGPs are certainly still useful if another

130

method (like neural networks) does a much better job at parameter estimation. How-

ever, in many of the problems, the weaknesses are also evident. Oftentimes, the

neural network whose residuals are being estimated overfits slightly, and the residual

estimation methods have no way of detecting this. This impacts the performance

negatively, and it is often the case that the residual estimation methods are not as

good as “pure” SPGPs and MDNs at predicting variance.

4.4.2 Speed performance

All the methods so far discussed (neural networks, Bayesian neural networks, SPGP,

MDNs) scale linearly in training and testing time with the number of training and

test cases. If the hyperparameters chosen (the number of hidden nodes and layers

for the networks, and the reduced dimensions and number of pseudo-inputs for the

SPGP) are assumed to be fixed for now, the only difference between the methods is a

constant factor. Table 4.2 summarizes many of the methods’ salient features, although

many of the later columns in the table relating to variance estimation performance

are necessarily problem dependent.

131

M
eth

o
d

T
rain

in
g

T
im

e
T

estin
g

T
im

e
A

ccou
n
ts

for
H

eterosced
as-

ticity

A
ccou

n
ts

for
M

o
d
el

u
n
cer-

tain
ty

A
ccu

rate
varian

ce
estim

ates

C
orrectly

d
e-

term
in

es
d
if-

fi
cu

lty
of

re-
trieval

A
ccu

racy
of

P
aram

eter
p
red

iction

V
arian

ce
E

stim
ation

N
eu

ral
N

etw
ork

1(b
ase-

lin
e,

rou
gh

ly
10

m
in

-
u
tes)

1
(b

aselin
e,

rou
gh

ly
0.02

secon
d
s)

Y
es

N
o

N
o

Y
es

B
est

M
ix

tu
re

D
en

sity
N

etw
ork

s

0.5
1

Y
es

N
o

Y
es

Y
es

G
o
o
d

S
P

G
P

3
1.50

(cach
ed

m
atrix

),
30

(recalcu
late

m
atrix

)

Y
es

Y
es

Y
es

Y
es

G
o
o
d

B
ayesian

N
eu

ral
N

etw
ork

1
10

(H
essian

p
recalcu

lated
),

3500
(n

o
H

essian
)

N
o

Y
es

N
o

S
om

etim
es

B
est

T
ab

le
4.2:

T
h
e

testin
g

an
d

train
in

g
tim

es
in

th
is

tab
le

w
as

d
erived

from
ap

p
lication

of
th

e
m

eth
o
d
s

on
th

e
p
recip

itation
d
ataset.

N
ote

th
at

th
e

testin
g

tim
e

an
d

train
in

g
tim

e
scalin

g
for

all
m

eth
o
d
s

sh
ou

ld
b

e
lin

ear
in

th
e

n
u
m

b
er

of
train

in
g

d
ata

an
d

testin
g

d
ata.

T
h
e

last
th

ree
colu

m
n
s

are
p
rob

lem
d
ep

en
d
en

t
an

d
are

n
ecessarily

su
b

jective
p

erson
al

ju
d
gm

en
ts

on
th

e
eff

ectiven
ess

of
th

e
m

eth
o
d
s

com
p
ared

.

132

Chapter 5

Conclusion

There has been strong interest in statistical retrieval methods, such as neural net-

works, in the field of remote sensing, due to the advantages such methods have over

physics-based inversions in both speed and accuracy. However, for statistical re-

trievals, the problem of assigning confidence intervals to the retrievals has so far not

yet been thoroughly explored, despite its importance in creating more useful retrievals

and in gaining greater acceptance for the statistical retrievals.

In this thesis, several variance estimation methods were presented and analyzed on

a variety of representative datasets. Bayesian neural networks, first applied by Aires

on remote sensing problems, were discovered to be lacking in variance estimation

performance due to inability to model heteroscedasticity. Two variance estimation

methods that have not yet been used for geophysical parameter retrieval, mixture

density networks (MDN) and sparse pseudo-input Gaussian processes (SPGP), were

found to be much more accurate at predicting the variance on all the datasets tested.

They were also more robust, compared to variance estimation neural networks, when

confronted with test data that had features not present in the training set.

MDNs had similar speed in both training and testing time to standard neural net-

works. SPGPs had about three times longer training time with the hyperparameters

used, but had similar testing time to that of a neural network. Overall, MDNs are

the best choice for variance estimation if the training time is important and if there

is confidence that the training dataset is comprehensive.

133

However, if training time is not an important factor, SPGPs are theoretically

better able to account for the impact of lack of training data in its variance prediction.

This advantage over MDNs makes SPGPs the more robust choice.

Both of these methods can also easily be used to just predict the variance, and

allow a neural network to estimate the geophysical parameters, if so desired. The

variance estimation performance of these residual estimation MDNs and SPGPs can

sometimes be slightly worse than simply applying MDNs and SPGPs directly. How-

ever, on many problems MDNs and SPGPs had worse accuracy than neural networks

in estimating the geophysical parameters, making the residual estimation configura-

tion an attractive option.

5.1 Future Work

There is certainly much more work that can be done. These methods should be

applied to datasets that cover land cases as well. Factors lacking in ocean data ,such

as the terrain type, may have a large impact on the noise and the variance. On a

similar note, different instruments can be tried as well, such as the future Advanced

Technology Microwave Sounder (ATMS). It would be interesting to see how these

changes in the dataset affects the performance of any of the methods discussed.

Much work can also be done on optimizing the methods themselves. There was

only rudimentary work done in optimizing some of the hyperparameters (number of

reduced dimension for SPGP, network structure for neural nets and MDNs) via cross-

validation. Although empirically modifying the hyperparameters on the methods

did not lead to large changes in either RMSE or variance performance, the tradeoff

between performance, training/testing time, and the hyperparameter settings could

be explored more thoroughly.

Multi-task learning can also be applied by trying to model multiple pressure levels

simultaneously, since it seems reasonable that the geophysical parameters (and the

variances) are correlated across pressure levels that are close together. Although so

far the methods have been trained only one level at a time to simplify things, multi-

134

task learning might speed up the training process and may even improve the accuracy

of the methods.

Finally, the methods themselves can be modified to better suit the problem. Be-

cause this thesis was primarily focused on exploring different methods, few variations

on any method were considered. Certainly, Gaussian process regression methods in

general can be a powerful tool, with SPGPs being only one variation on them. An-

other metric for MDNs that does not have the multiple local minima that maximum

likelihood does could finally allow MDNs with multiple Gaussian outputs (a proper

Gaussian mixture model) to be used in practical applications. This could improve the

characterization of the output distribution and allow for a more accurate estimate of

the variance. It might even be possible to improve variance estimation neural net-

works by introducing the density of the input data as an additional input, in order

to better account for model uncertainty.

135

136

Appendix A

Gradients

A.1 Neural Network Gradients

For the following, the activation function of the hidden layer is assumed to be sig-

moidal (f(a) = 1
1+exp(−a)

). Given the n output vectors yi and the n output targets

ti, where n is the number of training cases, the error function we wish to optimize is:

E =
n∑
i=1

(yi − ti)
T (yi − ti) (A.1)

If we rewrite as this as the sum of n error terms Ei, one for each training case, we

get:

Ei =
c∑

k=1

(yki − tki)2 (A.2)

Where the yki are one of the c components of the output vector yi, and tki are similarly

defined.

To simplify the expression for the derivatives, define the errors δ for each node

as:

δk = yki − tki (A.3)

137

for the output layer, and

δj = f(aj)(1− f(aj))
c∑

k=1

wkjδk (A.4)

for all nodes in the hidden layer. f(aj) is the sigmoidal function, and aj is the input

to that particular node.

Then, the derivatives with respect to the weights from the input layer to the

hidden layer are:
∂Ei
∂wjs

= δjx
s
i (A.5)

where xsi is the sth component of the input vector xi.

The derivatives with respect to all other weights are:

∂Ei
∂wkj

= δkf(aj) (A.6)

A more detailed derivation can be found in Bishop’s book [5].

A.2 MDN Gradients

Because in my thesis I only used one Gaussian component in the “mixture” model,

the gradients presented here are simplified from the ones in Bishop’s paper [4].

The metric we optimize (negative log likelihood) is then (refer to section 4.1.2 for

notation):

ET =
∑

(x,t)∈D

E(x, t) (A.7)

E(x, t) = − log

(
1√

2πσ(x)
exp

(
−||t− µ(x)||2

2σ(x)2

))
(A.8)

where D is the training data consisting of (input, target) pairs (x, t). Since ET is a

sum of |T | terms E(x, t) (one for each training case), we only need the derivatives of

E. So the derivatives with respect to the outputs z will be ∂E
∂zµ

and ∂E
∂zσ

.

138

∂E

∂zσ
=
∂E

∂σ

∂σ

∂zσ
=

(
−||t− µ||

2

σ2
− 1

)
(A.9)

∂E

∂zµ
=
∂E

∂µ
=

(
−(µ− t)

σ2

)
(A.10)

Combined with the standard neural network derivatives of the outputs with re-

spect to the network weights, we can then use gradient descent algorithms to maximize

the likelihood with respect to the network weights.

A.3 SPGP Gradients

For the notation, refer to section 4.2.2. Recall that m are the pseudo-input vectors,

and n are the training cases.

