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Abstract

This thesis presents an impulse framework for analyzing the hydrodynamic forces on
bodies in flow. This general theoretical framework is widely applicable, and it is used
to address the hydrodynamics of fish propulsion, water entry of spheres, and the off-
design performance of marine propellers. These seemingly-unrelated physics problems
share a key common thread: The forces on these fish, spheres, and propellers can be
modeled as the sum of the reaction to the rate of change of (1) the pressure impulse
required to set up the potential flow about the body, and (2) the vortex impulse
required to create the vortical structures in the wake of the body.

Fish generate propulsive forces by creating and manipulating large-scale vortical
structures using their body and tail. High-speed particle image velocimetry
experiments show that a fish generates two vortex rings during a C-turn maneuver
and that the change in momentum of the fish balances the change in pressure impulse
plus the vortex impulse of these rings.

When a sphere plunges into a basin of water and creates a sub-surface air cavity in
place of a vortical wake, the vortex impulse is zero, and the force on the sphere is given
by the pressure impulse component. Using data from high-speed imaging experiments,
a semi-empirical numerical simulation is developed herein; this numerical model shows
how the presence of the cavity alters the unsteady pressure force on the sphere and
modulates the dynamics of the impact event.

During steady propeller operation, the pressure impulse is constant, and the loads
on the propeller are given by the vortex impulse component. To analyze these loads,
a computational design and analysis tool is presented; this code suite is based on
propeller lifting line theory, which is shown to be a special case of the general impulse
framework of this thesis. A marine propeller is designed, built, and tested over a
range of off-design operating conditions. Experimental results match the predicted
performance curve for this propeller, which provides important validation data for
the numerical method presented herein.
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Bringing this thesis full circle, the unsteady startup of the propellor is addressed,
which is analogous to the impulsive maneuvering of the swimming fish. As in the
fish maneuvering problem, the propellor generates a ring-like vortical wake, and it is
shown herein how the vortex impulse of these rings provides thrust for the propellor.
With the perspective of the impulse framework developed in this thesis, the results of
these tandem experimental investigations and numerical simulations provide deeper
insight into classical fluid-dynamics theory and modern experimental hydrodynamics.

Thesis committee members:
Paul Sclavounos, Professor, Mechanical Engineering, MIT
Mark Drela, Professor, Aeronautics and Astronautics, MIT
Richard Kimball, Associate Professor, Maine Maritime Academy, Castine, ME

Thesis Supervisor: Alexandra H. Techet
Title: Associate Professor, Mechanical Engineering
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Chapter 1

Introduction

This thesis presents an impulse framework for analyzing the hydrodynamic forces on

bodies in flow. This theoretical framework is widely applicable, and it is used to

address the hydrodynamics of fish propulsion, water entry of spheres, and marine

propellers through both numerical modeling and experimental investigation. This

thesis is motivated by the need for a theoretical framework to serve as a basis

for understanding and modeling the hydrodynamic forces generated for unsteady

propulsion, specifically those forces observed in an experimental context. This thesis is

concerned with both biological applications, such as fish propulsion, and conventional

propulsion applications, such as the design of propellers for underwater vehicles. To

motivate the need for my framework, consider the following methods that one might

employ to measure forces experimentally and the issues with doing so in the context

of these applications.

Measuring force on a load cell

Often in model tests (e.g. measuring propeller loads in a water tunnel), the total force

on a model can be measured by mounting it on a load cell instrumented with strain

gauges. This approach yields accurate force readings if care is taken to account for
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the effect of the mounting device on the measured loads. This approach is used in

Chapter 8 to measure the thrust produced by a model propeller during steady and

unsteady performance tests. However, this approach cannot be used for biological

applications (e.g. inferring the forces on a fish during a rapid maneuver), nor does it

give any insight into the hydrodynamics that result in the measured forces.

Inferring force from body acceleration

The force on a body is computed from its acceleration by Newton’s second law

F = ma (1.0.1)

In some applications (e.g. measuring the overall dynamics of an underwater vehicle),

a body could be instrumented with accelerometers to measure acceleration directly.

However, as with measuring forces using a load cell, this approach cannot be used for

biological application (at least not easily), nor does it give any physical insight into

the measured forces. This approach is used in Chapter 5 to determine the overall

forces on a sphere falling into a basin of water, but in order to explain the nature

of these forces, in Chapter 6 a numerical model is developed based on the impulse

framework of this thesis.

Inferring force from pressure and viscous stress

The net force on a body could be computed by integrating the pressure and viscous

stresses over the body surface

F =

∫
Sb

n̂ · [pE−T] dS (1.0.2)

where Sb is the body surface, n̂ is a unit normal vector pointing out of the fluid (into

the body), p is the static pressure, E is the identity tensor (‘E’ stands for the German
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term ‘Einheitsmatrix’), and T = µ
[
(∇u) + (∇u)>

]
is the viscous stress tensor, where

u and µ are the fluid velocity and dynamic viscosity, respectively.

This approach is infeasible experimentally, especially in the case of a moving

body, since it requires both (a) resolving the fluid pressure at the body surface, and

(b) resolving the velocity gradients in the boundary layer at the body surface. Each of

these experimental tasks is formidable, especially in the case of an unsteady flowfield

with a moving body.

Practically, this approach requires performing a full-blown computational fluid

dynamics (CFD) simulation. Highly-accurate immersed-boundary CFD methods do

exist and have been used in several propulsion studies, such as that of a human

swimmer (von Loebbecke et al, 2009) or that of a carangiform swimming fish

(Borazjani and Sotiropoulos, 2008). These CFD studies yield a wealth of flowfield

information that can be used to understand the dynamics of these flows. However,

this approach required hundreds of CPU-hours (on current computers) and doesn’t

necessarily lend itself to explaining and understanding the results of particular

experiments observed in the lab.

Inferring force from control volume analysis

Neglecting buoyancy and assuming no flow through the body surface, the force on a

body can be computed by applying conservation of momentum to a control volume

V , which is bounded by the body surface Sb and an arbitrary exterior surface S, as

shown in figure 1-1. This yields

F = − d

dt

[∫
V

ρudV

]
−
∫

S

n̂ · (u− us)ρudS +

∫
S

n̂ · [−pE + T] dS (1.0.3)

where us is the velocity of surface S and ρ is the fluid density. Equation (1.0.3) is

well known, and the three terms represent: (1) the reaction to the rate of increase
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V

S

n^
Sb

n^

Figure 1-1: Illustration of a finite control volume surrounding a moving body.

of momentum in the control volume, (2) the reaction to the net flux of momentum

out of the control volume, and (3) the force required to balance the net pressure and

tractive forces on the fluid at the exterior control surface.

This approach is used with great success in some experiments, such as model tests

with steady flow in a water tunnel. In this case, the first and third integrals in (1.0.3)

are assumed to be zero, and the momentum flux is easily measured by a wake survey

(i.e. using Pitot tubes to measure the fluid velocity where the wake passes through

the downstream control surface).

However, for unsteady propulsion applications, evaluating (1.0.3) presents the

same difficulties as evaluating (1.0.2). Namely, the entire 3D velocity field must be

known, and the pressure must be known at the exterior control surface. Further,

equation (1.0.3) requires computing the rate of change of the total fluid momentum,

which can be challenging experimentally. Noca (1997) offers several alternatives to

(1.0.3) that eliminate the pressure integral in favor of rates of change of integrals and

integrals involving velocity gradients. Finding these temporal and spatial derivatives

is challenging, because finite difference methods amplify measurement error, and

derivatives of functional fits depend on the fitting parameters that may not accurately

represent instantaneous flowfield behavior. Chapter 5 outlines the difficulties in

16



computing the derivative of a measured quantity and provides a method for doing so.

Still, estimating forces from (1.0.3) is tenuous in unsteady propulsion problems, and

an alternate method is desirable.

Inferring force from fluid impulse

Finally, the net force on a body is the reaction to the rate of change of fluid impulse,

which can be decomposed into vortex impulse and pressure impulse

F = − d

dt

(
Iv + Ip

)
(1.0.4)

These components are discussed in classical texts, such as (Lamb, 1945), (Lighthill,

1986b), and (Saffman, 1995), and one purpose of this thesis is to show how both of

these components contribute to the total force on the body. Before I formally derive

(1.0.4), I shall introduce these two components of fluid impulse.

1.1 Fluid impulse

It is well known that any velocity field can be decomposed into rotational flow (u0)

and irrotational flow (∇φ) components

u = u0 +∇φ (1.1.1)

where φ is the velocity potential, and u0 is the velocity in excess of the (irrotational)

potential flow component (Saffman, 1995). Since ∇ × ∇φ = 0 by definition, the

vorticity field is given solely by the rotational flow component ω ≡ ∇× u = ∇× u0.

Considering these points, it follows that the total fluid impulse can also be decomposed

into two components: vortex impulse and pressure impulse.
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(a) Vortex impulse

(b) Pressure impulse

Figure 1-2: (a) Vortices shed from a spoon are visualized with Kalliroscopic fluid,
illustrating vortex impulse; (b) Flow past a vertical plate is visualized in a Hele-Shaw
cell, illustrating pressure impulse. Both are reproduced from (Homsy et al, 2000).

For an unbounded flow, vortex impulse is defined as

Iv ≡
1

2
ρ

∫
V

x× ω dV (1.1.2)

where the x is the position from some arbitrarily-chosen origin, and ω = ω(x) is the

vorticity field. A physical interpretation of equation (1.2.17) may be arrived at by

considering the vortical flow velocity, u0. This velocity u0 can be thought of as being

‘induced’ by the vorticity distribution, in which case the velocity at position x′ can

be computed using Biot-Savart law

u0(x
′) =

1

4π

∫
V

(x− x′)× ω(x)

|x− x′|3
dx (1.1.3)

where dx is used here in place of dV to explicitly indicate that x is the dummy

variable of integration (but the integral is still taken over the entire fluid volume).

Comparing (1.1.3) and (1.1.2) reveals that the vortex impulse is proportional to the

18



velocity induced at the origin, which is

u0(0) =
1

4π

∫
V

x× ω(x)

|x|3
dx (1.1.4)

Figure 1-2a illustrates the vortex impulse imparted by the motion of a ‘flat plate’

(i.e. a spoon) normal to itself. As the spoon is drawn through the bath, the flow

separates at the edges of the spoon, and a vortex pair is shed1. The motion of this

vortex pair persists long after the spoon is removed from the fluid, showing that

impulse has been imparted to the fluid via the creation of these vortices. Further

discussion of vortex impulse can be found in (Bachelor, 1967, §5.72), (Saffman, 1995,

§3.2), (Lighthill, 1986b, §11.2), and (Lamb, 1945, §152).

Figure 1-2b illustrates the irrotational flow about a flat plate, characterized by

no flow separation, symmetrical flow upstream and downstream of the plate, and no

vorticity. In the absence of vorticity, the velocity field can be described solely using

a potential function, u = ∇φ. In this case, ρφ is the impulsive pressure of the flow,

so the impulse required to set up the potential flow is the integral of this impulsive

pressure over the body surface, which is called the pressure impulse

Ip ≡
∫

Sb

ρφn̂ dS (1.1.5)

where n̂ points out of the fluid (into the body). Further discussion of pressure impulse

can be found in (Bachelor, 1967, §6.10), (Saffman, 1995, §4.1), (Lighthill, 1986b, §6.1),

and (Lamb, 1945, §119).

1It is well known that vortex tubes cannot end in the fluid (Saffman, 1995, §1.4), so this vortex
pair either extends to the bottom of the bowl or connects, but this is besides the point.

19



ΓAΓ

n

R

A = πR
2

Iv

(a) (b) (c)

Figure 1-3: (a) Dye visualization of a live swimming fish shows the formation of a
vortex ring during the initial stage of a rapid turning maneuver; (b) Dye visualization
of a propeller shows the formation of a vortex ring during unsteady start from rest
(reproduced from (Stettler, 2004)); (c) Illustration of a vortex ring.

1.1.1 Example: impulse of a vortex ring

The key feature of the impulsive force framework is that the fluid impulse can be

modeled in such a way that the model parameters can be accurately measured in

laboratory experiments. For example, consider the axisymmetric vortex ring model,

in which the impulse depends solely on the circulation Γ and radius R of the ring,

which can be quantified accurately in a particle image velocimetry experiment.

The vortex ring model applies well to a variety of fluid flows: For example, a

live swimming fish will form a vortical wake during a rapid maneuver that resembles

two distinct vortex rings (as discussed in Chapter 2); the first of these two rings is

visualized with fluorescent dye in figure 1-3a. A propeller will form a vortical structure

during unsteady start-up that resembles a vortex ring, as visualized by Stettler (2004)

using fluorescent dye (reproduced in figure 1-3b). Ring-like vortex structures are quite

prevalent in biological propulsion, and Dabiri (2009) suggests that optimal vortex ring

formation should be a driving principle for biomimetic design of propulsion systems.

A vortex ring is constructed mathematically by a limiting process in which the

cross-sectional area of a circular vortex filament is reduced to zero while the circulation

is held constant. In this limit, the vorticity becomes zero everywhere except for on

the ring, where it becomes infinite. Choosing cylindrical coordinates x = (r, θ, x), the
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vorticity field is represented in terms of a delta function by

ω(x) = Γ δ(x− xr) eθ (1.1.6)

where Γ is the circulation, xr = Rer +θeθ for 0 ≤ θ ≤ 2π are the coordinates defining

the ring, and R is the radius of the ring, as shown in figure 1-3c.

Inserting (1.1.6) into (1.1.2) yields the vortex impulse

Iv =
1

2
ρ

∫ 2π

0

(Rer × Γeθ) R dθ

which simplifies to

Iv = ρΓAn (1.1.7)

where A = πR2 is the frontal area of the vortex ring. Inserting (1.1.6) into (1.1.4)

yields the velocity at the center of the ring

u0(0) =
1

4π

∫ 2π

0

(Rer × Γeθ)

R3 R dθ

=
Γ

2R
n

=
Iv

2RρA

These results are well known and can be found in many classical texts (e.g. Milne-

Thomson, 1958, §10.21). A correction to (1.1.7) is given by Saffman (1995) for the

case of a toroidal vortex ring (i.e. a circular vortex filament with a finite cross-sectional

area), as discussed in Chapter 2.

It is important to reiterate that in this vortex ring model, the fluid impulse can be

computed from experimental measurements of just Γ and R, which can be computed

with a good degree of accuracy.
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1.2 Impulsive forces

In this section, I formally derive equation (1.0.4), which can be used as a framework for

modeling and understanding hydrodynamic forces on bodies in flow. This framework

will be applied in the experimental studies described in this thesis. Equation (1.0.4)

simply says that the total force on a body is the sum of two components:

(1) the reaction to the rate of change of vortex impulse, associated with the creation

and manipulation of vortices in the wake, and

(2) the reaction to the rate of change of pressure impulse, which is required to

generate the irrotational flow about the body.

The pressure impulse force depends linearly on the body motion and can be easily

modeled for simple geometrical forms. The vortex impulse force depends on the non-

linear dynamics of the the fluid flow, but it can be estimated with knowledge of the

vorticity field in the wake of the body. A unifying discussion of these two concepts is

presented by Lighthill (1986a) in the context of wave loading on offshore structures,

without derivation. The purpose of this section is to provide a unifying derivation of

the total force on the body (1.0.4), rather than to consider the vortex impulse and

pressure impulse components separately as done in Section 1.1 and in the classical

fluid dynamics texts cited therein. Much of the following derivation also appears

in the works of Noca (1997), Wu and Wu (1996), and Lighthill (1979). In working

through the details, we will find that the definition of vortex impulse (1.1.2) will have

to be augmented to accurately compute the force on the body.

The starting equation for the derivation is (1.0.3). I will manipulate (1.0.3) using

a series of vector calculus identities and assumptions. The final impulsive force

framework assumes: (1) the fluid density is constant and uniform throughout the

fluid; (2) no flow through and no slip on the body surface; (3) gravitational effects

can be accounted for separate from this model, (4) the fluid extends infinitely far
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from the body; (5) the fluid domain is three-dimensional and is simply connected;

(6) the Reynolds number is high, such that the vorticity field can be modeled as a

vortex sheet surrounding the body plus vorticity in the wake; and (7) we either have

experimental data for or we can model the entire vorticity field in the wake.

The force on a body is given by equation (1.0.3), which is reproduced here

F = − d

dt

[∫
V

ρudV

]
−
∫

S

n̂ · (u− us)ρudS +

∫
S

n̂ · [−pE + T] dS (1.0.3)

where control volume V is bounded by the body surface Sb and an arbitrary exterior

surface S, as shown in figure 1-1. In general, both the body and control surfaces may

move in time, so the volume may be unsteady in time. Equation (1.0.3) only assumes

no flow through the body surface (n̂ · (u − ub) = 0 on Sb, where ub is the body

surface velocity) and no bulk fluid force (i.e. no gravity). Including gravity is trivial,

as it simply results in the addition of a buoyancy force (by Archimedes’ principle)

and does not affect the arguments presented herein. In what follows, I assume that

the fluid density ρ is constant and uniform throughout the fluid, but I will keep it in

the formulae throughout the derivation.

To proceed, I will make use of two identities. The first is the so called impulse-

momentum identity

∫
V

u dV =
1

2

∫
V

x× ω dV − 1

2

∫
S⊕Sb

x× (n̂× u) dS (1.2.1)

where u is the fluid velocity, ω = ∇× u is the vorticity, x is the position from some

arbitrarily chosen origin, volume V is a simply-connected region in 3D space bounded

by surfaces S and Sb, and I use the notation
∫

S⊕Sb
=
∫

S
+
∫

Sb
(Noca, 1997, §3.1.1;

Saffman, 1995, §3.2). The second is the so called pressure identity

−1

2

∫
S∗

x× (n̂×∇φ) dS =

∫
S∗

φn̂ dS (1.2.2)
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Figure 1-4: Illustration of an infinite control volume surrounding a moving body.

where φ is a single-valued scalar on surface S∗. An equation similar to (1.2.2) could

be derived by setting u = ∇φ in (1.2.1), noting that ω = ∇ × (∇φ) = 0, and

manipulating the left hand side by Green’s theorem
∫

V
∇φ dV =

∫
S⊕Sb

φn̂ dS; this

results in (1.2.2) but with S∗ = S ⊕ Sb (Saffman, 1995, §4.2). Noca (1997, §3.1.2)

offers an alternate proof in which he shows that this identity holds on either surface,

S∗ = Sb or S∗ = S. Note that the pressure field is necessarily single-valued, so I will

make use of (1.2.2) once while setting φ = p.

Inserting (1.2.1) into (1.0.3) yields

F = − d

dt

[
1

2
ρ

∫
V

x× ω dV

]
+

d

dt

[
1

2
ρ

∫
Sb

x× (n̂× u) dS

]
+

d

dt

[
1

2
ρ

∫
S

x× (n̂× u) dS

]
−
∫

S

n̂ · (u− us)ρu dS +

∫
S

n̂ · [−pE + T] dS (1.2.3)

At this point, consider the case when the vorticity is confined to a finite region

surrounding the body and the exterior control surface, S, extends a great distance

from both the body and surrounding vorticity. In the limit of S → S∞, I will now

show that the integrals over S∞ cancel and that we are left with a tractable formula

for the force. The following derivation follows that given in (Noca, 1997, §2.4.6).

First note that if we assume the vorticity at large distances from the body decays

at most exponentially, |ω| . e−αr as r →∞, then the velocity scales as |u| . r−3 in

3D space, but no analogous assumption can be made about the pressure at infinity
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(Bachelor, 1967). Assuming that control surface S∞ is fixed in space (us = 0) and

that viscous stresses are negligible at infinity, then

−
∫

S∞
n̂ · (u− us)ρu dS +

∫
S∞

n̂ ·T dS ∼ 0,

and the force on the body (1.2.3) becomes

F = − d
dt

[
1
2
ρ
∫

V
x× ω dV

]
+ d

dt

[
1
2
ρ
∫

Sb
x× (n̂× u) dS

]
+ d

dt

[
1
2
ρ
∫

S∞
x× (n̂× u) dS

]
−
∫

S∞
pn̂ dS (1.2.4)

Since the exterior control surface S∞ is fixed, the time derivative in the third term

can be evaluated readily. This term can then be manipulated using the Navier-Stokes

equations ρ∂u
∂t

= −∇p− ρ∇ · (uu) +∇ ·T, which yields

d
dt

[
1
2
ρ
∫

S∞
x× (n̂× u) dS

]
= 1

2

∫
S∞

x×
(
n̂×

[
ρ∂u

∂t

])
dS

= 1
2

∫
S∞

x× (n̂× [−∇p− ρ∇ · (uu) +∇ ·T]) dS

The integrals of the inertial and viscous terms again are zero:

1
2

∫
S∞

x× (n̂× [−ρ∇ · (uu) +∇ ·T]) dS ∼ 0.

The integral of the pressure term is evaluated using the pressure identity:

1
2

∫
S∞

x× (n̂× [−∇p]) dS =
∫

S∞
pn̂ dS.

Thus, I have shown:

d

dt

[
1

2
ρ

∫
S∞

x× (n̂× u) dS

]
=

∫
S∞

pn̂ dS, (1.2.5)

so the last two terms in (1.2.4) cancel, and the net force on the body becomes

F = − d

dt

[
1

2
ρ

∫
V

x× ω dV

]
+

d

dt

[
1

2
ρ

∫
Sb

x× (n̂× u) dS

]
(1.2.6)

Noca (1997) ends his discussion of unbounded flows at this point and continues to

derive the analogous equation for a finite-sized control volume. I proceed with the

infinite-fluid case.
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Since the no-slip condition holds for real viscous fluids, the fluid velocity at the

body surface is given by the surface velocity u = ub on Sb

F = − d

dt

[
1

2
ρ

∫
V

x× ω dV

]
+

d

dt

[
1

2
ρ

∫
Sb

x× (n̂× ub) dS

]
(1.2.7)

Equation (1.2.7) requires knowledge of the entire vorticity field, including the

boundary layer. It is impractical with the resolution of current digital cameras to

simultaneously capture both the small scales of the boundary layer and the large

scales of the overall flowfield. Thus, I continue by modeling the vorticity field.

1.2.1 Vorticity field model

To proceed, we must revisit the velocity field decomposition u = u0 + ∇φ, and we

must make precise the definitions of each of the two components for flow about a body

immersed in an infinite 3D fluid domain. Following Lighthill (1986b, §6.3, §11.2), φ

is defined as the simple velocity potential, which is a solution of Laplace’s equation,

∇2φ = 0, with the following boundary conditions

n̂ · (ub −∇φ) = 0, on Sb, (1.2.8)

φ → 0, as r →∞

It is important to note that even for a lifting surface such as a wing, the simple

potential flow represents the flow past the body without circulation. The no-through-

flow boundary condition on Sb does not require the tangential component of the fluid

velocity to equal the body surface velocity, and this gives rise to the notion of a vortex

sheet on the body surface of strength [n̂× (ub −∇φ)]. This vortex sheet represents

the portion of the vorticity in the boundary layer that rectifies the difference between

the true body velocity and the simple potential flow velocity.
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The rotational flow component u0 is defined as satisfying the so called zero

boundary conditions, which are appropriate for a body instantaneously at rest

u0 = 0, on Sb, (1.2.9)

u0 → 0, as r →∞

That is, u0 represents the velocity field that would immediately be induced by the

vorticity distribution if the body were instantaneously brought to rest.

In general, the rotational flow may further be decomposed as u0 = u1 + ∇Φ0,

where u1 is uniquely determined by the vorticity distribution via the Biot-Savart law

(1.1.3). The velocity potential Φ0 is required to negate any flow through Sb that may

be induced by the vorticity field. Interestingly, since the vorticity field is (assumed

to be) confined to a finite region of space, the far-field velocity can be expressed as a

velocity potential u0 → ∇φ0, whence u1 → 0 and Φ0 → φ0 in the far field. Further, by

defining Φ0 = 0 on Sb and Φ0 → φ0 in the far field, one can construct the irrotational

velocity field required to satisfy the no-slip condition (1.2.9), since the gradient of Φ0

along the surface would be zero by this definition. More importantly, since Φ0 = 0

on Sb, the pressure impulse is exactly zero for the rotational flow component.

I can now define the additional vorticity

ωa ≡ ∇× u = ∇× u0 = ∇× u1 (1.2.10)

which is now understood to represent all of the vorticity in the flow in addition to the

vortex sheet on the body surface. For bluff bodies, ωa is simply that in the boundary

layer (which produces no net circulation) and that shed into the wake. For wing-like

bodies such as propellers and fish fins, ωa also includes the portion of the vorticity in

the boundary layer that generates circulation, so for a wing-like body, the additional

vorticity can be modeled as a vortex lattice that represents both the bound vorticity

as well as the associated trailing vorticity in the wake.
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It is clear from boundary conditions (1.2.8) and (1.2.9) that in order to satisfy

the no-slip condition for the total flow, u = ub on Sb, the total vorticity field must

include the vortex sheet on the body surface as well as the additional vorticity

ω =

[
n̂× (ub −∇φ)

]
δ(x− xb) + ωa (1.2.11)

where δ(·) is the Dirac delta function. It should be noted that this equation is exact

in that it accurately reflects the velocity field decomposition discussed above, and no

approximations have been made to this point.

The advantage of representing the velocity field as in equation (1.1.1) and the

vorticity field as in (1.2.11) is that the additional vorticity in the boundary layer can

be well approximated in typical experimental hydrodynamics problems. Typically

for the high-Reynolds-number fluid flows observed in hydrodynamics experiments,

vorticity is confined to a thin boundary layer surrounding the body and to a well-

defined wake. For streamlined bodies such as fish, the velocity at the edge of the

boundary layer is well approximated from the simple potential flow velocity ∇φ

(Schlichting, 1987), so the vortex sheet model well approximates the actual boundary

layer vorticity, and the additional vorticity in the boundary layer can be neglected.

Thus, for streamlined bodies, the additional vorticity can be approximated as that

in the wake, which can be quantified using particle image velocimetry. For lifting

surfaces such as propeller blades, the additional vorticity in the boundary layer

that does not produce circulation is still well approximated by the vortex sheet,

so the additional vorticity in the boundary layer can be approximated as just the

bound vorticity that generates circulation about the wing; this bound vorticity can be

inferred from a survey of the trailing vortex system in the wake. Thus, it is reasonable

in experimental hydrodynamics to ignore the boundary layer completely and focus

experimental efforts on quantifying the additional vorticity shed into the wake.
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1.2.2 Impulsive force model

Inserting (1.2.11) into (1.2.7) yields

F = − d

dt

[
1

2
ρ

∫
V

x× ωa dV

]
+

d

dt

[
1

2
ρ

∫
Sb

x× (n̂×∇φ) dS

]
(1.2.12)

The second term in equation (1.2.12) can be manipulated by employing the pressure

identity on Sb. Therefore, the final form of the impulse framework for the force on a

body immersed in an infinite fluid flow is

F = − d

dt

[
1

2
ρ

∫
V

x× ωa dV

]
− d

dt

[∫
Sb

ρφn̂ dS

]
(1.2.13)

More compactly, the total force can be written as the reaction to the rate of change

of total impulse in the fluid

F = Fv + Fp (1.2.14)

Fv = −dIv
dt

(1.2.15)

Fp = −dIp
dt

(1.2.16)

where the vortex impulse and pressure impulse are

Iv ≡
1

2
ρ

∫
V

x× ωa dV (1.2.17)

Ip ≡
∫

Sb

ρφn̂ dS (1.2.18)

Note that the vortex impulse (1.1.2) has been redefined in (1.2.17) in terms of the

additional vorticity, ωa, to properly account for the presence of the body. Also note

that in steady flow scenarios Fp = 0, but Fv 6= 0, since vorticity is continually shed

into the wake, continually increasing the vortex impulse. In unsteady flow scenarios,

both Fp and Fv are non-zero and contribute to the total force on the body.
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Equation (1.2.14) represents a compact, yet quite general and useful representation

of the force on a body in flow. This model is valid in cases where the vorticity is

confined to a thin boundary layer and to observable vortical structures in the wake,

such as a swimming fish or a propeller. The vortex impulse force, Fv, can be estimated

by characterizing the wake of the body using current particle image velocimetry

techniques. This typically involves modeling the vortical structures observed in the

experiment (say as toroidal vortex rings as in the case of a maneuvering fish). The

pressure impulse force, Fp, is simply the added mass force on the body (Newman,

1977), which depends solely on the geometry and motion of the body, so it can readily

be estimated. Since we have developed an equation for the force in terms of the

vorticity in the wake (which is easy to characterize using particle image velocimetry)

and the velocity potential (which is easy to model for standard geometrical shapes),

we have a useful equation that can be applied to analyze and explain experimental

results or can be applied as a basis for efficient numerical simulations.

1.2.3 Incorrect derivation of the force

It may be tempting, yet incorrect, to try to derive equation (1.2.13) directly from a

statement of the total change in momentum of the fluid, as in

F̃ = − d

dt

[∫
V

ρudV

]
(1.2.19)

where the tilde is used to indicate that this force is incorrect. To proceed, one might

insert the velocity field decomposition u = u0 + ∇φ discussed in Section 1.2.1 into

(1.2.19) and apply the impulse-momentum identity (1.2.1) to each component. Since

u0 = 0 on Sb by (1.2.9), the rotational flow momentum is

∫
V

ρu0 dV =
1

2
ρ

∫
V

x× ωa dV − 1

2
ρ

∫
S∞

x× (n̂× u0) dS (1.2.20)
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Note that the integral over the exterior bounding surface cannot be assumed to be

zero, and (1.2.5) shows that in fact it is non-zero.

Since ∇×∇φ = 0 identically, the simple potential flow momentum is

∫
V

ρ(∇φ) dV = −1

2
ρ

∫
Sb

x× (n̂×∇φ) dS − 1

2
ρ

∫
S∞

x× (n̂×∇φ) dS

=

∫
Sb

ρφn̂ dS − 1

2
ρ

∫
S∞

x× (n̂×∇φ) dS (1.2.21)

where again the component on the exterior bounding surface cannot be ignored.

This presentation ignored the effect of the vortex sheet on the body surface; if it were

properly accounted for, the volume integral of the vorticity field (i.e. the vortex sheet)

would cancel the body surface integral of n̂ × ub anyway (as in deriving (1.2.12)),

yielding the result shown in equation (1.2.21).

Inserting (1.2.20) and (1.2.21) into (1.2.19) and combining the integrals on S∞

yields the result

F̃ = − d

dt

[
1

2
ρ

∫
V

x× ωa dV

]
− d

dt

[∫
Sb

ρφn̂ dS

]
+

d

dt

[
1

2
ρ

∫
S∞

x× (n̂× u) dS

]
(1.2.22)

This is the same force as given in the impulse force model (1.2.13), with the addition

of the surface integral over S∞. Had the pressure term in (1.0.3) been included from

the outset,

−
∫

S∞

p n̂ dS

the surface integrals over S∞ would cancel by (1.2.5), and the correct result (1.2.13)

would be recovered.
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1.3 Applications in experimental hydrodynamics

The impulse framework presented herein is applicable to a wide range of experimental

hydrodynamics problems, since typically Reynolds numbers are large and wakes

contain well-defined vortical structures. These wakes can be characterized using

particle image velocimetry (PIV) and modeled using classical vortex dynamics and

potential flow theory. In this thesis, I apply my impulse framework to several

experimental hydrodynamics problems and show new facets of the framework in

each application. This thesis makes important contributions in three key ares:

(I) propulsion and maneuvering of fish; (II) numerical and analytical methods for

experiments, with application to the water entry of spheres; and (III) design and

analysis of marine propellers and hydrokinetic turbines.

Fish generate propulsive forces by creating and manipulating large-scale vortical

structures using their body and tail. Using time-resolved PIV with live fish (in

Chapter 2), I show the formation of distinct vortex rings at multiple stages of a

maneuver. These vortex rings impart an impulse change to the animal, allowing it

to turn, fast-start, and escape from predators. Modeling the impulse using classical

vortex dynamics theory, I show how the framework of this thesis can be used to

analyze fast-starting and turning maneuvers by fish. Extending this work with live

fish (in Chapter 3), I present experiments with a biomimetic, compliant robot fish.

This chapter shows that the swimming speed of the robot scales with the size and

strength of its wake, and it explains why operating away from the intended design

flapping frequency produces non-optimal body vibrations and a vortical wake with

high lateral force and reduced thrust. Using my results to optimize the kinematics of

fish-like robots could increase their swimming efficiency and maneuvering ability.

In Chapter 4, I further examine the dynamics of a swimming fish’s wake using

singular value decomposition (SVD). Although the results were not surprising - - that

the dynamic modes of the fish’s wake, which is reverse Kármán street, resemble those
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of a regular Kármán street created by flow past a circular cylinder - - this study raised

an important question: How does experimental error affect the results of the SVD?

Chapter 4 shows that experimental error tends to corrupt higher SVD modes, in which

the root mean square data value is smaller than the measurement error. Using this

result, I derive a threshold criterion that can be used as a rough limit of the validity of

SVD modes extracted from experimental data. My threshold criterion is of practical

importance to the experimental community, since it governs the applicability of SVD

to experimental data, which inevitably contain measurement error.

Experimental measurement error makes even the simple task of finding the

instantaneous derivatives of time-series data quite challenging. Chapters 5 and 6

were motivated by example; in order to determine the unsteady forces on a sphere

using a high-speed image sequence, one needs to determine the acceleration from

digitized position data. Since instantaneous derivatives can be predicted using a

smoothing spline (which yields analytic derivatives that follow the local trends in

the data), I present (in Chapter 5) a novel and robust method for choosing the best

spline fit and, hence, the best prediction of the desired derivatives. The water entry

of hydrophobic spheres is actually one hydrodynamics problem with no wake, since

an air cavity is formed behind the sphere during water entry. As a result, the vortex

impulse force on the sphere is taken to be zero, and the flow is modeled as potential

flow. In Chapter 6, I show that the pressure impulse force acting on the body is, in

fact, the net pressure force, with the pressure evaluated using unsteady Bernoulli’s

equation. For a sphere immersed in an infinite fluid, this is the added mass force, as

will be discussed. To analyze the forces on the sphere during water entry, I present

a semi-empirical potential flow model, which accounts for the pressure impulse force

on the sphere. My potential flow model represents the cavity as series of ring sources,

and it shows that the instantaneous forces on the falling sphere are modulated by the

evolution of the cavity shape during growth and collapse of the sub-surface air cavity.

33



While the sphere problem is a case in which the vortex impulse force is zero

and the total force is simply the pressure impulse force, the steady operation of a

marine propeller affords the opposite scenario. Here, the pressure impulse force is

zero due to steady operation, and the total force on the propeller is given by the

vortex impulse force. In Chapter 7, I apply the impulse framework of this thesis

to derive propeller lifting line theory, which is the mathematical basis for a method

of design and analysis of marine propellers and horizontal axis turbines. Using this

applied theoretical framework, I develop an off-design performance analysis method,

which allows for rapid estimation of the performance curve for a marine propeller. I

have implemented my method in OpenProp, a suite of open-sourced computer codes

for the rapid design and analysis of marine propellers and hydrokinetic turbines, as

will be discussed.

In Chapter 8, I present validation data for my propeller off-design performance

method. I use OpenProp to design a propeller for use in water tunnel tests. In

a series of tests, I show that the performance curve predicted using my vortex-

impulse method matches well with experimental data for a wide range of the

operational profile. In this chapter, I also investigate the unsteady start-up of this

propeller and use PIV to characterize the unsteady vortical wake generated by the

propeller. Modeling the initial wake as an axisymmetric vortex ring (analogous to

the maneuvering fish), I derive an estimate of the thrust produced by the propeller

during this impulsive startup event.

In Chapter 9, I show that since vortex impulse reverses with a sign change

in the vorticity, propeller lifting line theory can also be applied to the design of

hydrokinetic turbines, the marine analog of wind turbines. In this chapter, I present

the design, construction, and off-design performance tests for a hydrokinetic turbine,

using the same experimental apparatus as the propeller tests. Finally, I summarize

the contributions of this thesis and offer perspective and outlook in Chapter 10.
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Chapter 2

Impulse generated during unsteady

maneuvering of swimming fish

In this chapter, we consider the impulsive maneuvering of live swimming fish, and we

use the framework developed in Chapter 1 to analyze the impulse imparted to the

fish during the maneuver. In these experiments, we characterize the vortical wake

generated by the fish using high-speed particle image velocimetry (PIV). The two

vortical structures observed are modeled as toroidal vortex rings, which each have

impulse (directed normal to the plane of the ring) of magnitude

|Iv| = ρΓA

(
1 +

3

4

a

A

)
(2.0.1)

where Γ is the circulation of the vortex, A = πD2

4
is the frontal area of the ring, D

is the major diameter (core to core), a = πd2

4
is the cross-sectional area of the torus,

and d is the wire diameter of the torus (Saffman 1995, p. 199).

Applying the framework developed in Chapter 1, we have that the total force on

the fish is given by equations (1.2.14), (1.2.15), and (1.2.16), which are reproduced
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here

F = Fv + Fp (1.2.14)

Fv = −dIv
dt

= − d

dt

[
1

2
ρ

∫
V

x× ωa dV

]
(1.2.15)

Fp = −dIp
dt

= − d

dt

[∫
Sb

ρφn̂ dS

]
(1.2.16)

The total change in momentum of the fish from the start to the end of the maneuver

is given by integrating the total force acting on the fish during the maneuver

mfish4Vfish =

∫ tend

tstart

F dt =

∫ tend

tstart

Fv dt +

∫ tend

tstart

Fp dt (2.0.2)

In the ‘C’-turn maneuvers discussed herein, the fish enters and exits the turn moving

straight ahead, so the time-integral of the pressure impulse force is the net change

in added impulse of the fluid:
∫ tend

tstart
Fp dt = −ma4Vfish, where ma is the added

mass of the fluid about the fish for straight-ahead swimming (Newman, 1977). Since∫ tend

tstart
Fv dt = −4Iv by the fundamental theorem of calculus, we arrive at an impulse

balance between the fish and fluid for the maneuver

(mfish + ma)4Vfish = −4Iv (2.0.3)

Equation (2.0.3) simply states that the net change in momentum of the fish balances

the net change of impulse of the fluid. In summary, by characterizing the strength

and geometry of the vortices in the wake of the fish using high-speed PIV, we can

verify that the change in momentum of the fish is accurately predicted by the vortex

impulse framework.

In this chapter, the relationship between the maneuvering kinematics of a

Giant Danio (Danio aequipinnatus) and the resulting vortical wake is investigated

for a rapid, ‘C’-start maneuver using fully time-resolved (500 Hz) Particle Image
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Velocimetry (PIV). PIV illuminates the two distinct vortices formed during the

turn. The fish body rotation is facilitated by the initial, or ‘maneuvering’ vortex

formation, and the final fish velocity is augmented by the strength of the second,

‘propulsive’ vortex. Results confirm that the axisymmetric vortex ring model is

reasonable to use in calculating the hydrodynamic impulse acting on the fish. The

total linear momentum change of the fish from its initial swimming trajectory to its

final swimming trajectory is balanced by the vector sum of the impulses of both vortex

rings. The timing of vortex formation is uniquely synchronized with the fish motion,

and the choreography of the maneuver is addressed in the context of the resulting

hydrodynamic forces.

The following text previously appeared in:

B.P. Epps and A.H. Techet (2007) “Impulse generated during unsteady maneuvering

of swimming fish,” Experiments in Fluids 43:691-700.

2.1 Introduction

When it comes to maneuvering performance, fish can swim circles around underwater

vehicles. A conventional, propeller-driven underwater vehicle turns by sweeping a

circular arc, about ten vehicle lengths in diameter, and this requires about fifteen

times the amount of time it would take to cruise forward one vehicle length. In

contrast, a fish, such as the Giant Danio (Danio aequipinnatus), can turn in a space

that is approximately one third of its body length and requires only about half the

time it takes to swim one body length. This performance is enhanced by the well-

choreographed formation and control of large-scale wake vortices by the fish body

and fins.
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Maneuvers and fast-starts are defined classically as either ‘C’ or ‘S’ types.

Typically, three stages of each maneuver are considered: in stage one (the preparatory

stage) a straight swimming fish bends into a C or S shape; in stage two (the propulsive

stage) the fish sweeps its tail in the reverse direction; and in the final, variable stage,

the fish exits the turn either swimming straight ahead or coasting (Weihs, 1973; Webb,

1978). Classical hydrodynamic analyses by Lighthill (1971) and Weihs (1972) assert

that as the body bends, unsteady (added mass) forces oppose this motion and apply

a net angular moment on the fish, thus turning the body. When the fish whips its

tail aft to straighten its body, it generates a propulsive force parallel to the direction

of the anterior portion of the fish body.

In fast-starting maneuvers, the fish is essentially stationary at the onset of the

turn and exits the maneuver with a non-zero velocity. This is in contrast to the case

where a fish has an initial non-zero forward velocity and then turns to swim along

another trajectory. When the fish has an initial forward velocity, turning can be

initiated by simply reorienting the head or tail to achieve a lifting force which causes

a moment on the body. Blake and Chan (2006) offer physical models to describe

these two cases in the context of powered versus unpowered turns.

Researchers use qualitative and quantitative experimental techniques to better

understand fish maneuvering performance (e.g. Weihs (1972); Harper and Blake

(1990); Wolfgang et al (1999)). An excellent review of the kinematics and performance

of fast-starting is presented by Domenici and Blake (1997). Research on the

maneuvering of fish-like swimming mechanisms also extends to the robotic realm,

from biomimetic studies with robotic fish (e.g. Triantafyllou et al (2000) and

Bandyopadhyay (2002)) to simple flapping foils and fins (e.g. Freymouth (1988);

Albhorn et al (1991, 1997); Tobias (2006)).

Flow visualization helps researchers studying live fish better understand the

overall vortical wake structure. McCutchen (1977) presents shadograph images of
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Figure 2-1: Dye visualization of a foil that has flapped once to the right on the page
and back to the position shown in a continuous motion, as viewed from behind the
trailing edge. The foil is a NACA0030 with 2:1 aspect ratio. The flap took 3.2 sec
and had a maximum heave of approximately one chord length, maximum angle of
attack of 20◦, and 0◦ phase shift between heave and pitch. Courtesy, Tobias (2006).

a maneuvering Zebra Danio (Brachydanio rerio) which show two wakes generated

during burst-and-coast swimming maneuvers, and he suggests that these wakes may

be modeled as vortex rings. Müller et al (1999) and Wolfgang et al (1999) use particle

imaging velocimetry (PIV), both at 30 Hz or less, to quantitatively visualize the wake

of maneuvering Zebra and Giant Danio, respectively. Müller et al (1999) present a

very thorough analysis of the maneuvering wake, as well. In addition to the PIV

results, Wolfgang et al (1999) presented a panel method numerical simulation of a

maneuvering fish, showing good agreement with the experiments.

Dye visualization experiments by Tobias (2006) show that for a simple double

flap motion of a NACA 0030 foil, with a 2:1 aspect ratio, a single vortex ring could

be formed (see figure 2-1). Tip and trailing edge vortices are shed in a horseshoe

shape that eventually pinches off into a single, discrete vortex ring. Similar looking

vortex rings are reported in the wake of swimming fish by McCutchen (1977), in his

shadowgraphs of maneuvering fish, and also by Drucker and Lauder (1999) through

PIV experiments on steady swimming fish.
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Modeling the wake of a maneuvering fish as a simple vortex ring makes the

analysis straightforward; an algebraic expression predicts impulse of the ring. Thus,

by inspecting the wake generated by a maneuvering fish, one can deduce the impulse

imparted on the body during the maneuver.

Since the typical maneuver time of the Giant Danio is less than one half of one

second, it is desirable to revisit the problem of the maneuvering fish with high-speed

PIV capable of frame rates over 100 Hz. Thus fully time-resolved PIV is used here to

illustrate the vortical evolution and circulation as a function of time over the duration

of the maneuver. ‘C’ starts and turns are investigated to capture the instantaneous

flow field with enhanced spacial and temporal resolution over prior published results.

Using the simple vortex ring model, the circulation and impulse is calculated for each

vortex generated by the fish. The overall body kinematics and momentum through

the turn are compared with the vortex evolution and impulses to develop an enhanced

understanding of fish maneuvering.

2.2 Materials and methods

The experimental study with maneuvering fish was performed using the Giant Danio

(Danio aequipinnatus) in a small tank, in which the fish were allowed to swim freely.

The four fish ranged in length from 5.0 to 7.5 cm and mass from 1.6 to 5.6 grams.

Results presented herein are for a larger adult fish that had a mass of 4.3 g and had

an overall length, height, and beam of 7.4, 1.9 and 0.83 cm, respectively. The fish

were constrained to swim in a 15.6 cm × 12.5 cm working area, with 8 cm deep water.

The manuevers considered were those in response to visual and auditory stimuli; a

slender rod was introduced into the aquarium near the wall and tapped the floor of

the tank, triggering an evasive maneuver.
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camera

laser

Figure 2-2: Experimental PIV setup used for maneuvering studies. The high speed
camera viewed up through the bottom of a glass aquarium, and the laser sheet was
oriented horizontally at the midplane of the fish.

The flow features were characterized using a high-speed implementation of particle

imaging velocimetry (PIV) (Raffel et al, 2002). The tank was seeded with silver

coated, neutrally buoyant, hollow glass spheres (average diameter 93 µm). The

particles were illuminated using a low-powered, near-IR diode laser. The Lasiris

Magnum diode laser produced a maximum output of 500 mW at 810 nm, and was

fitted with optics to produce a 10◦ fan of light. The horizontal light sheet was imaged

using an IDT XS-3 CCD camera with an 85 mm Nikkon lens which viewed up from the

bottom of the tank (see figure 2-2). The high-speed camera imaged at 500 frames per

second (fps), yielding a time-step between frames of 0.002 s. The image resolution was

1260 x 1024 pixels and the field of view was 15.33 cm x 12.46 cm, giving a 82.2 px/cm

zoom. The laser sheet was positioned 3.5 cm from the bottom of the tank. Many

runs were performed, but only those where the fish was positioned such that the light

sheet was at its mid-plane (i.e. approximately along the lateral line of the fish) were

processed. Since the fish were allowed to swim freely, it was a significant challenge to

ensure that the light sheet illuminated the mid-plane of the body. Luckily, however,

the fish did not actively try to elude the near-IR light sheet as they typically do with

green lasers.
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The time-series of particle images were processed using the LaVision DaVis 7.1

software package. A multi-pass, cross-correlation processing algorithm, with a final

interogation window size of 32×32 pixels and 50% overlap was used for processing all

of the images. The output was a velocity field of 79×64 vectors, with approximately

38 vectors along the length of the fish body. The velocity field was postprocessed in

Matlab to determine vorticity and circulation, as well as the body trajectory.

Circulation of each vortex was computed by evaluating Stokes theorem numerically

Γ =
∑
i,j

ω(i,j)δA (2.2.1)

where ω(i,j) is the curl of the velocity field at point (i,j), and δA = (16 px)2

= 0.0379 cm2 was the area of each interrogation window. The circulation computed

depends on the area defined to be the vortex: the more area considered, the higher

the total circulation. Gharib et al (1998) overcome this by defining the vortex to

reside within an isovorticity line of some fixed level. To calculate the circulation of

the vortices in the fish wake presented herein, an isovorticity line equivalent to 25%

of the maximum vorticity is chosen for each vortex. Given our field of view and PIV

spatial resolution, this percentage yielded the most accurate and repeatable results.