For simplicity later on, define

σ2Γ = diag(Kn −Qn) + σ2I (A.11)

Note that Γ is a symmetric matrix.

The negative log likelihood is

L = − logN(0, Qn + σ2Γ) =
1

2

(
log |Qn + σ2Γ|+ tT (Qn + σ2Γ)−1t + n log 2π

)
(A.12)

where n is the number of training cases.

Separate L into two terms L1 and L2:

L = L1 + L2 + n log 2π (A.13)

L1 =
1

2
(log |Qn + σ2Γ|) (A.14)

L2 =
1

2
tT (Qn + σ2Γ)−1t (A.15)

Define matrix A as

A = σ2Km +KmnΓ−1Knm (A.16)

139

A.3.1 Derivatives of Hyperparameters in the Kernel

The details of the derivation can be found in Snelson’s thesis [21], but the derivative

of L1 and L2 with respect to a hyperparameter θ is:

∂L1

∂θ
= tr

(
A−

1
2
∂A

∂θ
A−

1
2
T
)
− tr

(
Km

− 1
2
∂Km

∂θ
Km

− 1
2
T
)

+ tr

(
Γ−

1
2
∂Γ

∂θ
Γ−

1
2

)
(A.17)

and

∂L2

∂θ
=

1

σ2

[
− 1

2
tTΓ−

1
2
∂Γ

∂θ
Γ−

1
2 t + (A−

1
2KmnΓ−1t)T

(
1

2
A−

1
2
∂A

∂θ
A−

1
2
T

(A−
1
2KmnΓ−1t)

−A−
1
2
∂Kmn

∂θ
Γ−1t + A−

1
2KmnΓ−

1
2
∂Γ

∂θ
Γ−

1
2 t

)]
(A.18)

The partial derivatives ∂A
∂θ

and ∂Γ
∂θ

are defined as:

∂A

∂θ
= σ2∂Km

∂θ
+ 2 sym(

∂Kmn

∂θ
Γ−1Knm)−KmnΓ−1∂Γ

∂θ
Γ−1Knm (A.19)

where the function sym is to make the matrix symmetric, so that sym(B) = B+BT

2
.

Finally,

∂Γ

∂θ
= σ−2diag(

∂Kn

∂θ
− 2

∂Knm

∂θ
K−1
m Kmn+KnmK

−1
m

∂Km

∂θ
K−1
m Kmn) (A.20)

A.3.2 Noise Derivative

The noise term σ2 is not present in the kernel, unlike all the other hyperparameters.

Thus, the above derivation is not valid since σ2 was treated as a constant there.

Instead the partial derivatives ∂L1

∂σ2 and ∂L2

∂σ2 are (again, refer to Snelson’s thesis [21]

for the full derivation):
∂L1

∂σ2
= tr(Qn + σ2Γ)−1 (A.21)

∂L2

∂σ2
= −||(Qn + σ2Γ)−1t||2 (A.22)

140

Appendix B

Matlab Code

This is an incomplete listing of the code that I used, but it covers all of the major

functions. I also had several scripts that called the below functions and applied them

to different datasets, but those scripts are omitted.

B.1 Neural Networks

The following code depends on Ian Nabney’s netlab toolbox, available for download

from http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/

downloads/

f unc t i on [nnet , nnet_performance , levels_1 , levels_2] = nn_retrieval_simple (←↩

pcs_train , pcs_test , pcs_val , prof_train_mr , prof_test_mr , prof_val_mr , ←↩

Num_nodes , Num_trials , noise_matrix , levels_1 , levels_2)

% Neural network (s i n g l e hidden l a y e r) r e t r i e v a l

%

% This func t i on r e q u i r e s the NETLAB too lbox f o r MATLAB a v a i l a b l e f o r f r e e :

% http ://www. ncrg . aston . ac . uk/ net lab / index . php

% maintained by Ian Nabney (i . t . nabney@aston . ac . uk)

% For more in format ion , con su l t Dr . Nabney ' s textbook :

% Netlab : Algorithms f o r Pattern Recognit ion , ISBN : 1−85233−440−1

%

%%%

141

%%%%%%%%%%%%%%%%%%%%% NN Sect ion %%%%%%%%%%%%%%%%%%%%%%%

%%

i f ˜ e x i s t (' l e v e l s 1 ') | | ˜ e x i s t (' l e v e l s 2 ')

levels_1 = 1 : s i z e (prof_train_mr , 1) ;

levels_2 = 1 : s i z e (prof_train_mr , 1) ;

end

%%%%%%%%%%%%%%%%%%%%% NN I n i t i a l i z a t i o n %%%%%%%%%%%%%%%%%%%%%%%

MAX_ITER = 200 ; % maximum number o f t r a i n i n g epochs

MAX_DUDS = 10 ; % number o f con s e cu t i v e epochs that do not

% reduce the v a l i d a t i o n e r r o r

NUM_VERR_AVG = 100 ; % number o f random no i s e r e a l i z a t i o n s

% NETLAB options ,

options = foptions ;

options (1) = 0 ; % Set to 1 f o r verbose d i s p l ay

options (14) = 1 ; % maximum number o f func t i on e v a l u a t i o n s

options (18) = 0 . 0 0 1 ; % mu in i t

options (19) = 10 ; % mu inc

options (20) = 0 . 1 ; % mu dec

options (21) = 1e10 ; % mu max

f o r j = 1 : l ength (levels_1) % loop over p r o f i l e ” l e v e l chunks”

% I n i t i a l i z e the g l o b a l v a l i d a t i o n e r r o r minimum

validation_error_best_global = inf ;

output_range = levels_1 (j) : levels_2 (j) ;

f o r trial_num = 1 : Num_trials % loop over t r i a l s

NUM_OUTPUTS = length (output_range) ;

f p r i n t f ('−−− Prepar ing neura l network . . . \ n ') ;

% Def ine s k e l e t o n network with a s i n g l e hidden l a y e r

nnet_ = mlp (s i z e (pcs_train , 1) , Num_nodes , NUM_OUTPUTS , ' l i n e a r ') ;

% I n i t i a l i z e weights and b i a s e s us ing Nguyen−Widrow method

nnet_ = mlpinit_nw (nnet_ , [min (pcs_train , [] , 2) max(pcs_train , [] , 2)]) ;

% v a l i d a t i o n e r r o r f o r t h i s p a r t i c u l a r t r i a l

validation_error_best = inf ;

c l e a r training_error validation_error testing_error

keep_looping = 1 ;

num_duds = 0 ;

options (18) = 0 . 0 0 1 ; % Reset mu

i = 1 ;

whi l e (keep_looping)

f p r i n t f (' *** I t e r a t i o n %d o f %d f o r chunk %d o f %d (%d outputs , t r i a l %d ←↩

142

o f %d) . \n ' , i , MAX_ITER , j , l ength (levels_1) , NUM_OUTPUTS , trial_num←↩

, Num_trials) ;

pcs_train_noisy = pcs_train + noise_matrix * randn (s i z e (pcs_train)) ;

% Train the NN f o r one epoch us ing Levenberg−Marquardt l e a r n i n g

% method

[nnet_ , options] = netopt (nnet_ , options , pcs_train_noisy ' , prof_train_mr (←↩

output_range , :) ' , ' lm ') ;

% Evaluate performance

validation_error (i) = 0 ;

training_error (i) = 0 ;

testing_error (i) = 0 ;

f o r k=1: NUM_VERR_AVG

validation_error (i) = validation_error (i) + mean(mean ((prof_val_mr (←↩

output_range , :) − mlpfwd (nnet_ , (pcs_val+ noise_matrix * randn (s i z e←↩

(pcs_val))) ') ') . ˆ 2)) ;

training_error (i) = training_error (i) + mean(mean ((prof_train_mr (←↩

output_range , :) − mlpfwd (nnet_ , (pcs_train+ noise_matrix * randn (←↩

s i z e (pcs_train))) ') ') . ˆ 2)) ;

testing_error (i) = testing_error (i) + mean(mean ((prof_test_mr (←↩

output_range , :) − mlpfwd (nnet_ , (pcs_test+ noise_matrix * randn (←↩

s i z e (pcs_test))) ') ') . ˆ 2)) ;

end

validation_error (i) = validation_error (i) /NUM_VERR_AVG ;

training_error (i) = training_error (i) /NUM_VERR_AVG ;

testing_error (i) = testing_error (i) /NUM_VERR_AVG ;

% Check i f e r r o r has decreased

i f (validation_error (i) < validation_error_best)

num_duds = 0 ;

nnet_best = nnet_ ;

validation_error_best = validation_error (i) ;

f p r i n t f ('−−− NEW minimum found ! (Train ing e r r o r = %g , Va l idat i on Error←↩

= %g , Test ing Error = %g) \n ' , training_error (i) , validation_error (←↩

i) , testing_error (i)) ;

e l s e

num_duds = num_duds + 1 ;

end

% Has e r r o r f a i l e d to dec r ea se f o r MAX DUDS consecu t i v e t imes ?

i f (num_duds==MAX_DUDS | i==MAX_ITER)

keep_looping = 0 ;

nnet_performance{j } . training_error{trial_num} = training_error ;

nnet_performance{j } . validation_error{trial_num} = validation_error ;