Figure 2-3 is an example of the circulation calculated as a function of percentage

of the maximum vorticity considered. These data were computed for the first

vortex formed by the fish during its maneuver, 0.120 seconds after the start of the

turn, corresponding to the fifth frame of figure 2-5. The plot shows that, as the

vorticity threshold decreases towards 5% of the maximum vorticity in that vortex, the

circulation steadily increases, but beyond the 5% level, the circulation blows up, due

to summing low-level vorticity over a large area of the ambient fluid. For this example,

the 25% vorticity threshold level yields a circulation of 22.8 cm2/s, whereas using a

threshold of 5% would yield 26.0 cm2/s, or approximately 14% more circulation.
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Figure 2-3: Plot of circulation computed by Stokes theorem (equation 8.1.8) versus
the threshold percentage of the maximum vorticity used to bound the vortex, for
vortex 1A at time t = 0.120 s, as shown in figure 2-5. For reference, the values at 1,
5, and 25% are 53.1, 23.2, and 20.0 cm2/s, respectively.

Using a threshold of 1% yields 53.1 cm2/s, a 129% difference from a baseline 5%

threshold level, which introduces unacceptable error. Using a 25% vorticity threshold

admittedly introduces a 10-15% uncertainty on circulation calculations, but it limits

the region of interest to the vortices formed by the fish. For figure 2-5, only vorticity

levels greater than 10 1/s have been shown, which is consistent with the 25% vorticity

threshold used in all circulation calculations.

2.3 Results and Discussion

This section focuses on a representative C-start maneuver, in which the fish makes a

105◦ clockwise turn in 0.25 seconds. In this powered turn, the fish is barely moving at

the onset, but increases its speed ten-fold by the end of the maneuver. The kinematics,

vortex circulation, and timing will be discussed.

An overview of this C-start is presented in figure 2-4. Here, mid-line body traces

of the fish at 0.012 s intervals (every 6th frame) are shown. These mid-lines are

determined manually by inspecting the fish body position in the PIV image sequence.
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Figure 2-4: Body midline tracings of a 105◦ single-bend C-start. The head is marked
by an “o” and the tail by “x”. The colorbar is offered to help discern the beginning of
the turn from the end; the darkest blue trajectory represents the initial body position,
and the darkest red line shows the final body mid-line at the end of the turn.

Initially, the fish is moving towards the top of the frame with a velocity of 1.4 cm/s

(0.18 L/s). The body proceeds to coil up into a C shape over the first 0.1 seconds

of the maneuver. Then the tail rapidly reverses direction and sweeps aft (to the left

and upwards in figure 2-4), before the fish extends straight along its new trajectory

at time 0.25 s. The final velocity of the fish is 14.6 cm/s (1.98 L/s).

2.3.1 Vortical wake structure

An overview of the vortex formation throughout the maneuver is presented in figure 2-

5. This figure shows twelve instantaneous vorticity fields, which were calculated from

their respective velocity fields, as determined by the PIV algorithm. The images

shown are 15 frames (0.030 s) apart. The vorticity contours are overlayed on digitized

projections of the fish’s body determined from the image sequence.

Figure 2-5 shows the formation of four distinct vortices during the maneuver, as

well as a patch of vorticity which appeared to pinch off from the third vortex. In the

axisymmetric vortex ring model, it is assumed that the two pairs of opposite-signed

vortices are each the cross-section of a toroidal-shaped vortex ring. To facilitate
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discussion of the two rings, these vortices are labeled vortex 1 and vortex 2. Further,

the first side of each ring shed is labeled side A, and the second, side B. Without 3D

imaging, it is unclear what roll the small patch of vorticity between the two rings plays

in the overall wake structure. Thus, the following is a discussion of the generation of

vortices 1A, 1B, 2A, and 2B only.

The sequence shown in figure 2-5 begins at the onset of the maneuver. Over

the first 30 frames (0.060 s), a strong vortex pair develops at the tail, as the tail

pushes against the fluid. The clockwise (blue) side, vortex 1A, is shed first, at time

t = 0.036 s, followed by vortex 1B, which is shed at t = 0.092 s. This first vortex

pair is configured in a jet-like arrangement; its impulse is a result of the net forcing

by the fish on the water at that location. The inertia of the fluid resists the motion

of the fish, and a vortex ring is generated. The reaction force, acting on the caudal

peduncle and tail, far from the fish center of mass, applies a clockwise moment on

the fish, which augments the anterior body rotation as the fish curls up into the C

shape. Henceforth, vortex 1 is referred to as the ‘maneuvering vortex’.

As the fish body flexes into a ‘C’ shape, it draws its head and tail together, pushing

and pulling the surrounding fluid and thus, imparting circulation into the flow around

the body. Eventually, body-bound vorticity is shed into the wake in a second vortex

pair; we refer to vortex two as the ‘propulsive vortex’. Vortex 2A is shed first at

t = 0.150 s, and vortex 2B, the clockwise side, is shed subsequently at t = 0.250 s,

between the ninth and tenth PIV frames shown in figure 2-5. This counter-rotating

vortex pair also resembles a jet, indicating again a net force by the fish on the fluid

at that location. The reaction thrust is in the direction of the fish’s final trajectory,

which serves to stop the body rotation and to propel the fish forward.

Since the fish body is reflective and textured, the PIV software can track the

body using its cross-correlation algorithm, just as it can track other particles in the

fluid. By the body boundary conditions, the velocity field should be continuous and
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smooth along the body. Given a smooth and continuous velocity field, its curl can be

computed; this is equivalent to the vorticity of a fluid particle or equivalent to twice

the rotation rate of a discrete portion of the fish body. For the image sequence used

herein, considering all the frames, a continuous velocity field is evident except in the

shadow regions. Calculations of vorticity for the time series show that body rotation

is ‘shed’ into the fluid during the maneuver in a continuous fashion.

It is useful to note that the laser illuminates the fluid from the left in the PIV

images, such that data in the shadow to the right of the fish must be considered

with care. Most notably, vortex 2B (labeled in figure 2-5) appears out of the shadow

region, just prior to time t = 0.180 s, as the fish body moves out of the way from

obstructing the laser sheet. Despite being unable to image the formation of vortex

2B, the entire vortex is in full view by the time it is shed, so the calculation of its

impulse is still possible.

2.3.2 Maneuver kinematics

The kinematics of the fish motion are now compared with the timing of vortex

shedding. From the fish position data presented in figure 2-4, the velocity of the

head, caudal peduncle, and tail tip are calculated for each time step in both the local

body-tangent (V‖) and body-normal (V⊥) directions. For each body location, the

tangential direction is defined positive towards the head, and the normal direction is

defined positive towards the center of the C-shape.

Figure 2-6 shows several kinematic parameters plotted over the duration of the

maneuver; the time at which each vortex is shed from the tail is indicated by the

dashed vertical lines. The angular velocity (θ′) and acceleration (θ′′) of the anterior

body, taken from the head to one third of the body length, are shown in figures 2-

6(a) and 2-6(b). The body-tangent (V‖) and body-normal (V⊥) velocities of the head,

caudal peduncle, and tail are shown in figures 2-6(c) - (f).
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Figure 2-5: Sequence of instantaneous vorticity fields determined using PIV for a
105◦ C-start. Every 15th frame is presented (4t = 0.030 s). Anticlockwise (positive)
vorticity is shown in red and clockwise (negative) in blue. Ambient vorticity of less
than 10 1/s has been removed for clarity. The four vortices shed during the maneuver
are labeled Γ1A, Γ1B, Γ2A, and Γ2B.
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Figure 2-6: Kinematic analysis of the maneuver: (a) Anterior body (head to 1/3
of length) angular velocity, θ′ (positive anticlockwise), (b) Anterior body angular
acceleration, θ′′, (c) Body-tangential head velocity, V‖, (d) Body-normal head velocity,
V⊥, (e) Body-tangential tail and caudal peduncle velocities, V‖, and (f) Body-normal
tail and caudal peduncle velocities, V⊥. All body-tangential (V‖) and body-normal
(V⊥) velocities are in local coordinate systems for each body part. Body-tangentail is
instantaneously tangent to the midline at the body part, positive towards the head.
Body-normal is positive towards the inside of the C-shape. Dashed lines show times
when vortices are shed.

The timing of both anterior body rotation and of vortex shedding closely follows

the body-normal motion of the caudal peduncle. This makes sense, because added

mass forcing on the peduncle, far from the center of mass, applies a moment on the

flexed fish body. This moment, carried through the body by the fish musculature,
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acts to turn the anterior portion of the fish. Wolfgang et al (1999) show that

vorticity is shed at the caudal peduncle and manipulated by the tail fin. Thus, it

is reasonable that the shedding of vortices would follow the motion of the caudal

peduncle perpendicular to itself.

Figure 2-6 shows that for stage one of the maneuver, the rotation of the anterior

body follows the body-normal velocity of the caudal peduncle. The angular velocity

(θ′) of the anterior body increases monotonically in the clockwise (negative) sense

while the body-normal velocity (V⊥) of the caudal peduncle is positive (i.e. as the fish

coils up into the C-shape). Angular velocity reaches its maximum at time 0.060 s, as

the caudal peduncle reverses direction. At this time, the angular acceleration changes

from negative to positive and the body-normal velocity of the caudal peduncle is zero.

The timing does not synchronize as well for stage two of the maneuver. This is

because the fish does not recoil from the C-shape in the same manner as it forms it.

Instead, the posterior of the fish unrolls, as the anterior portion rotates and progresses

forwards (see figure 2-4). Thus, the negative body-normal peduncle and tail velocities

serve to both stop the anterior body rotation as well as provide forward thrust.

A similar correlation between the body-normal motion of the caudal peduncle and

the timing of vortex shedding is seen. Vortex 1A is shed at 0.036 s, just prior to the

time when the body-normal velocity of the caudal peduncle reaches zero. For a short

time, the body-normal velocity at the caudal peduncle remains zero; the motion of

the peduncle is tangential only as it traverses the face of what will be the maneuvering

vortex. Vortex 1B is shed at 0.092 s, as the caudal peduncle body-normal velocity

becomes negative. A patch of secondary vorticity forms as the fish sweeps its tail

through the middle portion of the turn. Between times 0.10 and 0.15 s, the motions

of the tail and peduncle are predominantly tangential as they follow their paths from

the points of release of vortex 1B to 2A. The timing of vortex shedding in stage two

does not quite synchronize with the motion of the caudal peduncle. Vortex 2A is shed
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at 0.150 s, while the peduncle is still unrolling and has negative body-normal velocity.

However, vortex 2B is shed when the body-normal velocity of the caudal peduncle

again reaches zero at time 0.250 s. At this point the fish has finished forming the

second vortex pair, which results in the final forward motion of the fish along its new

trajectory.

2.3.3 Circulation

The circulation of the vortices over time is presented here in the context of the

maneuvering choeography. The circulation of each vortex is evaluated using Stokes

theorem with a 25% vorticity threshold, as discussed in Section 2.2. Figure 2-7

shows the evolution of circulation in each of the four vortices over time as well as

the rotation of the fish body. When determining the circulation and body rotation,

a digitized projection of the fish is overlaid on the vorticity field, such that vorticity

can be identified as body-bound or free. Only vorticity that is free from the body is

considered in the circulation of the vortices. Body-bound ‘vorticity’ is integrated and

reported as ‘body rotation’.

In maneuvers when the fish has little to no initial forward velocity, such as this

one, the predominant forcing on the fluid can evidenced in topological flow changes.

For the maneuvering fish discussed herein, the rotation of the posterior body and

subsequent tail motions act to create vortices 1B and 2A. After vortex 2A is shed at

time 0.150 s, the anticlockwise body rotation goes to zero. The sum of the circulations

of vortices 1B and 2A at time t = 0.150 seconds is 13.2 + 47.9 = 61.1 cm2/s.

As the fish coils up into the C-shape, three distinct regions of circulation

appear: clockwise vortex 1A, posterior body anticlockwise rotation, and anterior

body clockwise rotation. Despite the three dimensionality of our flow, at t = 0.056 s,

the total circulation is almost zero: Γtot = −23.7 + 60.2 − 33.9 = 2.6 cm2/s. The

total circulation is computed at each time step. The average and standard deviation
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Figure 2-7: Circulation as a function of time for each vortex formed during the
maneuver, computed using equation 8.1.8 with a 25% threshold. Counterclockwise
(positive) circulation is represented by the red markers for both vortex one and two;
clockwise (negative) circulation is indicated in blue. The closed, black circles ‘•’ and
diamonds ‘�’ represent the body rotation generated by the anterior and posterior fish
body, respectively. Dashed lines show times when vortices are shed.

of the total instantaneous circulations were 9.4 and 6.2 cm2/s, respectively. Vorticity

that may have formed at the fish’s nose, could not be imaged due to laser setup.

The circulation data in figure 2-7 support the vortex ring wake model. Vortex

rings have the same circulation at any azimuthal position, so a counter-rotating pair

made by taking a cross-section should have equal and opposite circulation. Indeed,

the two vortex pairs (1A and 1B) and (2A and 2B) exhibit excellent symmetry in both

size and circulation over the duration of the turn. The two traces of circulation over

time in figure 2-7 match quite well and reinforce the assertion by researchers such as

McCutchen (1977) and Drucker and Lauder (1999) that the vortex ring model is quite

applicable in fish maneuvering. At the conclusion of the maneuver (t = 0.250 s), the
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circulations of vortices 1A and 1B are Γ = −18.8 and 12.2 cm2/s, and the circulations

of vortices 2A and 2B are Γ = 33.8 and -34.6 cm2/s, respectively.

The uncertainty in these circulation computations is on the order of 15% and

comes from three main sources of error: vorticity thresholding, sampling error, and

PIV error. The predominant source of error is in the thresholding used to define the

vortex. Since the vortex ring model assumes that all circulation is concentrated at or

near the core of the vortex ring, counting vorticity far from the core is not appropriate.

Thus, choosing the level at which to threshold is a balancing act between including all

of the points that constitute the vortex, but not including points far from the centroid.

For the example discussed in Section 2.2, a 14% error resulted from thresholding at

the 25% level as opposed to the 5% level, but a 129% was prevented error by not

summing large areas of low-level vorticity unrelated to the maneuver.

The second source of error comes from the limited sample size available for

circulation calculations. The circulation is computed in Matlab by identifying the

vortex core, and then running an algorithm which searches for all neighboring points

which meet the threshold requirement. To assess repeatability, the authors performed

this computation multiple times on any given frame and were always able to repeat

their results to within 5% variation. Finally, error in the PIV velocity field, which

propagates through circulation computations, is also a factor in the overall error. As

an example, consider the circulation of vortex 2A, plotted over time in figure 2-7 (red

squares). From time 0.25 to 0.30 seconds, Γ2A should be approximately constant, but

it has a mean value of 33.3 cm2/ s and standard deviation of 1.8 cm2/s. Error in

circulation due to PIV error is on the order of 5%.

2.3.4 Comparison of fluid impulse with fish impulse

To better understand how the fluid impulse balances the fish’s change in momentum,

classical vortex dynamics theory is used. For a vortex ring moving steadily ahead,
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the impulse (in the axial direction, normal to the plane of the vortex) has magnitude

I0 = ρΓπD2

4
(2.3.1)

where Γ is the circulation and D is the diameter from core to core. For a toroid, then

the additional impulse associated with the thickness of the vortex core is

I1 = ρΓπD2

4

[
3
4

d2

D2

]
(2.3.2)

where d is the diameter of the vortex core (Saffman, 1995).

Figure 2-7 shows that the circulation of the vortices decreases after they are

released from the body. Consequently, the circulation of each vortex must be

evaluated immediately after it is shed. In other words, the circulation of vortex 1

must be computed immediately after it is shed, several time-steps before vortex 2

is shed. To compute the values listed in table 3.2, the circulation is averaged over

the four time-steps following the shedding of each side of each vortex. Thus, the

values listed in table 3.2 average out any small variations in time (or measurement)

or differences between the two sides of the vortex ring.

The added impulse (added mass times velocity) of a vortex ring is (Dabiri, 2005)

Ia = ρc11
πD2

4
SUv (2.3.3)

where c11 is the added mass coefficient, S is the diameter of the vortex ring in the

direction of propagation, and Uv is the velocity of propagation of the ring. Dabiri

(2005) reports c11 = 0.72 for a mechanically generated vortex ring. If added impulse

is considered, then the total impulse of a vortex ring becomes

Iv = (I0 + I1 + Ia)ez (2.3.4)

where ez is the axial direction in which the impulse acts.
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Table 2.1: Table of vortex quantities for the maneuvering and propulsive vortex rings:
circulation, Γ; vortex ring diameter, D; vortex core diameter, d; vortex ring axial
diameter, S; vortex ring propagation speed, Uv; impulse of a concentrated vortex
ring, I0; impulse associated with a finite core diameter, I1; added mass impulse, Ia;
total impulse, Iv; angle the impulse makes with the positive x-axis (to the right on
the page, in a lab-fixed Cartesian reference frame), β; maximum wake velocity, U ;
and time to form the vortex, t.

‘maneuvering’ ‘propulsive’
vortex vortex

Γ (eq. 8.1.8) 17 34 [cm2/s]
D 1.40 1.84 [cm]
d 0.84 1.03 [cm]
S 1.26 1.66 [cm]
Uv 13.5 14.2 [cm/s]
I0 (eq. 2.3.1) 25 91 [gcm/s]
I1 (eq. 2.3.2) 7 21 [gcm/s]
Ia (eq. 2.3.3) 19 45 [gcm/s]
Iv (eq. 2.3.4) 51 157 [gcm/s]
β -27 167 [deg]
U 16.7 20.0 [cm/s]
t 0.092 0.250 [s]

The results of the wake analyses are presented in table 3.2. Determining the

longitudinal vortex diameter (S) via the procedure outlined in Dabiri (2005) proves

quite challenging, due to the three-dimensionality of the fish wake. The vortex ring

axial diameter is S ≈ 0.9D for both vortices over a range of frames. All magnitudes

of the impulse (I0, I1, and Ia) are tabulated, and they all act along the same line. The

angle this impulse vector makes with the positive x-axis (to the right on the page in

a lab-fixed cartesian reference frame) is given by β.

The vector sum of the impulse of the two vortex rings should balance the net

change in linear momentum of the fish (i.e. the impulse applied to the fluid should

be equal and opposite to that applied to the fish)

If = (m + m11)4V (2.3.5)
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Table 2.2: Impulse comparison: fluid impulse assuming concentrated vortex rings,
I0; fluid impulse assuming finite core diameter rings, I0 + I1; fluid impulse using the
total impulse, Iv; angle the fluid impulse makes with the positive x-axis (to the right
on the page, in a lab-fixed cartesian reference frame), β; fish impulse using the lower
bound for added mass, If,l; fish impulse using the upper bound for added mass, If,u;
angle the fish impulse makes with the positive x-axis, α. All fluid impulse values are
the magnitude of the vector sum of the impulses of the two ring vortices.

Fluid impulse
I0 66 [gcm/s]
β 172 [deg]

I0 + I1 81 [gcm/s]
β 172 [deg]

Iv 108 [gcm/s]
β 174 [deg]

Fish impulse
If,l 65 [gcm/s]
If,u 78 [gcm/s]
α -47 [deg]
180− α 133 [deg]

where m = 4.3 g and m11 are the fish mass and added mass, and V is the change

in swimming velocity of the fish. The fish initial and final swimming velocities are

computed manually by locating a morphological feature of the fish in images five

frames apart and computing 4Vx = 10.3 cm/s and 4Vy = −10.9 cm/s. Since only

the initial and final stages of the turn are considered (when there is no longer any

body rotation), the added mass is calculated for a fish moving straight ahead without

undulation. A lower bound for m11 can be made by assuming the fish is a rigid slender

body of revolution, for which the ratio of the added mass to the mass of a neutrally

buoyant body is m11

mf
= ( r

l
)2 ln( r

l
), where r is the maximum body radius, and l is the

body length (Newman, 1977). Taking r to be the half-breadth of the fish, the added

mass is 0.9% of the fish mass. An upper bound for m11 is 20% of the fish mass, which

was the value found by Webb (1982) for fast-starts of trout. Webb (1982) also reports

that other researchers have found values for m11 in-between 1% and 20%.

To balance the overall change in momentum of the fish, one must account for both

the propulsive and maneuvering vortices. The impulse of the individual vortices is
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listed in table 3.2, and the net impulse on the fluid and on the fish is reported in

table 2.2. For perfect agreement, the magnitudes of the impulses should be equal,

and the angle β should equal 180◦ minus α. For this trial, the magnitude of the

change in momentum of the fish was between 65 and 78 gcm/s. If the ‘maneuvering’

vortex is ignored in the momentum balance, then the resulting fluid impulse would

be greater than 91 gcm/s (I0, listed in table 3.2), which is an overestimation of the

magnitude. Further, if the maneuvering vortex was not generated during stage 1, the

fish would be unable to effectively generate body rotation, since the moment on the

fish would be negligible.

There is not perfect alignment in the direction of fluid and fish impulses (see

table 2.2). Since the line of action of the fish impulse was −47◦, the fluid impulse

should act at 133◦ from the horizontal. However for this trial, the fluid impulse acts

approximately 172◦ from the horizontal. This discrepancy is most likely due to the

curvature of the fish body over the duration of the turn. When the fish has non-zero

forward swimming speed, curvature allows the body to act as a lifting surface (i.e.

a rudder) to steer the fish through the water. A steady-moving, cambered hydrofoil

experiences a moment about its quarter-chord, even though it does not shed trailing

edge vorticity. Similarly, the fish will change its swimming direction without any

measurable effect on the circulation imparted to the wake.

2.4 Conclusion

This chapter presents fully time-resolved PIV data, with high spatial resolution, for

a maneuvering fish. The Giant Danio used in these experiments performs a 105◦ ‘C’-

maneuver during which it generates two distinct vortex rings, indicated by counter-

rotating pairs of vortices. The data presented for the circulation of each shed vortex,

over time, show good symmetry in the vortex pairs, confirming our assertion that each
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vortex pair can be treated as a ring, similar to that formed by the foil in figure 1.

This is clearly a three-dimensional problem, warranting further investigation using

three-dimensional flow measurement techniques such as stereo PIV (e.g. (Sakakibara

et al, 2004)). However, the trade-offs between resolving three-dimensional effects and

the rapid time scales of the maneuver make a case for both high speed and 3D flow

measurement techniques.

Fish are clearly adapted as graceful swimmers with an excellent capacity for rapid-

maneuvering. Through the combination of PIV visualizations (fig. 2-5) and kinematic

data (fig. 2-6), it is shown that the formation and shedding of the vortices corresponds

well with the motions of the caudal peduncle. This is in agreement with Wolfgang

et al (1999) who showed that for a swimming Giant Danio, vorticity is shed at the

caudal peduncle and is manipulated by the tail fin.

Several researchers have sought to determine a robust starting point for stage two

of a maneuver. As detailed in Domenici and Blake (1997), the transition from stage

one to stage two has been defined in several ways: (a) the change in direction of tail

motion (i.e. V⊥ of the peduncle becoming negative) (Webb, 1978), (b) the change

in turning direction of the anterior body midline (from clockwise to anticlockwise in

our case) (Domenici and Blake, 1997), (c) the onset of forward propulsion (Foreman

and Eaton, 1993), and (d) the onset of contralateral electomyographic signal (Jayne

and Lauder, 1993). Note that these four definitions are not necessarily synonymous.

In our data, the change in direction of the caudal peduncle motion (a) occurs at

t ≈ 0.08 s, whereas the change in turning direction of the anterior body midline (b)

does not happen until t = 0.150 s, and the head body-parallel velocity is non-zero (c)

at the start of the maneuver.

An alternate, or perhaps even synonymous, definition to those above may arise

if the timing of vorticity generation in the fish wake is considered. When the first

vortex has been fully shed (i.e. vortex 1B is released from the tail), the fish is no
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longer putting energy into the turning phase of the maneuver (stage one), nor into

the maneuvering vortex. For the case presented here, vortex 1B is shed at time

t = 0.092 s, just moments after the change in direction of the caudal peduncle lateral

motion, which occurs at t = 0.078 s. At this time the peduncle region is moving in a

predominately tangential direction, and the tail is just beginning to change directions.

The timing of vortex shedding used to determine the transition from stage 1 to stage

2 correlates well with the definition of transition suggested by Webb (1978). The

current assessment of the vortex wake does not necessarily agree with criteria (b) by

Domenici and Blake (1991) or (c) by Foreman and Eaton (1993), and without EMG

data, and cannot compare with (d) by (Jayne and Lauder, 1993).

Taking into account solely the linear momentum of the fish into and out of the

turn, it has been shown that the net impulse of the two vortex rings is close to the

total change in momentum of the fish. In this particular maneuver, the initial velocity

is quite low, and thus the fish body is not able to use its initial forward momentum

to significantly aid in the turn. Were the fish moving at a sufficiently high initial

velocity, such that slight changes in body orientation away from the forward motion

could generate a lifting force on either the anterior or posterior sections of the body

and thus a turning moment, the need for this ‘manuevering’ vortex might be lessened.

The transitions between maneuvering stages become important when only considering

one of the vortices or certain segments of the turn. Here, the question arises as to

which parts of the turn should be considered when determining scaling laws: should

the entire turn be considered (using both the maneuvering and propulsive vortex), or

only the formation of the final vortex ring?

Triantafyllou et al (2005) suggests that a scaling law can be determined using

the time to develop a full vortex ring as the principal parameter controlling rapid

maneuvering and fast-starting, in a similar fashion to the Strouhal law for steadily

flapping foils and the formation number in impulsively-started jets by Gharib et al
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(1998). In order to determine scaling laws for maneuvering fish, considering the

maneuver from stage one through stage three taking into account only the linear

momentum of the fish’s body at the beginning and end of the turn, there will be cases

where both the first ‘maneuvering’ vortex jet as well as the second ‘propulsive’ vortex

jet may need to be considered in order to balance the total change in momentum of

the fish. There may also be cases where the first vortex is negligible or non-existent

due to the initial conditions of the turn.

2.5 Epilogue

In preparing the manuscript reprinted above, I reported the added impulse of each

vortex ring, Ia, in table 3.2. However, it should be noted that these data are not

relevant in the momentum balance with the fish. The theoretical framework presented

in Chapter 1 postulates that the fluid impulse of interest is that due to the vorticity

in the wake. Specifically, equation (1.2.17) defines the impulse in the wake as

Iv =
1

2
ρ

∫
V

x× ωa dV (1.2.17)

For a thin-cored toroidal vortex ring, this evaluates to equation (2.0.1) (see Saffman

1995, p. 199), which can be written as

|I| = ρΓπD2

4

(
1 + 3

4
d2

D2

)
= I0 + I1 (2.5.1)

Note that this result does not include the added impulse, Ia. The data in table 2.2

show that the change in momentum of the fish (If = (m + m11)4V) agrees well with

−(I0 + I1), as expected, However, the inclusion of added impulse, −(I0 + I1 + Ia),

results in an over-prediction of the momentum change.
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Chapter 3

Swimming performance of a

biomimetic compliant fish-like

robot

Continuing our work in fish propulsion, we now consider steady swimming. For a free-

swimming fish, the instantaneous total force on the animal is unsteady in time, due

to the unsteady body undulations and vortex shedding. However, the time-averaged

total force must be zero for a fish swimming at constant speed:

〈F〉 ≡ 1

4t

∫ t+4t

t

F dt = 0 (3.0.1)

where 4t is the period of tail flapping. Therefore, the time-averaged pressure impulse

force must balance that of the vortex impulse force, since

〈F〉 = 〈Fv〉+ 〈Fp〉 = 0 (3.0.2)
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In the spirit of the vortex impulse framework, we investigate the time-averaged vortex

impulse force on the animal

〈Fv〉 ≡
〈
− d

dt

[
1

2
ρ

∫
V

x× ωa dV

]〉
(3.0.3)

Thus, by examining the wake, we can infer the vortex and pressure impulse forces on

the steadily-swimming fish.

Using particle image velocimetry, we can characterize the geometry and strength

of the vortices shed by the swimming fish. In lieu of evaluating (3.0.3) directly, we

can model the wake generated by the swimming fish as a series of interconnected

vortex loops, and we can approximate 〈Fv〉 using classical vortex dynamics theory.

Kármán and Burgers (1935) consider the drag on a 2D rigid wing moving at constant

speed. Since the wing is rigid and translates uniformly, 〈Fp〉 = 0 in their model.

They model the wake a great distance behind the wing as an infinite double-row of

counter-rotating vortices, configured such that it induces a net flow towards the body.

With the direction of the circulation reversed, the wake becomes thrust-generating,

and the time-average thrust per unit depth is

〈Fv〉 /b = (ρw
`
)UΓ + ρ(w

`
tanh πw

`
− 1

2π
)1

`
Γ2 (3.0.4)

where ρ is the fluid density, w is the wake width, ` is the streamwise spacing of the

vortices, U is the speed of the wing (or fish), and Γ is the circulation of the vortices.

Fitting with the theme of this thesis, equation (3.0.4) estimates the force on the body

from the strength and geometry of its wake.

In this chapter, I use digital particle image velocimetry and fluorescent dye

visualization to characterize the performance of fish-like swimming robots. During

nominal swimming, these robots produce a ‘V’-shaped double wake, with two reverse-

Kármán streets in the far wake. The Reynolds number based on swimming speed
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and body length is approximately 7500, and the Strouhal number based on flapping

frequency, flapping amplitude, and swimming speed is 0.86.

It is found that swimming speed scales with the strength and geometry of a

composite wake, which is constructed by freezing each vortex at the location of

its centroid at the time of shedding. Specifically, I find that swimming speed

scales linearly with vortex circulation. Also, swimming speed scales linearly with

flapping frequency and the width of the composite wake. The thrust produced by

the swimming robot is estimated using the above vortex impulse model, and I find

satisfactory agreement between this estimate and measurements made during static

load tests. These results suggest that it might be of interest in future CFD studies

to examine the wake impulse and the fitness of this impulsive force model.

The following text previously appeared in:

B.P. Epps, P. Valdivia y Alvarado, K. Youcef-Toumi, and A.H. Techet (2009)

“Swimming performance of a biomimetic compliant fish-like robot,” Experiments

in Fluids 47:927-939.

3.1 Introduction

Fish have attracted the interest of researchers because they have superior swimming

ability compared to man-made devices. The understanding of fish swimming

dynamics has benefited from significant advances from both theoretical and

experimental studies. In particular, Lighthill’s Note on the swimming of slender fish

(Lighthill, 1960) renewed interest in the theoretical understanding of the physical
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principles that enable fish swimming. Subsequent refinements of Lighthill’s slender

body theory (Wu, 1971; Newman, 1973; Lighthill, 1975; Childress, 1981), research

into the dynamics of laminar wakes (Triantafyllou et al, 1986; Karniadakis and

Triantafyllou, 1989) and flapping foils (Streitlien and Triantafyllou, 1998), and recent

experimental studies (Triantafyllou and Triantafyllou, 1995; Techet et al, 2003) have

further contributed to clarify both the kinematics of body motion and the resultant

fluid dynamics that enable fish to swim.

Fish that swim by undulating their bodies produce a body wave that travels

downstream with phase speed greater than the fish’s swimming speed. These

kinematics are typically classified by the amplitude envelope of the body undulations

and wavelength of the propulsive body wave (Sfakiotakis et al, 1999). Herein, we

consider carangiform swimming, which typically has a wavelength of about one

body-length and an amplitude envelope which increases in magnitude from nose to

tail (Wardle et al, 1995). Reviews of fish swimming are given in (Videler, 1993;

Triantafyllou et al, 2000; Fish and Lauder, 2006).

Carangiform swimmers generate propulsive forces by generating and manipulating

large-scale vortical structures using their body and tail (Wolfgang et al, 1999; Liao

et al, 2003). These structures are similar to those generated by flapping foils. M.S.

Triantafyllou et. al. (1991) showed that the wake dynamics of flapping foils are

dominated by the Strouhal number, St = fA
U

, where f is the flapping frequency, U

is the forward speed, and A is the width of the wake. They suggest that optimal

efficiency is achieved for 0.25 < St < 0.35. Further, G.S. Triantafyllou et. al.

(1993) observed that indeed, many live fish swim in this range of Strouhal numbers.

Anderson et. al. (1998) use particle image velocimetry to show that the wake

generated by a flapping foil in this Strouhal number range is a reverse Kármán street.

One critical assumption made in (Triantafyllou et al, 1991) is that the wake width,

A, is “taken to be equal to the maximum excursion of the foil’s trailing edge.” This
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assumption pervades the fish swimming literature, but herein, we show that the wake

dynamics and resulting forces on our swimming robot depend on the width of the

wake and not necessarily on the flapping amplitude (see Section 3.4.5).

The understanding of fish swimming has in turn motivated efforts to replicate

such performance. In particular, several fish-mimicking devices (Bandyopadhyay,

2005; Anderson and Chhabra, 2002; Yu et al, 2004) and devices that exploit fish-like

swimming techniques (Lauder et al, 2007; Bandyopadhyay et al, 1997; Garner et al,

2000; Licht et al, 2004) have been proposed and tested. Traditionally, body and fin

motions on robots have been implemented using complex mechanisms which employ

several discrete, stiff components. As a result, several actuators are required, along

with sophisticated controls. Valdivia y Alvarado and Youcef-Toumi (2003, 2005, 2006)

have proposed alternative biomimetic devices based on continuous compliant visco-

elastic bodies. The resulting devices are simpler and more robust and can potentially

replicate more naturally the required fish motions.

In order to test the capabilities of these new devices, it is natural to look at their

swimming performance. In this paper, we focus on carangiform-type swimming, and

we present flow visualization studies of prototypes built using our design methodology

(Valdivia y Alvarado and Youcef-Toumi, 2008). Dye visualization and particle image

velocimetry (PIV) are used to characterize the wake behind a swimming robot. The

geometry and strength of the wake are used to estimate the thrust produced during

steady swimming, and the results are compared to static thrust measurements.

The remainder of the paper is composed of four sections. Section 3.2 briefly

describes the approach used to design and build the swimming robots. Section 3.3

describes the robots used and the flow visualization experiments. Section 3.4 discusses

the experimental results. Finally, section 4.5 summarizes our conclusions.
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Figure 3-1: Carangiform swimmer target kinematics (at the design flapping frequency,
fd = 2 Hz): lateral deflection, h(x, t), is plotted versus distance from the nose, x, for
six time steps over one flapping cycle.

3.2 Compliant biomimetic swimming robots

Unlike traditional discrete robots, compliant robots are made of a continuous flexible

body whose material distribution is such that a minimum set of input forces can

exploit resultant modes of vibration for locomotion (Valdivia y Alvarado and Youcef-

Toumi, 2006, 2008). In the case of fish swimming, the design and synthesis process

is summarized as follows:

a) The desired swimming mode is chosen from a range of classical swimmers,

(e.g. anguilliform, carangiform, or thunniform). Reviews of fish swimming

characteristics can be found in (Lighthill, 1975) and (Videler, 1993). Based on

the desired mode shape, the design-intent body motions are identified (see fig.

3-1). For the carangiform mode, studied herein, the spine motions are given by

h(x, t; f) = 1
2
y(x; f) cos(2πft− kx) (3.2.1)

where f [Hz] is the tail-beat frequency, y(x; f) is the peak-to-peak amplitude of
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body lateral deflection at a distance x from the nose (which, for a carangiform

swimmer, is different for each frequency), k = 2π/0.9L is the wavenumber, and

L is the body length. These target body motions, are shown in figure 3-1.

The design-intent flapping frequency is also selected in this step. For the robots

studied herein, the design-frequency is fd = 2.7 Hz. The robotic fish are able to

swim at other flapping frequencies, though typically with reduced performance.

b) The body geometry, including fin shape and placement, is dictated by the

selected swimming mode. The top panel of figure 3-2 is a schematic of the

carangiform-type swimmers studied herein.

c) The material and actuation distributions are found by solving the

governing equation for body dynamics, given the desired kinematics (3.2.1).

The body dynamics are governed by a modified Bernoulli-Euler beam

equation (Valdivia y Alvarado, 2007)

(m + ma)
∂2h
∂t2

= ∂2

∂x2

(
M(x, t)− EI ∂2h

∂x2 − µI ∂3h
∂t∂x2

)
(3.2.2)

where m(x) and ma(x) are the mass and added mass per unit length of an

infinitesimal section of the body at position x, I(x) is the section moment of

inertia, and E(x) and µ(x) are the material elasticity and viscosity, respectively.

The servomotor is commanded by a square-wave input signal and applies a

concentrated moment at position x = a. This actuation can be approximated

with a sine wave and delta function:

M(x, t) ≈ M0δ(x− a) sin(2πfdt) (3.2.3)

Using equations (3.2.2) and (3.2.3), the material properties, E and µ, as well

as the actuator moment, M0, and position, a, are determined, which result in

the target kinematics (3.2.1).
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L = 14.8 cm

a = 7.62 cm

2.54 cm

b = 4.32 cm

Figure 3-2: The carangiform swimming robot used in the PIV experiments consists of
a compliant body with an embedded actuator. Power and control signal are carried
by umbilical cord (Valdivia y Alvarado, 2007). (top) schematic, (left) isometric view,
(right) robot A.

d) The prototype’s body is cast using silicone and urethane gel compounds

matching the desired material properties.

This approach yields simple and robust devices. Further discussion regarding this

design process is detailed in (Valdivia y Alvarado, 2007).
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3.3 Materials and methods

Two nearly-identical prototypes, robots A and B, were used for the flow visualization

experiments. They were designed to mimic the swimming motions and performance

of carangiform swimmers. The body form based on these desired motions is shown

in figure 3-2.

The two prototypes have a body length from snout to tail tip of L = 14.8 cm, are

composed of elastomer materials of average elasticity E = 97835 Pa and viscosity µ =

92.3 Pa·s, and are powered by single servomotor. The servomotor applies a moment

M0 = 0.1 Nm to a plate located at a distance a = 7.6 cm from the prototype’s snout.

The prototypes have a body mass of 68 grams and are close to neutral buoyancy. The

two robots were identical in design and differed only due to construction. Robot B

was slightly tail-heavy, whereas robot A swam at nearly level trim. The flow features

of robot A were characterized using high-speed particle image velocimetry (PIV).

Unfortunately, robot A was retired at the conclusion of the PIV experiments due to

mechanical failure (after over one hundred hours of swimming), so robot B was used

to qualitatively illustrate the wake using dye visualization.

Quantitative measurements were made using high-speed particle image

velocimetry (PIV) (Raffel et al, 2002). The robotic fish was allowed to swim freely

in a tank seeded with 93 µm particles. A horizontal laser sheet was positioned such

that it was at the fish mid-plane. A high-speed camera imaged from below at 100 fps,

yielding a time-step between frames of 0.01 s. Image resolution was 1260×1024 pixels,

and the field of view was 16.6 cm x 13.5 cm, giving a 75.9 px/cm zoom.

A time-series of PIV images were captured for each of three trials at selected

flapping frequencies between 1 and 4 Hz. Flapping frequency, f , tail flapping

amplitude, H, and spine location, h(x, t), were determined from these raw images.

The time-series of particle images were then processed using the LaVision DaVis

7.1 software package. The output was a velocity field of 79×64 vectors, with
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Figure 3-3: Composite wake used to compute wake geometry. The locations of tail
maximum excursions and vortex centroids are recorded for three flapping cycles. Wake
width, w, streamwise spacing (i.e. stride length), `, flapping amplitude, H, and
swimming speed, U , are computed from the composite wake.

approximately 70 vectors along the length of the fish body. The data were post-

processed in Matlab to determine vorticity, circulation, and wake geometry.

The procedure used to determine vortex circulation and wake geometry is similar

to that used by Streitlien and Triantafyllou (1998) in the study of flapping foils.

Namely, we form a composite wake from three or more tail flap cycles by freezing

each vortex in its shed position, and we make measurements on the composite wake

(see figure 3-3). This composite wake allows us to use 2D classical vortex dynamics

theory to predict the forces on the fish (3.4.4). While this model ignores three-

dimensional effects, we show in Section 3.4.4 that it does successfully predict the

swimming performance of the fish. Streitlien and Triantafyllou (1998) define a vortex

as a simply-connected region of same-signed vorticity which is above some threshold.

In this experiment we used a threshold of 4 s−1, which is approximately 10% of the

maximum vorticity level for many trials. The circulation, Γ, and centroid of the

vorticity constituting each discrete vortex, (xc, yc), is computed by evaluating the

zeroth and first moments of the vorticity, ω, respectively

Γ =
∑

ωδA , xc = 1
Γ

∑
xωδA , yc = 1

Γ

∑
yωδA (3.3.1)
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where the summation is performed over the field points constituting the vortex, and

δA = (16 px)2 = 0.044 cm2 is the box size. Equation (8.1.8) is evaluated in five time-

steps about vortex shedding, and the mean values are used to form the composite

wake (this time-average smoothes out any small fluctuations in the PIV data). The

lateral width, w, and streamwise spacing (i.e. stride length), `, are computed from

the composite wake, and the circulation, Γ, is the mean of the magnitudes of all

vortex circulations. Streitlien and Triantafyllou (1998) reported acceptable agreement

between the measured thrust of a flapping foil and that computed using this procedure

with equation (3.4.3).

Swimming speed is defined as

U = f` (3.3.2)

where f is the flapping frequency, which is identical to the vortex shedding frequency.

Swimming speed computed using equation (3.3.2) was, for all trials, within 3% of

the value calculated by inspecting the movement of a feature of the body in several

frames.

Qualitative flow visualization was performed using dye. A fluorescent dye

mixture was painted onto the caudal fin and allowed to shed freely into the flow

as the robot swam. The mixture consisted of fluorescein dye, polyvinyl acetate

(adhesive), dimethicone (viscous thickener), butylene glycol (hygroscopic substance

and solubilizer), and other solubilizers. The dye was illuminated using incandescent

flood lamps fitted with blue cinema gels and imaged using a video camera at 30 fps.

Images were post processed by performing a band-pass filter on the light intensity

levels, and by inverting the color spectrum (so the green dye appears magenta in the

images herein).
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Figure 3-4: Spline positions (measured from the raw PIV images) illustrate the
kinematics of one flapping cycle in the low-frequency (f/fd = 0.37), nominal
(f/fd = 1.04), and high-frequency flapping (f/fd = 1.58) regimes. In the nominal
case, the kinematics resemble carangiform swimming, whereas in the low- and high-
frequency flapping cases, the kinematics are altered. The time-step between body
tracings is 0.04 s in the f/fd = 0.37 case and 0.01 s in the other two cases. The
aspect ratio of the axes is 2:1.

3.4 Results and discussion

3.4.1 Kinematics

Just as with a simple mass-spring system, the swimming robot behaves differently

when actuated at frequencies much less than, in tune with, or much greater than

its natural frequency. The robot and surrounding fluid can be conceptualized as

a simple mass-spring system, with the bending stiffness of the body playing the
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roll of the spring and the servomotor playing the roll of the forcing function (see

Valdivia y Alvarado (2007) for more discussion). In this way, we can classify the

kinematics of the robot into one of three swimming regimes.

Figure 3-4 illustrates the three swimming regimes of the robotic fish: ‘low-

frequency’ (f/fd ≤ 0.37), ‘nominal’ (0.56 ≤ f/fd ≤ 1.11), and ‘high-frequency’

(1.30 ≤ f/fd) flapping1. In all swimming trials, the actuator applies the same moment

to the fish body when triggered. The only parameter changed between trials is the

actuation frequency. The kinematics at each flapping frequency are slightly different,

but these three groupings classify the behavior sufficiently.

The low-frequency flapping regime (e.g. figure 3-4, f/fd = 0.37) can be

characterized as a ‘flap and coast’ mode. In this regime, the actuation frequency is

much less than the ‘natural frequency’ of the robot, and the tail tracks the forcing from

the servomotor. Since the servomotor is commanded by a square wave signal, the tail

motion also resembles a square wave, but with rounded corners. Physically speaking,

the caudal fin pauses at the end of each tail stroke, waiting for the actuator to begin

the next stroke. In figure 3-4, several nearly-overlapping spine positions illustrate the

period of time spent coasting, while the few tracings in-between illustrate the period

of time spent actively flapping.

In the nominal frequency flapping regime (e.g. figure 3-4, f/fd = 1.04), the

kinematics resemble the target carangiform swimming kinematics. The target

kinematics (shown in figure 3-1) are a traveling wave from nose to tail, with all

parts of the body involved in undulation. During nominal swimming, the motion of

the tail is out of phase with the mid-body, and a traveling wave propagates down the

rear half of the fish with each tail stroke. The wavelength of this traveling wave is

approximately 0.9 L, which is the target.

1The listed minimum and maximum flapping frequencies that bound each regime correspond to
frequencies tested in the PIV experiments. The precise frequencies that bound the regimes were not
determined.
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Another interesting feature illustrated by the figure 3-4, f/fd = 0.37 and 1.04

cases is the ‘rigid-body’ mode of vibration of the system, due to the umbilical hanging

below the robot. In this mode, the robot acts as a lumped mass on the umbilical,

which acts as a spring. Note two nearly identical spine position curves, offset by one

another by about 0.02 L in figure 3-4, f/fd = 1.04. These tracings correspond to

the start and end of the flapping cycle. The robot does not swim straight along its

trajectory; rather, it sways side to side as it moves forward. The center of mass traces

a sine wave about the swimming trajectory.

In the high-frequency regime (e.g. figure 3-4, f/fd = 1.58), the servomotor

actuates at frequencies much greater than the design-intent frequency, and the body

deflections are greatly reduced. In this regime, the kinematics are quite different from

the target kinematics. The middle half of the body remains nearly still, while the

head and tail flap in sync with one another. The caudal fin nearly pivots about the

caudal peduncle, and very little of the body is involved in a propulsive traveling wave.

Kinematic errors are mainly due to the limitations in fabricating the required

material distributions found through the design methodology. The modulus of

elasticity and viscosity are required to be continuous functions of body positions, E(x)

and µ(x). However, current manufacturing techniques do not allow true anisotropy;

we approximate it by casting the bodies picewise with slightly different materials

(Valdivia y Alvarado, 2007). Nevertheless, the robotic fish is able to swim in a wide

range of actuation frequencies beyond its design-intent flapping frequency.

3.4.2 Vortical wake structure

In the analysis of the vortical wake created by the swimming robot, it will be helpful

to refer to the wake in one of three ways. First, the ‘near wake’ is defined as the most

recent two vortices which have been shed from the tail. The ‘far wake’ constitutes

all other vortices beyond the near wake. Finally, the ‘composite wake’, as defined in
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(a) nominal swimming (f/f_d = 1.0)

(b) Low-frequency swimming (f/f_d = 0.37)

Figure 3-5: Vortical wake structure, visualized using dye. (a) During nominal
swimming, the carangiform swimmer produces a series of interconnected vortex loops.
(b) In the low-frequency regime, the tail pauses between strokes, and the vortices do
not interlace. The images are not synched in time. The Reynolds numbers for these
trials, based on swimming speed and body length, are approximately 7500 and 3000,
respectively. (See animations 5a and 5b online.)

Section 3.3, is constructed by freezing the vortices in their centroidal locations at the

time they were shed. The configuration of the near wake (e.g. single- vs. double-

vortex street, drag- vs. thrust-type wake) is the same as that of the composite wake,

although the geometry is slightly different due to the motion of the vortex system

during the period of time between vortex shedding events.