143

nnet_performance{j } . testing_error{trial_num} = testing_error ;

e l s e

i=i+1;

end

i f validation_error_best < min (validation_error_best_global)

nnet_best_global = nnet_best ;

f p r i n t f ('+++ NEW g l o b a l minimum found ! +++\n ') ;

end

validation_error_best_global = [validation_error_best_global ←↩

validation_error_best] ;

end

end

nnet{j} = nnet_best_global ;

nnet_perfomance{j } . test_residual (output_range , :) = (prof_test_mr (output_range , :)←↩

− mlpfwd (nnet{j } , pcs_test ') ') ;

nnet_perfomance{j } . test_error (output_range) = s q r t (sum ((prof_test_mr (←↩

output_range , :) − mlpfwd (nnet{j } , pcs_test ') ') ' . ˆ 2) / s i z e (prof_test_mr , 2)) ;

nnet_performance{j } . val = validation_error_best_global ;

end

func t i on [nnet , nnet_performance , pcs_train , pcs_test , pcs_val , prof_train_mr , ←↩

prof_test_mr , prof_val_mr] = nn_retrieval_var (tbs , profiles , noise_cov , ←↩

Num_ppcs , Num_nodes , Num_trials , levels_1 , levels_2 , TRAINING_PROFILES , ←↩

TESTING_PROFILES , VALIDATION_PROFILES , normalize_output)

% Neural network (s i n g l e hidden l a y e r) r e t r i e v a l

%

%

% This func t i on r e q u i r e s the NETLAB too lbox f o r MATLAB a v a i l a b l e f o r f r e e :

% http ://www. ncrg . aston . ac . uk/ net lab / index . php

% maintained by Ian Nabney (i . t . nabney@aston . ac . uk)

% For more in format ion , con su l t Dr . Nabney ' s textbook :

% Netlab : Algorithms f o r Pattern Recognit ion , ISBN : 1−85233−440−1

%

NUM_PROFILES = s i z e (profiles , 2) ;

NUM_LEVELS = s i z e (profiles , 1) ;

% Set a s i d e 10 percent o f ensemble f o r v a l i d a t i o n p r o f i l e s

NUM_PROFILES = s i z e (profiles , 2) ;

144

i f narg in < 9

TESTING_PROFILES = 1 : 1 0 : NUM_PROFILES ;

VALIDATION_PROFILES = 5 : 1 0 : NUM_PROFILES ;

TRAINING_PROFILES = 1 : NUM_PROFILES ;

TRAINING_PROFILES ([VALIDATION_PROFILES TESTING_PROFILES]) = [] ;

end

% Check to see i f we ' re r e t r i e v i n g water vapor or temperature

i f min (min (profiles))<100 && normalize_output

f p r i n t f ('Water vapor detec ted . Normal iz ing . . . \ n ') ;

TEMPERATURE=0;

e l s e

TEMPERATURE=1;

end

prof_train = profiles (: , TRAINING_PROFILES) ;

prof_test = profiles (: , TESTING_PROFILES) ;

prof_val = profiles (: , VALIDATION_PROFILES) ;

c l e a r profiles

rad_train = tbs (: , TRAINING_PROFILES) ;

rad_test = tbs (: , TESTING_PROFILES) ;

rad_val = tbs (: , VALIDATION_PROFILES) ;

c l e a r tbs

i f narg in < 12

normalize_output = 1 ;

end

i f normalize_output

mean_prof = mean(prof_train ') ' ;

e l s e

mean_prof = zero s (s i z e (prof_train , 1) , 1) ;

end

mean_rad = mean(rad_train ') ' ;

rad_train_mr = rad_train − mean_rad * ones (1 , l ength (rad_train)) ;

rad_test_mr = rad_test − mean_rad * ones (1 , s i z e (rad_test , 2)) ;

rad_val_mr = rad_val − mean_rad * ones (1 , s i z e (rad_val , 2)) ;

prof_train_mr = prof_train − mean_prof * ones (1 , s i z e (prof_train , 2)) ;

prof_test_mr = prof_test − mean_prof * ones (1 , s i z e (prof_test , 2)) ;

prof_val_mr = prof_val − mean_prof * ones (1 , s i z e (prof_val , 2)) ;

i f TEMPERATURE == 1 | ˜normalize_output % Normalize water vapor p r o f i l e

std_norm_factor = ones (s i z e (std (prof_train ') ')) ;

145

e l s e

std_norm_factor = std (prof_train ') ' ;

end

prof_train_mr = diag (1 . / std_norm_factor) * prof_train_mr ;

prof_test_mr = diag (1 . / std_norm_factor) * prof_test_mr ;

prof_val_mr = diag (1 . / std_norm_factor) * prof_val_mr ;

%%

%%%%%%%%%%%%%%%%%%%% PPC Sect i on %%%%%%%%%%%%%%%%%%%%%%%

%%

Crr = rad_train_mr * rad_train_mr ' / (l ength (rad_train)−1) ;

Cpr = prof_train_mr * rad_train_mr ' / (l ength (rad_train)−1) ;

Cnn = noise_cov ;

i f Num_ppcs > 0

[ppc_evects , ppc_evals] = eigs (Crr , Num_ppcs) ;

ppc_evects = r e a l (ppc_evects) ; % smal l imaginary va lue s p o s s i b l e

c l e a r Crr

V = ppc_evects (: , 1 : Num_ppcs) ;

% The f o l l o w i n g adjustment i s needed to make sure that the V' s are i d e n t i c a l

% every time . e i g s / svd DO NOT return the same answer f o r s u c c e s s i v e

% c a l l s − each column can d i f f e r by a s c a l e f a c t o r o f −1.

% I 'm going to ensure that the f i r s t element o f each column i s always

% p o s i t i v e so the r e s u l t s w i l l always be c o n s i s t e n t .

scale_factors = ones (s i z e (V (1 , :))) ;

scale_factors (f i n d (V (1 , :)<0)) = −1;

V = V .* (ones (s i z e (V (: , 1))) * scale_factors) ;

e l s e

Num_ppcs = s i z e (rad_train , 1) ;

V = eye (Num_ppcs) ;

end

pcs_train = V ' * rad_train_mr ;

c l e a r rad_train

s_pcs_train = std (pcs_train ') ' ;

pcs_train = diag (1 . / s_pcs_train) * pcs_train ;

Snn = sqrtm (diag (1 . / s_pcs_train) * V ' * Cnn * V * diag (1 . / s_pcs_train)) ;

146

pcs_test = V ' * rad_test_mr ;

pcs_val = V ' * rad_val_mr ;

c l e a r rad_test rad_val

pcs_test = diag (1 . / s_pcs_train) * pcs_test ;

pcs_val = diag (1 . / s_pcs_train) * pcs_val ;

% I n i t i a l i z e output es t imate matrix

est_test = zero s (s i z e (prof_test)) ;

%%

%%%%%%%%%%%%%%%%%%%%% NN Sect ion %%%%%%%%%%%%%%%%%%%%%%%

%%

% Assuming 100 l e v e l s p lus a s u r f a c e temp

% i f NUM LEVELS < 100

% e r r o r (' Check number o f p r o f i l e l e v e l s − should be 100 or 101\n ') ;

% end

i f nargin<10

i f (TEMPERATURE)

levels_1 = [1 : 5 : 6 0] ; % up to ˜22 .5 km

levels_2 = [5 : 5 : 6 0] ;

e l s e

levels_1 = [1 : 5 : 6 0] ; % up to ˜12 .5 km, 1 i s top o f atmo

levels_2 = [5 : 5 : 6 0] ;

end

end

%%%%%%%%%%%%%%%%%%%%% NN I n i t i a l i z a t i o n %%%%%%%%%%%%%%%%%%%%%%%

MAX_ITER = 200 ; % maximum number o f t r a i n i n g epochs

MAX_DUDS = 10 ; % number o f con s e cu t i v e epochs that do not

% reduce the v a l i d a t i o n e r r o r

NUM_VERR_AVG = 100 ; % number o f random no i s e r e a l i z a t i o n s

% NETLAB options ,

options = foptions ;

options (1) = 0 ; % Set to 1 f o r verbose d i s p l ay

options (14) = 1 ; % maximum number o f func t i on e v a l u a t i o n s

options (18) = 0 . 0 0 1 ; % mu in i t

options (19) = 10 ; % mu inc

options (20) = 0 . 1 ; % mu dec

options (21) = 1e10 ; ; % mu max

f o r j = 1 : l ength (levels_1) % loop over p r o f i l e ” l e v e l chunks”

% I n i t i a l i z e the g l o b a l v a l i d a t i o n e r r o r minimum

147

validation_error_best_global = inf ;

f o r trial_num = 1 : Num_trials % loop over t r i a l s

output_range = levels_1 (j) : levels_2 (j) ;

NUM_OUTPUTS = length (output_range) ;

f p r i n t f ('−−− Prepar ing neura l network . . . \ n ') ;

% Def ine s k e l e t o n network with a s i n g l e hidden l a y e r

nnet_ = mlp (Num_ppcs , Num_nodes , NUM_OUTPUTS , ' l i n e a r ') ;

% I n i t i a l i z e weights and b i a s e s us ing Nguyen−Widrow method

nnet_ = mlpinit_nw (nnet_ , [min (pcs_train , [] , 2) max(pcs_train , [] , 2)]) ;