A snapshot of the wake visualized using fluorescent dye is presented in figure 3-5.

The Reynolds number is quite high (Re = UL/ν ≈ 7500 in figure 3-5a), so the dye

mixes quite rapidly, and only the near wake can be visualized.
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During nominal swimming (figure 3-5a), the near wake of the robot resembles

the classic series of interconnected vortex loops observed in swimming studies with

live fish, e.g. (Tytell and Lauder, 2004; Nauen and Lauder, 2002). In the horizontal

mid-plane of the robot, where PIV measurements were made, this near wake appears

as two vortices shed per flapping cycle. The composite wake is a 2D reverse Kármán

jet wake. This type of composite wake was observed in all trials with a flapping

frequency greater than or equal to 0.56 times the design frequency.

During low-frequency swimming (figure 3-5b), the robots form a ring-like vortex

structure with each stroke of the tail. In the horizontal PIV plane, each 3D ring

appears as a pair of 2D vortices, with two vortex pairs shed per flapping cycle.

Figures 3-6 and 3-7 present a PIV time-series of vorticity fields for the nominal

and low-frequency swimming regimes, respectively. The high-frequency regime is not

shown, since these vorticity fields are similar to the nominal regime, but have reduced

wake width and vortex circulation. Vorticity contours are overlaid on digitized

projections of the robot’s body determined from the PIV image sequence. Ambient

vorticity of less than 4 s−1 has been removed for clarity.

During nominal swimming cases, the robot’s wake resembles a ‘V’-shape (see

figure 3-6). Two alternating-signed vortices are shed per cycle into the near wake in a

reverse-Kármán street configuration (e.g. vortices 4 and 5 in the 3T/4 image). Each

vortex shed into the near wake splits roughly in half as it proceeds into the far wake

(e.g. vortex 3), and the far wake resembles two reverse-Kármán streets which form

a ‘V’-shape (see the 3T/4 image). This type of double-wake has been observed in

the study of a pitching flat plate (Buchholz and Smits, 2006). A ‘V’-shaped double-

wake was also observed in a CFD study by Borazjani and Sotiropoulos (2008) for a

carangiform swimmer at similar Re and StH . Their study indicates that the vortex

splitting process is quite complex, and it would be interesting to investigate this

phenomena further using CFD in conjunction with 3D PIV.
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nominal swimming (f/fd = 1.0, StH = 0.86, Stw = 0.54)

Figure 3-6: Sequence of instantaneous vorticity fields determined using PIV. During
nominal swimming (f/fd = 1.0), the robot forms a ‘V’-shaped double reverse Kármán
jet wake. Numbers indicate patches of vorticity shed continuously from the caudal fin.
Arrows indicate direction of tail motion. Every 1/4 period is shown. Anticlockwise
(positive) vorticity is shown in red and clockwise (negative) in blue. Digitized
projections of the robot’s tail are shown in gray. (See animation 6 online.)
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low-frequency swimming (f/fd = 0.37, StH = 0.82)

Figure 3-7: Sequence of instantaneous vorticity fields determined using PIV. During
low-frequency swimming, the tail pauses between strokes, and two vortex pairs are
shed per flapping cycle. Figure information is same as figure 3-6. The solid line
indicates the edge of the field of view. (See animation 7 online.)

In the low-frequency flapping regime (figure 3-7), the caudal fin pauses at the end

of each stroke, waiting for the actuator to begin the next stroke. With each start of

a tail stroke, the caudal fin sheds a starting vortex (e.g. vortex 2a in the T/4 image).

When the tail pauses at the end of the stroke, an ending vortex is shed (e.g. vortex

2b in the T/2 image). The two vortices pair to form a ring-like structure, as shown

by the dye visualization. The impulse of the vortex pair acts at a near 70-deg angle

to the swimming direction, and the fish pays with reduced swimming speed.
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Figure 3-8: Swimming speed, U [L/s], versus flapping frequency normalized by the
design frequency, f/fd. Swimming speed reaches a maximum at frequencies near
the design frequency. Values from individual trials are marked with ‘•’, and average
values for each flapping frequency are marked with the ‘◦’, ‘�’, and ‘×’ symbols. These
symbols denote the low-frequency, nominal, and high-frequency regimes, respectively.

3.4.3 Swimming speed

In this paper, we concern ourselves with the robot’s swimming speed and the dynamics

of its thrust production. In this section, we present measured data from the PIV trials,

and in the next section, we present a physical model which explains the robot’s thrust

production in accord with these experimental results.

Figure 3-8 shows the robot’s swimming speed versus tail flapping frequency for all

PIV trials. The data are partitioned into the three swimming regimes: low-frequency

(f/fd ≤ 0.37), nominal (0.56 ≤ f/fd ≤ 1.11), and high-frequency (1.30 ≤ f/fd)

flapping, denoted by the ‘◦’, ‘�’, and ‘×’ symbols, respectively. The three regimes

are distinguished by the kinematics of the robot, as discussed in Section 3.4.1 and

illustrated in figure 3-4. As expected, the robot swims fastest near its deign frequency.

The swimming speed of the robot tested in this study is about one quarter to one

fifth of the speed of live fish (other robots have attained up to one third the speed

of live fish speed (Valdivia y Alvarado, 2007)). For flapping frequencies in the range

of 0.5 ≤ f/fd ≤ 0.8, figure 3-8 shows that swimming speed is linearly proportional
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Figure 3-9: (a) Swimming speed is linearly proportional to vortex circulation, with
a constant of proportionality of 3.5 [L/s]/[L2/s]. (b) The Strouhal number defined
using wake width, Stw = fw/U , is nearly 0.52 for many swimming trials, regardless
of swimming speed. Legend same as figure 3-8. Strouhal number, as defined in
equation (3.4.2), does not apply for the low-frequency flapping regime, so these data
are not shown.

to tail beat frequency. This constant of proportionality is 0.15 [L/s]/[Hz], about

one quarter of the 0.59 [L/s]/[Hz] reported for live fish (Videler, 1993). Swimming

speed plateaus at approximately 0.35 L/s over a range of frequencies near the design

frequency; again, this is between one quarter and one fifth of the speed of live fish

swimming at those tail-beat frequencies (Videler, 1993).

Two interesting results, shown in figure 3-9, give insight into the thrust production

by the fish. First, for the nominal swimming regime cases (marked by ‘�’), the

swimming speed is linearly proportional to the average circulation of the vortices

shed into the wake (see figure 3-9a).

U ∼ Γ (during nominal swimming) (3.4.1)

The constant of proportionality is 3.5 [L/s]/[L2/s]. Thus, the swimming speed is

proportional to the strength of the vortical wake. One may note that a line fit

through these data would intercept the circulation axis at about 0.1 L2/s. This is
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not necessarily alarming, because it would be expected that the relationship between

circulation and swimming speed would change for very low speeds (i.e. low Reynolds

number swimming).

Second, the Strouhal number, defined using the wake width2 as follows,

Stw =
fw

U
≈ 0.52 (during nominal swimming) (3.4.2)

is nearly constant in the nominal swimming cases, with an average value of 0.52

and standard deviation of 0.021 (see figure 3-9b). Strouhal number is a measure of

‘hydrodynamic performance’; the lower the value, the faster the fish swims for a given

input flapping frequency and wake width. Triantafyllou et. al. have suggested that

the optimal range of Strouhal numbers for fish swimming is between 0.25 and 0.35

(Triantafyllou et al, 1991; Triantafyllou and Triantafyllou, 1995), which corresponds

to as much as twice the swimming speed for a live fish exerting the same hydrodynamic

input as the robot.

Strouhal number, defined in this way, also describes the geometry of the composite

wake. One may rewrite the Strouhal number as Stw = w/`, since U = f` by definition.

Thus, the data in figure 3-9b show that the geometry of the composite wake is nearly

constant for the nominal swimming cases.

3.4.4 Thrust

The time-averaged total force (net thrust and drag) on a steadily-moving object is

zero. In this section, we attempt to quantify the amount of thrust which must be

produced in order to balance viscous friction drag during steady swimming.

Since the thrust produced by the swimming robot scales by ρU2, swimming speed

is a proximal measure of thrust production. The data in figure 3-9 show that the

2Recall, ‘wake width’ is defined as the lateral distance between vortex centroids, across the
composite wake.

87



thrust produced by the swimming fish is related to the strength and geometry of the

vortical wake. Thrust can be related to the strength and geometry of the wake by

classical vortex dynamics theory (von Kármán and Burgers, 1935).

Kármán and Burgers (1935) computed the drag on a 2D body producing a regular

vortex street (i.e. a drag wake), and Streitlien noted that for a thrust wake, their

analysis could be carried through with the signs of the force and circulation reversed

(Streitlien and Triantafyllou, 1998). This yields the average thrust per unit depth

T/b = (ρw
`
)UΓ + ρ(w

`
tanh πw

`
− 1

2π
)1

`
Γ2 (3.4.3)

where ρ is the fluid density, w is the wake width, ` is the streamwise spacing of the

vortices, U is the average swimming speed, and Γ is the circulation of the vortices.

This model assumes point vortices immersed in inviscid flow, thus ignoring viscous

drag on the body. To estimate the thrust produced by the robot, T , we multiply the

right hand side of (3.4.3) by the tail breadth, b.

T = (ρbStw)UΓ + ρb(Stw tanh(πStw)− 1
2π

)1
`
Γ2 (3.4.4)

Simple manipulation of (3.4.4) shows that if Stw = w/` ≈ constant and 1/` ≈

constant, as in the nominal swimming cases, then (3.4.4) predicts that U ∼ Γ. The

largest value of 1/` for the nominal swimming cases was only 20% more than the

smallest value, whereas the spread in Γ2 was 100%; thus, Γ2 has about five times the

effect on thrust than 1/` does, and the assumption that 1/` ≈ constant is valid. Since

thrust scales by ρU2, equation (3.4.4) can be rewritten as

c1U
2 + c2UΓ + c3Γ

2 = 0

where c1 = T/ρU2, c2 = −bStw, and c3 = −b(Stw tanh(πStw) − 1
2π

)1
`

are constants.
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Figure 3-10: Thrust estimated by (3.4.4) is in agreement with that measured during
static thrust trials (‘�’) (Valdivia y Alvarado, 2007). (Legend same as figure 3-8.)

This equation can be solved by the quadratic formula to yield the prediction

U =
−c2 +

√
c2
2 − 4c1c3

2c1

Γ

U ∼ Γ (given Stw and 1/` are constant) (3.4.5)

The data in figure 3-9a show that swimming speed is indeed linearly proportional to

vortex circulation for the nominal swimming cases, when the Strouhal number and

stride length are nearly constant. It is interesting to note that the model does not

predict that Stw should be constant, just that if it is, then swimming speed is linearly

proportional to circulation.

The thrust predicted by (3.4.4) is in acceptable agreement with static thrust

measurements from (Valdivia y Alvarado, 2007), as shown in figure 3-10. During

the static thrust tests, the body was clamped to a load cell and held in place, so the

dynamics of the body were slightly altered. Therefore, the discrepancy between static

thrust measurements and free-swimming thrust estimation is to be expected.

Equation (3.4.4) can be non-dimensionalized by swimming speed and the wetted

area of the fish (A = 64 cm2) in the usual manner to yield the thrust coefficient,
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CT = T/1
2
ρU2A, which ranged between 1 and 3.5 for most trials. Streitlien reported

a thrust coefficient of 1.1 for a foil flapping with Strouhal number of 0.5, which is

comparable to our results.

Vortex impulse scaling

The assertion that thrust scales by the square of the circulation can also be made

by inspecting the impulse added to the vortical wake structure during each flapping

cycle. Impulse analysis has been successfully used by the authors in the context

of fish maneuvering (Epps and Techet, 2007) and by other researchers studying the

swimming of live fish, e.g. (Tytell and Lauder, 2004; Nauen and Lauder, 2002).

Using the model of a fish wake being a chain of interconnected vortex loops, the

average thrust is given by T = If cos(θ), where I is the impulse of a vortex loop,

f is the shedding frequency (which is equivalent to the tail flapping frequency), and

π−θ is the angle that the impulse vector makes with the swimming direction. Vortex

impulse scales by I ∼ ρΓAv, where Av is the frontal area of the vortex. Further, the

circulation scales by Γ ∼ V D, where V is the velocity of the fluid at the center of the

vortex, and D is the diameter. These scaling formulae are exact for a vortex ring and

yield satisfactory prediction of the impulse acting on a maneuvering fish (Epps and

Techet, 2007).

To apply these scaling arguments to the wake of a swimming fish, we make three

further assertions. First, the effective speed of the fluid in a vortex loop scales by

V ∼ fw, where w is the wake width. Second, the vortex diameter scales by the

breadth of the caudal fin, D ∼ b. Finally, the projected area of a vortex loop in the

swimming direction scales by Av cos(θ) ∼ wb.

Thus, the thrust scales by T ∼ ρf 2w2b2, and the circulation in each vortex loop

scales by Γ ∼ fwb. This implies U ∼ Γ and U ∼ fw, which is in agreement with the

vortex dynamics model given above and the data in figure 3-9.
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Figure 3-11: (a) The robot’s wake width is between 50 - 80% of its flapping amplitude
for most ‘nominal swimming’ trials, since the centroid of the vorticity shed during
each tail flap is located inboard of the point of maximum excursion of the tail tip.
The wake width of a live Giant Danio is also less than the fish’s flapping amplitude.
(b) Strouhal number of the robot, defined using wake width (Stw = fw/U , ‘�’, same
data as in figure 3-9b), is nearly constant for many flapping frequencies (mean =
0.52, standard deviation = 0.021), whereas Strouhal number defined using flapping
amplitude (StH = fH/U , ‘�’) is not (mean = 0.80, std. = 0.078). The same result
holds for the live Giant Danio (‘H’,‘N’).

3.4.5 Wake width versus flapping amplitude

Strouhal number is often defined in fish swimming literature using the tail flapping

amplitude, rather than the wake width, by

StH =
fH

U
(3.4.6)

This is convenient to do for experiments where the wake width is not quantified (e.g.

taking images of swimming kinematics in sync with muscle activity measurements),

but this definition may be misleading hydrodynamically.

In our experiments with the swimming robot, the wake width was typically

between 50% and 80% of the flapping amplitude (see figure 3-11a). This is reflected

in variations in StH . The StH data for the ‘nominal swimming’ cases had a mean

of 0.80 and standard deviation of 0.078, whereas the Stw data had mean 0.52 and
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standard deviation 0.021 (as shown in figure 3-11b). To make a fair comparison of

these standard deviations, one must scale them by their respective mean, std(St)
mean(St)

.

The scaled standard deviation of Stw is 0.021
0.52

= 0.04, whereas the scaled standard

deviation of StH is 0.078
0.80

= 0.10, which is more than twice that of Stw. Relative to

Stw, StH shows large variation in the nominal swimming regime cases, which implies

that swimming speed is not proportional to flapping amplitude but, instead, scales

with wake width.

To investigate if the wake width of a live swimming fish is also less than the fish’s

tail flapping amplitude, the PIV experiment was repeated with a Giant Danio (Danio

aequipinnatus). The specimen had a length, width, breadth (tail height), and mass of

9.89 cm, 1.14 cm, 1.89 cm, and 6.3 grams, respectively. In the seven trials shown in

figure 3-11, the fish’s wake width was between 45% and 60% of its flapping amplitude.

The Stw data for the live swimming fish had a mean of 0.19 and a standard deviation

of 0.017, whereas the StH data had a mean of 0.37 and a standard deviation of 0.049.

Interestingly, the scaled standard deviation of Stw is 0.017
0.19

= 0.09, whereas the scaled

standard deviation of StH is 0.049
0.37

= 0.13, which is about 1.5 times larger than that

of Stw. This suggests that for the live fish, as well as the robot, the swimming speed

scales by the width of the composite wake, not by flapping amplitude.

Why is the wake width less than the tail flapping amplitude? Recall, a vortex is

defined herein as a simply connected region of same-signed vorticity. The location

of the vortex, which determines the wake width, is the centroid of this vorticity

(see figure 3-3). Each vortex begins to shed as the tail reaches the point of maximum

excursion. However, same-signed vorticity is shed over much of the return flap towards

the centerline of the swimming trajectory. The total amount of same-signed vorticity

is not shed until the tail is approximately on center. Since vorticity is smeared

between the point of maximum excursion and the centerline, its centroid is closer to

the centerline than the point of maximum tail excursion is.

92



Strouhal number based on flapping amplitude is, however, indicative of the robot’s

‘kinematic performance’. For given tail flapping kinematics (i.e. amplitude and

frequency), a lower StH indicates a faster swimming speed. In our experiment with

the swimming robot, we can not dictate flapping amplitude. The only parameter

which can be changed is servomotor actuation frequency (i.e. tail-beat frequency).

The servomotor applies the same moment on the tail, regardless of the commanded

frequency, and the tail flapping amplitude and swimming speed are a result of

the fluid-body dynamics. Figure 3-11b shows a minimum StH (i.e. maximum

performance) at a flapping frequency of 0.84 times the design frequency.

3.5 Conclusions

Experiments on a robotic fish designed in (Valdivia y Alvarado, 2007) show that it

swims at about one quarter of the speed of a live fish.

The robot’s wake resembles a ‘V’-shaped double reverse-Kármán street during

nominal and high-frequency swimming. Each vortex shed into the near wake splits

roughly in half as it progresses into the far wake. This ‘V’-shaped double-wake is

consistent with the CFD results of Borazjani and Sotiropoulos (2008). They suggest

that there is a critical value of StH over which a double wake occurs. In our trials

with the swimming Giant Danio, the live fish produced a single thrust wake. While

the Reynolds numbers of both the fish and robot were similar (≈ 7500), the average

Strouhal number of the fish and robot were StH = 0.4 and 0.8, respectively. Although

the body shape and kinematics are quite different between the fish and robot, our

results seem to support those of the CFD analysis. Unfortunately, the vortex spacing

(and thus Stw) was not reported in the CFD analysis, so no comparisons can be made

regarding composite wake geometry versus overall wake structure.

The data in figures 3-9 and 3-11 show that swimming speed depends on the
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strength (Γ) and geometry (Stw) of the composite wake for both the live fish and

the robot. Further, these data show that swimming speed does not depend directly

on StH , which is a gross feature of the kinematics. Thus, the thrust produced by the

swimming fish can be thought of as a result of the vortex dynamics, rather than the

kinematics alone. The swimming kinematics serve to create the vortical wake, which

is the signature of how much thrust was produced. The quantity Stw/StH = w/H

can be thought of as a ‘kinematic efficiency’. Inefficiencies in the kinematics result in

a wake which produces less thrust, and thus, a slower swimming speed.

For example, the effect of body wavenumber was investigated in (Müller et al,

2002). They show that the body wave must be in sync with the timing when the tail

reaches its maximum excursion, or else the circulation traveling down the body is not

shed when the tail is at its maximum lateral position. This reduces the wake width

for a given flapping amplitude, thus providing less thrust and a slower swimming

speed than could otherwise be attained.

To the authors’ knowledge, there exist very limited published data that report

vortex centroid location, in addition to circulation, swimming speed, and tail-beat

frequency. Nauen and Lauder report flapping frequency and circulation for two

swimming speeds, but they do not report wake width (Nauen and Lauder, 2002).

Note that the data reported therein are averages of measurements made in physical

dimensions (e.g. cm2/s for circulation) between multiple fish of different lengths, all

swimming at the same non-dimensional speed (e.g lengths per second). Since the

averages were done on the measurements in physical dimensions, variations in these

quantities due to the size difference in the fish are lost. Roughly though, assuming the

average fork length of their fish was 24 cm, their results for the swimming mackerel

(Scomber japonicus) indicate that the ratio of swimming speed to circulation changed

less than 10% between the two swimming speeds, which is roughly in agreement with

the U ∼ Γ result reported herein.
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We suggest a vortex dynamics framework for fish swimming analysis: examine

the strength and geometry of the composite wake to infer thrust produced by the

fish. Within this framework, old questions remain. Namely, how does body shape

affect the wake? To which kinematic parameters is the wake most sensitive (e.g.

H/L, k, y(x))? Examining high-fidelity changes to kinematic parameters and body

shapes should be done computationally, where the effects of controlled changes in

each parameter can be tested.

It is also expected that this framework is only valid within a range of moderate

Reynolds numbers, say O(102 − 104), where viscous effects are such that discrete

vortical structures coalesce in the wake. At lower Re, vorticity is present in much

of the fluid, and discrete structures may not exist. At higher Re, vorticity shed

from the body in the form of vortex sheets may take a ‘long time’ to coalesce, and

the approximation of a composite wake formed by freezing time would no longer be

physically meaningful. Reynolds number effects and limitations would be another

useful focus of future work.

Appendix: tabulated experimental results

[SEE TABLES NEXT PAGE]
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Table 3.1: Table of measured quantities: normalized flapping frequency f/fd; flapping
frequency, f ; swimming speed, U ; tail flapping amplitude, H; composite wake width,
w; composite wake streamwise vortex spacing, `; and average vortex circulation, Γ.

Specimen f/fd f U H w ` Γ
[ ] [Hz] [cm/s] [cm] [cm] [cm] [cm2/s]

RoboFish 0.37 1.00 2.13 1.73 n/a n/a 17

0.56 1.51 3.13 1.65 1.10 2.16 34
0.74 2.01 4.28 1.54 1.15 2.33 39
0.84 2.26 5.15 1.58 1.15 2.40 40
0.92 2.49 5.22 1.67 1.02 2.20 42
1.03 2.78 5.07 1.56 0.98 1.96 42
1.09 2.95 5.12 1.57 0.89 1.82 41

1.31 3.55 3.35 0.86 0.81 1.00 21
1.56 4.21 3.69 0.60 0.66 0.91 19

Giant Danio 0.85 2.29 7.76 1.28 0.69 3.39 9.1
0.90 2.44 7.32 1.23 0.59 3.00 10.7
0.95 2.56 9.65 1.36 0.79 3.77 13.3
1.06 2.86 8.78 1.38 0.63 3.07 10.8

Table 3.2: Table of computed performance parameters: normalized flapping frequency
f/fd; thrust, T (eq. 3.4.4); thrust coefficient, CT = T/1

2
ρU2A; Strouhal number,

Stw = fw/U ; Strouhal number, StH = fH/U ; and Reynolds number, Re = UL/ν.

Specimen f/fd Stw StH Re T CT

[ ] [ ] [ ] [ ] [N∗10−5] [ ]

RoboFish 0.37 n/a 0.82 3167 n/a n/a

0.56 0.54 0.81 4644 989 3.44
0.74 0.54 0.72 6344 1228 2.27
0.84 0.51 0.70 7634 1231 1.50
0.92 0.49 0.80 7738 1283 1.51
1.03 0.54 0.86 7521 1650 2.04
1.09 0.52 0.90 7595 1681 2.01

1.31 0.86 0.91 4970 1464 4.24
1.56 0.75 0.70 5471 1205 2.75

Giant Danio 0.85 0.20 0.38 7678 27 0.023
0.90 0.20 0.41 7240 29 0.027
0.95 0.21 0.36 9545 51 0.028
1.06 0.21 0.45 8684 36 0.024
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Chapter 4

An error threshold criterion for

singular value decomposition

modes extracted from PIV data

To better understand the dynamics of fish swimming, we turn our attention now to

the energetics of the fish’s wake. In this chapter, I use singular value decomposition

(SVD) to analyze experimental velocity field data of the wake behind a swimming

fish. This decomposition reveals that the four most-energetic modes of the fish’s wake

(which is a reverse Kármán street) resemble those of a regular Kármán street created

in the wake of a circular cylinder, as expected. However, this study also revealed that

lower-energy modes are corrupted by experimental measurement error.

This study raised an interesting question: how does measurement error affect the

results of the singular value decomposition? Namely, what modes are most affected

by the presence of measurement error in the data? In this chapter, I find that

higher-order modes, which capture less of the kinetic energy of the flowfield data,

are corrupted by measurement error. I propose a threshold criterion that can be used

to determine if a SVD mode extracted from experimental data is valid or not.
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Singular value decomposition (SVD) is often used as a tool to analyze particle

image velocimetry (PIV) data. However, experimental error tends to corrupt higher

SVD modes, in which the root mean square velocity value is smaller than the

experimental error. Therefore, I suggest that the threshold criterion, sk >
√

DTε, can

be used as a rough limit of the validity of SVD modes extracted from experimental

data (where sk is the singular value of mode k, D and T are the number of data sites

and time steps, respectively, and ε is the root mean square PIV error). By synthesizing

the relationship between the general SVD procedure and its two special cases --

biorthogonal decomposition (BOD) and proper orthogonal decomposition (POD) -- I

show that the criterion can be used to assess modes extracted by either BOD or

POD. I apply the threshold criterion to PIV data of the wake behind a live swimming

Giant Danio (Danio aequipinnatus). The biorthogonal decomposition of the fish wake,

which is a reverse-Kármán street, reveals that the first four modes are similar to the

modes of a regular Kármán street created in the wake of a stationary cylinder and

that higher modes are corrupted by experimental error.

The following text previously appeared in:

B.P. Epps and A.H. Techet (2010) “An error threshold criterion for singular value

decomposition modes extracted from PIV data,” Experiments in Fluids 48:355-367.

4.1 Introduction

Singular value decomposition (SVD) is a well-known mathematical tool that can be

used to decompose an ensemble of velocity field data into spatio-temporal modes

that may reveal coherent flow structures (Gentle, 1998). Two special cases of the

general SVD procedure are used in experimental fluid dynamics: Proper orthogonal

104



decomposition (POD) is used if the data are un-correlated in time (as in a turbulent

flow) (Holmes et al, 1996, 1997; Berkooz et al, 1993), and biorthogonal decomposition

(BOD) is used if the data are correlated in time (as in a laminar flow) (Aubry, 1991;

Aubry et al, 1991).

Several recent experimental studies have employed POD or BOD to analyze

particle image velocimetry (PIV) velocity field data: For example, POD was

performed on PIV data of flow past a backward-facing step (Kostas et al, 2005), past

a half-cylinder (Santa Cruz et al, 2005), in an internal combustion engine (Fogleman

et al, 2004), and through an annular jet (Patte-Rouland et al, 2001). BOD was used

to analyze PIV data of flow through a model of the human voice box (Neubauera

and Zhang, 2007), and BOD also was applied to experimental hot-wire anemometry

velocity data in the study of the boundary layer on a rotating disc (Aubry et al,

1994). Recently, PIV-derived POD modes were used as a basis for direct numerical

simulations of the flow past a circular cylinder by Ma et al (2003). However, Ma

notes, “the higher modes obtained from [POD of PIV velocity data] are noisy...”, and

they employ a numerical method to work around these corrupted modes.

Aside from Ma’s work, this previous research has given little consideration as to

how experimental error affects the results of POD or BOD. In theory, large-scale

flow structures are captured by the lower decomposition modes, whereas small-scale

flow structures are captured in higher modes. In practice, experimental PIV error

may dominate higher modes, rendering them corrupted by noise. Typical sources of

experimental error in PIV can include poor seeding density, high velocity gradients,

and out of plane particle motion (Raffel et al, 2002).

Herein, we derive a threshold criterion that can be used to assess if the magnitude

of a decomposition mode is above the noise of the measurement. Modes that do not

meet the criterion have a root mean square (RMS) velocity value that is less than

the RMS measurement error. It is important to assess whether or not a mode meets

105



our threshold criterion before it is interpreted physically (as in the above studies) or

used as an input to a numerical simulation (as in (Ma et al, 2003)), because modes

that do not meet the threshold may represent measurement error, not the physical

flow phenomena of interest. We apply our threshold criterion to the decomposition

of PIV data of the wake behind a live swimming Giant Danio (Danio aequipinnatus).

In our experiment, the flow evolves gradually between each frame of the high-speed

PIV image sequence, so the measurements are correlated in time, and we employ the

biorthogonal decomposition procedure. Generally, a mid-plane slice of a carangiform

swimming fish wake resembles a reverse Kármán street, which generates thrust to

propel the animal (Borazjani and Sotiropoulos, 2008; Epps et al, 2009). BOD of

the fish wake reveals that the first four modes are similar to the modes of a regular

Kármán street created by a stationary cylinder (Ma et al, 2000, 2003) and that higher

modes are corrupted by experimental error.

In order to show that our error threshold criterion, which we develop for the

general case of SVD, can be used to assess modes extracted by either BOD or POD,

we present a brief synthesis of the relationship between SVD, BOD, and POD. We

then proceed by deriving the error criterion and applying it to the experimental data

from the swimming Danio.

4.1.1 Synthesis of SVD, POD, and BOD

Here we briefly synthesize the mathematical relationship between SVD and its special

cases, BOD and POD, in order to show that our error threshold criterion can be used

to assess modes extracted by either BOD or POD, thus making it widely applicable

to a range of experimental studies. The singular value decomposition (SVD) of a size

[T, D] data matrix, X, is

X = u · s · vT (4.1.1)
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where: T and D are the number of time steps and data sites, respectively; matrices

u, s, and v are size [T, T ], [T,D], [D, D], respectively; u contains the temporal

eigenfunctions of X; v contains the spatial eigenfunctions of X; and s contains the

singular values. That is, the SVD results in T modes (assuming D > T , which is

typical of PIV data), each consisting of a time-varying amplitude, a singular value

(which represents the magnitude of the mode), and a spatial mode shape. The first

few modes capture the primary dynamics of the flow, and small perturbations are

captured in the higher SVD modes (Holmes et al, 1996).

Many additional definitions are required. Consider mode k: Its singular value is

sk ≡ s(k, k) (note, all off-diagonal terms in s are zero). Its time-varying amplitude

is given by the kth column of u, namely u(1 : T, k). Its spatial mode shape is given

by the kth column of v, namely v(1 : D, k). The mode k data matrix is given by

Xk = u(1 : T, k) · s(k, k) · v(1 : D, k)T, which is in accord with (4.1.1) and is size

[T,D]. By definition, each column of u and v is normalized such that its `2-norm is

unity. That is,
√∑T

i=1 u(i, k)2 ≡ 1 and
√∑D

j=1 v(j, k)2 ≡ 1. Thus, the magnitude

of the mode is captured by its singular value. Also by definition, uT · u = I and

vT · v = I, where I is the identity matrix (Holmes et al, 1996).

SVD of temporally-correlated data (BOD)

Consider first, the case when the T realizations of data are correlated in time, as in the

present work. The method is to perform an SVD and then to analyze both the spatial

modes, v, and temporal modes, u, for coherent structures and temporal regularities.

In fluid dynamics, this method is referred to as the biorthogonal decomposition

(BOD) (Aubry, 1991; Aubry et al, 1991), and in other disciplines, the method of

empirical orthogonal functions. In summary, BOD and SVD are mathematically

synonymous.
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SVD of temporally-uncorrelated data (POD)

Consider now, the case when the T realizations of data are uncorrelated in time, as

in a turbulent flow experiment. The method then is to perform an SVD and analyze

the spatial modes, as scaled by their singular values:

Y = s · vT (4.1.2)

Since there is no correlation in time, the temporal eigenfunction matrix, u, has no

physical meaning and is discarded. In fluid dynamics, this method is referred to as

the proper orthogonal decomposition (POD) (Holmes et al, 1996, 1997; Berkooz et al,

1993) or the method of snapshots or method of strobes (Sirovich, 1987). In other

disciplines, this procedure is also known as the Karhunen-Loève transform, principal

components analysis, or method of empirical eigenfunctions.

The POD procedure is often presented as something distinct from SVD, but the

following analysis shows that POD and SVD are actually equivalent, as implied by

(4.1.2). The actual POD procedure is as follows: First, one forms the matrix of

observed covariance between time steps, RT = X ·XT (where RT is size [T, T ]). Next,

one solves the eigenvalue problem (RT) · u = u · s2
T, which yields the size [T, T ]

eigenvector matrix u (which is identical to the SVD temporal amplitude matrix) and

the size [T, T ] eigenvalue matrix, s2
T (which contains the squares of the T singular

values of X. That is, s2
T = s ·sT). Finally, one finds the POD modes, Y, by projecting

the eigenvectors onto the data set by Y = uT ·X. Using (4.1.1), this POD procedure

is equivalent to Y = uT ·u · s ·vT = s ·vT, as given in the SVD-based POD procedure

(4.1.2) above. In summary, the POD procedure is equivalent to performing an SVD

and discarding the temporal modes.

We have synthesized the BOD and POD procedures and shown that they both rely

on the umbrella mathematical tool, the SVD. Thus, the threshold criterion developed
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in the following section to assess the validity of SVD modes can be applied to either

POD or BOD analyses. In Section 4.4, we apply the threshold criterion to the BOD

analysis of experimental PIV data of the wake behind a swimming fish.

4.2 Threshold criterion

We now present a threshold criterion for rejecting SVD modes obtained from

experimental PIV data. The criterion that determines if the magnitude of a mode is

larger than the experimental error can be stated in three mathematically-equivalent

ways:

(i) the root mean square (RMS) velocity of the mode is larger than the RMS PIV

measurement error,

(ii) the signal to noise ratio is greater than unity,

(iii) the kinetic energy of the mode is greater than the kinetic energy of a hypothetical

spatio-temporal velocity field, with normally-distributed velocities that have

zero-mean and a standard deviation equal to the RMS PIV measurement error.

To derive the criterion, first note that the velocity for mode k at time-step i and

measurement site j is Xk(i, j) ≡ u(i, k)s(k, k)v(j, k). Thus, the root mean square

(RMS) velocity of mode k is

RMSk =

√√√√ 1

DT

T∑
i=1

D∑
j=1

(
u(i, k)s(k, k)v(j, k)

)2

=
s(k, k)√

DT
·

√√√√ T∑
i=1

u(i, k)2 ·

√√√√ D∑
j=1

v(j, k)2

=
sk√
DT
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Suppose that the PIV velocity data has root mean square error of ε. Then (i) requires

that the threshold criterion

sk >
√

DT · ε (4.2.1)

be met for the magnitude of the mode to be larger than the experimental error. If

(4.2.1) is not satisfied, then the magnitude of the mode is less than the measurement

error, and the mode will be, as Ma et al (2003) says, “noisy”, since it may be

dominated by random PIV measurement error.

Our threshold criterion can also be viewed in terms of a signal to noise ratio.

From this viewpoint, the singular value is a measure of the signal content of the mode;

modes which do not satisfy (4.2.1) have low signal content and may be dominated by

noise. The signal to noise ratio of mode k is, by definition, SNRk ≡
[

RMSk

ε

]2
=

s2
k

DTε2
.

Statement (ii) requires that SNRk > 1, which is mathematically equivalent to (4.2.1).

A third way to view our threshold criterion is in terms of kinetic energy. The

total kinetic energy (per unit density of fluid) of mode k is the sum of the kinetic

energy of each of the D velocity values over all T -time-steps, which works out to be

KEk = 1
2
s2

k. The kinetic energy of a hypothetical error velocity field with normally-

distributed velocities with zero mean and standard deviation, ε, is 1
2
ε2DT (Venturi,

2006) (this kinetic energy is also recovered in the hypothetical scenario of all velocities

equal to ε). Criterion (iii) requires 1
2
s2

k > 1
2
ε2DT , which implies (4.2.1).

We suggest that the threshold criterion (4.2.1) be used as a rough limit of the

validity of SVD modes extracted from experimental PIV data. Modes that do

not satisfy (4.2.1) should be considered artifacts of the noise in the measurement

and disregarded. Since we showed in Section 4.1.1 that both the BOD and POD

procedures are equivalent to SVD, this threshold criterion applies to both BOD and

POD analyses.
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Figure 4-1: (a) Experimental PIV setup used for swimming study. The high-speed
camera viewed up through the bottom of a glass aquarium, and the laser sheet was
oriented horizontally at the mid-plane of the fish. (b) Qualitative illustration of
the vorticity field in the last timestep. Clockwise vorticity are shown in blue, and
counterclockwise vorticity are shown in red. The fish tail is shown in black. The fish
swam from right to left at nearly-constant speed and made two nearly-identical tail
flaps.

4.3 Materials and methods

4.3.1 Experimental details

To test the threshold criterion (4.2.1), we analyzed experimental data from a study

with swimming fish (Epps et al, 2009). In this experiment, a Giant Danio (Danio

aequipinnatus) was allowed to swim freely in a 15 cm by 30 cm tank, with 10 cm

deep water. The flow features were characterized using high-speed PIV (Raffel et al,

2002). The tank was seeded with silver coated, neutrally buoyant, hollow glass spheres

(average diameter 93 µm). The particles were illuminated using a low-powered, near-

IR diode laser. The Lasiris Magnum diode laser produced a maximum output of 500

mW at 810 nm, and was fitted with optics to produce a 10◦ fan of light. The horizontal

light sheet was imaged using an IDT XS-3 CCD camera with an 85 mm Nikkon lens,

which viewed up from the bottom of the tank, as illustrated in figure 4-1a. The

high-speed camera captured 8-bit-depth images at 100 frame/s, with a resolution of

1280×864 pixels. The field of view was 19.94 × 13.46 cm, giving a 64.2 px/cm zoom.
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The time-series of particle images were processed using the multi-pass cross-

correlation algorithm in the LaVision DaVis 7.2 software package. In the first pass,

interrogation windows at the same location in each of two successive PIV images were

cross-correlated to give an estimate of the particle displacements in that window. In

the second pass, the window from the second image was centered at the displacement

position estimated in the first pass, increasing the accuracy of the cross-correlation.

Further details of the algorithm can be found in the DaVis product manual. In this

experiment, we performed the first pass with 64 × 64 px interrogation windows and

the second pass with 32 × 32 px windows, with 50% overlap in adjacent windows for

higher resolution velocity fields. The output were velocity fields of 80 × 54 vectors,

with approximately 40 vectors along the length of the fish body. For this time-series

data, the time step between velocity fields was the same as the time between PIV

image frames, ∆t. All data post-processing -- including wake interrogation, data

smoothing, and the BOD analysis -- was performed in Matlab.

Each time the fish swam steadily through the field of view with the laser at its

mid-plane, a time-series of images was saved. Results presented herein are for an

adult fish (which had an overall length of L = 9.89 cm) swimming steadily at a

speed of U = 9.49 cm/s = 0.96 L/s, which corresponds to a Reynolds number of

Re = UL/ν = 9300. Three successive tail beats were observed T = 38 frames

apart, yielding a constant flapping frequency of f = 2.6 Hz. The average tail flap

amplitude was H = 1.38 cm = 0.14 L, which corresponds to a Strouhal number of

St = fH/U = 0.37.

In this particular case, the fish made two nearly-identical tail flaps, so these data

were selected for the example BOD analysis presented herein. The tail flaps were

biased to the lower end of the page, resulting in an asymmetric wake. The wake is

qualitatively illustrated in figure 4-1b, where instantaneous vorticity contours show

that its configuration is a reverse Kármán street.
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Figure 4-2: Illustration of data processing: (a) Wake interpolation schematic: tail
maximum excursion positions, ‘•’; swimming trajectory, ‘- -’; and outline of wake
interpolation grid, ‘–’. The period of tail flapping is T = 38 frames. (b) Data
smoothing: interpolated PIV data, ‘�’, are phase-averaged to yield the “noisy” data,
‘•’; smoothing spline values, ‘- -’, are phase-averaged to yield the “smoothed” data,
‘+’. The data shown are Vy(x ≈ SL, y ≈ 0)(t).

4.3.2 Wake interrogation

Technically, the BOD does not require the spatial location of each measurement to

have a ‘fixed identity’ (i.e. a fixed location relative to the fish). However, to facilitate

interpretation of the BOD modes, and to be able to compare them to the modes of

a regular Kármán street formed behind a stationary cylinder computed by Ma et al

(2003), we must interrogate the wake in a body-fixed reference frame.

Outlines of the first and last wake interrogation grid are shown in figure 4-2a. The

fish trajectory was determined by locating the position of the caudal fin fork at each

extrema in tail lateral excursion and fitting straight lines via least squares through

these points, with the average of these two fits giving the centerline of the trajectory.

The origin (x = 0) locations of the grids for the first and last timesteps were located by

perpendicularly projecting the tail extrema positions onto the trajectory centerline, as

shown. Intermediate wake grids were equispaced along the trajectory, which yielded

a body-fixed interpolation, since the fish swam at steady speed. Interpolation was
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performed using the Matlab command griddata(. . . ,‘cubic’), which performs

a triangle-based cubic interpolation (MathWorks, 2009). The raw PIV velocity

field was cropped (as shown in figure 4-2a) in order to expedite the interpolation

procedure, which does not use data far away from the interpolation sites anyway.

These interpolated wake data were projected into the wake coordinate system to

find wake-aligned velocity components, Vx and Vy. The translation velocity of the

wake grid was ignored in the interpolation procedure, since it is constant and would,

therefore, be removed prior to BOD anyway. By interpolating on a moving grid, we

‘collected’ PIV data in a body-fixed reference frame.

4.3.3 Experimental PIV error

The two primary sources of PIV measurement error are the loss of in-plane particle

pairs and error due to large velocity gradients. Other factors, such as particle image

diameter and particle image displacement have lesser effects (Raffel et al, 2002;

Melling, 1997). Adequate seeding density (∼15 particles per interrogation window)

and a high frame rate can mitigate the loss of in-plane particle pairs, but PIV velocity

measurement error due to velocity gradients persist. In our experiment with the

Danio, the “noisy” data had an RMS velocity gradient of 0.02 [(px/frame)/px], which

corresponds to an RMS PIV velocity error of approximately

ε ≈ 0.1 [px/frame] (4.3.1)

according to Raffel et al (2002). In the present experiment, the number of data sites

is D = 1776, and the number of timesteps is T = 38; therefore, the threshold singular

value (4.2.1) is

sk >
√

1776 · 38 · 0.1 [px/frame] = 26.0 [px/frame] (4.3.2)
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Note that by definition, singular values contain the units of the original data. Since we

presently consider a decomposition of velocity fields, the units of the singular values

are [px/frame]. We chose to not normalize the singular values (say, by the swimming

speed), since it is easier to compare singular values to PIV error using the raw units.

4.3.4 Data smoothing

In order to assess the effect of measurement error on the BOD, we must compare

the interpolated PIV data to a set of data in which the error has been removed. In

the high-speed PIV experiment, the flow appears to evolve smoothly to the naked

eye, but -- presumably due to measurement error -- the PIV measurements deviate

from otherwise smooth trajectories. To find the trajectory of each measurement,

we fit a smoothing spline to these data using the automated method presented in

Chapter 5. For example, figure 4-2b shows the transverse velocity at approximately

one stride-length downstream of the tail, Vy(SL, 0)(t), where noisy PIV data follow

the trajectory fit by the smoothing spline.

In the “noisy” and “smoothed” data sets presented herein, each trajectory is

phase averaged, as shown in figure 4-2b. Phase averaging eliminates minor transient

differences between the flapping cycles and allows us to perform BOD on one flapping

cycle worth of data. (The authors have also performed BOD without phase averaging

and find that the first two BOD modes are nearly identical to those of the phase-

averaged data, confirming quantitatively that the flow is periodic.) Finally, the

“error” data set presented herein was constructed by taking the difference between

the “noisy” and “smoothed” data. For each data set (“noisy”, “smoothed”, and

“error”) a time-series of velocity fields capturing one flapping cycle was input to the

BOD analysis.
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4.4 Results and discussion

4.4.1 PIV wake data

The “noisy”, “smoothed”, and “error” time-series of wake data are shown in figure 4-3.

Since the translation velocity of the wake grid was ignored in the data interpolation,

these vectors represent deviation from the free-stream in this body-fixed reference

frame. The “noisy” and “smoothed” time-series both resemble a reverse Kármán

street, which is the well-known wake structure of a carangiform swimming fish (Nauen

and Lauder, 2002; Borazjani and Sotiropoulos, 2008). The velocity and vorticity

“error” data have much smaller magnitudes than the “noisy” data, and they appear

random, indicating that they are in fact random PIV measurement error.

The fish swam with nearly constant speed, but had a bias in its kick towards the

bottom of the image. Thus, the vortices on the bottom side of the wake have higher

vorticity levels than those on the top, and all vortices drift in the negative y direction

as they convect downstream (due to self-induction of the wake).

The time-average of these ~V (x, y, t) velocity data is

~V avg(x, y) = 1
T

T∑
i=1

~V (x, y, ti) (4.4.1)

The time-averaged wake is a jet which grows in both magnitude and breadth as it

progresses downstream, as shown in figure 4-4a. The maximum streamwise velocity

occurs at approximately one stride length downstream of the tail flapping plane.

The time-averaged “error” data are shown in figure 4-4b. All velocity values are

nearly zero; the mean “error” velocity is 0.001 [px/frame]. For comparison, the mean

velocity value of the “smoothed” data is 0.19 [px/frame], nearly two hundred times

greater than the mean “error” velocity value. Figure 4-4 indicates that the error data

is random noise and that the signal to noise ratio of our measurements is quite high.
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(a) Noisy data

(b) Smoothed data

(c) Error data
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Figure 4-3: Filmstrips of velocity field data input to the BOD analysis. Points of
interest: swimming centerline, y = 0; tail flap envelope, y = ±0.07 L; tail flap plane,
x = 0; and stride length, x = 0.37 L.
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(a) Smoothed data (b) Error data
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Figure 4-4: Time-averaged wake velocity and vorticity fields. The time-average of
the “smoothed” and “noisy” data are nearly identical, so the time-averaged “noisy”
data is not shown. The time-averaged fields for the “error” data are nearly zero. The
vector scale and vorticity colormap are the same for both figures.

4.4.2 Singular values

We now present the results of the biorthogonal decomposition (BOD) of the “noisy”,

“smoothed”, and “error” data sets. In order to perform the BOD, the velocity

component data (which each are of size [N = 37, M = 24, T = 38]) are formatted into

matrix X, which is size [T = 38, D = 2MN = 1776]. Each column of X contains the

T measurements made at a particular data site, less their time-averaged value, which

was computed using (4.4.1). The BOD was performed using the Matlab command

svd (MathWorks, 2009).

Figure 4-5a shows the singular values of the BOD modes, as well as a dashed line

showing our threshold criterion (4.3.2), which is sk >
√

DT · ε = 26.0 [px/frame]. For

both the “noisy” and the “smoothed” data, singular values 1 and 2 are approximately

three times the error threshold and also three times larger than the next singular

values. This implies that modes 1 and 2 capture most of the flow dynamics (i.e. they

contain most of the kinetic energy). Singular values 3 and 4 are nearly equal to our
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Figure 4-5: (a) BOD singular values for the “noisy” data, ‘•’, and “smoothed” data,
‘+’. The dashed line represents the PIV error criterion (4.2.1); modes 5-38 should
be ignored, since their singular values are less than this threshold. (b) Singular
values of the “error” data, ‘�’, and singular values of a size [T,D] matrix of Gaussian
random numbers with standard deviation µ = 0.14 [px/frame], ‘�’. The dashed line
represents the PIV error criterion (4.2.1), and the dash-dotted line represents the
expected singular values of a size [T,D] matrix of Gaussian random numbers with
standard deviation, ε = 0.1 [px/frame].

error threshold criterion. In both the “noisy” and “smoothed” cases, singular values

5-38 are lower than the threshold; these modes may be contaminated by measurement

noise.

Note that we do not imply that modes 5-38 only contain noise. Rather they must

contain some of the signal, but since their magnitude is so small (and so little signal

is left for them to capture), they are most likely dominated by measurement noise.