% v a l i d a t i o n e r r o r f o r t h i s p a r t i c u l a r t r i a l

validation_error_best = inf ;

c l e a r training_error validation_error testing_error

keep_looping = 1 ;

num_duds = 0 ;

options (18) = 0 . 0 0 1 ; % Reset mu

i = 1 ;

whi l e (keep_looping)

f p r i n t f (' *** I t e r a t i o n %d o f %d f o r chunk %d o f %d (%d outputs , t r i a l %←↩

d o f %d) . \n ' , i , MAX_ITER , j , l ength (levels_1) , NUM_OUTPUTS , ←↩

trial_num , Num_trials) ;

pcs_train_noisy = pcs_train + Snn * randn (s i z e (pcs_train)) ;

% Train the NN f o r one epoch us ing Levenberg−Marquardt l e a r n i n g method

[nnet_ , options] = netopt (nnet_ , options , pcs_train_noisy ' , ←↩

prof_train_mr (output_range , :) ' , ' lm ') ;

% Evaluate performance

validation_error (i) = 0 ;

training_error (i) = 0 ;

testing_error (i) = 0 ;

f o r k=1: NUM_VERR_AVG

validation_error (i) = validation_error (i) + mean(mean ((prof_val_mr (←↩

output_range , :) − mlpfwd (nnet_ , (pcs_val + Snn * randn (s i z e (←↩

pcs_val))) ') ') . ˆ 2)) ;

training_error (i) = training_error (i) + mean(mean ((prof_train_mr (←↩

output_range , :) − mlpfwd (nnet_ , (pcs_train + Snn * randn (s i z e (←↩

pcs_train))) ') ') . ˆ 2)) ;

testing_error (i) = testing_error (i) + mean(mean ((prof_test_mr (←↩

output_range , :) − mlpfwd (nnet_ , (pcs_test + Snn * randn (s i z e (←↩

pcs_test))) ') ') . ˆ 2)) ;

end

148

validation_error (i) = validation_error (i) /NUM_VERR_AVG ;

training_error (i) = training_error (i) /NUM_VERR_AVG ;

testing_error (i) = testing_error (i) /NUM_VERR_AVG ;

% Check i f e r r o r has decreased

i f (validation_error (i) < validation_error_best)

num_duds = 0 ;

nnet_best = nnet_ ;

validation_error_best = validation_error (i) ;

f p r i n t f ('−−− NEW minimum found ! (Train ing e r r o r = %g , Va l idat i on ←↩

Error = %g , Test ing Error = %g) \n ' , training_error (i) , ←↩

validation_error (i) , testing_error (i)) ;

e l s e

num_duds = num_duds + 1 ;

end

% Has e r r o r f a i l e d to dec r ea se f o r MAX DUDS consecu t i v e t imes ?

i f (num_duds==MAX_DUDS | i==MAX_ITER)

keep_looping = 0 ;

nnet_performance{j } . training_error{trial_num} = training_error ;

nnet_performance{j } . validation_error{trial_num} = validation_error ;

nnet_performance{j } . testing_error{trial_num} = testing_error ;

e l s e

i=i+1;

end

i f validation_error_best < min(validation_error_best_global)

nnet_best_global = nnet_best ;

f p r i n t f ('+++ NEW g l o b a l minimum found ! +++\n ') ;

end

validation_error_best_global = [validation_error_best_global ←↩

validation_error_best] ;

end

end

nnet{j} = nnet_best_global ;

nnet_performance{j } . val = validation_error_best_global ;

est_test_ = mlpfwd (nnet{j } , (pcs_test + Snn * randn (s i z e (pcs_test))) ') ' ;

est_test_ = diag (std_norm_factor (output_range)) * est_test_ ;

nnet_performance{j } . std_norm_factor = std_norm_factor ;

149

est_test (output_range , :) = est_test_ + mean_prof (output_range) * ones (1 , l ength←↩

(est_test_)) ;

% Inc lude a l l the norma l i za t i on parameters

nnet{j } . mean_prof = mean_prof ;

nnet{j } . mean_rad = mean_rad ;

nnet{j } . s_pcs_train = s_pcs_train ;

nnet{j } . V = V ;

nnet{j } . Snn = Snn ;

end

func t i on [nnet nnet_variance nnet_train_pred nnet_test_pred nnet_val_pred ←↩

nnet_var_train_pred nnet_var_test_pred nnet_var_val_pred x_train x_test x_val ←↩

y_train y_test y_val] = nn_retrieval_with_variance_prediction (x , y , num_ppcs , ←↩

hn , hn_var , trials , levels1 , levels2 , levels1_var , levels2_var , TRAINING , ←↩

TESTING , VALIDATION , noise_cov , normalize)

[nnet , junk , x_train , x_test , x_val , y_train , y_test , y_val] = nn_retrieval_var (x , y , ←↩

noise_cov , num_ppcs , hn , trials , levels1 , levels2 , TRAINING , TESTING , ←↩

VALIDATION , normalize) ;

%Just in case you want var iance e s t imat i on neura l network s t a b i l i t y t e s t s :

%[x t r a i n x t e s t x va l] = getPCS (x , nnet {1} .V, TRAINING, TESTING , VALIDATION) ;

[rms nnet_train_pred] = nnet_error_pred (x_train , y_train , nnet , levels1 , levels2) ;

[rms nnet_test_pred] = nnet_error_pred (x_test , y_test , nnet , levels1 , levels2) ;

[rms nnet_val_pred] = nnet_error_pred (x_val , y_val , nnet , levels1 , levels2) ;

f o r j = 1 : l ength (levels1)

output_range = levels1 (j) : levels2 (j) ;

nnet_train_residual (output_range , :) = nnet_train_pred (output_range , :) − y_train (←↩

output_range , :) ;

nnet_test_residual (output_range , :) = nnet_test_pred (output_range , :) − y_test (←↩

output_range , :) ;

nnet_val_residual (output_range , :) = nnet_val_pred (output_range , :) − y_val (←↩

output_range , :) ;

end

% Normalize square o f r e s i d u a l s

norm_factor = mean(nnet_train_residual . ˆ 2 ') ' ; %Nx1

Snn = sqrtm (diag (1 . / nnet {1} . s_pcs_train) * nnet {1} . V ' * noise_cov * nnet {1} . V * ←↩

diag (1 . / nnet {1} . s_pcs_train)) ;

150

[nnet_variance] = nn_retrieval_simple (x_train , x_test , x_val , nnet_train_residual←↩

.ˆ2−repmat (norm_factor , 1 , s i z e (nnet_train_residual , 2)) , nnet_test_residual .ˆ2−←↩

repmat (norm_factor , 1 , s i z e (nnet_test_residual , 2)) , nnet_val_residual .ˆ2−repmat (←↩

norm_factor , 1 , s i z e (nnet_val_residual , 2)) , hn_var , trials , Snn , levels1_var , ←↩

levels2_var) ;

[rms nnet_var_train_pred] = nnet_error_pred (x_train , nnet_train_residual . ˆ 2 , ←↩

nnet_variance , levels1_var , levels2_var) ;

[rms nnet_var_test_pred] = nnet_error_pred (x_test , nnet_test_residual . ˆ 2 , ←↩

nnet_variance , levels1_var , levels2_var) ;

[rms nnet_var_val_pred] = nnet_error_pred (x_val , nnet_val_residual . ˆ 2 , ←↩

nnet_variance , levels1_var , levels2_var) ;

nnet_var_train_pred = nnet_var_train_pred + repmat (norm_factor , 1 , s i z e (←↩

nnet_train_residual , 2)) ;

nnet_var_test_pred = nnet_var_test_pred + repmat (norm_factor , 1 , s i z e (←↩

nnet_test_residual , 2)) ;

nnet_var_val_pred = nnet_var_val_pred + repmat (norm_factor , 1 , s i z e (nnet_val_residual←↩

, 2)) ;

B.2 Bayesian Neural Networks

The following code depends on Ian Nabney’s netlab toolbox, available for download

from http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/

downloads/

f unc t i on [nnet , nnet_performance , pcs_test , prof_test_mr , mean_prof , levels_1 , ←↩

levels_2 , V , s_pcs_train] = nn_retrieval_bayes (tbs , profiles , noise_cov , ←↩

Num_ppcs , Num_nodes , Num_trials , levels_1 , levels_2 , AW1 , AB1 , AW2 , AB2 , ←↩

BETAVAL , TRAINING_PROFILES , TESTING_PROFILES , VALIDATION_PROFILES , normalize)

% Neural network (s i n g l e hidden l a y e r) r e t r i e v a l

%

% This func t i on r e q u i r e s the NETLAB too lbox f o r MATLAB a v a i l a b l e f o r f r e e :

% http ://www. ncrg . aston . ac . uk/ net lab / index . php

% maintained by Ian Nabney (i . t . nabney@aston . ac . uk)

% For more in format ion , con su l t Dr . Nabney ' s textbook :

% Netlab : Algorithms f o r Pattern Recognit ion , ISBN : 1−85233−440−1

%

NUM_PROFILES = s i z e (profiles , 2) ;

NUM_LEVELS = s i z e (profiles , 1) ;

151

% Set a s i d e 10 percent o f ensemble f o r v a l i d a t i o n p r o f i l e s

i f nargin< 15

NUM_PROFILES = s i z e (profiles , 2) ;

TESTING_PROFILES = 1 : 1 0 : NUM_PROFILES ;

VALIDATION_PROFILES = 5 : 1 0 : NUM_PROFILES ;

TRAINING_PROFILES = 1 : NUM_PROFILES ;