Likewise, mode 1 must contain some measurement noise, but this is likely a small

fraction of the signal content in this mode.

The singular values of the “error” data, shown in figure 4-5b, are all less than our

threshold criterion, which indicates that the “error” data does not contain appreciable

signal content. In addition, these singular values span only one order of magnitude;

that is, compared to the singular values of the “smoothed” data, the singular values

of the “error” data are nearly constant.
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To appreciate this fact, consider a size [T,D] random data matrix, Xrand,

populated by normally-distributed random numbers with zero mean and standard

deviation, ε. Since there is no coherent signal in such a matrix, all T singular values

will be equal (assuming D ≫ T � 1). To find their value, srand, note that the total

kinetic energy of the data is 1
2

∑T
i=1

∑D
j=1 Xrand(i, j)

2 = 1
2
ε2DT and also is given by∑T

k=1
1
2
s2

k = 1
2
Ts2

rand. Therefore,

srand =
√

Dε (4.4.2)

(which is clearly less than the threshold,
√

DTε). Many of the singular values of the

“error” data are approximately
√

D · ε = 4.2 [px/frame], which supports the claim

that these data are random noise.

One may argue that sk >
√

Dε should be the error threshold criterion, instead of

(4.2.1). However, since (4.4.2) is the limit of no signal, it seems that modes for which
√

Dε < sk <
√

DTε may still have significant noise content. Hence, (4.2.1) is our

suggested threshold criterion.

The RMS of the “error” velocity data actually is µ = 0.14 [px/frame], which

is slightly higher than the estimated RMS PIV error of ε ≈ 0.1 [px/frame]. In

hindsight, finding the RMS of the “error” velocity values may be a more accurate

way of estimating PIV error than the arguments offered in section 4.3.3. Nevertheless,

the results presented herein hold whether ε ≈ 0.1 or 0.14 is used. For reference, the

(nearly-constant) singular values of a size [T,D] matrix of Gaussian random numbers

with standard deviation, µ = 0.14 [px/frame], are shown in figure 4-5b.

4.4.3 Mode shapes and amplitudes

Figures 4-6, 4-7, and 4-8 show BOD modes 1-10 for the “noisy”, “smoothed”, and

“error” data, respectively. Each BOD mode consists of a normalized temporal
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Figure 4-6: BOD modes 1 - 10 for the “noisy” data. Vorticity fields shown were
computed from BOD velocity mode shapes; amplitudes shown were scaled by their
respective singular values.

amplitude, normalized velocity field mode shape, and a singular value. In figures 4-6-

4-8, vorticity fields are shown, which were computed from the modal velocity fields;
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Figure 4-7: BOD modes 1 - 10 for the “smoothed” data. The vector scale and vorticity
colormap are the same as figure 4-6.

also, the temporal amplitudes shown are scaled by their respective singular values, in

order to show the magnitude of each mode explicitly.

Consider first the BOD amplitudes of the “noisy” data, shown in figure 4-6.

Amplitudes 1 and 2 are approximately sinusoidal, which is expected since the tail
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Figure 4-8: BOD modes 1 - 10 for the “error” data show no coherent signal content.
The vector scale and vorticity colormap are the same as figure 4-6.

motion (and thus, the fluid forcing) was approximately sinusoidal. Because the flow

is periodic, we expect the BOD modes appear in pairs, similar to the sine and

cosine modes of a Fourier decomposition. Indeed, BOD amplitudes 1 and 2 have

frequencies of approximately the tail flapping frequency, f , and amplitudes 3 and 4
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have frequencies of approximately 2f . However, BOD amplitudes 5 and higher (5+)

are quite noisy and do not appear sinusoidal.

In sync with the temporal-frequency doubling of the amplitudes, vorticity fields 1-4

also display a spatial-frequency doubling. Vorticity fields 1 and 2 display one clockwise

and one anticlockwise vorticity patch within the first stride length downstream of the

tail; in other words, modes 1 and 2 have the same spatial frequency as the original

data, which resembled a reverse Kármán street (see figure 4-3). Modes 3 and 4 contain

two cycles of vorticity within the stride length, which corresponds to twice the spatial

frequency of the original data. Modes 5+ again break the mould; they do not repeat

the pattern of frequency-doubling that we would expect in a Fourier decomposition.

Modes 5+ should be ignored: Both their temporal amplitudes and their spatial

mode shapes do not show the expected frequency doubling observed in prior modes;

instead, these modes appear noisy and random. According to our error threshold

criterion (4.2.1), modes 5+ have a magnitude lower than the PIV measurement

error and should be ignored, since they may be contaminated by measurement noise.

Amplitudes 5+ shown in figure 4-6 do not evolve smoothly in time, as this flow appears

to the naked eye. Vorticity fields 8-10 show no coherent structures. Although vorticity

fields 5-7 appear to contain a coherent pattern of vortical patches, these could be due

to some actual dynamics of the flow or could very well be indicative of some systematic

PIV error which appears more often in regions of high shear along the centerline of

the wake. In any case, modes 5+ should be considered contaminated by measurement

noise and ignored in data reconstructions or further dynamic analyses.

One might be concerned about whether the PIV spatial resolution is fine enough

to resolve the small vortical structures expected to appear in modes 5 and higher.

If modes 5 and 6 did contain information about the flow, then it would be expected

that their spatial frequencies would be three times that of modes 1 and 2 (i.e. six

vortices per stride length). Thus, the diameter of the vortices expected to appear in
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modes 5 and 6 would be d = 0.37 L /6 = 0.06 L. The PIV spatial resolution was 16

px = 0.025 L, which should be fine enough to resolve these vortices. However, modes

5 and 6 do not show such a vortical pattern.

One final point of interest in figure 4-6 is that the general form of vorticity fields 1

and 2 is similar to that of the decomposition of a Kármán street formed in the wake

behind a circular cylinder (Ma et al, 2000). This is expected, since the fish wake is a

reverse Kármán street.

Consider now the amplitudes of the temporally-smoothed data, shown in fig 4-7.

In the processing of these data, the trajectory of each data site (e.g. Vy(SL, 0)(t))

was smoothed in time by fitting a smoothing spline to the data; thus, the temporal

fluctuation of each data site was removed, but no spatial smoothing was performed.

As a result, the BOD amplitudes shown in figure 4-6 evolve quite smoothly in time,

whereas the vorticity fields contain the noise of this data set.

All amplitudes approximate sinusoids: amplitudes 1 and 2 have frequency, f ; 3

and 4, 2f ; 5 and 6, 3f ; and so on, which is in agreement with the expected Fourier

result. However, only vorticity fields 1-4 display the expected spatial frequencies.

As with the “noisy” data, “smoothed” data modes 5-7 do not display the expected

spatial frequency, and modes 8-10 show no coherent pattern.

Finally, the BOD modes of the “error” data are shown in figure 4-8. None of the

temporal amplitude signals show a coherent pattern. Spatial modes 2 and 3 of the

“error” data have alternating vortical patches along the centerline of the swimming

trajectory, similar to spatial modes 5-7 of the “noisy” data. This implies that the

PIV error that corrupted “noisy” modes 5-7 is being captured by “error” modes 2

and 3. The other “error” mode shapes appear to be random noise, indicating that

“error” data is primarily random measurement error.
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(a) Modes 1+2

(b) Modes 1+2+3+4

Figure 4-9: BOD low-order reconstructions of the “noisy” data. The vector scale and
vorticity colormap are the same as figure 4-3.

4.4.4 Wake reconstruction

Since the present PIV experiment is only capable of resolving the first four BOD

modes, one may ask if these modes are sufficient to reconstruct the fish wake. In

general, one constructs a rank r approximation of X (called a Galerkin approximation)

by summing the first r BOD modes, X(r) =
∑r

k=1 Xk = u(1 : T, 1 : r) · s(1 : r, 1 :

r) · v(1 : D, 1 : r)T. The original data matrix X can be recovered by summing all T

modes, X =
∑T

k=1 Xk, which is just a restatement of (4.1.1).
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Only the first two BOD modes are needed in order to reconstruct the vortex

street behind the swimming fish. Since the mode 1 and 2 amplitudes are shifted

temporally and their vorticity fields are shifted spatially, modes 1 and 2 can represent

the formation and convection of vortices into the wake behind the fish, as shown in

figure 4-9a. This is expected, since other researchers have found that only modes

1 and 2 are needed to reconstruct the (regular) Kármán street behind a circular

cylinder (Ma et al, 2000). These modes capture 90.7% of the kinetic energy of the

“noisy” time-series of data.

Figure 4-9b illustrates that modes 3 and 4 add further detail to the shape and

strength of the vortices in the reconstructed wakes. Since modes 1 through 4 capture

96.1% of the kinetic energy of the original velocity fields (i.e. they contain most of the

signal content), many of the snapshots shown in figure 4-9b look virtually identical to

the original “noisy” data (shown in figure 4-3a). The inclusion of modes 6-10 in the

reconstruction (not shown) yields even better agreement with the “noisy” data, but

since the signal strength of modes 5 through 10 is significantly lower than our error

threshold criterion, we anticipate that these modes only serve to reintroduce the PIV

error back into the reconstructed solution.

4.5 Conclusions

In this work, we developed a threshold criterion (4.2.1) for rejecting singular value

decomposition modes. This threshold criterion can be interpreted in three ways:

(i) the root mean square (RMS) velocity of the mode is larger than the RMS PIV

measurement error,

(ii) the signal to noise ratio is greater than unity,

(iii) the kinetic energy of the mode is greater than the kinetic energy of a hypothetical

spatio-temporal velocity field, with normally-distributed velocities that have

zero-mean and a standard deviation equal to the RMS PIV measurement error.
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Further, we showed that since both biorthogonal decomposition (BOD) and proper

orthogonal decomposition (POD) are rooted in the SVD, this threshold criterion

applies to both types of analyses.

Herein, we performed a BOD analysis of 2D PIV data of a fish wake. We obtained

‘body-position-invariant’ velocity fields by interpolating the PIV data on a grid that

translated with the swimming fish. We have shown that the first two BOD modes can

represent the fish wake, which is a reverse Kármán street. Modes three and four add

detail to the wake, whereas modes five and higher add little additional information

and contain much of the measurement noise. As expected, only the first four modes

obtained from our experimental data had magnitudes that met the threshold criterion.

We found that smoothing our PIV data using smoothing splines has little effect on

these first four BOD modes. However, since the smoothing removes PIV error, the

magnitude of higher BOD modes was reduced.

Some parallels can be drawn between the present analysis and the results presented

by Ma et al (2003) regarding the POD modes of a cylinder wake, which is a

regular Kármán street. They compare POD modes extracted from (noisy) PIV

“experimental” data to those extracted from (precise) direct numerical simulation

“DNS” data. (Unfortunately, they do not report the number of velocity vectors in

their experiment nor do they report the units of their singular values, so we can not

verify if our threshold criterion (4.2.1) is valid in their case.) Similar to our results,

Ma finds that the “experimental” data eigenmodes 1-4 were acceptable, but modes 5

and higher were corrupted by measurement error. In both our “noisy” data and Ma’s

“experimental” data, the singular values of modes five and higher (5+) are clustered

within one order of magnitude, whereas for our “smoothed” data and Ma’s “DNS

data”, these singular values span six orders of magnitude. Since a matrix of random

data has constant singular values, we assert that in comparison to the singular values

of our “smoothed” and Ma’s “DNS” modes 5+, the singular values for our “noisy”
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and Ma’s “experimental” modes 5+ were relatively constant, indicating that these

modes are capturing the experimental error.

These points taken together indicate that Kármán streets can be represented

adequately with two to four BOD modes, and that experimental error must be very

precisely controlled if higher modes are desired.
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Chapter 5

A method for inferring forces from

experimental position data

This thesis focuses on applications of a theoretical framework for estimating fluid

dynamic forces. However, in some experiments, we need not estimate the forces

at all, because the net force on a body is given from its mass and acceleration by

Newton’s second law: F = ma. If we can determine the acceleration experimentally,

then we know the net force on the body.

Measuring the acceleration directly (using accelerometers) is not possible in some

experiments: For example, strapping an accelerometer to a small fish is not feasible.

However, it is possible to take high-speed video of the fish and interrogate its position

in each time step, y(t). Then the physics problem of finding the net force simply

distills to the numerical problem of finding the second derivative of the measured

position data, a(t) = d2y
dt2

.

Although finding a derivative might seem like a simple task, doing so for

experimental data is not trivial, because the data inevitably contains measurement

error. Consider measured position data ỹ(t) = y(t) + O(ε), where y(t) was the true

position, and O(ε) is the order of magnitude of the measurement error. It is well
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known that finite difference formulae amplify measurement error

a(t) =
4
(
4(y+O(ε))

4t

)
4t

=
d2y

dt2
+ O

(
ε

(4t)2

)

so they can not be used. Rather, one must fit an analytic function to the data.

Typically, an experimentalist would choose (somewhat arbitrarily) a functional

form (e.g. a cubic polynomial) and use least squares regression to determine the

fitting parameters (the four cubic polynomial coefficients) that best fit the entire

data set. Inherent in this method are two problems: (1) the true function y(t) may

not actually be of the chosen functional form, and (2) the function does not truly

capture local trends in the data, since the fitting parameters are chosen by a best fit

to the entire data set. I have circumvented both of these issues by developing a novel

method by which to fit a smoothing spline to measured data. My methodology allows

the experimentalist to find the best fit smoothing spline, which does not presume

any functional form, captures local trends in the data, and allows one to analytically

compute the desired derivatives.

In this chapter and the next, I consider the hydrodynamic forces acting on a

billiard ball as it falls into a basin of water. This chapter details the spline fitting

procedure that uses measured position data to infer the total force on a sphere, falling

freely under gravity into an undisturbed water surface. Chapter 6 presents a potential

flow model to explain these observed forces.

The spline fitting method presented in this chapter has been used by the author in

other studies as well. The automated spline fitting procedure was used in Chapter 4

to fit splines to smooth the PIV velocity data of the fish wake, and the manual

spline fitting procedure was used to find the angular velocity and acceleration of a

propeller (from angular position data) during unsteady start-up experiments, as will

be discussed in Chapter 8.
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In this chapter, I show how instantaneous derivatives of high-resolution, high-

precision experimental data can be accurately evaluated by fitting the data with a

smoothing spline. This chapter presents a novel and robust method for choosing the

best spline fit and, hence, the best prediction of the derivatives.

Typically, a smoothing spline is fit by choosing the value of a smoothing parameter

that controls the tradeoff between error to the data and roughness of the spline. This

method can yield an unsatisfactory fit, however, because the roughness of the fitted

spline is extremely sensitive to the choice of smoothing parameter. An alternate

fitting method is to choose an error tolerance and to find the spline with the least

roughness possible, given that the error must be less than or equal to this tolerance.

In this chapter, we systematically explore the relationship between error tolerance

and the minimum possible roughness of smoothing splines. I find that there exists

a critical error tolerance, corresponding to the spline that has the minimum possible

error to the data, without also having roughness due to the noise in the data. I present

an automated method to find this critical error tolerance and show, using both an

analytic example and a canonical experimental example, that this in fact yields the

best spline fit.

5.1 Introduction

Finding the rate of change of a measured quantity is a ubiquitous experimental task.

The present work is motivated by the canonical physics problem of finding the velocity

(rate of change of position) and acceleration (rate of change of velocity) of a sphere

falling into a basin of water. Other examples abound. From fluid mechanics, consider

computing a spatial velocity gradient = d(velocity)
d(position)

in order to determine the shear

stress on a body, given experimental velocity field data. From solid mechanics,
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consider determining the strain rate = d(strain)
d(time)

of a material during a crash impact

test, given strain data measured at several times during the experiment. From image

processing, consider finding the curvature (i.e. second spatial derivative) of a feature

found using standard edge detection algorithms on a digital image. In all these cases,

experimentalists desire the derivative of a measured quantity.

This chapter presents a method to determine derivatives of experimental data.

My method applies to data that is highly-resolved and has small experimental error

(the need for these restrictions will be made apparent in Section 5.2.1). Consider a

general set of experimental measurements

ỹi = y(ti) + ε̃i (5.1.1)

made at times, ti (i = 1, . . . , N), where y(ti) is the true value of some smoothly-

changing quantity and ε̃i is the measurement error1. The goal of the present work

is to examine experimental ỹ(ti) data and to best approximate the true function it

represents, as well as its first few derivatives

y(t),
dy(t)

dt
,

d2y(t)

dt2
,

d3y(t)

dt3

Typically in experimental research, the true function is either unknown or too

complex to be represented by a simple parameterized model (e.g. a single polynomial

with unknown coefficients). In this case, the appropriate way to represent the

unknown function is with a smoothing spline. This spline does not require any

knowledge about the true function (aside from assuming that it is piecewise continuous

and smooth), and derivatives of this spline can be computed exactly.

1Assume for all examples herein that the time at which each measurement took place was itself
measured exactly. Also note, the curve fitting procedure described herein is not restricted to
functions of time. Since ‘rate of change’ semantically implies ‘in time’, examples in which time
is the independent variable are given herein.
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A smoothing spline can be formed by a piecewise polynomial of degree n, with

n− 1 continuous derivatives at each break point. Typically, cubic (n = 3) or quintic

(n = 5) polynomials are used. A particular spline, s(t), can be characterized by its

error

Ĕ(s) =
∫ tN

t1
|ỹi − s(ti)|2dt (5.1.2)

and roughness, which is defined for cubic and quintic splines as follows

R2(s) =
∫ tN

t1

∣∣∣d2s
dt2

∣∣∣2 dt (cubic spline) (5.1.3)

R3(s) =
∫ tN

t1

∣∣∣d3s
dt3

∣∣∣2 dt (quintic spline) (5.1.4)

Further background on the mathematical formulation of smoothing splines and

their application to measured data can be found in references (de Boor, 1978;

Silverman, 1985; Wahba, 1990).

In the vast majority of the smoothing spline literature, researchers try to find the

‘best’ smoothing spline fit by minimizing the quantity

J(s) = pĔ(s) + (1− p)R(s) (5.1.5)

where the smoothing parameter, p, controls the amount of smoothing. Various

procedures aimed at finding the optimum smoothing parameter can be found in

(Wahba and Wold, 1975; Craven and Wahba, 1979; Chung, 1980; Wecker and Ansley,

1983; Kohn and Ansley, 1987; Pope and Gadh, 1988; Hurvich and Simonoff, 1998;

Wood, 2000; Teanby, 2007). Note that p must be chosen a-priori. If you pick p = 1,

then minimizing J(s) requires minimizing Ĕ(s), which happens when the spline passes

through every data point. If you pick p = 0, then minimizing J(s) requires minimizing

R(s); roughness is zero for a cubic spline that is composed of linear segments (and
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zero for a quintic spline composed of quadratic segments). For any p ∈ [0, 1], there

exists a unique spline that minimizes J(s) (de Boor, 1978). Let us call this problem

of identifying the best p and minimizing J(s) the ‘de Boor formulation’.

Several researchers have developed numerical procedures to identify the ‘best’

smoothing parameter, p, for a given data set (see above references). However, to the

author’s knowledge, only one of the codes developed therein has been implemented

and made freely-available for use in Matlab, which is widely-used for experimental

data post-processing and analysis.

One of de Boor’s codes is implemented in the Matlab function csaps(t, ỹ), which

attempts to choose the optimum p and then determine the spline which minimizes

J(s). The solution of the de Boor problem in csaps requires solving a linear system of

equations whose coefficient matrix has the form p ·A+(1−p) ·B, where the matrices

A and B depend on the data. The default value of the smoothing parameter in csaps

is chosen such that p · trace(A) = (1− p) · trace(B) (where the trace of a matrix is

the sum of its diagonal elements) (de Boor, 2008). This ad-hoc method for selecting

p often results in inadequate smoothing.

This chapter is motivated by the inadequate smoothing of csaps and the lack

of any alternative readily-available for use in Matlab. The implementation of the

method described herein has been done in Matlab, but the methodology can be

implemented in any programming language.

My approach to the spline fitting problem follows Reinsch (Reinsch, 1967): I

choose an error tolerance, E, and find the spline with the least roughness, given that

the error must be less than or equal to this error tolerance:

minimize R(s) (5.1.6)

requiring Ĕ(s) ≤ E (5.1.7)
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One can show that this roughness minimization problem, hereafter referred to

as the ‘Reinsch formulation’, is equivalent to minimizing J(s) in the above ‘de

Boor formulation’ (de Boor, 1978). Note that E = 0 in the Reinsch formulation

is equivalent to p = 1 in the de Boor formulation, and E → ∞ in the Reinsch

formulation is equivalent to p = 0 in the de Boor formulation. An implementation of

the Riensch formulation is available in Matlab; the function spaps(t, ỹ, E) returns

the smoothing spline, s(t), that has the least roughness possible, given that the error

must be less than or equal to the given tolerance, E. The problem now is to choose

the ‘best’ error tolerance, E, for a given data set.

The Reinsch problem, as implemented in spaps, provides a relationship between

minimum roughness and error tolerance, R(E). One could evaluate spaps(t, ỹ, E)

for several values of the error tolerance and compute the roughness of each resulting

spline. In doing so, one would generate an ‘efficient frontier’ of smoothing splines

that are viable candidates for the best fit. For any given error tolerance, splines exist

with more roughness than the one on the R(E) frontier, but these are undesirable.

I find that there exists a critical error tolerance, Ecr, which can be used to identify

the ‘best fit’ spline. For error tolerances greater than Ecr, a spline fit to noisy data

will still be smooth. For error tolerances less than Ecr, the minimum-roughness spline

is still very rough, since it must follow very closely to the error-ridden data points.

In this chapter, I present a method for selecting the ‘best’ smoothing spline by

identifying the critical error tolerance on the R(E) frontier. This ‘best’ spline fit is

the one that most closely follows the true function, y(t); it has the minimum error

possible and as much of the true roughness of y(t) as possible, without capturing any

roughness due to the noise in the data.

The remainder of this chapter is parsed into four sections: In the following section,

I use an analytical example to present the R(E) frontier and show how to use this

frontier to manually select the best smoothing spline. I discuss how the R(E) frontier
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scales with measurement error, and I also compare the spline fit by my method to the

spline fit by csaps. In Section 5.3, I describe an algorithm that automates my method

to find the best smoothing spline for a given data set. In Section 5.4, I apply my

spline fitting method to the canonical experimental example of evaluating the forces

on a billiard ball falling into a basin of water. Finally, in Section 5.5, I summarize

my conclusions.

5.2 Analytic example

In this section, I consider an analytic spline fitting example, and I show that there

exists an efficient frontier of spline roughness versus error tolerance. I then show how

the shape of this frontier allows one to determine the best smoothing spline fit for

a given data set. In Section 5.2.1, I show how the shape of this frontier scales with

measurement error. In sections 5.2.2 and 5.2.3, I compare the spline fit using my

method to that fit by csaps. Since the true function is known in this example, I can

compare my spline fits to the true function.

Consider noisy “experimental” data constructed using the function y(t) = e−t ·

sin(t) and normally-distributed “measurement error” (which can be generated in

Matlab using randn) with zero mean and standard deviation, ε. That is,

ỹ(ti) = e−ti · sin(ti) +N (0, ε2) (5.2.1)

with ti = i · 4t and i = 1 . . . N . These data are shown in figure 5-1a, with ε = 10−2,

4t = 10−2, and N = 103.

By solving the ‘Reinsch problem’ (i.e. evaluating spaps(t, ỹ, E)) for several error

tolerances and then evaluating the roughness, R, of each output spline, one finds that

there exists an efficient frontier of R vs. E for least-roughness smoothing splines.

Two such frontiers are shown in figure 5-1b, one corresponding to quintic splines fit
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Figure 5-1: (a) Example analytic function y(t) = e−t · sin(t) and noisy ‘data’ ỹ(t) =
y(t)+N (0, ε2) with ε = 10−2. (b) Roughness, R3, versus error tolerance, E, of quintic
splines found by solving the Reinsch problem. Note: each point represents a particular
spline fit. The roughnesses of the spline fits to the analytic data, ‘•’, asymptotically
reach the analytically-computed roughness of y(t), whereas the roughnesses of the
spline fits to the noisy data, ‘�’, follow this trend for E larger than a critical error
tolerance, Ecr, but increase several orders of magnitude for E < Ecr. (c) Selected
splines fit to the analytic data. (d) Selected splines fit to the noisy data. Spline n2 is
the fit with the smallest error tolerance that still mimics its corresponding spline fit
to the analytic data.

to the noisy ε = 10−2 data (‘�’), and one corresponding to quintic splines fit to the

analytic y(ti) data (‘•’). One striking feature of the ε = 10−2 frontier is the kink at

E = 1.3× 10−3.

I define a critical error tolerance, Ecr (= 1.3× 10−3 in this example), as the error
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tolerance at this kink, for which the R(E) frontier has its maximum positive curvature.

This error tolerance partitions two of three interesting regions of the R(E) frontiers,

namely E > 2.5 × 10−2 (in this example), Ecr < E < 2.5 × 10−2, and E < Ecr. For

E > 2.5× 10−2, roughness is zero since the smoothing spline is allowed such a large

error that it can be composed of segments which have no roughness.

As E is decreased from 2.5 × 10−2 to Ecr, the resulting smoothing splines are

required to pass more closely to the given data. In doing so, each successive spline

captures more of the roughness of the true function. This is illustrated by splines

a1 and a2 in figure 5-1c and splines n1 and n2 in figure 5-1d. Note the similarity

between the spline fits to the analytic data versus the noisy data; splines a1 and n1

look virtually identical, and splines a2 and n2 look quite similar as well. Thus, when

error tolerances are chosen to be larger than the critical error tolerance, Ecr, a spline

fit to noisy data is quite comparable to a spline fit to the analytic data.

For error tolerances less than the critical value (i.e. E < Ecr), a smoothing spline

fit to noisy data is now required to follow the data so closely that the measurement

error is captured by the smoothing spline. In other words, the spline is not permitted

enough error tolerance to ignore the measurement error. Consequently, many wiggles

are introduced into the spline fit, and the roughness increases by ten orders of

magnitude over a relatively small range of E. Splines a3 and n3 (shown in figures 5-1c

and 5-1d) were computed for an error tolerance just less than that of Ecr. Note that

spline a3 follows the analytic y(t) function more closely than spline a2, whereas spline

n3 is quite noisy, because it is attempting to follow the noisy data.

Smoothing spline n2, as well as its first three derivatives, are compared to the

analytic function in figure 5-2. The spline fit itself lays nearly on top of the analytic

function in figure 5-2a, and the first two derivatives are also quite accurate. The

second derivative does not capture the nature of the analytic function near time

t = 0, because the third derivative of the analytic function is non-zero at that time,
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Figure 5-2: Comparison of the analytic function y(t) = e−t · sin(t) and spline fit n2
(see figure 5-1), as well as their first three derivatives with respect to time.

and one requirement of the quintic spline fitting procedure is that the third derivative

is zero at the endpoints. If one desires to accurately represent the third derivative at

the endpoints, a spline of higher degree than quintic must be used.

The results shown in figures 5-1 and 5-2 indicate that the ‘best’ smoothing spline

corresponds to the one for which E = Ecr. This spline has the minimum error

tolerance, without the introduction of much roughness due to measurement error. I

define Ecr as the error tolerance for which the R(E) frontier has its maximum positive

curvature; this definition allows one to automate the process of determining Ecr, as

will be discussed in Section 5.3.
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Figure 5-3: (a) Example analytic function y(t) = e−t · sin(t) and noisy ‘data’ ỹ(t) =
y(t) + N (0, ε2) with ε = {10−1, 10−2, 10−3}. (b) Roughness of quintic splines, R3,
versus error tolerance, E.

5.2.1 Roughness and error scaling

Here I explore the effect of measurement error on the critical error tolerance and

maximum roughness. I develop scaling arguments that can be used to estimate critical

error tolerance, Ecr, and maximum roughness, Rmax, given the measurement error,

ε. These relations allow me to automate the spline fitting procedure, and since I can

exactly compute Rmax for a given experimental data set, these relations also allow me

to estimate the measurement error.

Analytical example data with measurement error, ε = {10−1, 10−2, 10−3}, and

their corresponding R(E) frontiers are shown in figures 5-3a and 5-3b, respectively.

The ε = 10−2 data are the same as figure 5-1. The ε = 10−3 data have a lower critical

error tolerance than the ε = 10−2 data, as shown in figure 5-3b. The ε = 10−3 data

more accurately represent the analytic function than the ε = 10−2 data, so the spline

fit to the ε = 10−3 data at its critical error tolerance more accurately represents the

analytic function than the spline fit to the ε = 10−2 data at its critical error tolerance.

The R(E) frontier corresponding to the ε = 10−1 data has no kink, because the noise

level is so large that the analytic function cannot be resolved from these data.
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To develop scaling arguments for the critical error tolerance and maximum

roughness, consider a hypothetical data set, ỹ(ti) = (−1)i · ε with ti = i · 4t and

i = 1 . . . N , as if the true function were y(t) = 0 and this data set represents

measurement noise in an average sense.

The critical error tolerance is the minimum error with which the spline still

represents the true function (i.e. s(t) ≈ 0). Thus, the critical error tolerance scales

as

Ecr ∼
∫ tN

t1

|ỹ(ti)− 0|2dt ∼ Nε24t (5.2.2)

In my analytical example, N = 103, ε = 10−2, and 4t = 10−2, so by (5.2.2), Ecr ∼

103 · 10−4 · 10−2 = 10−3, which agrees with the computed value of Ecr = 1.3 × 10−3

up to an O(1) constant. Note that for the ε = 10−3 data, (5.2.2) predicts Ecr ∼ 10−5,

which also agrees with the computed value of Ecr = 1.3× 10−5 shown in figure 5-3.

The maximum roughness occurs when the spline passes through every data point.

To scale the maximum roughness, we need to scale the second and third derivatives,

which we can do for my hypothetical error data set using the ‘forward divided

difference’ formulae

d2s(ti)

dt2
= si+2−2si+1+si

4t
∼ 4ε

4t2
(5.2.3)

d3s(ti)

dt3
= si+3−3si+2+3si+1−si

4t
∼ 8ε

4t3
(5.2.4)

Thus, the maximum roughness scales by

R2,max =
∫ tN

t1

∣∣∣d2s
dt2

∣∣∣2 dt ∼ N
(

4ε
4t2

)2

4t = 16N4t−3ε2 (5.2.5)

R3,max =
∫ tN

t1

∣∣∣d3s
dt3

∣∣∣2 dt ∼ N
(

8ε
4t3

)2

4t = 64N4t−5ε2 (5.2.6)

For my example ε = 10−2 data, (5.2.6) predicts R3,max ∼ 64·103·1010·10−4 = 6.4×1010,

which agrees with the computed value of R3,max = 3.1× 1010 up to an O(1) constant.
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To improve upon the roughness scaling equations (5.2.5) and (5.2.6), consider

the following Monte Carlo experiment. Create a data set of Gaussian noise, where

ỹ(ti) = N (0, ε2), again ti = i · 4t and i = 1 . . . N , and the true function is y(t) = 0,

as with my scaling arguments. Now, fit a natural interpolating spline through that

data (E = 0), and compute its roughness. By repeating this procedure several times,

with several different N, ε, and 4t, I observe that on average

R2,max ≈ 36N4t−3ε2 (cubic spline) (5.2.7)

R3,max ≈ 31N4t−5ε2 (quintic spline) (5.2.8)

Surprisingly, the front-factors in formulae (5.2.7) and (5.2.8) appear to be insensitive

to probability distribution. To show this, one may repeat the Monte Carlo experiment,

this time drawing the random numbers from a uniform distribution on the range
√

3ε · [−1, 1]. (The front-factor,
√

3ε, makes this probability distribution have a

standard deviation of ε, which is equivalent to the above normal distribution.) Using

the uniform distribution, one still finds that the roughness formulae (5.2.7) and

(5.2.8) hold true. Practically speaking, the fact that the front-factors in (5.2.7) and

(5.2.8) are insensitive to error probability distribution means that no matter how

the measurement error actually is distributed, (5.2.7) and (5.2.8) still give a good

estimate of the maximum roughness of the data. More importantly, since R2,max and

R3,max can be computed for an experimental data set, equations (5.2.7) and (5.2.8)

can be used to estimate the measurement error!

5.2.2 Comparison between csaps and the present method

Let us now compare my spline fitting method to the automated method in csaps.

Since csaps can only fit cubic splines, I use cubic smoothing splines for the comparison

herein.
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Figure 5-4: (a) Roughness, R2, versus error tolerance, E, of cubic splines fit to the
example ε = 10−2 data. The spline fit by csaps has E = 2.9×10−4 and R2 = 2.5×105.
(b) The spline fit by csaps is quite rough, whereas spline 4 smoothly approximates
the analytic function.

An efficient frontier of minimum roughness cubic splines (fit to the ε = 10−2 data)

versus error tolerance is shown in figure 5-4a. It exhibits a kink at, Ecr = 1.3× 10−3,

which is the same critical error tolerance as with the quintic smoothing splines (see

figure 5-1b). This is to be expected, since the critical error tolerance scaling equation

(5.2.2) does not depend on fit type. This kink allows one to select ‘spline 4’ as the

best fit to the data using cubic smoothing splines, which yields a smooth curve in

figure 5-4b.

Figure 5-4 illustrates that my method fits a smooth spline to the noisy data,

whereas the present implementation of csaps does not. In this case, the smoothing

parameter selected by csaps corresponds to an error tolerance lower than the critical

value, which is why the csaps fit does not smooth the data adequately.

5.2.3 Predictive error

One final assessment of my spline fit I can make is to examine its predictive error,

P , which is defined as the integral of the squared deviation between the smoothing
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Figure 5-5: Predictive error, P , versus error tolerance, E, of splines fit to the example
ε = {10−1, 10−2, 10−3} data: (a) quintic splines, (b) cubic splines. The spline fit by
csaps to the ε = 10−2 data has E = 2.9× 10−4 and P = 4.8× 10−4, and spline 4 has
E = 1.3× 10−3 and P = 2.7× 10−4.

spline and the true function:

P (s) =

∫ tN

t1

|y(t)− s(t)|2dt (5.2.9)

Since I know the true function in this analytical example, I can compute P for

each spline on the R(E) frontier. Plots of P versus E for the example analytic data

are shown in figure 5-5. These plots show that, for both noise levels ε = {10−2, 10−3}

and for both cubic and quintic splines, the spline with the critical error tolerance has

nearly the minimum predictive error. The spline with the minimum P has slightly

more roughness than the spline corresponding to Ecr. Thus, my definition of Ecr

strikes a balance between minimizing predictive error and minimizing roughness.

These figures show that the ‘best’ spline fit, which is the one that balances both

having the minimum predictive error and having the minimum roughness, is indeed

the spline fit given by solving the Reinsch problem with an error tolerance of Ecr. In

the next section, I describe a method for automating the process of determining Ecr

and finding the best fit spline for a given data set.
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5.3 Automated algorithm

In this section, I describe an algorithm for automatically selecting the best spline fit

for a given set of experimental data. The ‘best’ smoothing spline is the one generated

by solving the Reinsch problem with E = Ecr, which corresponds to the point on the

R(E) frontier that has the maximum positive curvature in log-log space. To find this

point of maximum curvature, I employ a procedure inspired by the ‘bisection method’

of root finding (Recktenwald, 2000). The general idea is to create a stencil of trial E

values, solve the Reinsch problem for each E in the stencil, compute the roughness

of each resulting spline, use these roughness values to estimate the curvature of the

R(E) frontier, select the stencil point with the maximum positive curvature, refine

the resolution of the stencil in the neighborhood of the selected point, and iterate

until the stencil becomes acceptably fine.

In order to have three choices for the point on the R(E) frontier that has maximum

positive curvature, I employ a five-point stencil. The endpoints of this stencil must

bound Ecr, and the central point should be at a good initial guess for Ecr. I can make

such a guess by combining equation (5.2.2) with (5.2.7) or (5.2.8) to yield

Ecr,guess = R2,max

364t−4 (cubic spline) (5.3.1)

Ecr,guess = R3,max

314t−6 (quintic spline) (5.3.2)

where R2,max or R3,max is found by computing the roughness of the natural

interpolating spline fit through the data.

In order to determine the endpoints of the initial E stencil, we must bound

error tolerance. The lower bound for E is, of course, zero. However, it is more

practical to implement a finite value, say 10−14, which is two orders of magnitude

larger than the typical machine zero and yields stable behavior. An upper bound for

the error tolerance, Eub, in the cubic/quintic case is the error tolerance that allows
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spaps to fit the data using linear/quadratic piecewise polynomials, which have zero

second/third derivative and hence zero roughness. Since it is possible to fit data with

less error using piecewise linear/quadratic polynomials rather than using a single

linear/quadratic polynomial fit to the entire data set, the single polynomial can be

used to compute an upper bound for the error tolerance. Thus, Eub is found by

performing a linear/quadratic least squares fit to the entire data set and computing

the error of that curve.

Using the upper and lower bounds as the endpoints of the initial E stencil, a

five-point stencil is generated with

E1
1 = 10−14

E1
2 =

√
10−14 · Ecr,guess

E1
3 = Ecr,guess

E1
4 =

√
Ecr,guess · Eub

E1
5 = Eub

where the superscript indicates iteration number and the subscript indicates stencil

point number. The value of E1
2 is set such that log10 E1

2 = 1
2
(log10 E1

1 + log10 E1
3)

(i.e. log10 E1
2 bisects its neighbors). Since we are searching for a particular E value

between a finite Eub and zero, and since the roughness values of these splines span

several orders of magnitude, it is appropriate to work in log-log space.

The roughness of each point in the stencil is computed as follows: for each E1
j (j =

1, . . . , 5), find the corresponding smoothing spline using spaps(t, ỹ, E1
j ), compute its

derivatives, and compute the roughness, R1
j . The curvatures (in log-log space) at
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points j = 2, 3, and 4 are estimated using divided differences

[
d(log10 R)

d(log10 E)

]
E=E1

j

=

log10(R1
j+1)−log10(R1

j )

log10(E1
j+1)−log10(E1

j )
− log10(R1

j )−log10(R1
j−1)

log10(E1
j )−log10(E1

j−1)

1
2
(log10(E

1
j+1)− log10(E

1
j−1))

(5.3.3)

The stencil is then refined in the neighborhood of the point that has the maximum

positive curvature. If the maximum curvature lay at point p in the kth iteration, then

the stencil for the (k + 1)th iteration would be:

Ek+1
1 = Ek

p−1

Ek+1
2 =

√
Ek

p−1 · Ek
p

Ek+1
3 = Ek

p

Ek+1
4 =

√
Ek

p · Ek
p+1

Ek+1
5 = Ek

p+1

such that point Ek
p becomes the center of the new stencil, and points Ek+1

2 and Ek+1
4

bisect points from the previous stencil in log space.

The double-bisection procedure iterates until the resolution of stencil is deemed

precise enough. In the present implementation, when the criterion

∣∣∣∣ log10 Ek
3 − log10 Ek

4

log10 Ek
4

∣∣∣∣ < 1%

is satisfied, Ek
4 is selected as the error tolerance corresponding to the ‘best’ fit

smoothing spline. For N ∼ O(103) and ε ∼ O(10−2), this typically requires less than

ten double-bisection iterations, which corresponds to solving the spaps problem for

less than 25 smoothing splines in total. Evaluating spaps is computationally-intensive

and accounts for most of the computing time of the algorithm. In the double-bisection

algorithm, three of the points from the previous stencil carry over, so only two new
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smoothing splines need to be determined during each iteration. Using the present

double bisection procedure automates curve fitting process. Of course, if a researcher

were to fit a smoothing spline manually, it would be prudent to compute the entire

R(E) frontier and to manually choose the spline at the critical error tolerance.

5.4 Experimental example

To demonstrate the utility of the present spline fitting method, I use a physical

example derived from the high speed video analysis of a sphere falling through water.

In this laboratory experiment, a standard billiard ball is dropped into a quiescent

pool of water, as shown in figure 5-6. The velocity and accleration of the ball must be

determined from the derivatives of the position data. Further details of the physics

involved with this water entry problem can be found in references (Truscott and

Techet, 2009; Truscott et al, 2010).

The goal of the experiment is to find the unsteady force coefficient (i.e. the net

hydrodynamic force, normalized by the instantaneous dynamic pressure force (Kundu

and Cohen, 2004))

CF (t) =
F (t)

1
2
ρ[V (t)]2A

(5.4.1)

where F (t) = ma(t) + mg is the net force on the billiard ball, m = 0.17 kg is the ball

mass, a(t) = d2ỹ(t)
dt2

is the instantaneous acceleration of the ball, g = 9.8 m/s2 is the

acceleration due to gravity, ρ = 1000 kg/m3 is the density of water, V (t) = dỹ(t)
dt

is

the instantaneous velocity of the ball, A = π
(

d
2

)2
= 0.0026 m2 is the cross-sectional

area of the ball, and d = 0.057 m = 2.25 inches is the ball diameter. In order to

compute the force coefficient accurately, we must accurately evaluate the first and

second derivatives of the measured ỹ(t) position data.

In the present experiment, a high-speed digital camera acquired N = 230 still

images at 1000 frame/s (4t = 0.001 s) as the ball plunged into the basin. The

152



t = -4 ms 16 ms 36 ms 56 ms 76 ms 96 ms 116 ms 136 ms 156 ms

y

Figure 5-6: A billiard ball falls into a quiescent pool of water. Position, y, is measured
in each timestep, t, by inspection of the images.

position of the center of the billiard ball, ỹ(t), is measured in meters above the

quiescent free surface, and time, t, is measured in seconds after impact. (Note that

the timing of the camera is accurate to within nanoseconds, so I assume the time

of each measurement to be exact.) The image cross-correlation procedure used to

acquire the ỹ(t) position data is explained in detail in (Truscott et al, 2010). Suffice

it to say that the procedure yields position with sub-pixel accuracy, and since the

optical zoom was 0.762 mm/px, I expect the measurement error to be on the order

of ε ∼ O(10−1) mm.

The experimental ỹ(t) position data are shown in figure 5-7a. (Note that the

abscissa represents time, so this is the trajectory of the ball in time. The ball falls

nearly straight down in space.) The data are very well resolved in time and evolve

smoothly; every fifth data point is shown.

5.4.1 Application of the present spline fitting method

The present spline fitting method is now used to determine the velocity and

acceleration from the position data. The minimum roughness versus error tolerance

frontier is shown in figure 5-7b for quintic splines. Quintic splines must be used in
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Figure 5-7: (a) Position of the billiard ball as a function of time, ỹ(t). Every fifth data
point is shown. (b) Roughness of quintic smoothing splines, R3, versus error tolerance,
E. The kink in this R(E) frontier is at critical error tolerance, Ecr = 2.5× 10−9.

order to obtain a smooth second derivative (i.e. acceleration). This chart shows a

kink at critical error tolerance Ecr = 2.5×10−9. The roughness increases six orders of

magnitude as E is decreased below Ecr. The maximum roughness, which corresponds

to the interpolating spline (E = 0), is R3,max = 1.7 × 1010. It is expected that the

smoothing spline corresponding to the critical error tolerance contains very little noise

due to measurement error and best approximates the true y(t) curve.

The maximum roughness equation (5.2.8) and critical error tolerance equation

(5.2.2) can be used to derive estimates of the error in our experimental measurement

of ball position:

ε ≈
√

R3,max

31N4t−5
= 0.048 mm

ε ≈
√

Ecr

N4t
= 0.11 mm

These estimates agree up to the O(1) scaling factor in (5.2.2), and they are equivalent

to about 0.1% of the ball diameter. Also note that 0.11 mm = 0.14 px, so this estimate

agrees with the assertion that our experimental procedure has sub-pixel accuracy.
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Figure 5-8: The selected smoothing spline fit, s(t), and its derivatives s′(t), s′′(t), and
s′′′(t). Note that the ball experiences more than 4g = 39 m/s2 acceleration at impact:
An aggressive roller coaster may subject its passengers to 4g at the bottom of the
first drop (Bibel, 2008).

The selected spline fit and its derivatives are shown in figure 5-8. Note that the y

coordinate is defined positive upwards: The ball falls downwards, so its velocity is less

than zero, and it accelerates upwards (i.e. its downward speed decreases over time),

so its acceleration is greater than zero. The smoothing spline, as well as its three

derivatives, all evolve smoothly in time, which is expected in a physical system which

evolves smoothly. The only physically unrealistic feature of these curves is the slope

of the acceleration at time t = 0 (and therefore, also the value of the jerk, s′′′(t = 0)).

This implies physically that the net force is unchanging at the moment of impact,
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Figure 5-9: Force coefficient versus time for the billiard ball water entry experiment:
(A) local maximum force coefficient; (B) pinch-off; and (C) local minimum force
coefficient.

which is obviously not true. This result occurred because the quintic spline fitting

procedure requires that s′′′(t) = 0 at the endpoints. Therefore, these portions of the

s′′(t) and s′′′(t) curves are simply ignored. The velocity and acceleration can now be

used to compute the net hydrodynamic force on the billiard ball.

Figure 5-9 shows the force coefficient (5.4.1) during the water entry event2. For

reference, the force coefficient for a ball of the size and speed in this experiment,

when immersed in a free stream of steadily-flowing water, is about 0.2 - 0.5 (Kundu

and Cohen, 2004). The data in figure 5-9 show that the force coefficient increases

from initial water impact until time t = 83 ms. Between 83 ms and 113 ms, the

force coefficient drops dramatically during the cavity pinch-off process; cavity pinch-

off occurs at t = 98 ms (just after the sixth image shown in figure 5-6). A local

minimum of force coefficient occurs at t = 113 ms, as the lower cavity sheds from

the sphere and begins to disintegrate into bubbles. Further discussion of the fluid

dynamics can be found in Chapter 6.

2Since the ball slows down during the course of the experiment, the expected force decreases.
Thus, examining the force (in physical units) is not as insightful as examining the non-dimensional
force coefficient.
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5.4.2 A check for the derivatives s′(t), s′′(t), and s′′′(t)

It is desirable to perform a check on the derivatives of the smoothing spline, which I

can do by comparing them to estimates made from the noisy experimental data. For

this, we need a regression technique which behaves like a non-parametric model --

one in which the fitting parameters are free to change along the length of the curve.

As a check of the first derivative, a line may be fit to a small window of data using

least squares regression. The slope of this line represents the ‘slope’ of the data at

the center of the window3. Mathematically, to find the first derivative of ỹ(t) data at

time, ti, fit a line (a1t + a2) to the data within the window [ti−w, ti+w]. The width of

the window is 2w+1 data points, where a larger w yields more smoothing of the data

but a less localized estimate. The first derivative of this linear polynomial (namely

a1) is the estimate of the first derivative at time, ti. This process would be repeated

with the window centered at each tw+1 ≤ ti ≤ tN−w to obtain the derivative estimate

for each time. Since this procedure involves performing a least squares fit to a small

window of data, I call this windowed least squares (WLS).

Higher order derivatives can also be estimated using windowed least squares. At

each discrete time, a least squares linear polynomial fit gives an estimate of the first

derivative at that time, a quadratic polynomial fit gives an estimate of the second

derivative, a cubic polynomial fit gives an estimate of the third derivative at that

time, and so on. The windowed least squares fit types and derivative estimates

are summarized in table 5.1, and the estimates of the first and second derivatives

are shown in figure 5-10. These data agree quite well with the derivatives of the

smoothing spline, as expected.

The windowed least squares method provides a good estimate of the derivatives of

the function, because the general trend of the data surrounding each point is captured

by the least squares regression technique. However, this method does not ensure that

3This is equivalent to performing a Taylor series expansion about the center of the data window.
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Table 5.1: Windowed least squares estimates of the first, second, and third derivatives
of noisy ỹ(t) data.

windowed least squares fit derivative estimate

linear: a1t + a2 y′wls(t) ≈ a1

quadratic: a1t
2 + a2t + a3 y′′wls(t) ≈ 2 · a1

cubic: a1t
3 + a2t

2 + a3t + a4 y′′′wls(t) ≈ 3 · 2 · a1
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Figure 5-10: Velocity, y′(t), and acceleration, y′′(t), computed by: finite difference,
‘�’; windowed least squares, ‘•’; third-order polynomial least squares fit to the entire
data set, ‘-·-’; seventh-order polynomial least squares fit to the entire data set, ‘--’;
and the selected smoothing spline, for which E = Ecr, ‘–’.

the derivative is a smooth function as the window is moved along the data set. It

also fails to predict the derivative near the ends of the data interval (ti < tw+1 and

ti > tN−w), since the window would then extend beyond the interval of available data.

Two less accurate methods for estimating the derivatives are also shown in figure 5-

10: least squares regression to the entire data set, and finite differences. The

derivatives of a least squares regression to all the data are inherently questionable,

because the fitting parameters depend on the entire data set. Clearly, one cannot

assume that the dynamics of our billiard ball during early times (e.g. during cavity

formation) are the same as the dynamics during later times (e.g. after cavity collapse).

Fitting a single polynomial to all of the data implicitly demands that the physics at
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all times be the same, which is clearly not true in this experiment.

It would be appropriate to fit a polynomial to all of the data (using least squares)

if the physics were the same throughout the experiment and the form of the true

function is known (e.g. a quadratic polynomial fit to position data of a ball falling in

a vacuum). However, if the form of the true function is unknown (which is usually the

case in scientific research), then this method can give misleading results. For example,

both 3rd-order and 7th-order polynomials fit well to all of the position data in the

billiard ball example problem. However, their second derivatives are quite different,

and neither agrees with the smoothing spline prediction or windowed least squares

estimate (see figure 5-10b). From the present smoothing spline approach, it is clear

that the acceleration of the sphere is not linear throughout its fall. The 7th order fit

at least gives a closer approximation of the acceleration than the 3rd order fit, which

(in spite of it implying a linear acceleration) is all too often used in these types of

experiments.

Finite difference methods amplify measurement noise, yielding poor estimates of

derivatives. For example, the central divided difference formula predicts

dỹ(ti)

dt
= ỹi+1−ỹi−1

24t
+ O(4t2)

= y(ti+1)−y(ti−1)
24t

+ ε̃i+1−ε̃i−1

24t
+ O(4t2)

= dy(ti)
dt

+ O
(

ε
4t

)
+ O (4t2) (5.4.2)

where O( ) denotes the order of magnitude of the error in the prediction. For a small

timestep, 4t � 1, the measurement error, ε, is amplified. The noise is amplified again

upon taking each successive derivative, yielding derivatives with unsatisfactorily-large

error on the order of

dỹ

dt
∼ O

(
ε

4t

)
,

d2ỹ

dt2
∼ O

(
ε

4t2

)
,

d3ỹ

dt3
∼ O

(
ε

4t3

)
, . . .
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Similarly, all finite difference methods amplify measurement noise, even when a larger

time step is used4. This error amplification is quite noticeable in the acceleration

estimates in figure 5-10b.

5.5 Conclusions

I have shown that performing data regression using smoothing splines is the best

method for predicting instantaneous derivatives of noisy experimental data. It agrees

well with the windowed least squares method, which is a good means to approximate

these derivatives. Other methods, such as finite differences or fitting polynomials to

the entire data set yield poor estimates.

Finding the derivative of noisy data amounts to fitting an analytic curve that

best approximates the true function that the data represents. The Matlab function

spaps(t, ỹ, E) fits a smoothing spline to given ỹ(t) data, with minimum roughness

and error at most equal to E. I have presented a novel and robust method for

selecting the value of the error tolerance, E, that produces the ‘best’ spline fit, one

which follows the roughness of the true function but does not introduce roughness

due to measurement error.

My method is based on two critical insights. First, by systematically exploring

the R(E) relationship implicit in the ‘Reinsch problem’, I discovered that the R(E)

frontier has a kink at a critical error tolerance, Ecr. Second, I showed both graphically

and with scaling arguments that Ecr corresponds to the spline with the minimum error

to the data possible without introducing roughness due to the noise in the data. In

my analytical example, I also showed that the spline corresponding to Ecr has nearly

4Even if n timesteps are skipped on either side of the data point, the central difference formula
predicts

d ˜y(ti)
dt

=
y(ti+n)− y(ti−n)

2n4t
+ O

(
ε

n4t

)
+ O

(
n24t2

)
which may never have satisfactorily-small error.
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the minimum possible predictive error, P , which supports my claim that choosing an

error tolerance of Ecr produces the best possible spline fit.

The critical error tolerance, Ecr, corresponds to the point on the R(E) frontier

with the maximum positive curvature (in log space). I automate finding Ecr for a given

data set by using the double-bisection procedure developed herein. For experimental

measurements with high-precision (small ε) and high-resolution (large N), my method

robustly fits the data and yields the desired derivatives.

One extension of this work is to apply my methodology to two-dimensional data

(e.g. measurements made along two spatial dimensions or measurements made along

one spatial dimension over several timesteps). My method can also be extended to

more complicated types of smoothing splines (e.g. with non-uniform knot locations,

or with non-uniform weighting on the roughness). Examining a roughness versus

‘fitting parameter’ frontier, however, will remain as the hallmark of my methodology.

With the advent of high-speed, high-resolution imaging and data acquisition

systems, researchers are able to acquire data with high temporal and spatial

resolution, at very high precision. My method can be used to very-accurately regress

these data and compute their first few derivatives.

5.6 Appendix: non-dimensional equations

Readers who prefer to consider the arguments made herein using non-dimensional

quantities may normalize the data as follows:

ŷ =
y

Y
ˆ̃y =

ỹ

Y
ε̂ =

ε

Y
t̂ =

t− t1
T

where Y is a reference length scale (such as the total distance traveled by the billiard

ball) and T = tN − t1 is the duration of the measurement times. In non-dimensional

form, the experimental data are: ˆ̃yi = ŷ(t̂i) + ε̂i (eqn. 5.1.1). The non-dimensional
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error tolerance and roughness are

Ê =
E

Y 2T
≥
∫ 1

0

|ˆ̃yi − ŝ(t̂i)|2dt̂ (eqn. 5.1.2)

R̂2 =
R2T

3

Y 2
=

∫ 1

0

∣∣∣∣d2ŝ

dt̂2

∣∣∣∣2 dt̂ (eqn. 5.1.3)

R̂3 =
R3T

5

Y 2
=

∫ 1

0

∣∣∣∣d2ŝ

dt̂3

∣∣∣∣3 dt̂ (eqn. 5.1.4)

and the non-dimensional critical error tolerance and maximum roughness are

Êcr =
Ecr

Y 2T
∼ ε̂2 (eqn. 5.2.2)

R̂2,max =
R2,maxT

3

Y 2
≈ 36N4ε̂2 (eqn. 5.2.7)

R̂3,max =
R3,maxT

5

Y 2
≈ 31N6ε̂2 (eqn. 5.2.8)

These roughness formulae indicate that the total time interval, T , does not affect the

prominence of the kink in the R(E) curve; rather, the number of data points, N , and

the non-dimensional error, ε̂, affect the prominence of the maximum roughness due

to measurement error, versus the roughness of the true function itself.

I can also show that, in non-dimensional terms, error is amplified when estimating

derivatives by finite difference schemes. The measured data have error on the order

of O(ε̂). The central difference formula predicts

dˆ̃y(t̂i)

dt̂
=

ŷ(t̂i+1)− ŷ(t̂i−1)

24t̂
+ O

(
ε̂

4t̂

)
+ O

(
4t̂2

)
Since the non-dimensional time step is small, 4t̂ = 4t

T
= 1

N
� 1, measurement noise

is amplified by the finite difference procedure, O
(

ε̂
4t̂

)
.

This non-dimensionalization shows that as the temporal resolution of the

measurements increases (i.e. as N increases) and as the measurement precision

increases (i.e. as ε̂ decreases), the smoothing spline fit becomes more accurate.
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Chapter 6

Unsteady forces on spheres during

water entry

In this chapter, I consider the hydrodynamic forces acting on a billiard ball as it falls

into a basin of water. This free-surface flow problem is of general interest to the

U.S. Navy in the deployment of mines, underwater launching of torpedos, and in the

design of surface-piercing projectiles. Industrial applications include those in which

structural interactions with the water surface are important, such as ship slamming,

loading on oil platforms in extreme waves, and ink jet printing. The case presented

herein is but one of many experiments performed by Truscott (2009). The purpose

of this chapter is to present a potential flow model that explains the unsteady forces

on a sphere during a cavity-forming free-surface impact event.

I begin this chapter by applying the impulse-force framework derived in Chapter 1

to the free-surface water entry problem. I continue by developing a potential flow

model for the flow and sub-surface air cavity created by the sphere during water

entry. This allows us to examine the unsteady hydrodynamic forces acting on the

sphere, and I compare these results to the theoretical forces on a sphere in an infinite

fluid (with no surface and no cavity).
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The impulse-force framework of this thesis states that the total force on a body

is the sum of the vortex impulse force and the pressure impulse force acting on the

body surface, F = Fv + Fp. In a series of particle image velocimetry experiments,

Truscott (2009) found that little vorticity is shed into the fluid while an air cavity

exists behind the sphere. Thus, I assume the vorticity is a constant zero, ω = 0, and I

model the flow as solely potential flow, u = ∇φ. In this case, the vortex impulse force

is zero, Fv = 0, and the total force on the sphere is given by the pressure impulse

force F = Fp, which is given by equation (1.2.16) and is reproduced here

Fp = − d

dt

[∫
Sb

ρφn̂ dS

]
(1.2.16)

I now show that for potential flow, the force given by equation (1.2.16) is equivalent

to integrating the pressure over the body surface (i.e. evaluating (1.0.2) directly).

Since the body surface Sb moves with velocity ub, the time derivative in equation

(1.2.16) is evaluated as follows

Fp = −
∫

Sb

ρ∂φ
∂t

n̂dS −
∫

Sb

ρ(n̂ · ub)∇φdS (6.0.1)

The second term in (6.0.1) can be manipulated by first making use of the no-through-

flow boundary condition for the potential function (n̂ · ub = n̂ · ∇φ on Sb), and then

by employing the divergence theorem

Fp = −ρ

∫
Sb

∂φ
∂t

n̂dS − ρ

∫
Sb

(n̂ · ∇φ)∇φ dS

=

∫
Sb

(−ρ∂φ
∂t
− 1

2
ρ(∇φ · ∇φ))n̂ dS

=

∫
Sb

(p∞ − ρ∂φ
∂t
− 1

2
ρ|∇φ|2)n̂ dS (6.0.2)

where p∞ is the (constant) stagnation pressure (and the integral of a constant over the
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body surface is zero). Note that (6.0.2) is simply the evaluation of (1.0.2), assuming

inviscid flow, wherein viscous stresses are zero (T = 0), and the pressure is given by

unsteady Bernoulli’s equation

p = p∞ − ρ∂φ
∂t
− 1

2
ρ|∇φ|2 (6.0.3)

In other words, the pressure impulse force is equivalent to integrating the pressure,

as derived from potential flow, over the body surface.

In the sphere impact problem, gravitational effects must be considered as well, in

which case the unsteady Bernoulli equation becomes

p = p∞ − ρ∂φ
∂t
− 1

2
ρ|∇φ|2 − ρgz (6.0.4)

and the total force on the sphere is

F =

∫
Sb

(p∞ − ρ∂φ
∂t
− 1

2
ρ|∇φ|2 − ρgz)n̂dS (6.0.5)

Given the potential function that represents a fluid flow, φ(x, t), one can use (6.0.4)

and (6.0.5) to estimate the total force on the sphere. The problem now is to determine

the potential function that describes the flow created by the water entry of the sphere.

It is important to reiterate here that the total instantaneous force on the sphere

can be found from the position data measured during each sphere impact experiment

by fitting a smoothing spline to the position data (using the method described in

Chapter 5) and evaluating equation (5.4.1). This smoothing spline would yield the

total force on the sphere (i.e. the answer) but does not afford any physical insight.

In order to gain a deeper understanding of how the three components of pressure in

(6.0.4) modulate the unsteady forces on the sphere, I created the potential flow model

that is the subject of the remainder of this chapter.
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6.1 Introduction

Free-surface impact of spheres has enamored the scientific community with its

symmetry, beauty, and complexity for over a century. The first images of this

phenomenon were recorded by Worthington (1908), while more recent studies

include the parameters required for cavity formation (Duez et al, 2007) and a full

characterization of the cavity dynamics (Aristoff and Bush, 2009) and (Duclaux

et al, 2007). The hydrodynamic observations and measurements obtained from these

studies can be applied to several problems in naval hydrodynamics. Early applied

studies focused on the impact of float planes on the water surface (von Karman, 1929),

torpedo water entry (May and Hoover, 1963), and general impact dynamics (Wagner,

1932), which was recently reviewed by (Korobkin and Pukhnachov, 1988). Typically,

the studies that focus on the dynamics of water entry of spheres have chosen to

keep all parameters constant while varying: impact speed (May and Hoover, 1963),

atmospheric pressure (Gilbarg and Anderson, 1948), impact angle (Asfar and Moore,

1987), or surface treatment (Duez et al, 2007). Most studies have focused on the

growth of the cavity and the pinch-off location (Birkhoff and Isaacs, 1951), (Glasheen

and McMahon, 1996), (Lee et al, 1997) and (Bergmann et al, 2009) for both spheres

and disks.

The impact of a sphere with the free surface may or may not create an air cavity,

depending on the impact speed and surface treatment, and the unsteady forces acting

on the sphere depend upon whether or not this cavity is formed (Truscott, 2009).

Experimental measurement of these forces is difficult, because it requires finding

the acceleration of the sphere. This could be done in one of two ways, each of

which are challenging: (1) Imbedding an accelerometer in the sphere (and measuring

acceleration directly) would require much effort to repair and reshape the surface

to remove any parting line or scarring that may otherwise confound experimental

results, or (2) Inferring acceleration from position is also non-trivial, as discussed
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in Chapter 5, as it requires high-precision high-resolution position data. We choose

option (2). Through the use of high-speed imaging, position measurement using an

image processing technique with sub-pixel accuracy, and the novel smoothing-spline-

fitting method presented in Chapter 5, we are now able to infer the unsteady forces

acting on the sphere. Further, by developing a 3D axisymmetric potential flow model,

we are also able to explain the origin of the forces acting on the sphere.

The billiard ball case discussed in Chapter 5 and again presented herein is one

from a larger study conducted in collaboration with Truscott (2009). Results of this

broad study demonstrate the effects of (1) surface treatment: hydrophobic treatments

enhance cavity formation, whereas hydrophilic treatments inhibit cavity formation;

and (2) mass ratio (sphere density / water density): heavy spheres experience little

deceleration, whereas light spheres undergo large decelerations. The purpose of

this chapter is to describe the physics of the hydrophobic (cavity forming) cases.

A potential flow model is derived, and this model well describes the results of

experiments within a wide range of mass ratios. The billiard ball has a moderate

mass ratio (m∗ = 1.8), and this case is representative of the results of the broad study.

The billiard ball case is presented and discussed at length, and then other cases are

presented to highlight the effect of mass ratio. This chapter also demonstrates the

application of the theoretical framework of this thesis to a hydrodynamics problem

dominated by potential flow effects.

6.2 Materials and methods

This experiment consists of dropping different types of spheres from varying heights

into a large tank of water. An extensive experimental study was performed with

spheres of varying materials, diameters, and impact speeds. The key experimental

parameters for each of the trials presented herein are listed in table 6.1. Note that the
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Optical Trigger

Release Mechanism

Sphere

Water

Camera

Lights

Figure 6-1: Experimental setup: The tank is made with a steel frame and 1-inch thick
acrylic, measures 91×152×152 cm, and holds 2200 L of water. The sphere falls freely
into the tank, and a high-speed camera images the event.

m∗ D U0 θs Re Fr We Bo

Case ρs

ρ
[m] [m/s] [deg] U0D

ν

U2
0

gD

ρU2
0 D

σ
ρgD2

σ

Acrylic (PIV) 1.2 0.02540 3.43 120 8.71e4 47.2 4.27e3 90.4
Acrylic 1.2 0.02540 3.43 120 8.71e4 47.2 4.27e3 90.4
Billiard 1.8 0.05715 5.67 120 3.24e5 57.3 2.63e4 458
Ceramic 3.9 0.02540 3.43 120 8.71e4 47.2 4.27e3 90.4
Steel 7.8 0.02540 3.43 120 8.71e4 47.2 4.27e3 90.4

Table 6.1: Table of experimental parameters: mass ratio m∗; diameter D; impact
speed U0; static wetting angle θs; Reynolds number Re; Froude number Fr; Webber
number We; and Bond number Bo; where the properties of water used are: density
ρ = 1000 kg/m3, kinematic viscosity ν = 10−6 m2/s, and surface tension σ = 0.07
N/m, and the acceleration due to gravity is g = 9.81 m/s2.

sphere diameter and impact speed (as derived from the drop height) are the same for

all cases except the billiard ball case. The acrylic, ceramic, and steel cases represent

a controlled study of the effects of mass ratio. The acrylic sphere was dropped once

while imaging using flood lighting and again while imaging a 2D PIV laser sheet (see

(Truscott, 2009) for details regarding the particle image velocimetry experimental

setup); these two trials have the same experimental parameters, and the PIV trial

demonstrates the lack of vorticity shed by the sphere during the event.
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The data required for the potential flow model are three time-series: (1) sphere

position, (2) sphere velocity, and (3) cavity shape. Smoothed position and velocity

data were determined from the raw position data using a smoothing spline that was

fit by the method presented in Chapter 5. The methods of image acquisition and

processing used to find the sphere position and cavity shape are detailed in (Truscott,

2009) and are summarized as follows.

A high speed camera (IDT XS-3 CCD) was used to record each of the falling

spheres at 1000 frames/sec (fps). The image resolution was 756 × 1260 pixels and

the field of view was 57.61 × 96.01 cm yielding a 13.12 px/cm magnification. The

position of the sphere was located in each image with sub-pixel accuracy using a

cross-correlation procedure similar to that used in particle image velocimetry. First,

we performed a cross-correlation between a template image of the sphere and the

image of interest. The cross-correlation returns a matrix of values (-1 to 1) indicating

the most likely position of the sphere in the image (to the nearest pixel). Next, the

cross-correlation data surrounding the most likely location of the sphere are fit with

Gaussian curves in both the vertical and horizontal directions, and the peaks of these

fits locate the position of the sphere. This method is highly accurate; it was shown

in Chapter 5 that the estimated error for the position data in the billiard ball case

was on the order of 0.14 px.

The cavity shape was determined for each image using a Canny edge finding

image processing technique, which detects the highly contrasted edges of the cavity,

as viewed in figure 6-4. These position and cavity shape data were shifted such that

the undisturbed free-surface is at zero height (z = 0), and time is zero when the

center of the sphere crosses the undisturbed free surface. That is, when the sphere is

centered about the undisturbed free-surface height, it is said to be at (r, z, t) = (0,0,0).

Further details of these procedures will be published in (Truscott et al, 2010).
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Figure 6-2: Illustration of the potential flow model, showing the sphere at depth H.
In the sphere frame of reference, the free-stream velocity is U , and the cavity grows
behind the sphere.

6.3 Potential flow model

The cavity model described herein requires the following experimental data as input:

depth and velocity of the sphere, H(t) and U(t) (which are given from the selected

smoothing spline); and cavity geometry, Rc(x, t), which is given from inspecting the

cavity shapes in the raw images acquired during the experiment.

The model assumes that viscous forces and surface tension forces are negligible,

and that the flow can be modeled as ideal, axisymmetric flow. Also, it is assumed

that the pressure in the cavity is atmospheric, since the dynamic pressure required to

draw air into the cavity is negligible. It is important to note that the potential flow

model is fully three-dimensional (3D), but since it is axisymmetric, we only concern

ourselves with the meridional plane.

To facilitate the algebra, two reference frames are used: the sphere frame (x, r)

with origin at the center of the sphere, and the lab frame (z, r) with origin fixed at
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the undisturbed free surface. It is assumed that the sphere did not deviate laterally

during the impact event, so the radial direction is synonymous for both coordinate

systems. Figure 6-2 shows that the axial directions are coincident êx = êz and that

the mapping between the coordinate systems is x = z + H. For clarity, the cavity

model is presented using dimensional units of the images (length measured in pixels

and time measured in frames elapsed), but the final force coefficients are properly

non-dimensionalized.

The velocity potential is modeled using 3D axisymmetric singularities located in

the cavity (i.e. out of the fluid). As such, the total velocity potential is the sum of

that from a doublet, point source, and N ring sources:

φ = φd + φp +
N∑

i=1

φsi
(6.3.1)

as illustrated in figure 6-2. The total fluid velocity in the meridional plane is

~u = u êx + v êr = ∇φ (6.3.2)

which has contributions from the doublet, point source, and N ring sources.

The potential function and fluid velocity at field point (x, r) induced by a 3D

doublet located at (x = 0, r = 0) are

φd(x, r) = Qd ·
x

(x2 + r2)3/2
(6.3.3)

ud(x, r) = Qd ·
r2 − 2x2

(x2 + r2)5/2
(6.3.4)

vd(x, r) = Qd ·
−3xr

(x2 + r2)5/2
(6.3.5)

where Qd = UR3

2
is the strength of the doublet, as prescribed by the potential flow

around a sphere in infinite fluid.
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Figure 6-3: Illustration of a 3D ring source.

The point source and N ring sources effectively form a source sheet that corrects

for the presence of the sub-surface air cavity.

The potential function and fluid velocity at field point (x, r) induced by a 3D point

source located at (x = −xp, r = 0) are

φp(x, r) = Qp ·
−1

4π((x + xp)2 + r2)1/2
(6.3.6)

up(x, r) = Qp ·
x + xp

4π((x + xp)2 + r2)3/2
(6.3.7)

vp(x, r) = Qp ·
r

4π((x + xp)2 + r2)3/2
(6.3.8)

where Qp is the volume flow rate out of the point source. Herein, xp = R − Rinset,

where R = 37.5px is the sphere radius, and we choose Rinset = 2px.

Consider the potential function and fluid velocity at field point (x, r) induced by a

3D ring source of strength Qs, radius rs, and axial position x = xs. The volume flow

rate out of the ring source is, by construction, Qs. The potential function is found

by integrating that of 3D point sources of strength Qs/(2πrs) distributed about the

circumference of the ring

φs(x, r) =

∫ 2π

0

−[Qs/(2πrs)]

4π((x− xs)2 + (r − rs cos β)2 + (rs sin β)2)1/2
· rs dβ
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After much algebra, one obtains

φs(x, r) = Qs ·
−K

2π2a
(6.3.9)

us(x, r) = Qs ·
(x− xs)E

2π2c2a
(6.3.10)

vs(x, r) = Qs ·
(r2 − r2

s − (x− xs)
2)E + c2K

4π2rc2a
(6.3.11)

where Qs is the volume flow rate out of the ring source,

a =
√

(x− xs)2 + (r − rs)2

c =
√

(x− xs)2 + (r + rs)2

m = c2−a2

a2

K = K̄(−m) =
√

m + 1 K̄
(

m
m+1

)
E = Ē(−m) =

√
m + 1 Ē

(
m

m+1

)
and K̄ and Ē are complete elliptic integrals of the first and second kinds, respectively

Abramowitz and Stegun (1972).

The layout of the ring sources is as follows. For ring sources in the sphere,

rs = (R−Rinset) sin θ (6.3.12)

xs = (R−Rinset) cos θ (6.3.13)

where θ = [91◦, 96◦, . . . , 179◦] and Rinset = 2px. For ring sources in the cavity,

rs = Rc(xs, t)−Rinset

√
1 +

(
∂Rc(xs,t)

∂x

)2

(6.3.14)

xs = [1, 2, . . . , Nc] · δx (6.3.15)

where δx = 1px, and Nc is the number of sources in the cavity.
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The Rc(x, t) data were prepared as follows. The raw cavity shape data, R̃c(x, t),

were obtained from the high-speed image sequence using a Canny edge-detection

algorithm. The raw R̃c(x, t) data for each time step were then fit with with a cubic

smoothing spline to yield spatially-smoothed cavity radius data, ˜̃Rc(x, t). Finally, an

offset Rc(x, t) = ˜̃Rc(x, t) + R− ˜̃Rc(x = 0, t) was added to the smoothed cavity radius

data as a small correction that ensures that the cavity radius intersects the sphere

equator. This procedure yields smoothed cavity shape data and ensures that the

slope ∂Rc

∂x
was smooth. However, the cavity radius data was not smoothed in time, so

the temporal derivative ∂Rc

∂t
still contains some noise. One point of ongoing work is

to apply my smoothing-spline fitting procedure to the multi-dimensional case. With

a 2D spline surface fitting method, two-dimensional data such as R̃c(x, t) could be

smoothed simultaneously in space and time using best-fit splines, yielding smooth

spatial and temporal derivatives,
(

∂Rc

∂x
, ∂Rc

∂x

)
.

The strengths of the N ring sources are found by solving the ‘no flow through the

cavity surface’ boundary condition, which is most easily computed in the sphere frame

of reference, since the cavity radius data is tabulated as a function of distance behind

the sphere, Rc(x, t). Selecting N control points (xi, ri), i = 1, . . . , N , distributed over

the sphere surface (x = R cos θ, r = R sin θ) and cavity surface (x, r = Rc(x, t)), the

appropriate boundary condition is

~u(x, r) · n̂(x, r) =


U cos(π − θ) on sphere

∂Rc

∂t
+U

∂Rc

∂xq
1+( ∂Rc

∂x )
2 on cavity

(6.3.16)

where the unit normal vector pointing out of the sphere/cavity is

n̂(x, r) =


cos θ êx + sin θ êr on sphere

−∂Rc

∂x
êx+êrq

1+( ∂Rc
∂x )

2 on cavity

(6.3.17)
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The contributions to the total velocity at the N control points due to the doublet,

point source, and ring sources can be written in matrix form as

B0 =


U cos(π − θ) on sphere

∂Rc

∂t
+U

∂Rc

∂xq
1+( ∂Rc

∂x )
2 on cavity

(6.3.18)

Bd = ~ud(x, r) · n̂(x, r) (6.3.19)

Bp = ~up(x, r) · n̂(x, r) = bp ·Qp (6.3.20)

Bs = ~us(x, r) · n̂(x, r) = As ·Qs (6.3.21)

where the through-flow velocity matrices B are all size [N, 1], the point source

influence matrix bp is size [N, 1], the point source strength Qp is a scalar, the ring

source influence matrix As is size [N, N ], and the ring source strength matrix is

Qs = [Qs1 , . . . , QsN
]T. Thus (6.3.16) is written in matrix form as

As ·Qs = B0 −Bd − bp ·Qp (6.3.22)

In theory, equation (6.3.22) is a linear system of equations that can be solved for

the source strengths, Qs. In practice, solving (6.3.22) by matrix inversion results in

a non-physical set of source strengths that do not vary smoothly over the length of

the cavity1. Physically, the cavity shape varies smoothly in x, so source strengths

should also vary smoothly in x as well. In order to solve for the source strengths, the

following method is used.

The numerical method is predicated on the fact that the total volume flow rate

into the cavity in the absence of sources must be balanced by the total volume flow

1I suspect this is due to the noise in computing ∂Rc

∂t from the experimentally-measured cavity
shape data, Rc(x, t). Although I smoothed Rc(x, t) spatially (for each timestep), I was not able
to simultaneously smooth Rc(x, t) temporally as well; therefore the ∂Rc

∂t term in B0 contained
measurement error, and I suspect this noise corrupts the direct matrix inversion method for finding
Qs. In hindsight, I suppose I could have tried smoothing the noise out of B0 directly, which may
have resolved this issue.
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rate out of the source sheet. Since each ring source dominates the flow in its vicinity

(by construction), the volume flow rate into each slice of the cavity is approximately

balanced by the volume flow rate of the source at that station. Note that at this point,

we do not know the point source strength. We proceed with an iterative procedure,

whereby Qp is estimated, Qs is determined to satisfy (6.3.22), Qp is updated, and so

on until both Qp and Qs have converged.

The volume flow rate into an infinitesimal slice of the cavity is the through-flow

velocity times the surface area of the slice. The surface area of each infinitesimal slice

of the cavity between control points is

S =


2πR2 sin θ · dθ on sphere

2πRc

√
1 +

(
∂Rc

∂x

)2 · dx on cavity

(6.3.23)

For a given guess of Qp and Qs, the net inflow velocity and volume flow rate are

Bnet = B0 −Bd − bp ·Qp −As ·Qs (6.3.24)

Qnet = Bnet ∗ S (6.3.25)

where the ∗ operator indicates element-wise vector multilication. In order to obtain

the next guess for the source strengths, these net volume inflow rates are added to

the ring source strengths

Qs
next = Qs

current + Qnet (6.3.26)

Since each ring source strength dominates the velocity in its vicinity, iteratively

updating Qs via (6.3.24), (6.3.25), and (6.3.26) converges to a set of smoothly-varying

Qs that satisfy the no throughflow condition (6.3.22), given the current guess for the

point source strength Qp.
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The point source strength is then updated as follows: Qp is set to cancel the

velocity induced by the ring sources at the stagnation point (x = −R, r = 0). This

satisfies (6.3.16) at the stagnation point, because the doublet strength was already

chosen to balance the free-stream velocity. Evaluating (6.3.10) at (x = −R, r = 0),

noting that Ē(0) = π
2
, yields the velocity in the positive x direction

us(−R, 0) êx =
N∑

i=1

Qsi
· −(xsi

+ R)

4π((xsi
+ R)2 + r2

si
)3/2

êx (6.3.27)

Thus, the next guess for the point source strength is

Qnext
p = us(−R, 0) · 4πR2

inset (6.3.28)

The iterative scheme continues for each guess of Qp by evaluating (6.3.24), (6.3.25),

and (6.3.26) until Qs converges. Then Qp is updated by (6.3.27) and (6.3.28), and

an updated set of Qs are found. This procedure continues until Qp and Qs converge,

which ensures that the no through-flow boundary condition (6.3.22) is satisfied at all

the control points and at the stagnation point.

The forces on the sphere are found by integrating the gauge pressure over the

sphere surface. The gauge pressure at the sphere surface is computed by evaluating

unsteady Bernoulli’s equation in the lab frame of reference

p− pa = −ρ∂φ
∂t
− 1

2
ρ|~u|2 − ρgz (6.3.29)

where the three terms are the unsteady, dynamic, and hydrostatic pressure.

The instantaneous force coefficient is found by integrating the gauge pressure

(6.3.29) over the lower hemisphere and normalizing by the instantaneous dynamic
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pressure force 1
2
ρ[U(t)]2πR2 in the usual way

CF =

∫ π
2

0

(p− pa) cos(π − θ) 2πR2 sin(π − θ) d(π − θ)

1
2
ρ[U(t)]2πR2

(6.3.30)

This yields force components

CF = CFunsteady
+ CFdynamic

+ CFhydrostatic
(6.3.31)

which are defined positive when the force on the sphere is directed upwards (in the

positive z direction), causing a deceleration of the sphere.

The partial derivative ∂φ
∂t

is computed in the lab frame of reference as follows.

First note that points on the lower hemisphere of the sphere at time t are located

at (r = R sin θ, z = R cos θ − H(t)), where we define θ = [91◦, 92◦, . . . , 179◦] (i.e.

δθ = 1◦). The potential function at time t is φ(R cos θ,R sin θ, t). Since the sphere

center was at H(t − δt) at time t − δt, the potential function at time t − δt was

φ(R cos θ −H(t) + H(t− δt), R sin θ, t− δt). Thus,

∂φ

∂t
=

φ(R cos θ,R sin θ, t)− φ(R cos θ −H(t) + H(t− δt), R sin θ, t− δt)

δt
(6.3.32)

The pressure in the air cavity is assumed to be atmospheric, so there should

be zero gauge pressure on the upper hemisphere of the sphere and at the sphere

equator. However, since this model requires computing finite differences for ∂Rc

∂t
and

∂φ
∂t

, the resulting pressure at the sphere equator is not necessarily atmospheric, and

the resulting unsteady force is incorrect. As a correction to the unsteady force, the

average gauge pressure within five degrees of the equator is assumed to be the pressure

in the cavity, and this pressure coefficient is added to CFunsteady
as a correction.
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The force due to surface tension is ignored in the cavity model, since it is small

in the cases considered herein

CFsurface tension
∼ 2πRσ

1
2
ρ[U(t)]2πR2

∼ σ

ρU2
0 R

� 1 (6.3.33)

In the next section, I present detailed results of this potential flow model for the

billiard ball water entry case discussed in Chapter 5. Then in the following section,

mass ratio effects are discussed.

6.4 Results and discussion

Figures 6-4 and 6-5 show the time-series of images for the billiard ball impact event

discussed in Chapter 5 (same data as figure 5-6). The images in figures 6-4 and 6-5

begin after impact and show an air cavity has already formed above the sphere. As the

sphere descends through the water, the air cavity forms as the flow separates from the

sphere near the equator. Initially, the cavity surface (and the fluid) moves outward

radially, but hydrostatic pressure continually acts on the fluid, eventually causing

the cavity to stop growing. By the time the cavity begins to close, the sphere has

descended some distance downward. During cavity closure, the inward radial velocity

of the surface continually increases until the moment of cavity pinch-off, when two

cavities are formed. Post pinch-off images are shown in figure 5-6, and these depict a

violent cavity collapse. In particular, the lower cavity disintegrates into small bubbles

as water rapidly fills in behind the sphere.

This cavity closure event is quite rapid, and it is anticipated that it causes a

dramatic drop in the net force acting on the sphere just after the moment of pinch-off.

As a thought experiment, consider the effects of hydrostatic pressure. In particular,

net the hydrostatic pressure force (acting upwards) is unabated while the cavity exists.

However, in the moments after pinch-off, water rushes in behind the sphere, and
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Figure 6-4: Filmstrip depicting water entry for the billiard ball case: (top) raw images,
(bottom) potential flow simulation. Images are synched in time.

hydrostatic pressure builds behind (i.e. above) the sphere. This rapid pressure rise

above the sphere reduces the net upwards hydrostatic pressure force quite rapidly after

pinch-off. Thus, I anticipate that the total force on the sphere should fall dramatically

in the moments after pinch-off. In particular, I expect that the actual instantaneous

force coefficient is much more singular than the spline fit in figure 5-9 might suggest.

Figure 6-6 shows the effect that choosing alternate spline fits to the sphere position

data has on the total instantaneous force coefficient (5.4.1). Three spline fits are
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Figure 6-5: Filmstrip depicting water entry for the billiard ball case: (top) raw images,
(bottom) potential flow simulation. Images are synched in time.

highlighted in figure 6-6a, and their corresponding force coefficients are shown in

figure 6-6b. The black spline is that given in Chapter 5. Comparing the orange and

black splines, it is evident that as error tolerance is reduced, the force coefficient

rises and falls more dramatically during pinch-off. Error tolerance cannot be made

arbitrarily small due to the noise in the data, and the red spline illustrates a noisy

force coefficient predicted by a spline with an error tolerance less than the critical

error tolerance (which was shown in Chapter 5 to be the best fit spline).
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Figure 6-6: (a) Roughness (5.1.4) versus error tolerance (5.1.2) efficient frontier for
quintic smoothing splines fit to position data for the billiard ball case (same data as
figure 5-7). (b) Force coefficients derived from selected splines via equation (5.4.1).

To derive an ‘upper limit’ for how singular the change in total force may be during

pinch-off, I created a composite force coefficient that is discontinuous at the time of

pinch-off, shown as the purple lines (connected by a vertical dashed line) in figure 6-

6b. This composite force coefficient was formed by fitting two splines - - one to the

position data before pinch-off and the other to the position data after pinch-off - - and

finding the force coefficients from each of these splines using equation (5.4.1). Since

each spline terminates at the pinch-off time, this composite spline is not required to be

continuous at pinch-off. The composite force coefficient (purple line) agrees well with

the single force coefficient (black line) for times away from pinch-off, as expected from

the nature of the spline fitting procedure. However, the composite force coefficient

continues to rise until the time of pinch-off and then falls singularly, whereas the

single force coefficient smoothes the forces during pinch-off (since the single spline fit

is required to be continuous through pinch-off). It is anticipated that the forces are

not truly singular, so the actual force coefficient may resemble something between

these predictions, or it may rise until pinch-off and then fall in a smooth manner in

the few moments after pinch-off.
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Figure 6-7: Instantaneous force coefficient versus time normalized by pinch-off time:
[black line] force coefficient (5.4.1), derived from one spline fit to all the position
data (same as figure 6-6b); [discontinuous purple line] composite force coefficient
(5.4.1), derived from one spline fit to the position data before pinch-off and another
spline fit to the data after pinch-off (same as figure 6-6b); [dotted blue line] total
force coefficient predicted by the potential flow model (6.3.31); [red lines] unsteady,
dynamic, and hydrostatic pressure forces predicted by the model (see eqns. 6.3.29 and
6.3.30); [orange dashed lines] theoretical unsteady, dynamic, and hydrostatic pressure
forces (eqns. 6.4.1, 6.4.2, and 6.4.3).

The force coefficient derived from the best-fit single spline (black line) and

composite spline (purple discontinuous line) shown in figure 6-6b are reproduced

in figure 6-7. Figure 6-7 also presents the results of the potential flow model. In

particular, this figure shows that the total force predicted by the model (blue dotted

line) agrees well with the composite force coefficient. This agreement indicates that

the potential flow model accurately predicts the forces on the sphere.

Figure 6-7 also shows the unsteady, dynamic, and hydrostatic pressure forces on

the sphere (solid red lines), as computed by my potential flow model. For comparison,

consider the canonical theoretical problem of flow around a sphere in an infinite fluid

(dashed orange lines). Upon integrating the gauge pressure on the leading half of the
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sphere, one finds theoretical force coefficients (Milne-Thomson, 1968)

CF theoretical
unsteady

= 1
2
−

1
2
(ρ2

3
πR3 a(t))

1
2
ρ[U(t)]2πR2

(6.4.1)

CF theoretical
dynamic

= −5
8

(6.4.2)

CF theoretical
hydrostatic

=
ρgH(t)πR2

1
2
ρ[U(t)]2πR2

+
1
2
(ρ4

3
πR3g)

1
2
ρ[U(t)]2πR2

(6.4.3)

The first term in the unsteady force accounts for the lab-fixed reference frame (which

was used in the model), and the second term is the added mass of half a sphere (where

a positive (i.e. upwards) sphere acceleration a(t) causes a negative (i.e. downwards)

force). The dynamic pressure force coefficient is a constant, since it only depends on

geometry; for reference, the dynamic pressure force for a complete sphere is zero. The

hydrostatic force is that given by the hydrostatic pressure acting at the equator and

the buoyancy acting on a half-submerged sphere.

Let us compare the model results (solid red lines) and theoretical forces (dashed

orange lines) shown in figure 6-7. The hydrostatic pressure force computed by

the model matches almost exactly with the theoretical value (6.4.3), as expected

by Archimedes’ principle. This indicates that sufficient resolution was used in

numerically integrating the forces in (6.3.30). There also is close agreement between

the dynamic pressure force computed by the model and that predicted by the theory

(6.4.2). This indicates that the presence of the cavity does not dramatically alter the

overall dynamic pressure force on the sphere. However, the unsteady pressure force

on the sphere computed by the model is substantially different than the theoretical

prediction (6.4.1). This indicates that the dominant effect that the presence of the

cavity has is to alter the unsteady pressure force on the sphere. Since I prescribed the

doublet strength based on the sphere velocity, which is consistent with the theoretical

argument leading to (6.4.1), the unsteady pressure force due to the doublet alone

should agree with this theoretical result. I have verified that these results agree
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within 1% for all time steps, but these data are not shown in figure 6-7 since they

would simply overlay on the theoretical unsteady pressure force prediction. The effect

of the single point source is negligible, so the cause of the difference between the total

model unsteady pressure force and that predicted by the model is due to the ring

sources representing the effect of the cavity.

To better understand the nature of the forces on the sphere computed by the

potential flow model, consider again figures 6-4 and 6-5. The lower panel shows a

simulation of the potential flow model. The sphere position and cavity shape shown

were interrogated from the raw images, as discussed in Section 6.2. These figures

show the velocity field, as computed by the potential flow model, and instantaneous

streamlines are plotted in alternating colors for clarity. The cavity shading represents

the strength of the ring source at each depth. Dark red rings represent strong positive

sources (which expel fluid), and dark blue rings represent negative sources (i.e. sinks,

which absorb fluid), while green represents zero strength. The timesteps shown

correspond to the raw images shown in the upper panel of figures 6-4 and 6-5.

Figures 6-4, 6-5, and 6-7 show that the unsteady force is larger than the theoretical

value for t/tpinch-off . 0.75, when a large portion of the rings in the cavity are positive-

strength sources. This can be seen in the first seven frames of figures 6-4 and 6-5,

where most of the rings in the cavity are shaded green to red. For later times,

0.75 . t/tpinch-off ≤ 1, the cavity collapses, many rings are negative-strength sources

(i.e. sinks that draw fluid in) shaded green to blue in figure 6-5, and the unsteady

force predicted by the model is less than that predicted theoretically.

What sets the ring source strength? To answer this, let us ignore the interaction

between the rings for a moment. Then for a slice of the cavity with radius Rc(x, t)

and axial length δx, the volume flow rate out of the cavity required by (6.3.16) and

(6.3.23) reduces to Qs =
(

∂Rc

∂t
+ U ∂Rc

∂x

)
· 2πRcδx. Thus, the strength of a ring will be

positive (i.e. it will be a source) if the growth rate of the cavity ∂Rc

∂t
and wall slope ∂Rc

∂x
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are positive. In these experiments, the rings behind the sphere equator all start out as

(positive) sources, pushing fluid outwards as the cavity grows. After some time, the

cavity starts collapsing for some period of time before the wall slope reaches vertical(
i.e. ∂Rc

∂t
< 0 while ∂Rc

∂x
> 0 still

)
. Eventually, the wall slope is sufficiently small for

the ring to become a sink. As the cavity collapses further and the wall slope turns

negative, the ring becomes an even stronger sink, drawing fluid into the cavity.

It is important to note here that it is critical to formulate the potential flowfield

using 3D potential flow constructs in order to accurately predict the unsteady forces

on the sphere. The results in figure 6-7 show that the unsteady pressure force on the

sphere is modulated by the presence of the ring sources in the cavity, at some axial

distance behind the sphere. It is critical to formulate the potential flow model using

3D potential flow constructs that enable ‘crosstalk’ between each axial position along

the cavity and the sphere surface. If the cavity model were constructed strip-wise,

say using 2D point sources at each axial position along the cavity, these 2D sources

would have no effect on the potential function at other stations along the cavity or

at the sphere surface. Thus, a locally 2D potential flow model would be unable to

accurately represent the potential function on the sphere surface and would be unable

to accurately compute the unsteady pressure force on the sphere.

6.4.1 PIV results

The potential flow model assumes that viscous friction and vortex shedding are

negligible. At this point I will demonstrate that this assumption is valid and that no

significant vortical structures are created by the sphere during water entry.

To experimentally quantify the vorticity shed by the sphere during water entry, 2D

particle image velocimetry data were collected for a series of trials. Figure 6-8a shows

the PIV data for one such trial with the acrylic sphere. The experimental parameters

are listed in table 6.1. In this experiment, the fluid was imaged with a vertical light
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1.00t/tpinch = 0.17 0.33 0.50 0.67 0.83

(a) PIV velocity and vorticity field data

(b) potential flow simulation

Figure 6-8: Filmstrip of the cavity impact event: (a) PIV velocity and vorticity field
data, (b) potential flow simulation. The velocity vectors are not drawn to scale.

sheet emitted from a laser on the left side of the page; no shadow appears to the right

of the sphere, because a mirror on the right side of the tank reflected the laser sheet

back towards the sphere. This time-series of PIV velocity and vorticity fields shows

very little vorticity in the flowfield for most timesteps. The intense ‘vorticity’ at the

pinch-off depth (at the pinch-off time) actually is an artifact of reflections of the laser

sheet off the cavity surface as it collapses through the sheet, as shown in figure 6-9.

The maximum vorticity level observed in vortical patches that appear for times

before pinch-off was approximately ω̄ ≈ 150 1/s. Assuming the small vortical patches

in figure 6-8a are cross-sections of toroidal vortex rings, then the circulation of such

a vortex ring would be approximately Γ = ω̄Av, where Av is the area of the vortical
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patch. For the circulation of such a vortex ring to be significant, it would have to

induce a vertical velocity on the order of the sphere impact speed U0 = 3.43 m/s. The

centerline velocity induced by the vortex ring is Γ/Dv, where the data in figure 6-8a

show that it is safe to assume that Dv ≈ D = 0.0254 m (i.e. the sphere diameter).

Setting Γ/D ∼ U0 and noting that the cross-sectional area of the sphere is A = πD2/4,

the area of a vortical patch required to make it significant is Av/A = 4U0/πDω̄ = 1.1.

Clearly, the area of the vortical patches observed in figure 6-8a are much smaller than

1.1A, indicating that their effect is insignificant.

Sphere position and cavity shape data were acquired for this case as in the other

cases, and they were used to create a potential flow model of this case. The cavity

shape data for this trial was very noisy though, because the laser lighting required for

PIV did not well illuminate the cavity edges, causing poor performance of the Canny

edge finding algorithm. As such, the unsteady forces computed in the potential

flow simulation were quite noisy, although they still did show the general trends

observed in the billiard ball case. The simulation is shown in figure 6-8b; this figure

shows very good qualitative agreement between the measured PIV velocity fields and

the simulated potential flow model velocity fields, giving further evidence that the

potential flow model accurately represents the physics of this water entry problem.

In the mass ratio study that follows, the acrylic sphere was again dropped from

the same height, but this time imaged using the house flood lighting. Figure 6-9

shows good agreement between the total force coefficient (obtained by spline fits to

the measured position data via (5.4.1)) for the ‘house lights’ and ‘PIV’ trials. This

provides validation for the experimental methods for preparing and dropping the

spheres and the numerical methods for interrogating the sphere position and fitting

these data with a smoothing spline to derive the force coefficient. Figure 6-9 shows

that the experimental methods used to obtain the ‘experimental’, smoothing-spline-

derived force coefficient are highly accurate and repeatable.
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Figure 6-9: The smoothing-spline-derived force coefficients CF (5.4.1) show
good agreement between the ‘house lights’ and ‘PIV’ trials, demonstrating good
repeatability of the experimental methods.

6.5 Effect of mass ratio

One of the dominant physical parameters of this problem is the mass ratio

m∗ =
ρs

ρ
(6.5.1)

where ρs is the density of the sphere and ρ is the fluid density. A series of experiments

were performed by Truscott (2009) in a controlled study of the effect of mass ratio,

and the parameters of these experiments are given in table 6.1.