TRAINING_PROFILES ([VALIDATION_PROFILES TESTING_PROFILES]) = [] ;

end

% Check to see i f we ' re r e t r i e v i n g water vapor or temperature

i f min (min (profiles))<100 & normalize

f p r i n t f ('Water vapor detec ted . Normal iz ing . . . \ n ') ;

TEMPERATURE=0;

e l s e

TEMPERATURE=1;

end

prof_train = profiles (: , TRAINING_PROFILES) ;

prof_test = profiles (: , TESTING_PROFILES) ;

prof_val = profiles (: , VALIDATION_PROFILES) ;

c l e a r profiles

rad_train = tbs (: , TRAINING_PROFILES) ;

rad_test = tbs (: , TESTING_PROFILES) ;

rad_val = tbs (: , VALIDATION_PROFILES) ;

c l e a r tbs

mean_prof = mean(prof_train ') ' ;

mean_rad = mean(rad_train ') ' ;

rad_train_mr = rad_train − mean_rad * ones (1 , l ength (rad_train)) ;

rad_test_mr = rad_test − mean_rad * ones (1 , s i z e (rad_test , 2)) ;

rad_val_mr = rad_val − mean_rad * ones (1 , s i z e (rad_val , 2)) ;

prof_train_mr = prof_train − mean_prof * ones (1 , l ength (prof_train)) ;

prof_test_mr = prof_test − mean_prof * ones (1 , l ength (prof_test)) ;

prof_val_mr = prof_val − mean_prof * ones (1 , l ength (prof_val)) ;

i f TEMPERATURE == 0 % Normalize water vapor p r o f i l e

std_norm_factor = std (prof_train ') ' ;

e l s e

std_norm_factor = ones (s i z e (std (prof_train ') ')) ;

end

prof_train_mr = diag (1 . / std_norm_factor) * prof_train_mr ;

prof_test_mr = diag (1 . / std_norm_factor) * prof_test_mr ;

152

prof_val_mr = diag (1 . / std_norm_factor) * prof_val_mr ;

%%

%%%%%%%%%%%%%%%%%%%% PPC Sect i on %%%%%%%%%%%%%%%%%%%%%%%

%%

Crr = rad_train_mr * rad_train_mr ' / (l ength (rad_train)−1) ;

Cpr = prof_train_mr * rad_train_mr ' / (l ength (rad_train)−1) ;

Cnn = noise_cov ;

i f Num_ppcs > 0

[ppc_evects , ppc_evals] = eigs (Crr , Num_ppcs) ;

ppc_evects = r e a l (ppc_evects) ; % smal l imaginary va lue s p o s s i b l e

c l e a r Crr

V = ppc_evects (: , 1 : Num_ppcs) ;

% The f o l l o w i n g adjustment i s needed to make sure that the V' s are i d e n t i c a l

% every time . e i g s / svd DO NOT return the same answer f o r s u c c e s s i v e

% c a l l s − each column can d i f f e r by a s c a l e f a c t o r o f −1.

% I 'm going to ensure that the f i r s t element o f each column i s always

% p o s i t i v e so the r e s u l t s w i l l always be c o n s i s t e n t .

scale_factors = ones (s i z e (V (1 , :))) ;

scale_factors (f i n d (V (1 , :)<0)) = −1;

V = V .* (ones (s i z e (V (: , 1))) * scale_factors) ;

% [ppc evects , ppc eva l s] = e i g s (Cpr / Crr * Cpr ' , Num ppcs) ;

% [U, S , V] = svd (ppc evects ' * Cpr / Crr) ;

% c l e a r Crr

% V = V(: , 1 : Num ppcs) ;

%

% % [ppc evects , ppc eva l s] = e i g s (Crr , Num ppcs) ;

% % ppc evec t s = r e a l (ppc evec t s) ; % smal l imaginary va lue s p o s s i b l e

% % c l e a r Crr

% % V = ppc evec t s (: , 1 : Num ppcs) ;

%

%

% % The f o l l o w i n g adjustment i s needed to make sure that the V' s are i d e n t i c a l

% % every time . e i g s / svd DO NOT return the same answer f o r s u c c e s s i v e

% % c a l l s − each column can d i f f e r by a s c a l e f a c t o r o f −1.

% % I 'm going to ensure that the f i r s t element o f each column i s always

153

% % p o s i t i v e so the r e s u l t s w i l l always be c o n s i s t e n t .

%

% s c a l e f a c t o r s = ones (s i z e (V(1 , :))) ;

% s c a l e f a c t o r s (f i n d (V(1 , :)<0)) = −1;

% V = V .* (ones (s i z e (V(: , 1))) * s c a l e f a c t o r s) ;

e l s e

Num_ppcs = s i z e (rad_train , 1) ;

V = eye (Num_ppcs) ;

end

pcs_train = V ' * rad_train_mr ;

c l e a r rad_train

s_pcs_train = std (pcs_train ') ' ;

pcs_train = diag (1 . / s_pcs_train) * pcs_train ;

Snn = sqrtm (diag (1 . / s_pcs_train) * V ' * Cnn * V * diag (1 . / s_pcs_train)) ;

pcs_test = V ' * rad_test_mr ;

pcs_val = V ' * rad_val_mr ;

c l e a r rad_test rad_val

pcs_test = diag (1 . / s_pcs_train) * pcs_test ;

pcs_val = diag (1 . / s_pcs_train) * pcs_val ;

% I n i t i a l i z e output es t imate matrix

est_test = zero s (s i z e (prof_test)) ;

temp = zero s (s i z e (Snn)) ;

temp (1 : s i z e (Snn , 1) , 1 : s i z e (Snn , 2)) = Snn ;

Snn = temp ;

%%

%%%%%%%%%%%%%%%%%%%%% NN Sect ion %%%%%%%%%%%%%%%%%%%%%%%

%%

% Assuming 100 l e v e l s p lus a s u r f a c e temp

% i f NUM LEVELS < 100

% e r r o r (' Check number o f p r o f i l e l e v e l s − should be 100 or 101\n ') ;

% end

i f nargin<10

i f (TEMPERATURE)

levels_1 = [1 : 5 : 6 0] ; % up to ˜22 .5 km

levels_2 = [5 : 5 : 6 0] ;

e l s e

levels_1 = [1 : 5 : 6 0] ; % up to ˜12 .5 km, 1 i s top o f atmo

154

levels_2 = [5 : 5 : 6 0] ;

end

end

%%%%%%%%%%%%%%%%%%%%% NN I n i t i a l i z a t i o n %%%%%%%%%%%%%%%%%%%%%%%

MAX_ITER = 100 ; % maximum number o f t r a i n i n g epochs

MAX_DUDS = 10 ; % number o f con s e cu t i v e epochs that do not

% reduce the v a l i d a t i o n e r r o r

NUM_VERR_AVG = 100 ; % number o f random no i s e r e a l i z a t i o n s

% NETLAB options ,

options = foptions ;

options (1) = 0 ; % Set to 1 f o r verbose d i s p l ay

options (14) = 25 ; % maximum number o f func t i on e v a l u a t i o n s

options (18) = 0 . 0 0 1 ; % mu in i t

options (19) = 10 ; % mu inc

options (20) = 0 . 1 ; % mu dec

options (21) = 1e10 ; ; % mu max

f o r j = 1 : l ength (levels_1) % loop over p r o f i l e ” l e v e l chunks”

% I n i t i a l i z e the g l o b a l v a l i d a t i o n e r r o r minimum

validation_error_best_global = inf ;

f o r trial_num = 1 : Num_trials % loop over t r i a l s

output_range = levels_1 (j) : levels_2 (j) ;

NUM_OUTPUTS = length (output_range) ;

f p r i n t f ('−−− Prepar ing neura l network . . . \ n ') ;

% Def ine s k e l e t o n network with a s i n g l e hidden l a y e r

nnet_ = mlp (Num_ppcs , Num_nodes , NUM_OUTPUTS , ' l i n e a r ') ;

% I n i t i a l i z e weights and b i a s e s us ing Nguyen−Widrow method

nnet_ = mlpinit_nw (nnet_ , [min (pcs_train , [] , 2) max(pcs_train , [] , 2)]) ;

% v a l i d a t i o n e r r o r f o r t h i s p a r t i c u l a r t r i a l

validation_error_best = inf ;

c l e a r training_error validation_error testing_error

keep_looping = 1 ;

num_duds = 0 ;

options (18) = 0 . 0 0 1 ; % Reset mu

i = 1 ;

index = mlpprior (Num_ppcs , Num_nodes , NUM_OUTPUTS , AW1 , AB1 , AW2 , AB2) ;

nnet_ . index = index . index ;

nnet_ . alpha = index . alpha ;

nnet_ . beta = BETAVAL ;

whi l e (keep_looping)

155

f p r i n t f (' *** I t e r a t i o n %d o f %d f o r chunk %d o f %d (%d outputs , t r i a l %d ←↩

o f %d) . \n ' , i , MAX_ITER , j , l ength (levels_1) , NUM_OUTPUTS , trial_num←↩

, Num_trials) ;

pcs_train_noisy = pcs_train + Snn * randn (s i z e (pcs_train)) ;

% Train the NN f o r one epoch us ing s c a l e d conjugate g rad i en t l e a r n i n g ←↩

method

[nnet_ , options] = netopt (nnet_ , options , pcs_train_noisy ' , prof_train_mr (←↩

output_range , :) ' , ' scg ') ;