Figure 6-10 shows a time-series of images for each trial. These images show that

the time to cavity pinch-off is nearly the same, regardless of mass ratio. However,

the depth of the sphere at the time of cavity pinch-off, and the depth of the pinch-off

itself both increase with increasing mass ratio.

Figure 6-11 shows the position data acquired from these high-speed images, as

well as the velocity, acceleration, and force coefficient derived from spline fits to these

position data. For reference, the billiard ball case is also shown (m∗ = 1.8). The

position data in figure 6-11a show a distinct mass ratio effect. For smaller mass ratios
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Acrylic: m* = 1.2, θ = 120º

Ceramic: m* = 3.9, θ = 120º

Steel: m* = 7.8, θ = 120º

Figure 6-10: Three spheres of the same diameter (D = 0.0254 m) dropped from the
same height (h = 60 cm), coated with the same surface treatment (static advancing
contact angle θs = 120◦), but all have different mass ratios m∗ = ρs/ρ as indicated.
The impact speed is U0 =

√
2gh = 3.43 m/s, and the time step between images is

0.0071 sec for all cases.

(e.g. the acrylic case, m∗ = 1.2), the depth versus time trajectory has a visible amount

of curvature, indicating non-zero accelerations and time-varrying instantaneous force

on the sphere. For larger mass ratios (e.g. the steel case, m∗ = 7.8), the depth

versus time trajectory has little curvature, indicating small accelerations and a nearly-

constant instantaneous force on the sphere. It should be noted that in the limit of

infinite mass ratio, the total hydrodynamic force on the sphere would be negligible,

and the sphere would fall under the action of gravity alone a(t) = −g; in this

limit, the position data would have negative (downwards) curvature in time, and

the acceleration would be constant. The acceleration and force coefficient plots in
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Figure 6-11: ‘Experimental’ data showing the effects of mass ratio m∗ = ρs/ρ:
(a) measured position versus time data and best-fit quintic smoothing splines; (b)
velocity; (c) acceleration; and (d) total force coefficient predicted by the smoothing
spline. Also shown in (d), composite force coefficient curves predicted by quintic
smoothing splines fit to the data split before and after pinch-off (dashed lines).

figures 6-11c and 6-11d, also show these trends. In figure 6-11d, force coefficients

derived from a single spline fit to all of the position data are shown as solid lines,

and composite force coefficients derived from splines fit to the data before and after

pinch-off are shown as dashed lines. These experimental data show that for low mass

ratio spheres, the instantaneous force coefficient is quite unsteady in time.

Figure 6-12 shows a time-series of images of the potential flow model sumulation

for each trial. The colormap used to plot the source strengths in the cavity is the same
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(a) acrylic: m* = 1.2

(b) ceramic: m* = 3.9

(c) steel: m* = 7.8

Figure 6-12: Potential flow model simulation for the acrylic, ceramic, and steel cases.

as the billiard ball case (figures 6-4 and 6-5). Figure 6-12 shows that the magnitude of

the source strengths for the acrylic sphere case are generally less than the steel case.

In particular, consider the strengths of the ring sources on the lower hemisphere of the

sphere at the time of cavity pinch-off: These strengths are near zero for the acrylic
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Figure 6-13: Instantaneous force coefficient versus time normalized by pinch-off time:
[black line] force coefficient (5.4.1), derived from one spline fit to all the position data;
[dashed black line] composite force coefficient (5.4.1), derived from one spline fit to
the position data before pinch-off and another spline fit to the data after pinch-off;
[dotted blue line] total force coefficient predicted by the potential flow model (6.3.31);
[red lines] unsteady, dynamic, and hydrostatic pressure forces predicted by the model
(see eqns. 6.3.29 and 6.3.30); [orange dashed lines] theoretical (eqns. 6.4.1, 6.4.2, and
6.4.3). Four cases are shown: (a) acrylic m∗ = 1.2; (b) billiard m∗ = 1.8 (same data
as figure 6-7); (c) ceramic m∗ = 3.9; (d) steel m∗ = 7.8.

sphere but are quite strong negative sources for the steel sphere. Similarly, the source

rings representing the near cavity (i.e. less than one sphere radius above its equator)

for the acrylic case are much weaker than those for the steel case at pinch-off. This

shows graphically how the unsteady pressure force changes much more dramatically

for the low-mass-ratio acrylic sphere than it does for the high-mass-ratio steel sphere.
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Figure 6-13 shows the force coefficient results predicted by the model for each case,

as compared to the experimental (smoothing-spline-derived) CF curves. The potential

flow model correctly predicts the overall force coefficient for all cases, validating its

applicability over a wide range of mass ratios. For all four cases, the hydrostatic and

dynamic pressure forces agree with the theoretical forces on the leading hemisphere

of a sphere in an infinite fluid with no cavity, and the unsteady pressure force is much

different than theory predicts; these results indicate that the dominant effect of the

cavity is to alter the unsteady pressure force on the sphere. Interestingly, the unsteady

pressure force for the ceramic (m∗ = 3.9) and steel (m∗ = 7.8) cases never dips below

the theoretical prediction. This is due to the strong positive-strength sources in the

near cavity that create the cavity as these spheres descend through the water.

6.6 Summary

I began this chapter by showing that the pressure impulse force on a body is the net

pressure force on the body, with the pressure computed using unsteady Bernoulli’s

equation (consistent with potential flow theory). The experimental and potential flow

results of this chapter show that for the water entry problem, in which there is no

viscous wake, this potential flow force well represents the total force on the body.

In this chapter, I considered the physics problem of a sphere falling into a basin

of water. I created a potential flow model to represent the sphere and cavity, and

I used this model to determine the instantaneous forces on the sphere during water

entry. The total force computed by my model agreed well with the force determined

‘experimentally’ using a smoothing spline fit to the measured position data. In my

model, I accounted separately for the unsteady
(
−ρ∂φ

∂t

)
, dynamic

(
−1

2
ρ|~u|2

)
, and

hydrostatic (−ρgz) pressure components acting on the sphere, so I could compare the

values computed by the model with the theoretical forces on the leading hemisphere of
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a sphere in infinite flow. I found good agreement between both the model hydrostatic

and dynamic pressure forces and their theoretical counterparts. This suggests that

the total force on the sphere is modulated by the unsteady pressure force, which I

found to depend strongly on the growth and collapse of the sub-surface air cavity.

This chapter demonstrates the versatility of the theoretical framework of this

thesis. In the absence of vorticity, the impulse-force framework distills to potential

flow theory. With the inclusion of a viscous wake, the vortex impulse force acts as a

correction to the force predicted by potential flow theory.
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Chapter 7

Off-design performance analysis of

marine propellers and turbines

using lifting line theory

This chapter presents a method for off-design performance analysis of marine

propellers and hydrokinetic turbines (the undersea analog to wind turbines). The

method is rooted in lifting line theory, in which the lifting surface (i.e. wing, propeller

blade, etc.) and its wake are modeled as a rectangular vortex ring. The force on the

wing is given by the Kutta-Joukowsky theorem

F/span = ρV Γ ez + ρwΓ ex (7.0.1)

where the two components are the lift and drag per unit span (Anderson, 2007). I

now show how this result is derived using the theoretical framework of this thesis.

Consider a rectangular vortex ring of circulation Γ and breadth b, extending into

the wake a length `, as illustrated in figure 7-1. The free-stream speed is V = V ex,

and the vortex ring induces a downwash at the wing of w = −w ez, so the total inflow

speed at the wing is V ∗ =
√

V 2 + w2.
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Figure 7-1: Illustration of a steady wake.

The impulse of the vortex ring (which represents the wing and its wake) is

I = 1
2
ρ

∫
x× ω dx = ρΓb`n (7.0.2)

where the unit normal vector is n = − w
V ∗

ex− V
V ∗

ez. Although the motion is steady-

state (so Fp = 0) and the circulation is constant, the impulse of the vortex ring

continually grows, since d`
dt

= V ∗. Therefore, the force on the wing is

F = Fv + Fp = −dI

dt
= ρV Γb ez + ρwΓb ex (7.0.3)

Taking b = 1 recovers the force per unit span (7.0.1).

In the case of a lifting surface with a non-uniform circulation distribution Γ(y),

we can consider the wake to be composed of infinitesimal-width rings (i.e. b = dy)

and integrate along the span to find the total force

F =

∫
ρV (y)Γ(y)dy ez +

∫
ρw(y)Γ(y) dy ex (7.0.4)

as illustrated in figure 7-2.
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Figure 7-2: Illustration of a non-uniform steady wake.
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Figure 7-3: Illustration of an unsteady wake.

Figure 7-3 illustrates the unsteady case. Here, we assume that the wing is a

rectangle of span b and chord c with circulation Γ(t), and the wake is composed of

rectangular rings of span b and length d`. Since the circulation of each wake vortex

remains constant by Kelvin’s theorem (Saffman, 1995), the rate of change of the

impulse of the vortex system is

dI

dt
=
(
ρΓd`

dt
b + ρdΓ

dt
cb
)
n (7.0.5)
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where the first term is the rate of generation of impulse in the wake (as in the steady

case), and the second term is the rate of increase of impulse of the vortex ring that

represents the wing. As before, d`
dt

= V ∗, so the impulsive vortex force on the wing is

Fv = −dI

dt
= ρV

(
Γ + ∂Γ

∂t
c

V ∗

)
b ez + ρw

(
Γ + ∂Γ

∂t
c

V ∗

)
b ex (7.0.6)

which is in agreement with unsteady lifting line theory (Theodorsen, 1935). The

impulsive pressure force on the wing is given by added mass theory

Fp = − d

dt

[∫
Sb

ρφn̂ dS

]
= −ρπ

4
bc2(a · n)n (7.0.7)

where a is the acceleration of the wing (Newman, 1977). The total unsteady force

on the wing is F = Fv + Fp, as discussed in Chapter 1. As in the steady case, a

non-uniform circulation distribution can be treated by setting b = dy and integrating

the unsteady force over the wing span.

Propeller lifting line theory is a general extension of the above wing theory. In

the propeller case, the blade travels in a helical path, and the the wake is modeled as

a helical vortex sheet. The propeller wake downwash has both axial and tangential

velocity components, and the force on the propeller blade can be decomposed into

axial and tangential components that produce thrust and torque.

The following text draws from:

B.P. Epps, M.J. Stanway, and R.W. Kimball, “OpenProp: An Open-source Design

Tool for Propellers and Turbines,” SNAME Propellers and Shafting, Williamsburg,

VA. Sep. 16, 2009.

B.P. Epps, J. Chalfant, K. Flood, A.H. Techet, R.W. Kimball, & C. Chryssostomidis,

“OpenProp: An Open-Sourced Parametric Design and Analysis Tool for Propellers,”

Grand Challenges in Modeling and Simulation, Istanbul, Turkey. July 14, 2009.
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7.1 Introduction

I have implemented my method for off-design performance analysis of propellers and

turbines in a computational tool called OpenProp. OpenProp is an open-source

code suite that can be used for the design, analysis, and fabrication of optimized

propellers and horizontal-axis turbines (Kimball and Epps, 2007). The numerical

model is based on propeller lifting line theory, which is used in parametric design codes

employed by the U.S. Navy as well as commercial designers. OpenProp is written

in Matlab M-code, which is widely used in academia and industry. OpenProp

is designed to be a user-friendly tool that can be used by both propeller design

professionals as well as novices to propeller design.

A team of researchers at MIT and Maine Maritime Academy have contributed

to the current OpenProp code. OpenProp began in 2001 with the propeller code

PVL developed by Kerwin (2007) as part of his MIT propeller design course notes.

The first Matlab version of this code, MPVL, incorporated graphical user interfaces

for parametric design and preliminary bladerow design (Chung, 2007). Geometry

routines were later added which interfaced with the CAD program Rhino to generate

a 3D printable propeller (D’Epagnier et al, 2007). These early codes were capable of

designing propellers using a simple Lerb’s criteria optimizer routine (Lerbs, 1952).

Epps et al (2009b) implemented Coney’s generalized propeller optimizer (Coney,

1989) and also created a turbine optimization routine. Epps et al (2009a) created an

off-design analysis routine to predict the performance curve for a given propeller or

turbine design. On- and off-design cavitation analysis capabilities were implemented

by Flood (2009). Stubblefield (2008) extended the numerical model to handle the

design of ducted propellers. My unique contributions to OpenProp are:

1. Created an off-design performance analyzer, which can be used with either

propellers or horizontal-axis turbines,

2. Created a horizontal-axis turbine design optimizer (presented in Chapter 9),
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Figure 7-4: Propeller lifting line model: The key propeller blade is modeled as a
lifting line, and the wake from each blade is modeled as a helical vortex sheet that
extends indefinitely downstream. The axial direction, ea, points upstream.

3. Implemented the generalized propeller optimizer created by Coney (1989) using

a novel wake-alignment procedure,

4. Created tools to find the influence functions for a user-defined wake geometry,

5. Created blade thickness- and chord-distribution design tools,

6. Developed tools for geometry export to SolidWorks,

7. Modularized the code using data structures and stand-alone function calls,

What follows is the theoretical foundation and numerical implementation of the

OpenProp propeller/turbine design code suite. It draws from the theory presented

in (Coney, 1989), (Kerwin, 2007), (Kerwin and Hadler, 2010), (Abbott and von

Doenhoff, 1959), and (Carlton, 1994). In this chapter, all equations are given in

dimensional terms, and their non-dimensionalized forms are given in table 7.1.

7.2 Propeller lifting-line formulation

OpenProp is based on moderately-loaded lifting line theory, in which a propeller

blade is represented by a lifting line, with trailing vorticity aligned to the local

flow velocity (i.e. the vector sum of free-stream plus induced velocity). The induced
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Figure 7-5: Propeller velocity/force diagram, as viewed from the tip towards the root
of the blade. All velocities are relative to a stationary blade section at radius r.

velocities are computed using a vortex lattice, with helical trailing vortex filaments

shed at discrete stations along the blade, as illustrated in figure 7-4. The blade itself

is modeled as discrete sections, having 2D section properties at each radius. Loads

are computed by integrating the 2D section loads over the span of the blade.

The velocity/force diagram shown in figure 7-5 illustrates the velocities and forces

(per unit span) on a 2D blade section in the axial ea and tangential et directions. The

propeller shaft rotates with angular velocity ω ea, such that the apparent tangential

(swirl) inflow at radius r is −ωret. Also shown in figure 7-5 are the axial and

tangential inflow velocities, Va = −Vaea and Vt = −Vtet; induced axial and

tangential velocities, u∗a = −u∗aea and u∗t = −u∗tet (note that u∗t < 0 during normal

propeller operation, so u∗t actually points in the et direction, as drawn); and the total

resultant inflow velocity, V∗, which has magnitude

V ∗ =
√

(Va + u∗a)
2 + (ωr + Vt + u∗t )

2 (7.2.1)

and is oriented at pitch angle,

βi = arctan

(
Va + u∗a

ωr + Vt + u∗t

)
(7.2.2)
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to the et axis. Also shown on figure 7-5 are the angle of attack, α; blade pitch angle

θ = α + βi; circulation, Γ er; (inviscid) Kutta-Joukowski lift force, Fi = ρV∗× (Γ er);

and viscous drag force, Fv, aligned with V∗. Assuming the Z blades are identical,

the total thrust and torque on the propeller are

T = Z

∫ R

rh

[Fi cos βi − Fv sin βi]dr (êa) (7.2.3)

Q = Z

∫ R

rh

[Fi sin βi + Fv cos βi]rdr (−êa) (7.2.4)

where Fi = ρV ∗Γ and Fv = 1
2
ρ(V ∗)2CDc are the magnitudes of the inviscid and viscous

force per unit radius, ρ is the fluid density, CD is the section drag coefficient, c is the

section chord, and rh and R are the radius of the hub and blade tip, respectively.

The fluid dynamic power of the propeller acting on the fluid is the product of

torque and angular velocity

P = Qω (7.2.5)

where P > 0 indicates that power is being put into the fluid by the propeller (i.e. the

torque resists the motion). The useful power produced by the propeller is TVs where

Vs is the ship speed (i.e. free-stream speed), so the efficiency of the propeller is

η =
TVs

Qω
(7.2.6)

Following Kerwin (2007), OpenProp employs a standard propeller vortex lattice

model to compute the axial and tangential induced velocities, {u∗a, u∗t}. In the vortex

lattice formulation, a Z-bladed propeller is modeled as a single representative radial

lifting line, partitioned into M panels. A horseshoe vortex filament with circulation

Γ(i) surrounds the ith panel, consisting of helical trailing vortex filaments shed from

the panel endpoints (rv(i) and rv(i+1)) and the segment of the lifting line that spans

the panel. The induced velocities are computed at control points on the lifting line
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at radial locations rc(m), m = 1 . . . M , by summing the velocity induced by each

horseshoe vortex

u∗a(m) =
M∑
i=1

Γ(i) ū∗a(m,i) (7.2.7)

u∗t (m) =
M∑
i=1

Γ(i) ū∗t (m,i) (7.2.8)

where ū∗a(m,i) and ū∗t (m,i) are the axial and tangential velocity induced at rc(m) by a

unit-strength horseshoe vortex surrounding panel i. Since the lifting line itself does

not contribute to the induced velocity,

ū∗a(m,i) = ūa(m,i+1)− ūa(m,i) (7.2.9)

ū∗t (m,i) = ūt(m,i+1)− ūt(m,i) (7.2.10)

where ūa(m,i) and ūt(m,i) are the axial and tangential velocities induced at rc(m) by a

unit-strength constant-pitch constant-radius helical vortex filament shed from rv(i),

with the circulation vector directed downstream (i.e. away from the lifting line) by

right-hand rule. These are computed using the approximations by Wrench (1957):

for rc(m) < rv(i):

ūa(m,i) =
Z

4πrc

(y − 2Zyy0F1)

ūt(m,i) =
Z2

2πrc

(y0F1) (7.2.11)

for rc(m) > rv(i):

ūa(m,i) = − Z2

2πrc

(yy0F2)

ūt(m,i) =
Z

4πrc

(1 + 2Zy0F2) (7.2.12)
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where

F1 ≈
−1

2Zy0

(
1 + y2

0

1 + y2

)1
4
{

U

1− U
+

1

24Z

[
9y2

0 + 2

(1 + y2
0)

1.5
+

3y2 − 2

(1 + y2)1.5

]
ln

∣∣∣∣1 +
U

1− U

∣∣∣∣}

F2 ≈
1

2Zy0

(
1 + y2

0

1 + y2

)1
4
{

1

U − 1
− 1

24Z

[
9y2

0 + 2

(1 + y2
0)

1.5
+

3y2 − 2

(1 + y2)1.5

]
ln

∣∣∣∣1 +
1

U − 1

∣∣∣∣}

U =

y0

(√
1 + y2 − 1

)
y
(√

1 + y2
0 − 1

) exp

(√
1 + y2 −

√
1 + y2

0

)Z

y =
rc

rv tan βw

y0 =
1

tan βw

and βw is the pitch angle of the helical vortices in the wake. Consistent with

moderately-loaded lifting line theory, I set βw = βi in order to ‘align’ the wake with

the local flow at the blade (Kerwin, 2007).

Following Kerwin (2007), a propeller hub is modeled as an image vortex lattice,

with the image trailing vortex filaments having equal and opposite strength as the

real vortex filaments, radii rim(i) =
r2
h

rv(i)
, and pitch angle tan[βim

i ] =
rv(1)·tan[βv

i (1)]

rim
.

The image vorticity is shed through the trailing surface of the hub and rolls up

into a hub vortex of radius, ro, and the drag due to the hub vortex is Dh =

ρZ2

16π

[
ln
(

rh

ro

)
+ 3
]
[Γ(1)]2 (−ea). In OpenProp the default hub radius is rh

ro
= 0.5.

7.3 Propeller design optimization

The performance of a propeller can be computed given the circulation distribution,

Γ, and flow parameters {V ∗, βi, u∗a, u∗t , ū∗a, ū∗t}. These all must be self-consistent

for the state to be physically realistic. That is, equations {(7.2.1), (7.2.2), (7.2.7),

(7.2.8), (7.2.9), (7.2.10)} must all hold, given Γ. Thus, propeller design optimization

reduces to finding the optimum circulation distribution.
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Following Coney (1989), the propeller optimization problem is to find the set of

M circulations of the vortex lattice panels that produce the least torque

Q = ρZ
M∑

m=1

{
[Va + u∗a]Γ + 1

2
V ∗CDc[ωrc + Vt + u∗t ]

}
rc4rv (7.3.1)

for a specified thrust, Ts,

T = ρZ
M∑

m=1

{
[ωrc + Vt + u∗t ]Γ− 1

2
V ∗CDc[Va + u∗a]

}
4rv

− Hflag · ρZ2

16π

[
ln
(

rh

ro

)
+ 3
]
[Γ(1)]2 = Ts (7.3.2)

where Hflag is set to 1 to model a hub or 0 for no hub. Here, {ρ, Z, ω} are constants

and {Γ, u∗a, u∗t , V ∗, c, Va, Vt, CD, rc, 4rv} are evaluated at rc(m) in the summation.

Coney (1989) employs the method of the Lagrange multiplier from variational

calculus. He forms an auxiliary function, H = Q + λ1(T − Ts), where λ1 is the

unknown Lagrange multiplier that introduces the thrust constraint (7.3.2). Clearly,

if T = Ts, then a minimum H coincides with a minimum Q. To find this minimum,

the derivatives with respect to the unknowns are set to zero

∂H

∂Γ(i)
= 0 for i = 1 . . . M (7.3.3)

∂H

∂λ1

= 0 (7.3.4)

which is a system of M + 1 equations for as many unknowns {Γ(i=1...M), λ1}. This

non-linear system of equations is solved iteratively until convergence of the optimized

circulation distribution, Γ, and flow parameters {V ∗, βi, u∗a, u∗t , ū∗a, ū∗t}.

The section chord length, c, can also be optimized . Equation (7.3.1) shows that

minimizing c minimizes the parasitic torque due to viscous drag. However, since c

is related to the loading by CL = Γ
1
2
(V ∗)c

, where CL is the section lift coefficient, the
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chord cannot be made arbitrarily small. If a maximum allowable lift coefficient is

chosen, (typically, 0.1 < CLmax < 0.5), then the “optimum” chord is

c =
|Γ|

1
2
(V ∗)CLmax

(7.3.5)

Turning our attention back to equations (7.3.3) and (7.3.4), we can now evaluate

the required partial derivatives of Γ, λ1, u
∗
a, u

∗
t , V

∗, and c with respect to Γ(i) and λ1:

∂Γ(m)

∂Γ(i)
=


0 (m6=i)

1 (m=i)

,
∂λ1

∂λ1

= 1 (7.3.6)

∂u∗a(m)

∂Γ(i)
= ū∗a(m,i) ,

∂u∗t (m)

∂Γ(i)
= ū∗t (m,i) (7.3.7)

∂V ∗
(m)

∂Γ(i)
= 1

2
(V ∗)−1

 2(Va + u∗a)
∂u∗a(m)
∂Γ(i)

+

2(ωrc + Vt + u∗t )
∂u∗t (m)

∂Γ(i)


= sin(βi(m)) ū∗a(m,i) + cos(βi(m)) ū∗t (m,i) (7.3.8)

∂c(m)

∂Γ(i)
=

2

V ∗(m)CLmax

∂Γ(m)

∂Γ(i)
· Γ(m)

|Γ(m)|
− c(m)

V ∗(m)

∂V ∗
(m)

∂Γ(i)
(7.3.9)

All other partial derivatives are zero or are ignored.

The system of equations {(7.3.3), (7.3.4)} is non-linear, so the following iterative

approach is used to solve them. During each solution iteration, flow parameters{
u∗a, u

∗
t , ū

∗
a, ū

∗
t , V

∗, ∂V ∗

∂Γ
, c, ∂c

∂Γ
, λ1

}
are frozen in order to linearize {(7.3.3), (7.3.4)}. The

linear system of equations, with the linearized unknowns marked as {Γ̆, λ̆1}, is
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∂H

∂Γ(i)
= ρZ

M∑
m=1

Γ̆(m) · [ū∗a(m,i)rc(m)4rv(m) + ū∗a(i,m)rc(i)4rv(i)]

+ ρZVa(i)rc(i)4rv(i)

+ ρZ

M∑
m=1

1
2
CD

[
∂V ∗(m)
∂Γ(i)

c(m) + V ∗
(m)

∂c(m)
∂Γ(i)

]
[ωrc(m) + Vt(m) + u∗t (m)]rc(m)4rv(m)

+ ρZ

M∑
m=1

1
2
CDV ∗

(m)c(m)[ū∗t (m,i)]rc(m)4rv(m)

+ ρZλ1

M∑
m=1

Γ̆(m) · [ū∗t (m,i)4rv(m) + ū∗t (i,m)4rv(i)]

+ ρZλ̆1[ωrc(i) + Vt(i)]4rv(i)

− ρZλ̆1

M∑
m=1

1
2
CD

[
∂V ∗(m)
∂Γ(i)

c(m) + V ∗
(m)

∂c(m)
∂Γ(i)

] [
Va(m) + u∗a(m)

]
4rv

− ρZλ̆1

M∑
m=1

1
2
CDV ∗

(m)c(m)[ū∗a(m,i)]4rv

− Hflag · ∂Γ(1)

∂Γ(i)
· λ1

ρZ2

8π

[
ln

(
rh

ro

)
+ 3

]
Γ̆(1)

= 0 for i = 1 . . . M (7.3.10)

∂H

∂λ1

= ρZ

M∑
m=1

Γ̆(m) · [ω rc(m) + Vt(m) + u∗t (m)]4rv(m)

− ρZ
M∑

m=1

1
2
CDV ∗

(m)c(m)[Va(m) + u∗a(m)]4rv(m)

− Hflag · ρZ2

16π

[
ln

(
rh

ro

)
+ 3

]
Γ(1) · Γ̆(1)

− Ts

= 0 (7.3.11)
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The system {(7.3.10), (7.3.11)} is solved for the now linear {Γ̆, λ̆1}, the circulation

and Lagrange multiplier are updated (Γ = Γ̆, λ1 = λ̆1), and the new Γ is used to

update the flow parameters. Coney (1989) describes a ‘wake alignment procedure’

for updating the flow parameters, whereby he iteratively updates: (1) the induced

velocities {u∗a, u∗t} via {(7.2.7), (7.2.8)}; (2) the inflow angle βi via (7.2.2); and

(3) the horseshoe influence functions {ū∗a, ū∗t} via {(7.2.9), (7.2.10)}, and iteration

continues until convergence of these flow parameters. Given the now-aligned wake,

he then updates the remaining flow parameters
{
V ∗, ∂V ∗

∂Γ
, c, ∂c

∂Γ

}
and continues the

main iterative loop, finding the next guess for Γ. This wake alignment procedure is

time-consuming and tenuous, because it is prone to crash if the induced velocities do

not vary smoothly over the span.

I have implemented a slightly different optimization procedure in OpenProp. In

my implementation, I still solve {(7.3.10), (7.3.11)} for a guess for {Γ̆, λ̆1}, update the

circulation and Lagrange multiplier (Γ = Γ̆, λ1 = λ̆1), and use the new Γ to update

the flow parameters. However, in my procedure, I do not iteratively “align the wake”;

instead, I make one new guess for the wake flow parameters and continue with the

main iterative loop to find the next guess for Γ. Therefore, each iteration of the main

loop involves updating Γ via {(7.3.10), (7.3.11)}. The critical step in the procedure

is that {u∗a, u∗t} are updated via {(7.2.7), (7.2.8)} and then “repaired” by smoothing

the velocities at the blade root and tip. This minor smoothing is critical to enable the

entire system of equations to converge, because the alignment of the wake and the

horseshoe influence functions which are fed into the next solution iteration are very

sensitive to irregularities in the induced velocities. This smoothing is reasonable in the

vortex-lattice model, since it introduces no more error than ignoring hub or tip vortex

roll-up, or other flow features. Using these smooth induced velocities, the remaining

flow parameters
{
βi, ū

∗
a, ū

∗
t , V

∗, ∂V ∗

∂Γ
, c, ∂c

∂Γ

}
are updated via {(7.2.2), (7.2.9), (7.2.10),

(7.2.1), (7.3.8), (7.3.5), (7.3.9)}. This process is repeated until convergence of all of
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the flow parameters, yielding an optimized circulation distribution and a physically-

realistic design operating state. Initial values of
{
βi, V

∗, ∂V ∗

∂Γ
, ∂c

∂Γ

}
are computed with

{u∗a, u∗t} = 0. The Lagrange multiplier is initialized at λ1 = −R, and the section

chord lengths at c ≈ 0. If chord-length optimization is not desired, then ∂c(m)
∂Γ(i)

is set

to zero and the chord is set to the input value during the optimization process.

7.3.1 A modified design optimization method

It is of considerable interest to the propeller designer to adjust the circulation at the

hub to prevent hub vortex shedding and cavitation. Coney (1989) gives a procedure

for reducing the hub circulation using a hub unloading factor, which will not be

discussed here. I developed an alternate design procedure that can be used to optimize

the circulation distribution given the constraint of a prescribed hub circulation.

In Coney’s optimization method (solving (7.3.10) and (7.3.11) for the optimum

circulation distribution, Γ, and the associated Lagrange multiplier, λ1), he ignores

the derivatives of the induced velocities with respect to changes in wake influence.

That is, equation (7.3.7) should be

∂u∗a(m)

∂Γ(i)
= ū∗a(m,i) +

M∑
j=1

Γ(j)
∂ū∗a(m,j)

∂Γ(i)
(7.3.12)

and likewise for u∗t . If equations (7.3.10) and (7.3.11) are modified to include this

additional term, this results in an “optimum” circulation distribution being heavily

loaded at the tip and unloaded at the root. This is physically unrealistic, because

it would result in a strong tip vortex and a wake vortex sheet which is inconsistent

with the model of the constant pitch helical wake (Kerwin, personal communication).

Ignoring part of equation (7.3.12) is somewhat arbitrary.

Another somewhat arbitrary, yet quite useful change to the design optimization

procedure is to fix the value of the Lagrange multiplier, λ1. In this new scheme, the
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Figure 7-6: (a) Efficiency versus fixed Lagrange multiplier value
(
LM = λ1

R

)
, and (b)

the corresponding optimized circulation distributions
(
G = Γ

2πRVs

)
, for the example

propeller from Section 7.3.2. As the fixed LM becomes more negative, hub loading
decreases, but efficiency is hardly affected.

optimum circulation distribution would still be found by iteratively solving (7.3.10)

and (7.3.11), but one would not update λ1 to the new value determined during each

solution iteration. Using this procedure, each unique value of λ1 results in a unique

“optimum” circulation distribution. Of course, if one happened to fix λ1 to the value

that Coney’s method would result in, then the resulting circulation distributions

would be the same in either case.

Interestingly, by fixing λ1, one can tune the circulation at the hub, as shown in

figure 7-6. This figure shows the efficiency and circulation distribution for a range

of fixed Lagrange multipliers for the example propeller described in Section 7.3.2.

Figure 7-6 shows that as the fixed Lagrange multiplier value increases, the hub loading

decreases, but the efficiency is hardly affected. Thus, by fixing λ1, an “optimum”

circulation distribution can be found for the desired hub circulation.

The overall optimum circulation distribution can, of course, be found manually

by trying several values of λ1. In this example, a fixed λ1 = −R actually results in

a propeller with an ever-so-slightly higher efficiency than the propeller designed by

Coney’s optimization scheme (with variable λ1).
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Figure 7-7: Example propeller circulation optimization. The OpenProp variable-λ1

circulation distribution (η = 0.7096) is almost identical to the PLL result, and both
are similar to the OpenProp Lerbs result (η = 0.7088). The OpenProp fixed-λ
scheme yields a quite different circulation distribution, with efficiency η = 0.7121 if
chord is not optimized and η = 0.7950 if both chord and circulation are optimized.

7.3.2 Example propeller design

An example propeller optimization was performed for a 6-bladed propeller, with the

following specs: D = 3 m, Dh = 0.6 m, Vs = 4.5 m/s, n = 2 rev/s, Ts = 45, 000 N,

such that J = Vs

nD
= 0.75 and KTs = Ts

ρn2D4 = 0.1355. Viscous forces are considered,

with CD = 0.008. Additional input parameters can be found in (Chung 2007, p. 50).

In this example, I compare the circulation distributions “optimized” using:

Coney’s implementation of his method (Coney, 1989) in the U.S. Navy code PLL

(with variable λ1 and no chord-length optimization); my implementation of Coney’s

method in OpenProp (with variable λ1 and no chord-length optimization); my fixed-

λ1 method (with and without chord optimization); and an optimizer implemented in

OpenProp that uses the Lerbs criterion (Lerbs, 1952). The optimized propellers are

characterized by their circulation distribution, thrust coefficient, KT = T
ρn2D4 , torque

coefficient, KQ = Q
ρn2D5 , and efficiency, η = J

2π
KT

KQ
. For reference, the efficiency of an

actuator disc with CTs = Ts

1
2

ρV 2
s

πD2

4

= 0.6134 is η = 2

1+
√

1+CTs

= 0.8810.
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The “optimized” circulation distributions are shown in figure 7-7. The the

OpenProp Lerbs optimizer result provides a good baseline for comparison: It has

performance KT = 0.1355, KQ = 0.0228, and η = 0.7088. The circulation distribution

computed using the OpenProp optimizer with variable λ1 is nearly identical to the

PLL optimizer result, and both are quite similar to the OpenProp Lerbs optimizer

result. OpenProp computes KT = 0.1355, KQ = 0.0228, and η = 0.7096 for its

circulation distribution, which converged with λ1 = −0.3387R.

If the Lagrange multiplier is fixed at λ1 = −R, my OpenProp code computes a

circulation distribution that is quite different than the variable-λ1 OpenProp and

PLL results. The performance metrics for the propeller optimized with fixed λ1 = −R

are KT = 0.1355, KQ = 0.0227, and η = 0.7121, which is a slightly higher efficiency

than that given by the variable-λ1 optimization scheme, but with much less hub

loading. Not surprisingly, an even-higher-efficiency propeller is found by fixing λ1 =

−R and optimizing both circulation and chord length, which yields KT = 0.1355,

KQ = 0.0203, and η = 0.7950.

This example validates the OpenProp design optimizer with the U.S. Navy

code PLL, showing good agreement between the optimum circulation distributions

determined by each code. This example also illustrates that by fixing the Lagrange

multiplier, one can alter the circulation distribution (thus changing the hub

circulation) with little effect on the predicted efficiency.

7.4 Propeller geometry

Once the design operating state of the propeller/turbine is known, the geometry can

be determined to give such performance. The 3D geometry is built from given 2D

section profiles that are scaled and rotated according to the design lift coefficient,

chord length, and inflow angle {CL0 , c, βi0}.
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A given 2D section profile includes camber and thickness normalized by the chord,

{f̃/c, t̃/c}, ideal angle of attack, α̃I , and ideal lift coefficient, C̃LI
. Note that {f̃ , α̃I ,

C̃LI
} scale linearly with the maximum camber, f̃0 (Abbott and von Doenhoff, 1959).

The section lift coefficient is given in terms of the geometry by CL = 2π(α−αI)+CLI

for |α − αI | � |α − αI |stall, and the stall model is described in Section 7.5. In the

geometry module, the angle of attack of each blade section is set to the ideal angle

of attack (α = αI) to prevent leading edge flow separation and/or cavitation. The

lift coefficient then becomes the ideal lift coefficient (CL = CLI
). In order to achieve

the desired lift coefficient, CL0 , the given C̃LI
is scaled by scaling the section camber.

Thus, the desired lift coefficient and section geometry is

{CL, f0, f, αI} =
CL0

C̃LI

· {C̃LI
, f̃0, f̃ , α̃I} (7.4.1)

The pitch angle of the blade section is then fixed at

θ = αI + βi0 (7.4.2)

With this computed blade 2D section geometry, OpenProp can then form the full

3D propeller geometry and export files for rapid prototyping of physical parts.

7.5 Off-design performance analysis

This section details the analysis of a propeller operating at an off-design (OD) advance

coefficient

Js,OD =
Vs

nODD
=

πVs

ωODR
(7.5.1)

An off-design operating state is defined by the rotation rate, ωOD, and unknown flow

parameters {V ∗, α, CL, Γ, u∗a, u∗t , βi, ū∗a, ū∗t}, which all must be self-consistent for

the state to be physically realistic.
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To proceed, we need equations for the angle of attack, α, lift coefficient, CL, and

circulation, Γ. In the analyzer, the pitch angle, θ, of each blade section is fixed, so

the net angle of attack is

α− αI = βi0 − βi (7.5.2)

The circulation can be computed from the 2D section lift coefficient, which is given

in terms of the loading by

CL =
2Γ

V ∗c
(7.5.3)

The 2D section lift and drag coefficients are shown in figure 7-8 and given in closed

form by equations

CL = CL,0 + dCL

dα
∆α

− dCL

dα
(∆α−∆αstall) · F (∆α−∆αstall)

+ dCL

dα
(−∆α−∆αstall) · F (−∆α−∆αstall) (7.5.4)

CD = CD,0

+ A · (∆α−∆αstall) · F (∆α−∆αstall)

+ A · (−∆α−∆αstall) · F (−∆α−∆αstall)

− 2A · (−∆αstall) · F (−∆αstall) (7.5.5)

where the auxiliary function F (x) = arctan(Bx)
π

+ 1
2

has limits F (x → −∞) → 0 and

F (x → ∞) → 1. Here: ∆α = α − αI [rad]; ∆αstall = 8 π
180

[rad] is the default

OpenProp stall angle; B = 20 is the default OpenProp stall sharpness parameter;

A =
2−CD,0

π
2
−∆αstall

is drag coefficient post-stall slope; and dCL

dα
= 2π is default OpenProp

lift curve slope, which is consistent with linear foil theory. These values are used in all

calculations unless specifically noted otherwise. Thus CL ≈ CL,0 + 2π(α− αI) before

stall and approximately constant post stall. The drag coefficient is approximately

constant until stall and then rises to the canonical value of 2 when the inflow is normal
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Figure 7-8: Lift coefficient, CL, and drag coefficient, CD, versus net angle of attack,
α − αI , for the (a) propeller and (b) turbine cases, with dCL

dα
= 2π and on-design

specifications CL0 = 0.5 and CD0 = 0.05. The vertical dashed lines at |α−αI |stall = ±8
deg indicate the stall angle of attack.

to the blade. This type of model is used in ASWING (Drela, 1999). Equations (7.5.4)

and (7.5.5) offer the flexibility to change the stall angle, lift curve slope, and drag

coefficient to more accurately model foil sections of moderate thickness to chord ratios.

The operating states of a propeller or turbine for each given ωOD are computed

as follows. An operating state is defined by ωOD and unknown flow parameters

{V ∗, α, CL, Γ, u∗a, u∗t , βi, ū∗a, ū∗t}, which all must be self-consistent for the state to

be physically-realistic. That is, equations {(7.2.1), (7.5.2), (7.5.4), (7.5.3), (7.2.7),

(7.2.8), (7.2.2), (7.2.9), (7.2.10)} must all hold, given ωOD. Since there are M vortex

panels, there are 7M+2M2 unknowns and a system of 7M+2M2 non-linear equations

that govern the state of the system. This system is solved in OpenProp using an

approach similar to a Newton solver.
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Since the 7M + 2M2 equations are coupled through the parameters {βi, ū
∗
a, ū

∗
t},

I decouple them by considering two state vectors: X = {V ∗, α, CL, Γ, u∗a, u
∗
t}> and

Y = {βi, ū
∗
a, ū

∗
t}. During each solution iteration, state vector X is updated, and then

Y is updated; this process repeats until convergence of the entire system.

Consider state vector X: It consists of M sets of 6 state variables, one set per

vortex panel. The 6 variables for each vortex panel are coupled to one another, but

not to the other variables in X. Thus, X can be partitioned into M state vectors,

X = {x1, . . . ,xM}>, where xm = {V ∗, α, CL, Γ, u∗a, u
∗
t}> with each variable evaluated

at rc(m). Each of these state vectors can be updated independently.

Each vortex panel state vector, xm, is updated using a Newton solver. Define the

residual vector for the mth panel as

Rm =



V ∗ −
√

(Va + u∗a)
2 + (ωODrc + Vt + u∗t )

2

α − (αI + βi0 − βi)

CL − CL(α)

Γ −
(

1
2
CLV ∗c

)
u∗a − [ū∗a] · [Γ]

u∗t − [ū∗t ] · [Γ]


(7.5.6)

where each variable is evaluated at rc(m). In order to drive the residuals to zero, the

desired change in the state vector, dxm, is found by solving the matrix equation

0 = Rm + Jm · dxm

222



where non-zero the elements of the Jacobian matrix, Jm(i,j) = ∂Rm(i)
∂xm(j)

, are

Jm(i,i) =
∂RV ∗

∂V ∗ =
∂Rα

∂α
=

∂RCL

∂CL

=
∂RΓ

∂Γ
=

∂Ru∗a

∂u∗a
=

∂Ru∗t

∂u∗t
= 1 (i = 1 . . . 6)

Jm(1,5) =
∂RV ∗

∂u∗a
= − Va + u∗a√

(Va + u∗a)
2 + (ωODrc + Vt + u∗t )

2

Jm(1,6) =
∂RV ∗

∂u∗t
= − ωODr + Vt + u∗t√

(Va + u∗a)
2 + (ωODrc + Vt + u∗t )

2

Jm(2,5) =
∂Rα

∂u∗a
=

∂Rα

∂βi

· ∂βi

∂ tan(βi)
· ∂ tan(βi)

∂u∗a
=

1

1 + tan2(βi)
· 1

ωODrc + Vt + u∗t

Jm(2,6) =
∂Rα

∂u∗t
=

∂Rα

∂βi

· ∂βi

∂ tan(βi)
· ∂ tan(βi)

∂u∗t
=

1

1 + tan2(βi)
· − tan(βi)

ωODrc + Vt + u∗t

Jm(3,2) =
∂RCL

∂α
= −dCL(α)

dα

Jm(4,1) =
∂RΓ

∂V ∗ = −1
2
CLc

Jm(4,3) =
∂RΓ

∂CL

= −1
2
V ∗c

Jm(5,4) =
∂Ru∗a

∂Γ
= −ū∗a(m,m)

Jm(6,4) =
∂Ru∗t

∂Γ
= −ū∗t (m,m)

Jm(5,2) =
∂Ru∗a

∂α
=

∂Ru∗a

∂βi

· ∂βi

∂α
=

M∑
j=1

Γ(j)
∂ū∗a(m,j)

∂βi(m)

Jm(6,2) =
∂Ru∗t

∂α
=

∂Ru∗t

∂βi

· ∂βi

∂α
=

M∑
j=1

Γ(j)
∂ū∗t (m,j)

∂βi(m)

where the flow parameters are evaluated at rc(m) unless explicitly stated. All other

terms are zero or are ignored.

The state vector for the next iteration, then, is xnext
m = xcurrent

m + dxm. By solving

one Newton iteration for each of the m = 1, . . . ,M vortex panels, state vector X =

{x1, . . . ,xM}> is updated.

Given the new X values, Y is updated: βi is updated via (7.2.2), and then {ū∗a, ū∗t}

are updated via {(7.2.9), (7.2.10)}. In the next solution iteration, these new values of

Y are used to update X, and so on. Since the solution scheme updates both X and
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Figure 7-9: (a) Design circulation distribution for U.S. Navy propeller 4119, and (b)
off-design performance curves for propeller 4119. OpenProp results agree with PBD
code solution and experimental data from (Black, 1997).

Y in each iteration, it accounts for the coupled interaction between all 7M + 2M2

unknown flow parameters and converges on a physically-realistic operating state of

the system.

The system is said to converge when all 6M elements of X have converged. Since

βi is directly related to α and ū∗a and ū∗t are functions of βi, once α converges, this

implies that Y has converged as well. For each operating state, the analyzer computes

the propeller/turbine thrust, torque, and power coefficients and efficiency.

The OpenProp analyzer was validated with U.S. Navy propeller 4119. Figure 7-

9a shows the circulation distribution of an OpenProp-designed version of 4119,

showing good agreement with U.S. Navy code PBD and experimental data from

(Black, 1997). Figure 7-9b also shows good agreement between the off-design

performance curve predicted by OpenProp and experimental data from (Black,

1997), thus validating the performance analysis method presented herein.

The performance analyzer also enables cavitation analysis, which requires the

blade surface pressure distribution. The pressure distribution is computed in

OpenProp using either of two 2D foil solvers that require the lift coefficient
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distribution. The lift coefficient distribution is found in the analyzer for each off-

design operating state. Peterson (2008) developed a cavitation analysis module using

the open-source code XFOIL (Drela, 1989). Chung (2007) implemented a simpler 2D

vortex lattice code that can also be used as the 2D foil solver engine. The pressure

distribution results are incorporated in a module that generates Brockett diagrams

for a given blade design and off-design operating state. Using the Brockett diagram,

the thickness ratio can be chosen to give adequate on-design cavitation margin and

off-design angle of attack margin. The 2D solvers can also be used to analyze the

blade pressure coefficient distributions for determining cavitation margin and location

by comparing the pressure coefficient to the local cavitation number of the section.

7.5.1 Example propeller off-design analysis

As an illustrative example of off-design performance analysis, I now replicate the

propellers designed in Coney (1989, p. 28-31). In this exercise, several propellers are

designed to give the same thrust coefficient, CT = 0.512, for a range of design advance

coefficients

Js =
Vs

nD
=

πVs

ωR

Each is a hubless, five-bladed propeller with a diameter D = 1 m, hub diameter

Dhub = 0.2 m, and ship speed Vs = 1 m/s. The chord lengths are optimized for each

propeller, with CL,max = 0.2, and viscous effects are ignored.

Each of the circulation distributions in figure 7-10a were optimized to give the

same thrust, for the prescribed advance coefficient. The distributions I computed

using OpenProp agree well with those computed by Coney; minor disagreement

is expected, since Coney did not align the wake to the local flow (i.e. he computed

the wake influence functions with the wake aligned to the undisturbed flow, which

is acceptable for lightly-loaded propellers such as these). The on-design efficiencies
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Figure 7-10: Example 5-bladed propellers from Coney (1989): (a) on-design
circulation distributions for propellers designed for selected advance coefficients, (b)
off-design performance of these propellers, (c) off-design circulation distributions for
the propeller with on-design advance coefficient Js = 1.2: (d) off-design circulation
distributions each normalized by its maximum value.

computed by Coney also agree well with those I calculate, as shown in figure 7-10b.

Using my off-design performance analyzer, I computed the performance of each

of these propellers for a range of advance coefficients. I show in figure 7-10b the off-

design efficiency, EFFY, and thrust coefficient, KT, of all these propellers; the torque

coefficient is omitted for clarity. The black dash-dotted line represents the efficiency

of an actuator disc producing a thrust coefficient of CT = 0.512, which is

EFFY =
2

1 +
√

1 + CT

= 0.8970 (7.5.7)

Propellers designed for advance coefficients approaching zero approach the actuator

disk efficiency, since the rotation rate approaches infinity in this limit, and the blades
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lose their identity and ‘become’ the actuator disk. The magenta dashed line represents

the required thrust coefficient, for a given advance ratio, since

KT =
π

8
CT · J2

s (7.5.8)

by definition. Each of the propellers meets this thrust requirement on-design, and they

produce larger KT for smaller off-design Js, and visa versa. This change in loading

is due to the change in net angle of attack: Referring to the propeller velocity/force

diagram, figure 7-5, recall the raw inflow angle is defined as

tan β =
Vs

ωr
=

Js

π
· R

r
(7.5.9)

For small off-design Js, the apparent tangential inflow due to propeller rotation is

larger, and the inflow angle is smaller. This corresponds to an increased angle of

attack (since the blade pitch is fixed) and, therefore, increased loading. Figure 7-10c

shows the load distribution for several off-design advance coefficients for the propeller

designed for Js = 1.2; loading increases as Js decreases, and visa versa. For larger

off-design Js, this corresponds to larger inflow angles, reduced angle of attack, and

reduced loading.