%reva lua t e ev idence

% Evaluate performance

validation_error (i) = 0 ;

training_error (i) = 0 ;

testing_error (i) = 0 ;

f o r k=1: NUM_VERR_AVG

validation_error (i) = validation_error (i) + mean(mean ((prof_val_mr (←↩

output_range , :) − mlpfwd (nnet_ , (pcs_val + Snn * randn (s i z e (pcs_val←↩

))) ') ') . ˆ 2)) ;

training_error (i) = training_error (i) + mean(mean ((prof_train_mr (←↩

output_range , :) − mlpfwd (nnet_ , (pcs_train + Snn * randn (s i z e (←↩

pcs_train))) ') ') . ˆ 2)) ;

testing_error (i) = testing_error (i) + mean(mean ((prof_test_mr (←↩

output_range , :) − mlpfwd (nnet_ , (pcs_test + Snn * randn (s i z e (←↩

pcs_test))) ') ') . ˆ 2)) ;

end

validation_error (i) = validation_error (i) /NUM_VERR_AVG ;

training_error (i) = training_error (i) /NUM_VERR_AVG ;

testing_error (i) = testing_error (i) /NUM_VERR_AVG ;

% Check i f e r r o r has decreased

i f (validation_error (i) < validation_error_best)

num_duds = 0 ;

nnet_best = nnet_ ;

validation_error_best = validation_error (i) ;

f p r i n t f ('−−− NEW minimum found ! (Train ing e r r o r = %g , Va l idat i on Error←↩

= %g , Test ing Error = %g) \n ' , training_error (i) , validation_error (←↩

i) , testing_error (i)) ;

e l s e

num_duds = num_duds + 1 ;

end

i f mod (i , 3)==0

[nnet_ , gamma] = evidence (nnet_ , pcs_train_noisy ' , prof_train_mr (output_range , :)←↩

156

' , 1) ;

f p r i n t f (1 , ' \nRe−e s t imat i on c y c l e ') ;

f p r i n t f (1 , ' alpha = %8.5 f \n ' , nnet_ . alpha) ;

f p r i n t f (1 , ' beta = %8.5 f \n ' , nnet_ . beta) ;

f p r i n t f (1 , ' gamma = %8.5 f \n ' , gamma) ;

end

% Has e r r o r f a i l e d to dec r ea se f o r MAX DUDS consecu t i v e t imes ?

i f (num_duds==MAX_DUDS | i==MAX_ITER)

keep_looping = 0 ;

nnet_performance{j } . training_error{trial_num} = training_error ;

nnet_performance{j } . validation_error{trial_num} = validation_error ;

nnet_performance{j } . testing_error{trial_num} = testing_error ;

e l s e

i=i+1;

end

i f validation_error_best < min (validation_error_best_global)

nnet_best_global = nnet_best ;

f p r i n t f ('+++ NEW g l o b a l minimum found ! +++\n ') ;

end

validation_error_best_global = [validation_error_best_global ←↩

validation_error_best] ;

end

end

nnet{j} = nnet_best_global ;

nnet_performance{j } . val = validation_error_best_global ;

est_test_ = mlpfwd (nnet{j } , (pcs_test + Snn * randn (s i z e (pcs_test))) ') ' ;

est_test_ = diag (std_norm_factor (output_range)) * est_test_ ;

nnet{j } . std_norm_factor = std_norm_factor ;

est_test (output_range , :) = est_test_ + mean_prof (output_range) * ones (1 , l ength (←↩

est_test_)) ;

% Inc lude a l l the norma l i za t i on parameters

nnet{j } . mean_prof = mean_prof ;

nnet{j } . mean_rad = mean_rad ;

nnet{j } . s_pcs_train = s_pcs_train ;

nnet{j } . V = V ;

nnet{j } . Snn = Snn ;

157

end

B.3 Mixture Density Networks

The following code depends on Ian Nabney’s netlab toolbox, available for download

from http://www1.aston.ac.uk/eas/research/groups/ncrg/resources/netlab/

downloads/

f unc t i on [nnet , nnet_performance , pcs_test , prof_test_mr , mean_prof , levels_1 , ←↩

levels_2 , V , s_pcs_train] = mdn_retrieval (tbs , profiles , noise_cov , Num_ppcs , ←↩

Num_nodes , Num_mixtures , Num_trials)

% MDN (s i n g l e hidden layer , s i n g l e gauss ian component) r e t r i e v a l

%

% This func t i on r e q u i r e s the NETLAB too lbox f o r MATLAB a v a i l a b l e f o r f r e e :

% http ://www. ncrg . aston . ac . uk/ net lab / index . php

% maintained by Ian Nabney (i . t . nabney@aston . ac . uk)

% For more in format ion , con su l t Dr . Nabney ' s textbook :

% Netlab : Algorithms f o r Pattern Recognit ion , ISBN : 1−85233−440−1

%

NUM_PROFILES = s i z e (profiles , 2) ;

NUM_LEVELS = s i z e (profiles , 1) ;

% Set a s i d e 10 percent o f ensemble f o r v a l i d a t i o n p r o f i l e s

NUM_PROFILES = s i z e (profiles , 2) ;

TESTING_PROFILES = 1 : 1 0 : NUM_PROFILES ;

VALIDATION_PROFILES = 5 : 1 0 : NUM_PROFILES ;

TRAINING_PROFILES = 1 : NUM_PROFILES ;

TRAINING_PROFILES ([VALIDATION_PROFILES TESTING_PROFILES]) = [] ;

% Check to see i f we ' re r e t r i e v i n g water vapor or temperature

i f min (min (profiles))<100

f p r i n t f ('Water vapor detec ted . Normal iz ing . . . \ n ') ;

TEMPERATURE=0;

e l s e

158

TEMPERATURE=1;

end

prof_train = profiles (: , TRAINING_PROFILES) ;

prof_test = profiles (: , TESTING_PROFILES) ;

prof_val = profiles (: , VALIDATION_PROFILES) ;

c l e a r profiles

rad_train = tbs (: , TRAINING_PROFILES) ;

rad_test = tbs (: , TESTING_PROFILES) ;

rad_val = tbs (: , VALIDATION_PROFILES) ;

c l e a r tbs

mean_prof = mean(prof_train ') ' ;

mean_rad = mean(rad_train ') ' ;

rad_train_mr = rad_train − mean_rad * ones (1 , l ength (rad_train)) ;

rad_test_mr = rad_test − mean_rad * ones (1 , s i z e (rad_test , 2)) ;

rad_val_mr = rad_val − mean_rad * ones (1 , s i z e (rad_val , 2)) ;

prof_train_mr = prof_train − mean_prof * ones (1 , l ength (prof_train)) ;

prof_test_mr = prof_test − mean_prof * ones (1 , l ength (prof_test)) ;

prof_val_mr = prof_val − mean_prof * ones (1 , l ength (prof_val)) ;

i f TEMPERATURE == 0 % Normalize water vapor p r o f i l e

std_norm_factor = std (prof_train ') ' ;

e l s e

std_norm_factor = ones (s i z e (std (prof_train ') ')) ;

end

prof_train_mr = diag (1 . / std_norm_factor) * prof_train_mr ;

prof_test_mr = diag (1 . / std_norm_factor) * prof_test_mr ;

prof_val_mr = diag (1 . / std_norm_factor) * prof_val_mr ;

%%

%%%%%%%%%%%%%%%%%%%% PPC Sect i on %%%%%%%%%%%%%%%%%%%%%%%

%%

Crr = rad_train_mr * rad_train_mr ' / (l ength (rad_train)−1) ;

Cpr = prof_train_mr * rad_train_mr ' / (l ength (rad_train)−1) ;

Cnn = noise_cov ;

i f Num_ppcs > 0

[ppc_evects , ppc_evals] = eigs (Crr , Num_ppcs) ;

ppc_evects = r e a l (ppc_evects) ; % smal l imaginary va lue s p o s s i b l e

c l e a r Crr

V = ppc_evects (: , 1 : Num_ppcs) ;

159

% The f o l l o w i n g adjustment i s needed to make sure that the V' s are i d e n t i c a l

% every time . e i g s / svd DO NOT return the same answer f o r s u c c e s s i v e

% c a l l s − each column can d i f f e r by a s c a l e f a c t o r o f −1.

% I 'm going to ensure that the f i r s t element o f each column i s always

% p o s i t i v e so the r e s u l t s w i l l always be c o n s i s t e n t .

scale_factors = ones (s i z e (V (1 , :))) ;

scale_factors (f i n d (V (1 , :)<0)) = −1;

V = V .* (ones (s i z e (V (: , 1))) * scale_factors) ;

e l s e

Num_ppcs = s i z e (rad_train , 1) ;

V = eye (Num_ppcs) ;

end

pcs_train = V ' * rad_train_mr ;

c l e a r rad_train

s_pcs_train = std (pcs_train ') ' ;

pcs_train = diag (1 . / s_pcs_train) * pcs_train ;

Snn = sqrtm (diag (1 . / s_pcs_train) * V ' * Cnn * V * diag (1 . / s_pcs_train)) ;

pcs_test = V ' * rad_test_mr ;

pcs_val = V ' * rad_val_mr ;

c l e a r rad_test rad_val

pcs_test = diag (1 . / s_pcs_train) * pcs_test ;

pcs_val = diag (1 . / s_pcs_train) * pcs_val ;

% I n i t i a l i z e output es t imate matrix

est_test = zero s (s i z e (prof_test)) ;

%%

%%%%%%%%%%%%%%%%%%%%% NN Sect ion %%%%%%%%%%%%%%%%%%%%%%%

%%

% Assuming 100 l e v e l s p lus a s u r f a c e temp

% i f NUM LEVELS < 100

% e r r o r (' Check number o f p r o f i l e l e v e l s − should be 100 or 101\n ') ;

% end

i f (TEMPERATURE)

levels_1 = [91 81 71 61 51 41 31 21 11 1] ; % up to ˜22 .5 km

levels_2 = [100 90 80 70 60 50 40 30 20 1 0] ;

160

e l s e

levels_1 = f l i p l r (1 : 9 7) ; % up to ˜12 .5 km

levels_2 = f l i p l r (1 : 9 7) ;

end

%%%%%%%%%%%%%%%%%%%%% NN I n i t i a l i z a t i o n %%%%%%%%%%%%%%%%%%%%%%%

MAX_ITER = 300 ; % maximum number o f t r a i n i n g epochs

MAX_DUDS = 12 ; % number o f con s e cu t i v e epochs that do not

% reduce the v a l i d a t i o n e r r o r

NUM_VERR_AVG = 20 ; % number o f random no i s e r e a l i z a t i o n s

% NETLAB options ,

options = foptions ;

options (1) = −1; % Set to 1 f o r verbose d i s p l ay

options (14) = 30 ; % maximum number o f func t i on e v a l u a t i o n s

options (18) = 0 . 0 0 1 ; % mu in i t

options (19) = 10 ; % mu inc

options (20) = 0 . 1 ; % mu dec

options (21) = 1e10 ; ; % mu max

f o r j = 1 : l ength (levels_1) % loop over p r o f i l e ” l e v e l chunks”

% I n i t i a l i z e the g l o b a l v a l i d a t i o n e r r o r minimum

validation_error_best_global = inf ;

f o r trial_num = 1 : Num_trials % loop over t r i a l s

output_range = levels_1 (j) : levels_2 (j) ;

NUM_OUTPUTS = length (output_range) ;

f p r i n t f ('−−− Prepar ing neura l network . . . \ n ') ;

% Def ine s k e l e t o n network with a s i n g l e hidden l a y e r

nnet_ = mdn (Num_ppcs , Num_nodes , Num_mixtures , NUM_OUTPUTS , ' 0 ') ;

% I n i t i a l i z e weights and b i a s e s us ing GMM i n i t method (i e . mu = mean ,

% sigma = std . dev)

alpha = 5 ;

init_options = ze ro s (1 , 18) ;

init_options (1) = −1; % Suppress a l l messages

init_options (14) = 10 ; % 10 i t e r a t i o n s o f K means in gmminit

nnet_ = mdninit (nnet_ , alpha , prof_train_mr (output_range , :) ' , init_options) ;

% v a l i d a t i o n e r r o r f o r t h i s p a r t i c u l a r t r i a l

validation_error_best = inf ;

c l e a r training_error validation_error testing_error

keep_looping = 1 ;

num_duds = 0 ;

options (18) = 0 . 0 0 1 ; % Reset mu

i = 1 ;

161

whi le (keep_looping)

f p r i n t f (' *** I t e r a t i o n %d o f %d f o r chunk %d o f %d (%d outputs , t r i a l %d ←↩

o f %d) . \n ' , i , MAX_ITER , j , l ength (levels_1) , NUM_OUTPUTS , trial_num←↩

, Num_trials) ;

pcs_train_noisy = pcs_train + Snn * randn (s i z e (pcs_train)) ;

% Train the NN f o r one epoch us ing Sca led Conjugate Gradient l e a r n i n g ←↩

method

[nnet_ , options] = netopt (nnet_ , options , pcs_train_noisy ' , prof_train_mr (←↩

output_range , :) ' , ' scg ') ;

% Evaluate performance

validation_error (i) = 0 ;

training_error (i) = 0 ;

testing_error (i) = 0 ;

f o r k=1: NUM_VERR_AVG

validation_error (i) = validation_error (i) + mdnerr (nnet_ , (pcs_val + ←↩

Snn * randn (s i z e (pcs_val))) ' , prof_val_mr (output_range , :) ') ;

training_error (i) = training_error (i) + mdnerr (nnet_ , (pcs_train + Snn←↩

* randn (s i z e (pcs_train))) ' , prof_train_mr (output_range , :) ') ;

testing_error (i) = testing_error (i) + mdnerr (nnet_ , (pcs_test + Snn * ←↩

randn (s i z e (pcs_test))) ' , prof_test_mr (output_range , :) ') ;

end

validation_error (i) = validation_error (i) /NUM_VERR_AVG ;

training_error (i) = training_error (i) /NUM_VERR_AVG ;

testing_error (i) = testing_error (i) /NUM_VERR_AVG ;

% Check i f e r r o r has decreased

i f (validation_error (i) < validation_error_best)

num_duds = 0 ;

nnet_best = nnet_ ;

validation_error_best = validation_error (i) ;

f p r i n t f ('−−− NEW minimum negat ive l og l i k e l i h o o d found ! (Train ing ←↩

e r r o r = %g , Va l idat i on Error = %g , Test ing Error = %g) \n ' , ←↩

training_error (i) , validation_error (i) , testing_error (i)) ;

e l s e

num_duds = num_duds + 1 ;

end

% Has e r r o r f a i l e d to dec r ea se f o r MAX DUDS consecu t i v e t imes ?

i f (num_duds==MAX_DUDS | i==MAX_ITER)

keep_looping = 0 ;

nnet_performance{j } . training_error{trial_num} = training_error ;

nnet_performance{j } . validation_error{trial_num} = validation_error ;

162

nnet_performance{j } . testing_error{trial_num} = testing_error ;

e l s e

i=i+1;

end

i f validation_error_best < min (validation_error_best_global)

nnet_best_global = nnet_best ;

f p r i n t f ('+++ NEW g l o b a l minimum found ! +++\n ') ;

end

validation_error_best_global = [validation_error_best_global ←↩

validation_error_best] ;

end

end

nnet{j} = nnet_best_global ;

nnet_performance{j } . val = validation_error_best_global ;

nnet_performance{j } . std_norm_factor = std_norm_factor ;

% Inc lude a l l the norma l i za t i on parameters

nnet_performance{j } . mean_prof = mean_prof ;

nnet_performance{j } . mean_rad = mean_rad ;

nnet_performance{j } . s_pcs_train = s_pcs_train ;

nnet_performance{j } . V = V ;

nnet_performance{j } . Snn = Snn ;

end

B.4 SPGP code

The following code depends on Snelson’s SPGP implementation and Rasmussen’s

GPR toolbox, available for download from http://www.gaussianprocess.org

f unc t i on [mu_test s2_test mu_train s2_train mu_val s2_val spgp_variables] = ←↩

spgp_dimred (x , y , x_val , y_val , xtest , rd , M , use_early_stopping , numiter , ←↩

noise_cov)

% [mean test v a r t e s t mean train v a r t r a i n mean val v a r v a l] = spgp dimred (x t r a i n←↩

y t r a i n x va l

% y va l x t e s t y t e s t numReducedDim numPsuedoInputs reset hyperparmas

% u s e e a r l y s t o p p i n g , number o f i t e r a t i o n s)

%

163

% x are N x dim

% y are N x 1

% s p g p v a r i a b l e s i s a s t r u c t u r e conta in ing rd , M, al l hyperparams ,

% pro j e c t i on mat r i x , psuedo−inputs , h

%

% This code depends on Snelson ' s SPGP implementation and Rasmussens ' s GPR

% toolbox .

spgp_variables . rd = rd ;

spgp_variables . M = M ;

i f narg in < 10 % update i f more args

noise_cov = 0 ;

end

% maximum number o f v a l i d a t i o n f a i l u r e s

MAX_FAILURES = 4 ;

y = double (y) ;

x= double (x) ;

x_val = double (x_val) ;

xtest = double (xtest) ;

y_val = double (y_val) ;

me_y = mean(y) ; y0 = y − me_y ; % zero mean the data

y_val = y_val − me_y ;

[N , dim] = s i z e (x) ;

%i n i t i a l i z e P s e n s i b l y (PCA?)

% i n i t i a l i z e use random orthogona l matr i ce s ?