Consideration of equation (7.5.9) reveals that a change in advance coefficient

should affect the innermost blade sections more than the outermost sections, since

R
r

increases with decreasing radial position r. Thus, the off-design circulation

distribution should shift inwards for lower advance coefficients (i.e. higher rotation

rates) and shift outwards for higher advance coefficients. This is demonstrated in

figure 7-10, which shows the off-design circulation distributions, each normalized by

its maximum value. This effect is minimal for low advance coefficients but is quite

dramatic for higher advance coefficients, which tend to unload the root more than

the tip, shifting the circulation distribution outboard.
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7.6 Non-dimensional parameters

Table 7.1 summarizes the non-dimensional form of the flow- and performance

parameters discussed herein.

OpenProp Herein Description
Vs Vs ship speed (free-stream speed) [m/s]
R R propeller radius [m]
D D propeller diameter [m]
n n rotation rate [rev/s] (ω = 2πn)

Rhub oR rh/R normalized hub radius
RC rc/R normalized control point radius
DR 4rv/R normalized difference in vortex radii
CoD c/D normalized section chord
VAC Va/Vs normalized axial inflow velocity
VTC Vt/Vs normalized tangential inflow velocity

UASTAR u∗a/Vs normalized induced axial velocity
UTSTAR u∗t /Vs normalized induced tangential velocity
UAHIF 2πR · ū∗a normalized axial horseshoe influence function
UTHIF 2πR · ū∗t normalized tangential horseshoe influence function

G Γ/(2πRVs) normalized circulation
VSTAR V ∗/Vs normalized total inflow speed

dVdG 2πR · ∂V ∗

∂Γ
normalized ∂V ∗

∂Γ

dcdG πVs · ∂c
∂Γ

normalized ∂c
∂Γ

dVdW ∂V ∗

∂ω
/R normalized ∂V ∗

∂ω

LM λ1/R normalized Lagrange multiplier

CT CT = T
1
2

ρV 2
s πR2

thrust coefficient based on ship speed

CQ CQ = Q
1
2

ρV 2
s πR3

torque coefficient based on ship speed

CP CP = Qω
1
2

ρV 3
s (πR2)

power coefficient (CP = ωR
Vs

CQ = λCQ =
CQπ

Js
)

KT KT = T
ρn2D4 thrust coefficient based on blade tip speed

KQ KQ = Q
ρn2D5 torque coefficient based on blade tip speed

Js Js = Vs

nD
= πVs

ωR
advance coefficient

L λ = ωR
Vs

= π
Js

tip-speed ratio

Table 7.1: Table of non-dimensional flow parameters in OpenProp.
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7.7 Summary

We began this chapter by developing lifting line theory using the impulse-force

framework presented in Chapter 1 of this thesis: We showed that both steady and

unsteady forces given by lifting line theory can also be computed using a vortex lattice,

with the net force on the body being equal to the sum of the impulsive pressure force

and the force due to the rate of increase of impulse in the fluid. We then applied lifting

line theory to the design optimization and off-design analysis of marine propellers.

Two main contributions were made in this chapter: (1) a propeller optimization

method for prescribed hub loading, and (2) a lifting-line-based off-design performance

analysis method for propellers. A propeller optimization method was presented in

Section 7.3.1, whereby the designer can optimize the circulation distribution while

prescribing the hub loading, and figure 7-6 shows that this can be done with little if

any penalty in efficiency for a range of hub loadings. This is a valuable method to

prevent hub cavitation and noise, while still designing a nearly-optimum propeller.

This chapter features a method for off-design analysis of marine propellers using

lifting line theory. In Section 7.5, I described the system of equations which must

be satisfied for an off-design state to be physically realistic, and I described an

approach similar to a Newton solver that can be used to determine this state, given

an off-design advance coefficient. I validated my method with experimental data for

U.S. Navy propeller 4119, as shown in figure 7-9. My off-design analysis method

makes OpenProp a valuable tool for the preliminary design of ocean-going vehicles.

The designer can now obtain a preliminary propeller design and its performance

curve, which can be used in ship-level design studies, such as determining powering

requirements and fuel consumption of the vehicle. My performance analysis also

enables cavitation analysis or structural analysis for off-design conditions, which are

valuable tools for the propeller designer.
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Chapter 8

Propeller off-design performance

experiments

In this chapter, I present the results of steady propeller performance and unsteady

startup experiments. We will find that the thrust, torque, and efficiency measured

during steady tests match that predicted by my off-design performance analysis

method, providing important validation data for my OpenProp code suite. We

will find that the propeller generates a vortex ring during unsteady start-up, which is

similar to the vortex rings formed by a swimming fish during unsteady maneuvering.

8.1 Experimental setup

Steady and unsteady propeller performance tests were performed in the MIT Water

Tunnel using an experimental setup similar to that used by Stettler (2004), as shown

in figure 8-1. The propeller was mounted on a trolling motor (Minn Kota motor

assembly, part number 2069060), which is a brushed DC motor that has maximum

voltage and current ratings of 12V and 30A, respectively. This motor has torque

constant km = 0.06454 Nm/A and speed constant kω = 15.494 (rad/s)/V (as will be

shown in the next section), which means that the maximum voltage and amperage
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Figure 8-1: Propeller test setup: power is delivered to and Hall-effect signal is acquired
from the motor assembly by umbilical. The data acquisition system triggers the power
supply and PIV camera to start the unsteady start-up tests.

equate to a maximum speed and torque of 29.6 rev/s and 1.94 Nm, respectively. The

motor assembly was held in the collet of the force dynamometer, which sits atop the

tunnel test section. The force dynamometer has linear strain gauges, which were used

to directly measure the net force on the motor assembly (i.e. the propeller thrust less

the drag on the motor housing). The hydrodynamic torque was found by measuring

the motor current.

The desired quantities are the net hydrodynamic thrust and torque on the

propeller versus flow speed and rotation rate. Using the force dynamometer in the

water tunnel, we can measure total force on the motor assembly, which is the net

thrust produced by the propeller less the drag on the motor housing. We cannot

directly measure torque, but we can infer it from the current flowing through the DC

motor. We also do not directly measure the propeller rotation rate, but we can infer

it from the angular position of the propeller. The angular position of the propeller
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Figure 8-2: Hall-effect sensor installation.

is measured using a Hall-effect sensor (Allegro Microsystems A1211LUA-T (3-pin

SIP) with 10kΩ pull-up resistor connecting the power terminal and output-signal

terminal, to improve signal quality) mounted to the aft surface of the motor (see

figure 8-2) - - the output of this sensor is a 0 to 5 volt square wave, which flips when

a magnet passes the sensor. For this, 32 magnets (Hamlin Electronics, 175 Gauss,

4mm-diameter, 20mm length cylinder) of alternating pole were imbedded into the

propeller hub. Each passing magnet energizes or de-energizes the Hall-effect sensor.

The flow speed is measured using the laser Doppler velocimetry (LDV) laser system

at the water tunnel. Thus, we measure flow speed, total thrust, motor current, and

propeller angular position, and we infer the net hydrodynamic thrust, torque, and

propeller rotation rate.

8.1.1 Calibration tests

In this section, I outline the calibration tests required in order to compute the

propeller thrust and torque from the data collected during the propeller experiments.

I performed a series of calibration tests to characterize the propeller thrust. The

net force on the motor assembly, fnet force [Volts], was measured using linear strain

gauges in the force dynamometer; multiplying this voltage by a calibration constant,
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Figure 8-3: Thrust calibration data: (a) applied calibration load [N] versus measured
“force” [V], where the slope of a linear fit to these data is the calibration constant,
kf = 93.3 [N/V]; (b) drag on motor housing [N] versus flow speed [m/s]

kf [N/V], yields the net force in Newtons. The propeller thrust, T [N] (positive

upstream), is this net force plus the drag on the motor housing, Fmotor drag [N] (positive

downstream), which is a function of the axial flow speed, Va [m/s]:

T = kf fnet force + Fmotor drag(Va) (8.1.1)

where these forces may be steady or unsteady in time.

The force calibration constant, kf , was determined in the usual way: The motor

assembly was mounted in the force dynamometer, and a rope was fixed to the end

of the motor shaft (where the propeller attaches) and routed over a pulley. A series

of calibration weights (of known weight in Newtons) were hung on the end of a rope,

and the resulting “force” was measured in Volts using the LabView data acquisition

system. The data are shown in figure 8-3a, where the slope of a linear fit to the data

is the calibration constant, kf = 93.3 [N/V].

The drag on the motor housing was determined for a series of flow speeds. In

these calibration tests, a bare hub was placed on the aft end of the motor assembly in
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place of a propeller, and the motor assembly was mounted to the force dynamometer

and situated in the water tunnel test section. The flow speed was measured ahead of

the motor housing using the in-house laser Doppler velocimetry (LDV) system. The

motor housing drag force was measured for a series of free-stream flow speeds; these

data are plotted in figure 8-3b and are fit well with the polynomial

Fmotor drag = f1Va + f2V
2
a (8.1.2)

with f1 = 0.33604 N/(m/s) and f2 = 0.83952 N/(m/s)2. Equation (8.1.2) is used to

infer the hub drag in the steady and unsteady propeller experiments.

I performed another series of calibration tests to characterize the motor torque.

The hydrodynamic torque on the propeller, Q, can be inferred from accurate

measurement of motor current and rotation rate. In the general, unsteady case,

the net hydrodynamic torque is

Q(t) = kmim(t)−B(ω(t))− Iaω̇(t) (8.1.3)

where km is the motor torque constant [Nm/A], im is the current [A], B is the parasitic

torque loss due to friction [Nm], ω is the rotation rate [rad/s], ω̇ is the rotational

acceleration [rad/s2], and Ia is the total moment of inertia of the propeller and motor

armature about the drive shaft axis [kg-m2]. The quantities km, B, and Ia were

determined experimentally as follows.

First, the motor torque constant, km, was found in the usual way: The motor

torque constant, km = torque
current

[Nm/A], is, by SI unit equivalence, equal to the

reciprocal of the motor voltage constant kω = rotation rate
back EMF

[(rad/s)/V]:

km =
1

kω

(8.1.4)
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Figure 8-4: (a) Experimental setup for the motor speed constant calibration test;
(b) measured back EMF [Volts] of the motor versus rotation rate [rev/s], where the
reciprocal of the slope of a linear fit to the data is 2.47 (rev/s)/V, which equates to a
motor speed constant of kω = 15.49 (rad/s)/V and torque constant of km = 0.06454
Nm/A; (c) measured parasitic friction torque versus rotation rate, B(n).

To find kω, the trolling motor was driven by an auxiliary motor at several rotation

speeds, ω [rad/s] (measured using a Monarch Instrument - Remote Optical Sensor

optical tachometer), and the (open-circuit) back EMF voltage across the motor

terminals, VEMF [V], was measured using a multimeter. The data are shown in

figure 8-4, where the reciprocal of the slope of a linear fit to the data is 2.47 (rev/s)/V,

which equates to a motor speed constant of kω = 15.49 (rad/s)/V and torque constant

of km = 0.06454 Nm/A.
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b0 6.6190× 10−2 Nm
b1 5.1259× 10−3 Nm/(rad/s)
b2 −1.1441× 10−4 Nm/(rad/s)2

b3 1.4539× 10−6 Nm/(rad/s)3

b̃0 6.6190× 10−2 Nm

b̃1 3.2207× 10−2 Nm/(rev/s)

b̃2 −4.5167× 10−3 Nm/(rev/s)2

b̃3 3.6064× 10−4 Nm/(rev/s)3

Table 8.1: Motor friction torque: calibration fitting parameters.

Second, the parasitic friction curve, B(ω), was determined as follows: A bare hub

was mounted on the motor, and the assembly was submerged in the water tunnel.

The motor was operated at several rotation speeds, ω [rad/s] (as determined from

Hall-effect sensor data acquired during each trial), and the current flowing through

the motor, im = VS/RS, was determined for each trial by measuring the voltage, VS,

across a (Shunt) resistor of known resistance, RS = 50mV/15A. In these experiments,

ω̇ = 0 (since steady) and Q = 0 (since no propeller), so equation (8.1.3) becomes

B(ω) = kmim = km
VS

RS
. Several trials were performed, and the B vs. ω data are

shown in figure 8-4. These data are fit well by a cubic polynomial,

B(ω) = b0 + b1ω + b2ω
2 + b3ω

3 (8.1.5)

which is equivalent to

B(n) = b̃0 + b̃1n + b̃2n
2 + b̃3n

3 (8.1.6)

where the fitting parameters are given in table 8.1.

Third, the total moment of inertia of the propeller and motor armature, Ia, was

determined by performing current step-input tests in air with the propeller attached to

the motor. Here, we record time-series of Hall-effect sensor and motor current data for

a series of trials. We assume the aerodynamic torque is negligible (Q = 0), since this
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torque is much less than that which will be produced during underwater trials. During

early times of these trials, 0 ≤ t ≤ δt, the propeller accelerates rapidly from rest, and

we assume that the friction torque is constant and therefore taken to be the mean value

of the friction over the range of rotation speeds attained, B = 1
ω(δt)

∫ ω(δt)

0
B(ω) dω.

Also, the current is nearly constant and therefore taken to be the mean value during

these early times im = 1
δt

∫ δt

0
im(t) dt. Thus, equation (8.1.3) becomes

Ia = kmim−B
ω̇

(8.1.7)

where ω̇ is the constant acceleration, which is found by fitting a quadratic polynomial

to the position data for the early times of each trial. For each trial, this procedure

yielded an estimate for the moment of inertia: The mean and standard deviation are

Ia = 1.02e-3 ±5.74e-5 [kg-m2].

8.1.2 PIV test setup

Flow field measurements were made using high-speed particle image velocimetry

(PIV) in the MIT Water Tunnel, with a horizontal light sheet illuminating the

wake, as shown in figure 8-1. The water was seeded with 50 µm neutrally-buoyant

particles (Dantec polyamid seeding particles), and a horizontal laser sheet (LaVision

3.3W, 10kHz, 532 nm laser, fitted with optics to produce a 10◦ fan of light) was

positioned such that it was at the motor housing mid-plane. A high-speed camera

(IDT XS-3 CCD camera, 85 mm Nikkon lens) imaged from below at 1000 fps. Image

resolution was 1152×1024 pixels, and the field of view was 14.3 cm × 12.7 cm, giving

a 80.5 px/cm zoom.

Each time-series of PIV images was processed using the LaVision DaVis 7.2

software package. In this experiment, we performed the first pass with 64 × 64

px interrogation windows and the second pass with 32 × 32 px windows, with 50%
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overlap in adjacent windows for higher resolution velocity fields. The output were

velocity fields of 72 × 64 vectors, with approximately 40 vectors along the propeller

span. The data were post-processed in Matlab to determine vorticity, circulation, and

wake geometry using the procedures outlined in previous chapters of this thesis. The

circulation, Γ, of each vortex was computed by evaluating Stokes theorem numerically

Γ =
∑
i,j

ω(i,j)δA (8.1.8)

where ω(i,j), is the vorticity at field point (i,j), and δA = (16 px)2 = 0.0340 cm2 was

the area of each interrogation window. The summation is performed over the field

points with vorticity greater than 10 1/s, which represents an iso-vorticity contour of

about 5% of the maximum vorticity for many frames.

8.2 Propeller design

I designed a two-bladed propeller for use in steady off-design performance tests and

unsteady start-up tests. The propeller was specifically designed to operate in the

test setup described above. The inflow velocity profile was not measured prior to

propeller design and assumed uniform (Va/Vs = 1 for all blade sections). The swirl

inflow velocity was zero (Vt = 0), and the propeller had zero rake or skew. The section

drag coefficient was assumed to be CD = 0.010 for all blade sections. Other relevant

design parameters are listed in table 8.2, and their justification is given below.

The hub diameter (Dhub = 3.3 in) was chosen to match the diameter of the trolling

motor used in the experiments. The propeller diameter (D = 0.25 m ≈ 10 in) was

chosen to be as large as possible while still leaving sufficient clearance at the edge of

the viewing windows in the water tunnel, so the PIV experiments could be performed

with a suitable field of view. The choice of two blades (Z = 2) was driven by the

size of the Dimension Elite 3D printer used to fabricate the propeller, which has an
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Parameter Value Description
Z 2 number of blades
N 480 [RPM] rotation rate
n 8 [rev/s] rotation rate
D 0.25 [m] propeller diameter (approx 10 in)
T 30 [N] required thrust (approx 11.24 lb)
V s 1.5 [m/s] ship speed (free-stream speed)

Dhub 0.08382 [m] hub diameter (3.3 in)
M 20 number of vortex panels
Rhv 0.5 hub vortex radius / hub radius

HUF 0 Hub Unloading Factor (no unloading)
TUF 0 Tip Unloading Factor (no unloading)
SCF 1 Swirl Cancellation Factor (no cancellation)

ρ 1000[kg/m3] water density

Table 8.2: Propeller design input parameters.

8-inch by 12-inch planform area for printing. Thus, a two-bladed propeller could be

printed with a 10-inch diameter, whereas a propeller with three or more blades would

be restricted to maximum a diameter of 8 inches. The free-stream speed and thrust

were chosen to give a thrust coefficient typical of a marine propeller (see table 8.3)

while having low enough torque that the trolling motor could drive the propeller.

A parametric design study was performed to select the rotation rate for the

propeller. The results of this study are shown in figure 8-5. Figure 8-5 shows the

efficiency of propellers with Z = {2, 3, 4, 5} blades designed for a range of rotation

rates, 300 [RPM] < N < 1200 [RPM]. The selected rotation rate, N = 480 [RPM]

has nearly the best efficiency for these propellers and yields an advance coefficient,

Js = 0.75, which is typical of a marine propeller.

8.2.1 Optimized performance

The propeller circulation distribution was optimized using the (Coney, 1989) method,

with variable λ1, no chord optimization, and the input parameters given in Section 8.2.

The non-dimensional design performance of this optimized propeller is shown in

242



Figure 8-5: Parametric design study results: efficiency versus rotation rate and
number of blades, as computed using the OpenProp Lerbs optimization routine.

Js = Vs

nD
0.75 advance ratio

KT = T
ρn2D4 0.1200 thrust coefficient

KQ = Q
ρn2D5 0.0204 torque coefficient

EFFY = TVs

Qω
0.7019 efficiency

Table 8.3: Design performance parameters.

table 8.3. The values for KT and Js meet those prescribed by the input parameters,

and the torque coefficient and efficiency are typical for this loading. Tabulated flow

parameters for blade sections at the control points are given in table 8.4.

The optimized circulation distribution is shown in figure 8-6a. Unfortunately, the

LDV laser was not operable at the time of publication of this thesis, so measurements

of the swirl velocity could not be made to verify this circulation distribution. In

lieu of swirl velocity measurements, PIV data was taken for the horizontal mid-plane

of the motor housing during on-design propeller operation (Vs = 1.5 m/s, n = 7.9

rev/s in the trial shown in figure 8-6b). In theory, the trailing streamwise vorticity

has strength γ = dΓ
dr

, so if all of the same-signed trailing vorticity rolled up into a
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r/R G CL βI α θ c
D

f0

c
t0
c

0.3517 0.0464 0.6809 40.6497 0.9532 41.6029 0.2411 0.0453 0.1449
0.3845 0.0467 0.6226 38.0342 0.8717 38.9058 0.2494 0.0414 0.1351
0.4173 0.0473 0.5759 35.7163 0.8063 36.5226 0.2571 0.0383 0.1261
0.4502 0.0479 0.5351 33.6542 0.7491 34.4033 0.2646 0.0356 0.1179
0.4830 0.0484 0.4989 31.8116 0.6985 32.5101 0.2713 0.0332 0.1103
0.5158 0.0487 0.4668 30.1572 0.6536 30.8108 0.2769 0.0310 0.1035
0.5486 0.0489 0.4368 28.6644 0.6115 29.2759 0.2822 0.0291 0.0972
0.5815 0.0489 0.4095 27.3108 0.5733 27.8841 0.2864 0.0272 0.0914
0.6143 0.0486 0.3854 26.0779 0.5395 26.6175 0.2886 0.0256 0.0862
0.6471 0.0481 0.3623 24.9503 0.5073 25.4575 0.2901 0.0241 0.0813
0.6799 0.0473 0.3399 23.9149 0.4759 24.3908 0.2911 0.0226 0.0768
0.7128 0.0463 0.3184 22.9611 0.4457 23.4068 0.2911 0.0212 0.0726
0.7456 0.0449 0.2985 22.0800 0.4180 22.4980 0.2889 0.0199 0.0686
0.7784 0.0431 0.2794 21.2641 0.3912 21.6553 0.2849 0.0186 0.0650
0.8113 0.0409 0.2600 20.5070 0.3640 20.8710 0.2795 0.0173 0.0619
0.8441 0.0381 0.2429 19.8032 0.3401 20.1432 0.2692 0.0162 0.0592
0.8769 0.0348 0.2266 19.1479 0.3172 19.4651 0.2539 0.0151 0.0567
0.9097 0.0305 0.2078 18.5368 0.2909 18.8277 0.2348 0.0138 0.0543
0.9426 0.0250 0.1883 17.9660 0.2636 18.2297 0.2052 0.0125 0.0519
0.9754 0.0171 0.1736 17.4318 0.2430 17.6748 0.1470 0.0115 0.0541

Table 8.4: Optimized blade performance: radius/propeller radius, r/R; non-
dimensional circulation, G = Γ

2πRVs
; lift coefficient, CL; total inflow angle, βI [deg];

angle of attack, α [deg]; blade pitch angle, θ [deg]; chord/diameter, c
D

; camber ratio,
f0

c
; and thickness ratio, t0

c
. The chord lengths were not optimized during the design.

single tip vortex, then (by the fundamental theorem of calculus) the strength of this

tip vortex would equal the maximum circulation in the distribution. The circulation

about the tip vortex was estimated by integrating the measured PIV vorticity over

the vortex area Γ =
∫

ω dA = 0.0455 m2/s, as shown in a representative PIV frame

in figure 8-6b. The non-dimensional tip vortex circulation is G = Γ
2πRVs

= 0.0388,

which agrees qualitatively with the peak circulation in the distribution shown.

Figure 8-6c shows the thrust and torque loading per unit span. These graphs are

intended to show what part of the blade is carrying the most load, and it is evident

that the majority of the load is produced at about the 80% span section.
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Figure 8-6: On-design performance: (a) design circulation distribution G = Γ
2πRVs

;
(b) a representative PIV velocity and vorticity field shows a tip vortex of strength
G = 0.0388; (c) load distribution; (d) off-design performance curve, showing good
agreement with loads measured during the on-design PIV experiment, ‘�’.

As part of the design process, I wanted to check that my trolling motor apparatus

could operate the propeller over a range of off-design speeds. To perform this check,

I used my off-design performance analysis method (implemented in OpenProp) to

create performance curves for the propeller, as shown in figure 8-6d. This graph

shows that the curves for KT , KQ, and EFFY versus Js are typical of a marine

propeller, and these data allowed me to verify that this propeller would in fact work

with my experimental setup. The thrust, torque, and efficiency data measured during

the steady on-design PIV experiment are also shown in figure 8-6d; these data agree

with the on-design performance predictions by OpenProp.
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Figure 8-7: Expanded blade shape: chord-length versus radius.
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Figure 8-8: Blade thickness: (a) thickness distribution (ten times the maximum
section thickness versus radius); (b) NACA65A010 and NACA65A010 (modified)
thickness forms.

8.2.2 Blade shape

The expanded blade shape is shown in figure 8-7, and the chord-length data are given

in table 8.4. This shape was chosen to give a reasonably large chords for most of

the span, while also maintaining a rounded blade tip. Large chord lengths enable

large blade thickness while still having small thickness to chord ratio. OpenProp is

based on linear foil theory, which requires a small thickness to chord ratio. The blade

thickness was required to be large enough such that the blade would not flex during

testing and such that the propeller could be fabricated on campus via 3D printing.

Providing sufficient blade thickness is paramount with fabricating propellers using

3D printing, because (1) the ABSplus plastic material used by the 3D printer is rather
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flexible, and (2) the wire diameter of the printer I used was 0.007 inch, both of which

limit the minimum allowable thickness of any portion of the blade. To facilitate blade

thickness design, I created the quazi-linear thickness profile shown in figure 8-8a. The

thickness distribution is given by

t0(r) =

(
t0,hub + (t0,tip − t0,hub)

r −Rhub

R−Rhub

)
·

(
1−

(
1−

tmod
0,tip

t0,tip

)
· e

“
−4.6 R−r

R−rmod

”)
(8.2.1)

where I chose a tip-thickness reduction factor of
tmod
0,tip

t0,tip
= 0.50, and the values 4.6 and

rmod = 0.8·R were chosen such that the otherwise-linear thickness profile is essentially

only modified from the 80% span to the tip (rmod < r < R). In this way, the blade is

made thick for much of the span yet has reduced thickness at the tip. The nominal

maximum thickness at the tip section was chosen to be t0,tip = 0.00254 m = 0.1 inch.

The final, modified tip thickness is t0(r = R) = tmod
0,tip = 0.05 inch, which was still large

enough that the tip geometry could be resolved by the 3D printer. The hub section

thickness, t0,hub = 0.35 inch, was chosen to mitigate blade bending; this yields a blade

thickness fraction of: BTF =
t0,axis

D
=

t0,tip+
t0,hub−t0,tip
1−Dhub/D

D
= 0.0484, which is typical of a

marine propeller (Carlton, 1994).

The thickness form used was a version of the ‘NACA 65A010’ thickness form

(Abbott and von Doenhoff, 1959, p. 369) , which I modified slightly to be amenable

to 3D printing. The ‘NACA 65A010’ and ‘NACA 65A010 (modified)’ forms are shown

in figure 8-8, and their geometry is tabulated in table 8.5. For the modified shape, I

truncated and rounded the trailing edge and then stretched the aft half of the blade

section to be the original length. This yielded a blade section with a finite thickness

trailing edge that a 3D printer can resolve. In the fabrication of the propeller, I sanded

the trailing edge to be sharp again, so that the final shape of the blade resembled the

original ‘NACA 65A010’ form.
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‘NACA65A010’
x/c t/c

0.0000 0.00000
0.0050 0.00765
0.0075 0.00928
0.0125 0.01183
0.0250 0.01623
0.0500 0.02182
0.0750 0.02650
0.1000 0.03040
0.1500 0.03658
0.2000 0.04127
0.2500 0.04483
0.3000 0.04742
0.3500 0.04912
0.4000 0.04995
0.4500 0.04983
0.5000 0.04863
0.5500 0.04632
0.6000 0.04304
0.6500 0.03899
0.7000 0.03432
0.7500 0.02912
0.8000 0.02352
0.8500 0.01771
0.9000 0.01188
0.9500 0.00604
1.0000 0.00021

‘NACA65A010 (modified)’
x/c t/c

0.00000000 0.00000000
0.00500000 0.00765000
0.00750000 0.00928000
0.01250000 0.01183000
0.02500000 0.01623000
0.05000000 0.02182000
0.07500000 0.02650000
0.10000000 0.03040000
0.15000000 0.03658000
0.20000000 0.04127000
0.25000000 0.04483000
0.30000000 0.04742000
0.35000000 0.04912000
0.40000000 0.04995000
0.47120419 0.04983000
0.52356021 0.04863000
0.57591623 0.04632000
0.62827225 0.04304000
0.68062827 0.03899000
0.73298429 0.03432000
0.78534031 0.02912000
0.83769634 0.02352000
0.89005236 0.01771000
0.94240838 0.01188000
0.96858639 0.00896000
0.98167539 0.00749953
0.98952880 0.00662364
0.99476440 0.00604000
0.99738220 0.00404902
1.00000000 0.00021000

Table 8.5: Thickness to chord ratio versus chordwise position for the ‘NACA65A010’
(Abbott and von Doenhoff, 1959, p. 369) and ’NACA65A010 (modified)’ forms.
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Figure 8-9: OpenProp rendering of the propeller blades.

The 3D blade geometry was built from 2D sections, as described in Section 7.4.

The geometry of each 2D section is defined by the meanline camber profile and

thickness forms. The meanline selected was the ‘NACA a=0.8 (modified)’ meanline

type (Abbott and von Doenhoff, 1959, p. 403) . This meanline type has an ideal lift

coefficient of C̃LI
= 1.0 and an ideal angle of attack of α̃I = 1.40 with a maximum

camber ratio of f̃0/c = 0.06651. The actual camber and ideal angle of attack of the

sections was scaled by the desired section lift coefficient, per equation (7.4.1).

8.2.3 Fabrication

The resulting 2D and 3D blade geometry is shown in figure 8-9. Outputs from

OpenProp were used to build a model of the propeller in SolidWorks, as shown

in figure 8-10. The blades were lofted and attached to a hub, which was designed to

mate to the motor housing. The hub diameter is 3.3 inches, and a recess is made to

mate with the motor shaft pin and nut retention system. The process of creating a

final propeller in SolidWorks is non-trivial, and the steps are outlined here:

1. Create the hub in SolidWorks (and save a backup copy of the part file). Build

the blades directly onto the hub.
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2. Create the key blade:

• Run the OpenProp Geometry command to create the geometry data

file: ‘filenameSolidWorks.txt’. Make sure that the first and last points of

each SectionCurve are the same (i.e. each section is a closed contour).

• Run the OpenProp SolidWorks macro. This should result in several

blade section curves and guide curves drawn over surface points.

• Create a Surface Loft of SectionCurves 1-21 using GuideCurves 1-6.

• Create a Surface-Fill at the blade tip using TipSectionCurve21 and all of

the TipCurves.

• Create a Surface-Fill at the blade root using RootSectionCurve1 and all

of the RootCurves.

• Knit the three surfaces into a solid.

3. Create Z blades using a Circular Pattern of Solid Bodies about the hub axis

(sketch an axis if you haven’t already).

4. Combine the blades and hub using the Add operation.

5. Add a Fillet/Round radius to the seam between the hub and each blade. I used

a radius of 0.1 inch for the propeller presented herein.

With a completed propeller and hub drawn in SolidWorks, you can export an STL

file, which is the required file format for 3D printing.

I 3D printed my propeller on a Dimension Elite printer, in ABSplus plastic, with a

wire diameter of 0.007 inch, at the MIT Edgerton Center Student Shop. The following

steps were used to prepare the propeller for the tests. During the milling process, the

prototype propeller was held by a 7/8” tapered mandrel, which was press-fit into the

aft hole of the hub. The propeller was first machined on a lathe, to flatten the hub

face and true the propeller shaft hole. The propeller shaft hole was made true using

a 3/8” end mill to center the hole and 3/8” reamer to ream the hole. The propeller

was then held (by the mandrel) in a milling machine V-block for preparation of the
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Figure 8-10: SolidWorks rendering of the propeller and hub.

shaft pin slot and magnet holes. The slot for the shaft pin was finished using a 1/8”

ball end-mill, and the holes for the magnets were cleared using a #21 drill bit. The

magnets were then pressed into each hole with alternating signed poles facing out.

After this machining, the mandrel was pressed out of the propeller, which was now

ready for sanding and painting. The blade surfaces were sanded and then coated with

a thin layer of epoxy to make them smooth and increase their stiffness. Finally, the

blades and hub were spray-painted black such that they did not reflect the intense

laser light during PIV experiments, as shown in figure 8-11.

8.3 Steady propeller performance experiments

Thrust and torque measurements were made in the water tunnel for a range of steady

flow speeds (Vs = 0.1 to 1.9 m/s) and steady rotation rates (n = 1.4 to 9.5 rev/s),

spanning the advance ratios (Js = 0.3 to 1.1). In these experiments, the flow speed

was determined using the in-house LDV system, and the drag on the motor housing
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Figure 8-11: Finished hub and propeller.

was inferred from the calibration data (8.1.2). The net force on the motor assembly

was measured using the force dynamometer, so the thrust produced by the propeller

was computed by (8.1.1), which is reproduced here

T = kf fnet force + Fmotor drag(Vs) (8.1.1)

The torque on the propeller was inferred from measurements of the current supplied

to the motor. In these steady tests, the torque (8.1.3) is

Q = kmim −B(ω) (8.3.1)

where the steady rotation rate, ω, is the slope of a linear fit to the angular position

data acquired from the Hall-effect sensor, and the friction torque, B(ω), is inferred

from the calibration (8.1.5). No tunnel corrections were made (e.g. for blockage

effects) during these measurements.

These data are normalized in the usual way to form thrust and torque coefficients

KT =
T

ρn2D4
p

(8.3.2)

KQ =
Q

ρn2D5
p

(8.3.3)
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Figure 8-12: Off-design propeller performance curves, with experimental data.

where Dp = 0.2487m is the actual diameter of the printed propeller. The efficiency

of the propeller is by definition

EFFY =
TVs

Qω
=

KT Js

2πKQ

(8.3.4)

In figure 8-12, these data are plotted versus advance coefficient

Js =
Vs

nDp

(8.3.5)

Figure 8-12 shows good agreement between the OpenProp off-design

performance predictions and the experimental results. The measured data match

within 10% of the predicted performance for most advance ratios. These data provide

valuable validation for my off-design performance analysis method.

The off-design performance analysis method described in Chapter 7 accounts for

changes in blade section loading due to changes in angle of attack (both due to changes

in advance coefficient and induced velocities). The lift coefficient is computed from the
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Figure 8-13: Effect of parameters on the off-design analysis: (a) lift-curve slope, dCL

dα
;

(b) drag coefficient, CD = 0.02, and as-built lift coefficient, CL0 = 1
2
CL,design.

angle of attack by equation (7.5.4), which is approximately CL ≈ CL,0 + dCL

dα
(α− αI)

prior to stall. The default lift curve slope is dCL

dα
= 2π, but it is of interest to see

how this value affects the lifting line analysis predictions. Figure 8-13a shows that as

dCL

dα
is reduced, the overall thrust and torque curves flatten. This is to be expected,

since the advance coefficient is a proximal measure of the angle of attack. Therefore,

reducing dCL

dα
in effect reduces the sensitivity to changes in advance coefficient.

Figure 8-13b shows two other hypothetical scenarios: (1) suppose the section

drag coefficient CD,0 was 0.02 as opposed to the design assumption of 0.01; and (2)

suppose the blade was incorrectly manufactured, such that it produced an on-design

lift coefficient distribution of half the design intent CL,0. Clearly, the data does not

correlate with scenario (1), since CD,0 = 0.02 results in higher toque loads and lower

efficiencies than were measured. The data also do not correlate with scenario (2), as

this results in much lower loading (particularly on design) than were measured. These

data suggests that the propeller was built and performs close to the design intent.
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8.4 Unsteady start-up experiments

A series of unsteady start-up experiments were performed, in which PIV velocity

fields were obtained in conjunction with measuring the unsteady thrust and torque

on the propeller. In these experiments, the propeller started at rest with the blades

in the PIV laser plane (i.e. the blades were parallel to the floor). When triggered, the

LabView system first began acquiring thrust and torque data and then simultaneously

(1) triggered the PIV camera system to begin recording and (2) triggered the power

supply to deliver power to the propeller. Figure 8-14 shows the unsteady forces for

one such trial, which had a final rotation rate of nf = 5.04 rev/s.

The propeller thrust (figure 8-14a) was inferred as follows. Since the flow speed of

the water tunnel was zero, the drag on the motor housing was assumed to be zero, and

the propeller thrust was assumed to be the total force measured by the dynamometer.

Although axial flow was induced by the propeller, the PIV velocity data (figure 8-17)

show that it was on the order of 1 m/s, which corresponds to a motor housing drag of

about 1 N. This is less than 5% of the typical measured forces, so it is acceptable to

assume that hub drag is negligible in these experiments. Thus, the raw thrust data

(blue dots in figure 8-14a) are the load measured by the force dynamometer scaled

by the calibration constant

T = kf fnet force (8.4.1)

These data were sampled at 5000 Hz. Since no analog signal conditioning was used

prior to data acquisition, the raw data contain significant noise content, especially

at 60 and 120 Hz due to electrical nose. These raw data were filtered in Matlab

using a low-pass Butterworth filter with a 10 Hz cutoff frequency, and the filtered

thrust data are shown as a red line in figure 8-14a. The filtered thrust data were then
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Figure 8-14: Measured forces during one unsteady start-up trial that had a final
rotation rate of nf = 5.04 rev/s: (a) thrust versus time; (b) torque versus time;
(c) angular position versus time; (d) roughness versus error tolerance for smoothing
splines fit to the angular position data; (e) angular acceleration versus time; and (f)
thrust and torque coefficients versus angular position.

normalized to give the thrust coefficient (see figure 8-14f),

KT =
T

ρn2
fD

4
p

(8.4.2)

where Dp = 0.2487 m is the actual diameter of the printed propeller, and nf was the

final rotation rate of the propeller once it reached steady-state.
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The unsteady torque on the propeller was inferred from measurement of the motor

current, im(t) via equation (8.1.3), which is reproduced here

Q(t) = kmim(t)−B(ω(t))− Iaω̇(t) (eqn. 8.1.3)

where the friction torque, B(ω(t)), was computed from the calibration (8.1.5).

The raw current measurements (blue dots in figure 8-14b) were acquired at 5000

Hz (in sync with the thrust measurements), and these data were also filtered with

a 10 Hz low-pass Butterworth filter (red line in figure 8-14b). In these experiments,

the power supply was commanded to deliver a constant current to the motor, so the

current was supposed to be a step input. The data in figure 8-14b show that the

actual current delivered to the motor was a rounded step but was constant once it

reached the required value.

In these unsteady experiments, the instantaneous angular velocity and

acceleration {ω(t), ω̇(t)} were derived from a smoothing spline fit to the angular

position data (blue dots in figure 8-14c) acquired from the Hall-effect sensor (using

the method presented in Chapter 5). The Hall-effect sensor outputs a square wave

that rises or falls when each magnet passes the sensor. Since the 32 magnets are

equispaced about the propeller hub, the angular position is known when each rise

and fall happens, but the time of each rise and fall may have measurement error.

Thus, the Hall-effect sensor data is of the form θ(t̃), where t̃ = t+ε (i.e. the measured

time equals the true time plus some small error). This is equivalent to having data in

which the times are exact but the angles are slightly wrong, since by a Taylor series

expansion θ
(
t̃
)

= θ(t+ε) = θ(t)+θ′(t) ε = θ(t)+O(ε) = θ̃(t). Thus, my method could

be used to fit a smoothing spline to the measured angular position data. Derivatives

of this smoothing spline were computed exactly with remarkable accuracy, since the

smoothing spline is both analytic and follows the local trends in the data.
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Figure 8-14d shows the roughness versus error tolerance frontier for smoothing

splines fit to the angular position data. Each point on this curve represents the

minimum roughness possible for a smoothing spline fit to the data for the specified

error tolerance. Splines exist with more roughness than those on this frontier, but

they are undesirable, since they are inefficient (i.e. they have more roughness than the

splines on the frontier). The best fit spline is the one marked by a red bullet, which

has the minimum error tolerance possible without also having a lot of roughness due

to the noise in the data. Splines with less error tolerance than the selected spline are

quite noisy and do not represent the smooth continuous motion of the propeller. The

selected spline fit to the angular position data is shown as a red line in figure 8-14c.

This spline was used to compute the angular velocity (not shown) and the angular

acceleration (figure 8-14e) of the propeller. For comparison, the angular acceleration

derived by finite differences of the angular position data appears as random noise in

figure 8-14e.

The net propeller torque was then normalized to give the torque coefficient

KQ =
Q

ρn2
fD

5
p

(8.4.3)

which is shown in figure 8-14f.

The results from three selected trials are shown in figure 8-15. These trials had

final rotation rates of nf = [5.04, 5.72, and 6.29] rev/s (where the nf = 5.04 rev/s

case is the one shown in figure 8-14). In these trials, the propeller accelerates rapidly

from rest, reaching its final speed in less than one half of a second. Although the

rotation speeds, thrusts, and torques are different for each trial, they all resemble

the same form, so it is expected that they would collapse onto single curves with the

proper scaling. From the vortex impulse perspective, we expect that the forces on

the propeller scale by the size and strength of the wake, not by time. “Size” of the
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Figure 8-15: Measured forces during three selected unsteady start-up experiments for
trials with final rotation rates nf = [5.04, 5.72, and 6.29] rev/s: (a) angular position
versus time; (b) angular velocity versus time; (c) thrust versus time; (d) torque versus
time; (e) normalized rotation rate versus angular position; and (f) thrust and torque
constants versus angular position.

wake in this experiment corresponds to the distance traveled by the propeller blade.

Therefore, the appropriate non-dimensionalization of time is to instead consider the

angular displacement of the propeller, which can be given in radians or in propeller

revolutions, as shown in figure 8-15. The rotation rate curves collapse onto a single

curve if each is normalized by the steady-state rotation rate and plotted against
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angular displacement, given in figure 8-15 as propeller revolutions. Similarly, the

thrust and torque curves collapse if normalized in the usual way to be thrust and

torque coefficients and plotted against angular displacement, in revolutions.

The unsteady thrust and torque coefficients shown in figure 8-15 oscillate with a

regular pattern, and this is simply due to the experimental setup. In this experiment,

the propeller blades start parallel to the floor (in the PIV laser plane). Loads are

highest for multiples of half-revolutions, when the two blades are again horizontal.

Loads are lowest for multiples of quarter-revolutions, when the blades are vertical

and one blade is in the wake of the fairing that supports the motor assembly (see

figure 8-1). The oscillations in this data simply show that loads are reduced as each

blade passes the support fairing, as expected.

The oscillations in the thrust and toque coefficients (figure 8-15f) also highlight

the power of the smoothing spline method of Chapter 5. By fitting a smoothing spline

to the angular position data using my method, we were able to deduce the oscillations

in the angular acceleration of the propeller and thus, the inertial torque (figure 8-14b).

Since the current supplied to the motor was constant after say two revolutions, the

oscillations in the torque coefficient appear due to the unsteady inertial torque, which

was derived from the smoothing spline. The oscillations in the thrust coefficient data

(figure 8-15f) also appear in the raw thrust data (figure 8-14a). Since the oscillations

in the thrust and torque coefficients were derived by different measurements and

different data processing techniques, they must be real. Without a proper smoothing

spline fit, one would not be able to deduce these minute oscillations in the torque

from the given angular position data.

The steady state operation of the propeller, say between 6 and 10 revolutions,

represents the bollard pull condition, where Js = Vs

nD
= 0. Bollard pull thrust

and torque coefficients were computed for these trials by averaging the data for

each trial between 6 and 10 revolutions, and these results are shown as stars in
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Figure 5-6:  Fluorescent paint visualization. Visualization of the formation and convection of the 

large vortex ring associated with a rapid increase in propeller rate, here a step increase.  Final 

propeller rate is approximately 280 RPM.  Va = 0 ft/s.  Images are separated by 1/10 second (1/2 

propeller revolution at final speed). 
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Figure 5-6:  Fluorescent paint visualization. Visualization of the formation and convection of the 

large vortex ring associated with a rapid increase in propeller rate, here a step increase.  Final 

propeller rate is approximately 280 RPM.  Va = 0 ft/s.  Images are separated by 1/10 second (1/2 

propeller revolution at final speed). 

 

Figure 8-16: Dye visualization of a 3-bladed propeller during impulsive start from
rest showing (a) the formation of an initial vortex ring and then (b) the development
of a slipstream and helical wake. This figure is reprinted from (Stettler, 2004, p. 84).

figure 8-12. The torque coefficients are slightly higher than those that would be

predicted by extrapolating the OpenProp predictions to zero advance coefficient.

Similarly, the thrust coefficients are slightly lower than that which would be predicted

by extrapolating the OpenProp predictions to zero advance coefficient. Since

Q ∼ sin(βi) and T ∼ cos(βi), these data suggest that the inflow angle, βi, is larger at

bollard bull than the OpenProp prediction might assert. However, the OpenProp

bollard pull performance predictions are within 10% of the measured performance,

which is acceptable.

8.4.1 Unsteady wake flow visualization

A qualitative illustration of the vortical structures formed by a propeller during

unsteady startup is shown in figure 8-16, as reprinted from (Stettler, 2004, p. 84).

Stettler (2004) showed using fluorescent dye that a propeller initially makes a three-

dimensional ring-like vortex structure during unsteady startup. As this ring convects

downstream, a slipstream forms, and the wake takes on the usual helical shape.
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In figure 8-17, I characterize one plane of the wake created by my propeller during

unsteady startup, in an effort to quantitatively describe the structure of the wake.

PIV velocity and vorticity fields are plotted over raw images, where red represents

counter-clockwise vorticity and blue represents clockwise vorticity. A solid propeller

blade is shown every half-revolution (when each blade passes through the PIV plane),

and a dashed outline is shown for the frames when no blade is in the PIV plane. The

vortices shed from the blade tips are labeled 1 through 9; it is important to remember

that these are cross-sections of the three-dimensional vortex structures that are shed

from the propeller blades and they do not necessarily represent discrete vortices.

At the start of the experiment, the propeller blades are in the PIV plane. As

the propeller starts from rest, a starting vortex is shed; this vortex is a closed loop,

and both positive (1A) and negative (1B) cross-sections of this loop are visible in

the 0.25 rev frame of figure 8-17. This vortex structure does not move out of the

way of the oncoming blade and is absorbed into vortex 2 in the 0.50 rev frame. As

the propeller completes its first full revolution, vortex 2 represents a complete vortex

ring. Vortex 3 is shed and precesses first through vortex ring 2 and then around

it; by the end of the second full revolution, these vortices have coalesced into one

vortex ring that slowly moves downstream out of the field of view. After the second

full revolution, a slipstream becomes visible as the axial induced velocity grows; the

slipstream is sketched as a dashed line in figure 8-17. After the propeller has reached

steady state, one continuous helical vortex is shed from the tip of each blade (i.e. two

helices in the wake, out of phase with one another). Thus, the vortices numbered 6

and 8 represent cross-sections of a single helical vortex shed from one blade tip, and

vortices numbered 5, 7, and 9 represent cross-sections of the helical vortex shed from

the other blade tip.
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Figure 8-17: Time-series of PIV velocity and vorticity fields showing the unsteady
wake development behind the propeller during startup. Anti-clockwise vorticity is
red, and clockwise vorticity is blue. The hub and propeller blade are masked in
black, and a dashed outline is drawn when no blade is in the PIV plane. The vortices
shed from the blade tips are labeled 1-9, and the slipstream is sketched by a dashed
line.
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Figure 8-18: Vortex ring model of the unsteady wake produced by the propeller
during an impulsive start from rest. After the first full revolution, two vortex rings
are formed with strength Γ2 (green) and Γ3 (blue).

8.4.2 Impulsive force model

I now show how to apply the impulse framework of this thesis to derive an estimate

of the thrust produced by the propeller during the unsteady start-up experiment.

Specifically, I will estimate the thrust after one complete revolution of the propeller.