[junk P_init] = returnPC (x (: , :) ' , rd) ;

% P i n i t = rand (dim , rd) ;

% P i n i t = P i n i t .* repmat (1 . / sum(P in i t , 1) , dim , 1) ;

% i n i t i a l i z e pseudo−inputs to a random subset o f t r a i n i n g inputs

[dum , I] = s o r t (rand (N , 1)) ;

I = I (1 : M) ;

xb_init = x (I , :) ;

xb_init = xb_init*P_init ;

% i n i t i a l i z e hyperparameters s e n s i b l y (s ee s p g p l i k f o r how

% the hyperparameters are encoded)

% h y p i n i t (1 , 1) = −2* l og ((q u a n t i l e (x , . 9 5)−q u a n t i l e (x , . 0 5)) '/2) ; % log 1/(←↩

l e n g t h s c a l e s) ˆ2

hyp_init (1) = log (var (y0 , 1)) ; % log s i z e

hyp_init (2) = log (quantile (y0 , . 8 0) − quantile (y0 , . 2 0)) ; % log no i s e

164

h = [] ;

f o r i = 1 : M

[dum ind] = closest_points ((x*P_init) ' , xb_init (i , :) ' , 100) ;

h = [h std (y0 (ind))] ;

end

%normal ize f o r good reasons

h = log (h . / mean(h)) ;

% opt imize hyperparameters and pseudo−inputs

w_init = [reshape (xb_init , M*rd , 1) ; reshape (P_init , rd*dim , 1) ; h ' ; hyp_init '] ;

% e a r l y stopping

min_iter= min (numiter , 5 0) ;

numloops = max(1 , f l o o r (numiter/min_iter)) ;

w=w_init ;

fw_val = inf ;

val_failures = 0 ;

f o r i = 1 : numloops

di sp (' bloop ')

ws{i} = w ;

[w , f] = minimize (w , ' s p g p l i k d r h t e f f ' ,−min_iter , y0 , x , M , rd) ;

i f use_early_stopping

fw = spgp_lik_dr_ht_eff (w , y_val , x_val , M , rd)

i f fw_val > 0

percentimprovement = 1−fw/fw_val ;

e l s e

percentimprovement = fw/fw_val−1;

end

i f percentimprovement <0.0005 % percentage improvement?

d i sp (' va l f a i l ')

val_failures=val_failures+1;

e l s e

fw_val = fw ;

bestw=w ;

val_failures = 0 ; % re s e t , we stop when there are conse cu i tv e f a i l u r e s

end

i f val_failures > MAX_FAILURES

break ;

end

end

165

end

i f use_early_stopping

w = bestw ;

end

% [w, f] = l b f g s (w in i t , ' spgp l i k ' , 2 00 , 10 , y0 , x ,M) ; % an a l t e r n a t i v e

% optim = optimset (' GradObj ' , ' on ' , ' Display ' , ' i t e r ') ;

% [w, f] = f m i n l b f g s (@(dubya) (s p g p l i k d r h t (dubya , y0 , x , M, rd)) , w in i t , optim) ; %←↩

an a l t e r n a t i v e

xb = reshape (w (1 : M*rd , 1) ,M , rd) ;

P = reshape (w (M*rd+1:(M+dim) *rd) , dim , rd) ;

hyp = w ((M+dim) *rd+1:end) ;

spgp_variables . xb = xb ;

spgp_variables . hyp = hyp ;

spgp_variables . P = P ;

spgp_variables . ws = ws ;

spgp_variables . bestw = bestw ;

% PREDICTION

[mu0 , s2] = spgp_pred_dr_ht (y0 , x , xb , xtest , hyp , P) ;

[mu0_val , s2_val] = spgp_pred_dr_ht (y0 , x , xb , x_val , hyp , P) ;

[mu0_train , s2_train] = spgp_pred_dr_ht (y0 , x , xb , x , hyp , P) ;

mu_test = mu0 + me_y ; % add the mean back on

% mu = mu.* s td y ; % r e s t o r e std

mu_val = mu0_val + me_y ;

% i f you want p r e d i c t i v e va r i ance s to inc lude no i s e var i ance add no i s e :

s2_test = s2 + exp (hyp (end)) ;

s2_train = s2_train + exp (hyp (end)) ;

mu_train = mu0_train + me_y ;

% mu0 train = mu0 train .* s td y ;

% s2 = s2 .* s td y ˆ2 ; % r e s t o r e std , s2 i s var i ance

% s 2 t r a i n = s 2 t r a i n .* s td y ˆ2 ; %r e s t o r e std , s2 i s vara ince

166

Bibliography

[1] F. Aires, C. Prigent, and W. B. Rossow. Neural network uncertainty assess-
ment using bayesian statistics: a remote sensing application. Neural Comput.,
16(11):2415–2458, 2004.

[2] H. H. Aumann, M. T. Chahine, C. Gautier, M. D. Goldberg, E. Kalnay, L. M.
McMillin, H. Revercomb, P. W. Rosenkranz, W. L. Smith, D. H. Staelin, L. L.
Strow, and J. Susskind. AIRS/AMSU/HSB on the aqua mission: design, sci-
ence objectives, data products, and processing systems. IEEE Transactions on
Geoscience and Remote Sensing, 41:253–264, February 2003.

[3] Y. Bazi and F. Melgani. Gaussian process approach to remote sensing image
classification. Geoscience and Remote Sensing, IEEE Transactions on, 48(1):186
–197, jan. 2010.

[4] Christopher M. Bishop. Mixture density networks. Technical report, Neural
Computing Research Group, Aston University, 1994.

[5] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford Uni-
versity Press, November 1995.

[6] William J. Blackwell. A neural-network technique for the retrieval of atmospheric
temperature and moisture profiles from high spectral resolution sounding data.
IEEE Transaction on Geoscience and Remote Sensing, 43(11), November 2005.

[7] William J. Blackwell. Neural Networks in Atmospheric Remote Sensing. Artech
House, April 2009.

[8] William J. Blackwell, Laura J. Bickmeier, R. Vincent Leslie, Michael L. Pieper,
Jenna E. Samra, Chinnawat Surussavadee, and Carolyn A. Upham. Hyperspec-
tral microwave atmospheric sounding. IEEE Transactions on Geoscience and
Remote Sensing, preprint.

[9] Choongyeun Cho and David Staelin. Cloud clearing of atmospheric infrared
sounder hyperspectral infrared radiances using stochastic methods. Journal of
Geophysical Research, 111, April 2006.

[10] J. Blaisdell P. Rosenkranz Edward T. Olsen, J. Susskind. AIRS/AMSU/HSB
Version 5 Level 2 Quality Control and Error Estimation. Jet Propulsion Labo-
ratory, March 2010.

167

[11] J. F. G. De Freitas, M. A. Niranjan, A. H. Gee, and A. Doucet. Sequential monte
carlo methods to train neural network models. Neural Comput., 12(4):955–993,
2000.

[12] Bo Hu and Kam-Wah Tsui. Distributed evolutionary monte carlo with appli-
cations to bayesian analysis. Technical Report 1112, Department of Statistics,
University of Wisconsin-Madison, November 2005.

[13] D. C. Liu and J. Nocedal. On the limited memory bfgs method for large scale
optimization. Math. Program., 45(3):503–528, 1989.

[14] David J. C. Mackay. A practical bayesian framework for backpropagation net-
works. Neural Computation, 4:448–472, 1992.

[15] Derrick Nguyen and Bernard Widrow. Improving the learning speed of 2-layer
neural networks by choosing initial values of the adaptive weights. Technical
report, Information Systems Laboratory, Stanford University, 1990.

[16] Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes
for Machine Learning (Adaptive Computation and Machine Learning). The MIT
Press, 2005.

[17] O. Reale, J. Susskind, R. Rosenberg, E. Brin, E. Liu, L. P. Riishojgaard, J. Terry,
and J. C. Jusem. Improving forecast skill by assimilation of quality-controlled airs
temperature retrievals under partially cloudy conditions. Geophysical Research
Letters, 35:8809–+, April 2008.

[18] P.W. Rosenkranz. Retrieval of temperature and moisture profiles from amsu-a
and amsu-b measurements. Geoscience and Remote Sensing, IEEE Transactions
on, 39(11):2429 –2435, nov 2001.

[19] Fabian H. Sinz, Joaquin Quinonero C, Gokhan H. Bakir, Carl E. Rasmussen,
and Matthias O. Franz. Learning depth from stereo. In In Pattern Recognition,
Proc. 26th DAGM Symposium, pages 245–252. Springer, 2004.

[20] J. Sjberg and L. Ljung. Overtraining, regularization, and searching for minimum
in neural networks. In In Preprint IFAC Symposium on Adaptive Systems in
Control and Signal Processing, pages 669–674, 1992.

[21] Edward Lloyd Snelson. Flexible and efficient Gaussian process models for ma-
chine learning. Ph.D Thesis. University College London, 2007.

[22] L.L. Strow, S.E. Hannon, S. De Souza-Machado, H.E. Motteler, and D. Tobin.
An overview of the airs radiative transfer model. Geoscience and Remote Sensing,
IEEE Transactions on, 41(2):303 – 313, feb. 2003.

[23] Chinnawat Surussavadee and David H. Staelin. Global precipitation retrievals
using the noaa amsu millimeter-wave channels: Comparisons with rain gauges.
Journal of Applied Meteorology and Climatology, 49(1):124–135, 2010.

168

[24] J. Susskind, C. D. Barnet, and J. M. Blaisdell. Retrieval of atmospheric and
surface parameters from AIRS/AMSU/HSB data in the presence of clouds. IEEE
Transactions on Geoscience and Remote Sensing, 41:390–409, February 2003.

[25] Hans Henrik Thodberg. Ace of bayes: Application of neural networks with
pruning. Technical report, The Danish Meat Research Institute, Maglegaardsvej
2, DK-4000, 1993.

[26] S. Twomey. Introduction to the mathematics of inversion in remote sensing and
indirect measurements / S. Twomey. Elsevier Scientific Pub. Co : distributors
for the U.S., Elsevier/North Holland, Amsterdam ; New York :, 1977.

[27] Christopher Williams and Matthias Seeger. Using the nystrom method to speed
up kernel machines. In Advances in Neural Information Processing Systems 13,
pages 682–688. MIT Press, 2001.

169