The thrust is the axial component of the total force on the propeller blades

T = F · ea = (Fv + Fp) · ea (8.4.4)

In the spirit of figures 7-2 and 7-3, I model each propeller blade as being composed

of vortex panels with length equal to the local chord c(r) and span dr, as shown in

figure 8-18. The normal vector n points outwards from the (downstream) pressure

side of the blade (which is consistent with the impulse model of a wing shown in

figure 7-3). Referring to the propeller velocity/force diagram, figure 7-5, the normal

vector is

n = − cos θ ea + sin θ et (8.4.5)

where θ(r) is the pitch angle of the blade section.
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Figure 8-17 shows that as the propeller traces out its first revolution, it sheds

trailing vortices 2 and 3, and using this PIV data, I will quantify their circulations Γ2

and Γ3. I model this (probably quite complex) vortical structure as two axisymmetric

vortex rings (of diameter equal to the propeller diameter), as illustrated in figure 8-18.

The impulse of this model wake is the sum of the impulse of the two vortex rings:

Iw = (I2 + I3) (−ea), where Ii = ρΓi
πD2

4
for i = 2, 3. and the thrust due to the

creation of this wake in time t3 is

−dIw
dt

· ea =
I2 + I3

t3
(8.4.6)

The total thrust due to the vortex impulse force is this component (which accounts

for the creation of the vortical wake), plus a contribution due to the rate of change

of impulse of the bound vortex panels representing the blade sections (analogous to

equation (7.0.6)), as illustrated in figure 8-19a

Fv · ea = −dIw
dt

· ea + Z

∫ R

rhub

ρ
∂Γ

∂t
c (−n · ea) dr (8.4.7)

Since the circulation distribution is not uniform, the force must be integrated over

the span. However, figure 7-10d shows that the circulation distribution is nearly

the same shape for low advance coefficients (the advance coefficient is zero during

startup). Therefore, the bound vortex force is approximately

Z

∫ R

rhub

ρ
∂Γ

∂t
c (cos θ) dr ≈

[
Z

∫ R

rhub

ρ
Γd(r)

Γd,max

c cos θ dr

]
∂Γw

∂t
=

[
8.423 kg/m

]
∂Γw

∂t

where Γw is the measured circulation of the tip vortex shed into the wake, Γd(r)
Γd,max

is the design circulation distribution normalized by its maximum value, and the

integral within the brackets was evaluated using the known design parameters of

the propeller. The average rate of increase of circulation during the first revolution
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Figure 8-19: Illustration of the impulsive vortex and pressure forces on a vortex panel
at radius r of chord c and span dr: (a) The vortex impulse is Iv = ρΓc dr n, and the
thrust is the axial component of the reaction to the rate of change of this impulse,
dT = ρ∂Γ

∂t
c dr(−n · ea); (b) the 2D added mass coefficient of the panel is ρπ

4
c2, and

the acceleration of the panel normal to itself is ω̇r sin θ n. Thus, the added mass force
contributes thrust dT = (ρπ

4
c2)(ω̇r sin θ)(−n · ea) dr.

is ∂Γw

∂t
= Γ3

t3
, where Γ3 is the circulation of the tip vortex shed at the completion of

the first revolution (which was interrogated a few timesteps later, when the propeller

blade no longer obscured the PIV laser plane) and t3 is the time to complete one

revolution. In summary, the total vortex thrust is

Fv · ea =
I2 + I3

t3
+

[
8.423 kg/m

]
Γ3

t3
(8.4.8)

The impulsive pressure force on the propeller blade is given by equation (7.0.7),

which is integrated over the span in this non-uniform case

Fp · ea = Z

∫ R

rhub

ρπ
4
c2(a · n) (−n · ea) dr (8.4.9)

The formulation of this equation is illustrated in figure 8-19b. Since the propeller

rotates as a rigid-body, the acceleration of the blade section at radius r is a = ω̇r et,

where ω̇ is the angular acceleration of the propeller. This ignores the relative

acceleration of the blade to the fluid due to changes in induced velocity, which is

acceptable in the early start-up times, when the induced velocities are small. Thus,
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a ·n = ω̇r sin θ. The impulsive pressure thrust can also be evaluated using the known

design parameters (as I did with the impulsive vortex thrust)

Fp · ea =

[
Z

∫ R

rhub

ρπ
4
c2(r sin θ) (cos θ) dr

]
ω̇ =

[
0.0172 N/(rad/s2)

]
ω̇ (8.4.10)

Since the propeller reaches steady rotation at approximately the time it took to turn

one revolution, the mean angular acceleration is ω̇ ≈ ωs

t3
, where ωs is the rotation rate

once the propeller reached steady state.

In summary, the thrust is

T = F · ea =
dIw

dt
+ Z

∫ R

rhub

ρ∂Γ
∂t

c cos θ dr + Z

∫ R

rhub

ρπ
4
c2(ω̇r sin θ) cos θ dr (8.4.11)

which I approximated for this propeller as

T =
I2 + I3

t3
+

[
8.423 kg/m

]
Γ3

t3
+

[
0.0172 N/(rad/s2)

]
ωs

t3
(8.4.12)

The data for this trial are as follows. The circulation of vortices 2 and 3 shown

in figure 8-17 are Γ2 = 0.0823 m2/s and Γ3 = 0.0697 m2/s. Assuming the model

vortex rings have diameters equal to the propeller diameter, D = 0.2487 m, the

impulse of these vortex rings are I2 = 3.998 kg-m/s and I3 = 3.386 kg-m/s. The

propeller completed one revolution at time t3 = 0.298 s, and the final rotation rate

was ns = 5.04 rev/s, which corresponds to ωs = 5.04 rev/s ·2π rad/rev = 31.67 rad/s.

Using these numbers, equation (8.4.12) predicts the thrust at time t3 to be

T = 24.8 N + 2.0 N + 1.8 N = 28.6 N (8.4.13)

This corresponds to a thrust coefficient of

KT = T
ρn2

sD4 = 0.294 (8.4.14)
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at a rotation angle of 1 revolution. These data are plotted in figures 8-14a and 8-14f as

a ‘?’. This thrust prediction agrees quite well with the measured thrust data. In this

model, I ignored the actual geometry of the wake and modeled it as two axisymmetric

vortex rings. The actual wake is probably quite a bit more complex than this model,

but the thrust estimate is accurate nevertheless.

It is interesting to note that the first term in equation (8.4.13) dominates the

thrust estimate. This is the reaction to the creation of impulse in the vortical wake.

This term is over ten times as large as the other two terms. The form of the last two

terms, as shown in equation (8.4.11), suggests that they scale by the expanded area

of the blade (Carlton, 1994), AE = Z
∫ R

rhub
c dr. Since the impulse of the vortex rings

is proportional to the disk area, A = πD2

4
, the relative importance of either of the last

two terms in (8.4.11) scales by the expanded area ratio, EAR = AE

A
. For this propeller,

A = 0.0491 m2 and AE = 0.0104 m2, so the expanded area ratio is EAR = 0.2118,

which is somewhat low for a marine propeller. It might be interesting to repeat this

experiment with a propeller with a larger EAR to see if the wake creation term still

dominates the total thrust estimate.

8.5 Summary

In this chapter, I discussed the design and construction of a two-bladed propeller, and

I presented the results of performance curve characterization tests as well as unsteady

start-up. Two important contributions were made in Section 8.2.3 regarding propeller

fabrication by 3D printing. First, since a 3D printer requires finite thickness at the

blade trailing edge, I created a ‘NACA 65A010 (modified)’ section thickness profile,

which has the same leading half shape as the standard ‘NACA 65A010’ profile but

has finite thickness at the trailing edge. Second, I created a modified linear thickness

profile (eqn. 8.2.1), which can be used to generate blades that are nominally thick
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enough to prevent blade flexure during testing but also have reduced thickness at

the tip to maintain low thickness to chord ratios at the blade tip. These modified

thickness distribution and section thickness profile are valuable tools for those who

wish to rapid prototype their propeller using 3D printing.

My performance curve data (figure 8-12) provide an important validation for my

off-design analysis methodology of Chapter 7. My analysis method captures the

effect of changes in angle of attack due to changes in inflow speed and induced

velocities. The data in figure 8-12 agree with this model, suggesting that other effects

such as viscous de-cambering and 3D blade interaction effects are less important

than correctly modeling the induced velocities and inflow angle. PIV tests at the

design point show that the circulation of the tip vortex agrees with the circulation

distribution predicted by my OpenProp design optimizer. Taken together, these

results validate the design and off-design performance predictions of my codes.

Unsteady start-up tests reveal the formation of a complex vortical structure in the

wake of a propeller during a start-up event. The trailing vorticity is nominally shed

in the form of a helix, but during startup, the pitch of this helix is so small that the

first two loops coalesce into one leading vortex ring. This vortex ring precesses into

the wake, as a slipstream forms and helical tip vortices are shed by each propeller

blade. Using the impulse framework of this thesis, I developed an estimate for the

thrust produced by the propeller after the first revolution. I modeled the wake at that

instant as two axisymmetric vortex rings, and I used the unsteady wake PIV data

to quantify the circulation of these vortices. The thrust estimate was dominated by

the force required to create these rings, as the unsteady forces on the vortex panels

representing the blades were quite small in comparison. This vortex ring model is

analogous to the vortex ring model of the fish maneuvers presented in Chapter 2,

which shows the versatility and flexibility of the impulsive framework for analyzing

several types of propulsion problems.
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Chapter 9

Hydrokinetic turbine design and

analysis

In this chapter, we consider the design and analysis of hydrokinetic turbines, the

marine analog of wind turbines. We apply lifting line theory to the turbine problem

and find that the same mathematical formulation given in Section 7.2 for propellers

also applies to the turbine case. As such, the off-design performance method

from Section 7.5 also applies to the turbine case. However, we will find that the

propeller optimization method from Section 7.3 does not apply to turbines, as it

results in designs that under-perform actuator disk theory. To achieve actuator disk

performance, a novel turbine optimization method is presented. As a validation case,

a turbine is designed, and performance experiments are presented.

9.1 Turbine lifting-line representation

In this section, I demonstrate that a turbine can be represented in the propeller lifting

line formulation of Section 7.2 simply by allowing a negative circulation, Γ < 0, and

other associated sign changes. If Γ < 0, then {Fi = ρV ∗Γ, CL, u∗a, u
∗
t , f0, α} < 0 as

well, via equations {(7.5.3), (7.2.7), (7.2.8), (7.4.1)}.
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Figure 9-1: Turbine velocity/force diagram, as viewed from the tip towards the root
of the blade. All velocities are relative to a stationary blade section at radius r.

Figure 9-1 shows the turbine velocity/force diagram, with {Γ, Fi, f0, α, u∗a} < 0

and u∗t > 0 as drawn. Since u∗a < 0, u∗a points in the ea direction (as drawn). In

this case, the turbine still rotates with angular velocity ωea, but the direction of the

circulation is reversed (as drawn). This amounts to |Γ|(−er) = Γ er with Γ < 0.

With, {Γ, Fi} < 0 but Fv always positive, the thrust and torque acting on the

turbine are

T = Z

∫ R

rh

[|Fi| cos βi + Fv sin βi]dr (−ea) (as drawn)

= Z

∫ R

rh

[Fi cos βi − Fv sin βi]dr (ea) (eqn. 7.2.3)

Q = Z

∫ R

rh

[|Fi| sin βi − Fv cos βi]rdr (ea) (as drawn)

= Z

∫ R

rh

[Fi sin βi + Fv cos βi]rdr (−ea) (eqn. 7.2.4)

The fluid dynamic power of the turbine acting on the fluid is still

P = Qω (eqn. 7.2.5)

but since Q < 0 for the turbine case, P < 0, indicating that power is being extracted

from the fluid by the turbine.
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The geometry of a turbine is also correctly handled when Γ < 0. In this case, the

2D section lift coefficient

CL =
Fi

1
2
ρ(V ∗)2c

=
2Γ

(V ∗)c
(7.5.3)

is also negative, and this carries through to negative values of the camber and angle

of attack via

{CL, f0, f, αI} =
CL0

C̃LI

· {C̃LI
, f̃0, f̃ , α̃I} (7.4.1)

where CL0 is the on-design lift coefficient, which is negative.

In summary, the thrust, torque, and power are correctly predicted by equations

(7.2.3), (7.2.4), and (7.2.5) when Γ < 0 for the turbine. Furthermore, since

{u∗a, u∗t , CL, f0, α} depend linearly on the circulation, these parameters are also

correctly handled when Γ < 0. Therefore, the same lifting line code can be used

for both the propeller and turbine cases!

9.2 Turbine design optimization

9.2.1 Simple turbine optimization scheme

One might formulate the turbine optimization problem as follows: Find the set of M

circulations of the vortex lattice panels that produce the least torque (i.e. the most

negative torque, giving the largest power extraction at the specified rotation rate).

In other words, solve the propeller optimization problem, {(7.3.3),(7.3.4)}, with no

thrust constraint. For simplicity, consider the inviscid flow case, CD = 0. In this

formulation, the system of equations for minimizing torque (7.3.10) becomes:

0 =
∂Q

∂Γ(i)
= ρZ

M∑
m=1

Γ(m) ·

 ū∗a(m,i)rc(m)4rv(m)+

ū∗a(i,m)rc(i)4rv(i)


+ ρZVa(i)rc(i)4rv(i) (for i = 1 . . . M) (9.2.1)
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Figure 9-2: (a) Power coefficient, CP , versus tip speed ratio, λ = ωR
Vs

, for turbines
“optimized” by solving the system of equations (9.2.1). Optimization by solving
equations (9.2.1) does not reproduce actuator-disc-with-swirl theory (black line),
whereas using the actuator-disk-with-swirl-based optimizer (9.2.2) does. Here, CD =
0 and Z = 80. (b) Circulation G = Γ

2πRVs
versus radius for the turbines optimized for

λ = 5. (c) Induced velocities {u∗a
Vs

,
u∗t
Vs
} for the simple optimizer (9.2.1). (d) Induced

velocities {u∗a
Vs

,
u∗t
Vs
} for the actuator-disk-based optimizer (9.2.2).

Figure 9-2a shows that this scheme does not yield the largest power extraction

possible (i.e. this scheme does not reproduce actuator disc theory). In this figure, a

series of turbines were “optimized” by solving (9.2.1), and the power coefficients of

these turbines are plotted against their tip-speed ratios. The theoretical maximum

power extraction at these tip-speed ratios is given by actuator-disc-with-swirl-and-

viscous-losses (ADS) theory (Stewart, 1976), which is shown as a solid black line in

figure 9-2a. Clearly, “optimization” by solving equations (9.2.1) does not reproduce

actuator-disc-with-swirl theory. However, turbines may be designed to replicate ADS

theory using an ADS-based optimizer, as discussed in the following section. In this

example, CD = 0, Z = 80, and the axial inflow is Va

Vs
= 1 for all blade sections.
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The question is: why does the system of equations (9.2.1) under-perform actuator

disk theory? Figures 9-2b, 9-2c, and 9-2d show the reason for the under-performance

of the (9.2.1) scheme. Optimizer (9.2.1) produces turbines that induce axial velocity

u∗a
Vs

= u∗a
Va
≈ −1

2
(as shown in figure 9-2c), whereas actuator disk theory prescribes

u∗a
Va

= −1
3

for maximum power extraction. Equations (9.2.1) do not yield turbines

that extract as much power from the flow as ADS theory predicts, because solving

(9.2.1) yields a circulation distribution which induces too much axial induced velocity,

thereby reducing the flow rate through the turbine more than it should, resulting in

less power available for extraction. For comparison, my ADS-based optimizer (9.2.2)

produces turbines that induce axial velocity u∗a
Vs
≈ −1

3
(as shown in figure 9-2d), which

is why the power produced by these turbines replicates that of ADS theory.

To deduce the under-performance of (9.2.1) mathematically, note that the

horseshoe influence matrices {ū∗a, ū∗t} are dominated by their diagonal terms. To

the leading order, the influence functions and induced velocities behave like

ū∗a(m,i) ≈


0 (m 6= i)

ū∗a(i,i) (m = i)

u∗a(i) ≈ Γ(i)ū∗a(i,i)

With these approximations, it is evident that the system of equations (9.2.1) behaves

like M independent equations (i = 1 . . . M)

0 = ρZ · Γ(i) · [2 ū∗a(i,i)rc(i)4rv(i)]

+ ρZVa(i)rc(i)4rv(i)

which are each satisfied when

u∗a(i) = −1
2
Va(i)
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This result is consistent with the example induced velocity distribution shown

in figure 9-2c, as discussed above. In short, the simple turbine optimization

scheme (9.2.1) under-performs actuator disk theory, because solving (9.2.1) yields

a circulation distribution which induces too much axial velocity. Physically, this

results in a smaller flow rate through the turbine than actuator disk theory suggests

and too little power available for extraction.

9.2.2 Improved, actuator-disk-based optimization scheme

I have created an actuator-disk-based turbine optimization procedure, which is

formulated as follows. My procedure is a vortex-lattice adaptation of actuator-

disc-with-swirl-and-viscous-losses (ADS) theory (Stewart, 1976). During the design

optimization, flow parameters {Γ, u∗a, u∗t , ū∗a, ū∗t , βi} must be self consistent to define a

physically-realistic operating state of the turbine. That is, equations {(7.2.7), (7.2.8),

(7.2.9), (7.2.10), (7.2.2)} must hold, given Γ.

In the present optimization scheme, I set the tangential induced velocity to the

actuator disc with swirl (ADS) value

u∗t ≡ u∗t,ADS (9.2.2)

The remaining flow parameters {Γ, u∗a, ū
∗
a, ū

∗
t , βi} are determined iteratively. Initially

setting u∗a = u∗a,ADS allows one to start a loop that computes βi via (7.2.2), then

{ū∗a, ū∗t} via {(7.2.9), (7.2.10)}. Then, the circulation distribution can then be

determined by solving the matrix equation

[ū∗t ] · [Γ] = [u∗t,ADS]

for Γ. Finally, u∗a is computed via (7.2.7), and the loop restarts. Iteration continues

until every state variable has converged.
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Figure 9-3: (a) Power coefficient, CP = P/1
2
ρV 3

∞πR2, versus tip speed ratio, λ = ωR
V∞

,
for optimized turbines. The CP of turbines designed with 100 blades agrees quite well
with actuator-disc-with-swirl-and-viscous-losses theory (Stewart, 1976), as shown for
three CD/CL ratios. Performance data of 3-bladed wind turbines in service, digitized
from (Kahn 2006), is also shown for reference. (b) Power coefficients of 3-bladed and
100-bladed turbines converge for high tip speed ratios (λ > 25), as expected.

The performance of several turbines optimized using this scheme is shown in

figure 9-3. Using this scheme (9.2.2), one can reproduce the CP vs. λ performance

curves from ADS theory (Stewart, 1976), as shown by the (essentially infinite-bladed)

Z = 100 curves in figure 9-3a. An additional check that this scheme works correctly,

which is shown in figure 9-3b, is that for very high tip speed ratios (λ > 25), each of

the Z = 3 curves asymptotes to its corresponding Z = 100 curve, as expected.

Clearly, the scheme presented here could be augmented to set u∗a ≡ u∗a,ADS and

solve for whatever u∗t , etc. is self-consistent with that. I find marginally-worse

agreement with actuator disc theory using this approach. One point of ongoing work

is to reformulate the turbine optimization problem in such a way that it does not

require actuator disc theory as an input.
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9.2.3 Chord length optimization

During the circulation optimization procedure, the chord, c, can chosen in order to

restrict the lift coefficient to a given maximum allowable absolute value, CLmax , such

that

CL = CLmax ·
Γ

|Γ|
(9.2.3)

c =
2|Γ|

(V ∗)CLmax

(9.2.4)

It is important to restrict the maximum lift coefficient in order to prevent flow

separation and cavitation at the leading edge of the propeller/turbine blade. The

absolute values in (9.2.3) and (9.2.4) are necessary for the turbine case, in which

Γ < 0 and CL = −CLmax , but c > 0.

9.3 Off-design performance analysis

The same off-design performance analysis method presented in Chapter 7 can be used

for propellers as well as turbines. The Newton solver implemented in OpenProp was

in fact written for the turbine case, where the operating state is characterized by an

off-design (OD) tip-speed ratio,

λOD =
ωODR

Vs

=
π

Js,OD

(9.3.1)

and unknown flow parameters {V ∗, α, CL, Γ, u∗a, u∗t , βi, ū∗a, ū∗t}. Since the same

governing equations apply to the propeller and turbine cases, the same code can be

used for either.

An example off-design analysis is presented in figure 9-4. For reference, the ADS

performance frontier, industry wind turbine data, and the performance of ADS-based
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Figure 9-4: Power coefficient, CP , versus off-design tip speed ratio, λ, for a turbine
designed to operate at λD = 5, with specifications CD = 0.01 and Z = 3.

optimized turbines with CD/CL = 0.01 and Z = 3 are reproduced from figure 9-3. The

off-design performance is shown for the turbine designed to operate at λD = 5. The

performance predicted by the analyzer (‘•’) agrees with the performance predicted by

the optimizer (‘N’) at λ = 5, and the performance for higher tip speed ratios compares

quite favorably with wind turbine industry performance data from (Kahn 2006). For

λ < 3, the power coefficient drops precipitously, as the net angle of attack drops

below the specified stall angle (−8◦) at many blade sections and the blade stalls. For

3 < λ < 5, the turbine optimized for λD = 5 outperforms the ADS-based performance

frontier. That is, the λD = 5 turbine (‘•’) outperforms the ‘optimized’ turbines at

λ = 4 and 3 (‘N’), indicating that the ADS-based optimization method does not

truly find the best configurations possible. Reformulating the turbine optimization

method is one focus of ongoing work.
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Parameter Value Description
Z 2 number of blades
n 19.1 rev/s rotation rate (120 rad/s)
D 0.25 m propeller diameter (approx 10 in)
V s 3 m/s ship speed (free-stream speed)

Dhub 0.08382 m hub diameter (3.3 in)
M 20 number of vortex panels
ρ 1000 kg/m3 water density

λ = ωR
V s

5 tip-speed ratio
CL,max 0.5 maximum allowable lift coefficient

Table 9.1: Turbine design input parameters.

9.4 Turbine off-design performance experiments

9.4.1 Turbine design

The author designed a two-bladed horizontal-axis turbine for use in off-design

performance validation tests. The turbine was specifically designed to operate using

the same experimental test setup used for propeller tests. As with the propeller

designed in Chapter 8: the inflow velocity profile was assumed uniform (Va/Vs = 1);

the swirl inflow velocity was zero (Vt = 0); the turbine had zero rake or skew; and

the section drag coefficient was assumed to be CD = 0.010 for all blade sections. The

choice of diameter, hub size, and blade number was also carry-over from the propeller

design. Other relevant parameters appear in table 9.1, and their justification follows.

A parametric design study was performed to select the free-stream speed and

rotation rate for the turbine. The results of this study are shown in figure 9-5.

Figure 9-5 shows the power coefficient of turbines with Z = {2, 3, 4, 100} blades

designed for a range of tip speed ratios, 0.25 < λ = ωR
Vs

< 10. The selected tip speed

ratio, λ = 5, has nearly the best power coefficient for the two-bladed turbines and

is typical of a marine current turbine. The free-stream speed and rotation rate were

then chosen to give this tip speed ratio (see table 9.1) and to produce torque in the

range that the trolling motor could be used in the experiments.
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Figure 9-5: Parametric design study: power coefficient, CP , versus tip-speed ratio, λ,
and number of blades, Z = {2, 3, 4, 100}, as computed using the ADS-based turbine
optimization method with CD/CL = 0.02. The design point is marked by the ‘�’.

r/R G CL βI α θ c
D

f0

c
t0
c

0.3517 -0.0409 -0.5000 20.4575 -0.7000 19.7575 0.2567 -0.0333 0.0975
0.3845 -0.0410 -0.5000 18.9267 -0.7000 18.2267 0.2400 -0.0333 0.1011
0.4173 -0.0411 -0.5000 17.5991 -0.7000 16.8991 0.2250 -0.0333 0.1045
0.4502 -0.0411 -0.5000 16.4386 -0.7000 15.7386 0.2115 -0.0333 0.1076
0.4830 -0.0411 -0.5000 15.4169 -0.7000 14.7169 0.1992 -0.0333 0.1105
0.5158 -0.0411 -0.5000 14.5114 -0.7000 13.8114 0.1879 -0.0333 0.1132
0.5486 -0.0410 -0.5000 13.7039 -0.7000 13.0039 0.1773 -0.0333 0.1156
0.5815 -0.0408 -0.5000 12.9799 -0.7000 12.2799 0.1675 -0.0333 0.1179
0.6143 -0.0405 -0.5000 12.3273 -0.7000 11.6273 0.1582 -0.0333 0.1201
0.6471 -0.0401 -0.5000 11.7365 -0.7000 11.0365 0.1493 -0.0333 0.1223
0.6799 -0.0395 -0.5000 11.1992 -0.7000 10.4992 0.1406 -0.0333 0.1244
0.7128 -0.0388 -0.5000 10.7086 -0.7000 10.0086 0.1321 -0.0333 0.1267
0.7456 -0.0378 -0.5000 10.2592 -0.7000 9.5592 0.1236 -0.0333 0.1293
0.7784 -0.0366 -0.5000 9.8459 -0.7000 9.1459 0.1149 -0.0333 0.1324
0.8113 -0.0351 -0.5000 9.4649 -0.7000 8.7649 0.1059 -0.0333 0.1363
0.8441 -0.0331 -0.5000 9.1124 -0.7000 8.4124 0.0963 -0.0333 0.1416
0.8769 -0.0306 -0.5000 8.7856 -0.7000 8.0856 0.0857 -0.0333 0.1492
0.9097 -0.0272 -0.5000 8.4819 -0.7000 7.7819 0.0737 -0.0333 0.1608
0.9426 -0.0226 -0.5000 8.1990 -0.7000 7.4990 0.0591 -0.0333 0.1812
0.9754 -0.0157 -0.5000 7.9353 -0.7000 7.2353 0.0396 -0.0333 0.2325

Table 9.2: Optimized turbine blade load distribution and associated section geometry.
All angles are given in degrees.
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Figure 9-6: Optimized turbine loading and off-design performance: (a) non-
dimensional circulation, G = Γ

2πRVs
, versus radius, r

R
; (b) non-dimensional induced

velocities, {u∗a
Vs

,
u∗t
Vs
}, versus radius; (c) loading per unit span per blade versus radius;

(d) predicted off-design power coefficient versus tip-speed ratio.

The optimized load distribution and the associated blade geometry is given in

tabular form in table 9.2 and is also shown in figure 9-6. The off-design performance

of the turbine is also shown in figure 9-6. The power coefficient falls for increasing

tip speed ratios, since increasing the rotation rate decreases the angle of attack of

each blade section, which decreases the loading produced by the blade. Conversely,

decreasing the tip speed ratio increases the section angle of attack, increasing power

production. However, the power coefficient drops precipitously for low tip-speed

ratios, λ < 3, as sections of the blade exceed the stall angle of attack.

The blade geometry is shown in figures 9-7 and 9-8. Figure 9-7a shows the

optimized chord distribution for this turbine. In order to minimize viscous drag,
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Figure 9-7: OpenProp rendering of the tubine blades.

Figure 9-8: SolidWorks model of the turbine and hub.

the chord lengths were minimized via equation (7.3.5), with a maximal allowable lift

coefficient of CL,max = 0.5 for this turbine. The blade thickness distribution shown

in figure 9-7b was given by equation (8.2.1), with hub and tip section thicknesses of

t0,hub = 0.25 inch and t0,tip = 0.10 inch, a tip-modification radius of rmod = 0.8R,

and a tip-thickness reduction factor of
tmod
0,tip

t0,tip
= 0.75. This thickness distribution is

approximately linear for r < rmod and is modified by the exponential term for larger

radii. The final, modified tip thickness is t0(r = R) = tmod
0,tip = 0.075 inch.

283



Figure 9-9: Finished turbine in the water tunnel. The flow is still left to right as in
the propeller experiments, but the motor housing has been turned around such that
the load on the propeller shaft is still compressive.

Figures 9-7c and 9-7d show the 2D and 3D blade geometries. Each 2D section

uses a ‘NACA 65A010 (modified)’ thickness form and a ‘NACA a=0.8 (modified)’

camber profile, which has an ideal lift coefficient, ideal angle of attack, and camber

ratio of C̃LI
= 1.0, α̃I = 1.40, and f̃0/c = 0.06651 respectively. These angle of attack

and camber ratio are scaled by the desired lift coefficient (CL = CL,max) to give the

desired section geometry.

Figure 9-8 shows a SolidWorks rendering of the turbine blades built on the

same hub that was used for the propeller in Chapter 8. The turbine was 3D printed

and machined as discussed in Chapter 8. The finished turbine is shown in figure 9-9.

In the turbine performance tests, the trolling motor apparatus was turned around

(see figure 9-9), such that the forward end of the turbine is opposite that of the

propeller presented in Chapter 8. The reason for this is because the trolling motor

used in the performance tests only has a thrust bearing that can bear compressive

load. In other words, if there were to be a (drag) force on a propeller or turbine that
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would tend to pull the propeller/turbine away from the motor housing (i.e. put tension

on the propeller shaft), there would be inordinate friction in the motor housing,

because the thrust bearing would no longer be the bearing surface. In order to

maintain compression on the thrust bearing, the trolling motor was turned around

for the turbine tests, so the tip of the hub now is the nose of the motor assembly. A

nose cone was 3D printed and fit snugly in the turbine hub, as shown in figure 9-9.

9.4.2 Steady performance experiments

A series of steady-state off-design performance tests were performed to characterize

the turbine. In each test, the free-stream speed, Vs, was measured, and a time-series

of turbine angular position data was acquired from the Hall-effect sensor, as described

in Chapter 8. The steady rotation rate, ω, was determined for each trial by the slope

of a linear fit to the Hall-effect sensor data. In these tests, the electrical leads to the

trolling motor were left open-circuit, so the current flowing through the motor was

zero (im = 0), and the net torque on the turbine was

|Q| = B(ω) (9.4.1)

where the friction torque, B(ω), is given by calibration equation (8.1.5), and the

absolute value is used for convenience in plotting the data. The hydrodynamic power

(acting on the turbine) and power coefficient are

P = |Q| · ω (9.4.2)

CP =
|Q| · ω

1
2
ρV 2

s πR2
(9.4.3)

where Vs was measured for each trial, ρ = 1000 kg/m3 is the water density, and

R = 0.125 m is the measured radius of the turbine. Power coefficient data are plotted

against tip-speed ratio λ = ωR
Vs

in figure 9-10.
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Figure 9-10: Off-design performance data for the turbine (same data in both figures)
with performance curves illustrating hypothetical scenarios: (a) increased drag
coefficient (CD = 0.01 as designed), and (b) reduced on-design lift coefficient (the
on-design lift coefficient is CL = CL,0 as designed).

The measured power coefficient data do not agree well with the predicted

performance curve shown in figure 9-10 (the as-designed performance curve is shown

as the solid red lines). However, the data in figure 9-10 suggest two possible

explanations: (a) the section drag coefficient may be higher than 0.01, or (b) the

effective camber of the turbine may be less than as designed, which would reduce

the on-design lift coefficient. Both explanations are plausible, as performance curves

created for either of these hypothetical scenarios agree with the experimental data in

figures 9-10a and 9-10b over a large range of tip-speed ratios. (Note that it is purely

coincidence that the CD-doubled and CL,0-halved performance curves resemble one

another. The the performance curves for CD tripled and CL,0 divided by three do not

overlay, as expected.)

The CD = 0.02 performance curve shown in figure 9-10a fits the data well. If

the drag coefficient is truly 0.02 for the NACA blade section forms (which were used

for both the turbine and propeller), then the propeller experimental data should also

agree with a hypothetical performance curve where we set CD = 0.02 for the propeller.

However, the measured propeller torque data were less than the ‘as designed’ torque
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prediction, whereas increasing the drag coefficient raises the torque prediction. While

thickness to chord ratio and Reynolds number differences between the propeller and

turbine experiments might afford some wiggle room for CD, this hypothesis is unlikely

to be true.

The measured data also support the hypothesis that the as-built section lift

coefficients are less than the design intent. This hypothesis is illustrated in figure 9-

10b, where theoretical performance curves were created for the turbine by simply

dividing the as-designed lift coefficient by 1/2 or 1/3 and finding the off-design

states. This is not quite correct physically, because simply adjusting the on-design

lift coefficient without also changing the other flow parameters (such as circulation)

results in a design state which is not physically realizable. However, this rough

procedure still illustrates the point that if the as-built lift coefficient were half of the

design-intent values, then the turbine would perform roughly as how the data show.

This scenario is quite plausible, since it is known that 3D effects cause an effective

de-cambering of about half. That is, due to 3D effects, the lift coefficient achieved

for a given camber, f0, would be half of what (7.4.1) would dictate

CL0 ≈
1

2
· f0

f̃0

C̃LI
(9.4.4)

Thus, since we built the propeller and turbine according to equation (7.4.1), we

hypothesize that the on-design lift coefficient may be about half of the predicted

value. It should be noted that the turbine blades were observed to flex slightly

during the performance tests, which would certainly change the camber of the blades

regardless of any 3D effects which may or may not have also occurred.

The experimental method used to obtain the power estimates should also be called

into question, since we did not directly measure the torque generated by the turbine.

Ideally, one would directly measure torque on the propeller shaft, with possibly the
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friction in just one seal to account for. At the time of publication of this thesis, a

graduate student was building a turbine test fixture, and further turbine performance

tests are one point of ongoing work.

9.5 Summary

In this chapter, we applied lifting line theory to the design and analysis of hydrokinetic

turbines. We showed that the same mathematical framework given in Chapter 7 for

propellers also applies to the turbine case, where the circulation and a number of

other flow parameters take on negative values. We also showed, however, that the

propeller optimization scheme does not apply in the turbine case, as it results in

turbines that under-perform actuator disk with swirl (ADS) theory. Actuator disk

performance can be achieved by designing a turbine such that its tangential induced

velocity matches that prescribed by ADS theory.

We used the ADS-based turbine optimization method to design a two-bladed

turbine for use in off-design performance tests. In a series of performance tests,

however, we found that the power coefficient did not match well with the predicted

values. We hypothesize that this is due to effective de-cambering of the turbine

blades, either due to 3D effects which change the on-design lift coefficient, or due to

blade flexure during the tests. The experimental method used to obtain the power

extraction can also be called into question, since we did not directly measure the

torque generated by the turbine. Further performance tests are ongoing work.
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Chapter 10

Summary and outlook

This thesis presents an impulse framework for estimating the fluid-dynamic force

on a body in flow. Applications for this framework are drawn from hydrodynamics

problems of interest: fish swimming and maneuvering, free-surface impact of spheres,

and marine propeller and turbine design.

The impulse-force framework postulates that the total force on a body is the sum

of the vortex impulse force and pressure impulse force

F = Fv + Fp (1.2.14)

where Fv is the reaction to the rate of change of vortex impulse of the additional

vorticity created by the body (including both the bound vorticity and the free vorticity

shed into the wake), and Fp is the reaction to the rate of change of pressure impulse

required to generate the potential flow about the body

Fv = −dIv
dt

= − d

dt

[
1

2
ρ

∫
V

x× ωa dV

]
(1.2.15)

Fp = −dIp
dt

= − d

dt

[∫
Sb

ρφn̂ dS

]
(1.2.16)

I applied this impulse-force framework in a series of problems in this thesis.
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In Chapter 2, I showed that the total momentum change of a fish making a rapid

C-turn maneuver is accurately predicted by integrating these impulsive forces over

the short duration of the maneuver: mfish4Vfish =
∫ tend

tstart
(Fv + Fp) dt. In this study,

I modeled the wake created by the maneuvering fish as two vortex rings, which have

a simple algebraic formula for their impulse, I = ρΓA
(
1 + 3

4
a
A

)
.

In Chapter 3, I considered steady swimming, for which we know the time-averaged

force must be zero, 〈F〉 = 0. I modeled the time-averaged vortex impulse force, 〈Fv〉,

using the classical theory of von Kármán and Burgers, and I found good agreement

between the swimming performance of a robotic fish and the scaling laws prescribed

by this model.

In Chapters 5 and 6, I considered the free-surface impact of a falling sphere. In

this problem, the air cavity formed behind a hydrophobic sphere during water entry

prevents the formation of a vortical wake, so Fv = 0. In this chapter, I applied

potential flow theory to model the unsteady pressure impulse force on the sphere,

since F = Fp. I found good agreement between the forces predicted by my potential

flow model and the overall force deduced by fitting a smoothing spline to digitized

sphere position data, using the method developed in Chapter 5.

The performance of a marine propeller, considered in Chapter 7, afforded the

opposite scenario, in which Fp = 0 and F = Fv for steady-state operation.

Applying the general impulse framework, I derived propeller lifting line theory, which

I then used that to create an off-design performance analysis method for marine

propellers and hydrokinetic turbines. The experimental performance data I collected

in Chapter 8 agreed with predictions, thus validating the method.

Finally, I brought the thesis full circle by examining the unsteady start-up of

a marine propeller, in which case both the vortex and pressure impulse forces

contributed to the total load on the propeller, F = Fv + Fp. This wide breadth

of experiments showcases the versatility and utility of my impulse-force framework.
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What are the nature of Fv and Fp? In Chapter 6, I proved that the pressure

impulse force is equivalent to computing the net pressure force on the body,

Fp ≡ − d

dt

[∫
Sb

ρφn̂ dS

]
(??)

=

∫
Sb

(p∞ − ρ∂φ
∂t
− 1

2
ρ|∇φ|2)n̂ dS (6.0.2)

with the pressure computed using Bernoulli’s equation p = p∞−ρ∂φ
∂t
− 1

2
ρ|∇φ|2. Now

F = Fp only for ideal flows, in which viscous effects are ignored and the velocity field is

modeled as that given solely by a potential function, u = ∇φ. However, in Chapter 1,

I noted that any incompressible fluid flow can be decomposed into a potential flow

and the remaining component, u = ∇φ+u0. Thus, for a real fluid flow, it is possible

to determine its potential function, compute a “pressure” from Bernoulli’s equation,

and compute the resulting “net pressure force” from (6.0.2). These “pressure” and

“net pressure force” will not be correct for any flow with non-zero u0. That is, they

will not be correct for any flow with non-zero vorticity, since ω ≡ ∇ × u = ∇ × u0

(because of the well-known vector identity ∇ × ∇φ = 0). The total force for a real

flow is given by integrating the true pressure and tractive forces over the body surface

F =

∫
Sb

n̂ · [pE−T] dS (1.0.2)

Therefore, the vortex impulse force can be written as

Fv = F− Fp

=

∫
Sb

n̂ · [pE−T] dS −
∫

Sb

(p∞ − ρ∂φ
∂t
− 1

2
ρ|∇φ|2)n̂ dS (10.0.1)

This result shows that the vortex impulse force can be thought of as a correction to

the potential flow “net pressure force”, due to the presence of vorticity in the wake

of the body.
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To reiterate, for any flow, one can compute the velocity potential and use it

to compute the pressure impulse force. The pressure impulse force is the net

pressure force on the body, with the pressure computed using unsteady Bernoulli’s

equation. Since unsteady Bernoulli’s is invalid for (real) viscous flows, it will not

yield the correct pressure, and the total force on the body will be different than the

pressure impulse force. The presence of viscosity enables vortex shedding from the

body, which augments the pressure and tractive forces on the surface of the body.

Equation (10.0.1) states that the vortex impulse force is a correction to the pressure

impulse force, and if computed exactly would rectify the difference between (a) the

force computed by integrating the true pressure and viscous stress over the body

surface, and (b) the force computed by integrating the potential flow “pressure” (as

derived from unsteady Bernoulli’s equaiton) over the body surface.

The impulse-force equations (1.2.14), (1.2.15), and (1.2.16) provide a useful

framework for analyzing the hydrodynamic forces on bodies in fluid flows. The studies

presented herein demonstrated practical application of this framework, making use

of simple potential flow constructs to model the motions of a body and the vortical

structures in its wake. This framework affords one the ability for efficient numerical

simulation for design or for analysis and interpretation of experimental findings.

This thesis also presents novel numerical methods for experimental data analysis.

In Chapter 4, I considered the effects of performing a singular value decomposition

(SVD) on experimental data, which inherently contains measurement error. I derived

a ‘threshold criterion’ (4.2.1) that determines the validity of an experimentally-derived

SVD mode. Experimental error also makes computing instantaneous derivatives of

measured data challenging. In Chapter 5, I presented a novel method for fitting

a smoothing spline (which can be used to compute these derivatives) based on the

concept of a ‘roughness to error tolerance efficient frontier’. These mathematical tools

are quite general and extremely useful for analyzing measured data.
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10.1 Contributions of this thesis

In this thesis, I derived an impulse-force framework useful for analysis of experimental

results and efficient numerical simulation of forces on bodies in flow. I applied this

framework to a number of hydrodynamics problems of interest: fish swimming and

maneuvering, free-surface impact of spheres, and marine propeller and turbine design.

Several contributions were made in this thesis, and some are highlighted below:

Part I: Fish propulsion

• Applied impulse-force framework to fish maneuvering and showed that the total

change in momentum of the fish during a rapid maneuver balances the total

impulse imparted to the fluid during the maneuver (Ch. 2).

• Demonstrated that the unsteady vortical wake generated by a maneuvering fish

can be modeled as discrete axisymmetric vortex rings (Ch. 2).

• Confirmed experimentally that for high-Strouhal-number swimming, the

vortices shed at the caudal fin eventually split and form a V-shaped double

wake, whereas for low-Strouhal-number swimming, the vortices shed at the

caudal fin form a single wake and do not split (Ch.3-4).

• Created a vortex impulse thrust model for fish swimming, based on the

concept of a composite wake. Demonstrated that this model adequately predicts

the thrust generated by a fish during steady swimming (Ch. 3).

• Demonstrated experimentally that fish swimming speed scales by the

strength and geometry of the composite wake and not by tail flapping

amplitude, for both a fish robot and a live fish (Ch. 3).

• Demonstrated that a fish wake, which resembles a reverse Kármán street, is

adequately represented by just four biorthogonal decomposition modes (Ch. 4).
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Part II: Methods for experimental data analysis and modeling

• Provided a unifying discussion of how the singular value decomposition relates

to its special cases: the biorthogonal decomposition and the proper orthogonal

decomposition (Ch. 4).

• Created a threshold criterion to determine if a singular value decomposition

mode is corrupted by measurement error (Ch. 4).

• Demonstrated why, for high-precision high-resolution experimental data, a

smoothing spline should be used to compute derivatives of the data, as opposed

to data regression to an assumed functional form or finite differences (Ch. 5).

• Created a novel and robust method for fitting a smoothing spline to

experimental data, based on the concept of a roughness versus error tolerance

efficient frontier (Ch. 5).

• Developed an automated numerical method for finding the critical error

tolerance corresponding to the best fit smoothing spline (Ch. 5).

• Determined the unsteady deceleration and total force on a sphere during

water entry using a smoothing spline fit to measured position data (Ch. 5).

• Applied my impulse-force framework to the sphere impact problem and

demonstrated that the total force on the sphere is accurately explained using a

potential flow model (Ch. 6).

• Created an axisymmetric 3D potential flow model of a sphere and its

sub-surface air cavity during water entry, and validated this model using

experimental data. With this model, explained the nature of the unsteady

forces on the sphere during water entry due to the ‘unsteady’, ‘Bernoulli’,

and ‘hydrostatic’ pressure components. Demonstrated how cavity growth and

collapse modulates the ‘unsteady’ pressure force on the sphere (Ch. 6).
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Part III: Marine propulsion and energy harvesting

• Demonstrated how propeller lifting line theory is represented in my impulse-

force framework (Ch. 7).

• Presented the theoretical foundation and numerical implementation of my

OpenProp code suite, which can be used for the design optimization, rapid

prototyping, and off-design analysis of marine propellers and hydrokinetic

turbines (Ch. 7).

• Developed a propeller design method that determines the optimum load

distribution, with the constraint of a prescribed hub loading (Ch. 7).

• Created and implemented a numerical method for off-design performance

analysis of propellers or turbines using lifting line theory (Ch. 7).

• Validated my off-design performance analysis method by designing, building,

and testing the performance of a two-bladed marine propeller (Ch. 8).

• Created a modified ‘NACA 65A010’ thickness form for use in designing

propellers for rapid prototyping by 3D printing (Ch. 8).

• Characterized the unsteady vortical wake generated by a propeller during

unsteady start-up experiments (Ch. 8).

• Explained why turbines are not successfully optimized if propeller vortex lattice

theory is implemented without consideration of actuator disc theory (Ch. 9).

• Created and implemented a turbine design optimization method that

unites propeller vortex lattice theory with actuator disc theory (Ch. 9).

• Validated my off-design performance analysis method by designing, building,

and testing the performance of a two-bladed hydrokinetic turbine (Ch. 9).
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Figure 10-1: Model of a large flexible wind turbine on an offshore floating platform.

10.2 Extensions of this work

Building upon the theoretical framework of my thesis and drawing on my expertise

with particle imaging velocimetry and my understanding of numerical methods, I am

focused on developing accurate models and numerical tools with which to analyze

a wide array of fluid dynamics problems. Looking forward, I plan to continue my

research in these target areas: (a) offshore wind and marine hydrokinetic turbines;

(b) biologically-inspired propulsion; and (c) numerical tools for experimentalists.

A major concern in the design and operation of large wind turbines is unsteady

blade loads, since they can lead to fatigue failure of the blades themselves, or

other turbine components. Peak unsteady loads can be reduced via active control

of individual turbine blades, but prediction and mitigation of peak blade loads is

challenging, because the aerodynamic, structural, and controls problems are coupled,

often nonlinearly. The issue is complicated further in the offshore wind turbine case,

where hydrodynamic loads (including wave forcing) are also part of the coupled

dynamics problem. Thus, there is a pressing need for an efficient computational

tool to analyze these types of problems early in the design cycle, before structural
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designs are frozen and full-blown CFD and FEA are performed. A concept of this

tool is sketched in figure 10-1, showing a flexible wind turbine floating on an offshore

platform. This work will be a natural outgrowth of my OpenProp code suite, which

currently can be used to design and analyze ‘rigid’ wind turbines.

Extending my early work with live maneuvering fish, further experimental work

needs to be done to investigate how to achieve optimal vortex ring formation using

flapping fins. Several key issues have yet to be addressed for fast starting and rapid

maneuvering, namely the effects of parameters such as fin shape, aspect ratio, and

flexibility. With this understanding, one could develop design guidelines for the

control surfaces and kinematics of biologically-inspired underwater vehicles. This

knowhow could also be applied to aggregates of jet-propelled devices, whose dynamic

system model could be formed using the hydrodynamic impulses of the vortices

created for maneuvering.

In conjunction with experimental efforts, there is a strong need to continue

investigating the effects of experimental error in advanced data processing techniques.

Mathematical procedures such as the singular value decomposition, Lagrangian

coherent structures analysis, and even simply the calculation of fluid vorticity and

strain rate tensors are powerful tools for analyzing fluid physics from high fidelity

data. However, the effects of experimental error on the results of these analyses are

not widely documented. It is paramount for the experimental community to be able

to harness the power of these mathematical tools, despite the presence of noise in

experimental data.

This thesis lays a strong foundation in classical fluid dynamics, experimental

methods, and applied math that I aim to build upon to investigate propulsion

and ocean energy harvesting. The overarching goal of my work is to further our

understanding of fluid dynamics using both rigorous experimentation and efficient

numerical simulation.
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