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Abstract

In this thesis we develop analytical solutions for the relations between scratch hard-
ness and strength properties of cohesive-frictional materials of the Mohr-Coulomb
and Drucker-Prager type. Based on the lower-bound yield design approach, closed
form solutions are derived for frictionless scratch devices, and validated against com-
putational upper bound and elastoplastic Finite Element solutions. The influence of
friction at the blade–material interface is also investigated, for which a simple com-
putational optimization is proposed.
The model is extended to porous cohesive-frictional materials through the use of a
homogenized strength criterion based on the Linear Comparison Composite theory.
Relations between scratch hardness, porosity and strength properties are proposed in
the form of fitted functions.
Illustrated for scratch tests on cement paste, we show that the proposed solutions
provide a convenient way to determine estimates of cohesion and friction parameters
from scratch data, and may serve as a benchmark to identify the relevance of strength
models for scratch test analysis.

Thesis Supervisor: Franz-Josef Ulm
Title: Professor of Civil and Environmental Engineering
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squad” (Damien, Nadège, Matthieu, Per Einar, Martin. . . ), the research group “Red-

Cements” (Alberto, Jimmy, Zenzile, Rouzbeh, Angie, MJ, Amer, Muhannad, Hegoi,

Simone), and my GCF friends (Yong, Jon, Kevin, Heather. . . ), for their continuous

support and all the good times they shared with me.

Finally, I gratefully acknowledge that this work was made possible by the funding pro-

vided by the MIT–OU–GeoGenome Industry Consortium, directed by Prof. Younane

Abousleiman.

5



6



Contents

I General Presentation 18

1 Introduction 19

1.1 Industrial Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Research Objectives and Approach . . . . . . . . . . . . . . . . . . . 20

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.4 Research Significance . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2 Presentation of the scratch test 23

2.1 Overall Presentation . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1.1 Dimensional Analysis . . . . . . . . . . . . . . . . . . . . . . . 23

2.2 Main Application: Resistance to Wear . . . . . . . . . . . . . . . . . 26

2.3 Scratch Test as a Means to Measure Strength Properties . . . . . . . 27

2.3.1 Link Between Indentation Hardness and Scratch Hardness . . 27

2.3.2 Complete Models . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.3 Upper Bound Models . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.4 Numerical Studies . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.5 Scratch Tests on Rocks . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Focus of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4.1 Geometry of the Test . . . . . . . . . . . . . . . . . . . . . . . 32

2.4.2 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7



II Strength Model 35

3 Lower Bound Model 37

3.1 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Lower Bound Limit Theorem . . . . . . . . . . . . . . . . . . 37

3.1.2 Material Behavior . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2 Application of the Lower Bound Theorem to the Scratch Test . . . . 44

3.2.1 Formulation of the Plastic Work Rate . . . . . . . . . . . . . . 44

3.2.2 Application of the Lower Bound Theorem . . . . . . . . . . . 45

3.3 Development of the Lower Bound Model . . . . . . . . . . . . . . . . 46

3.3.1 Family of Stress Fields . . . . . . . . . . . . . . . . . . . . . . 46

3.3.2 Statical Admissibility . . . . . . . . . . . . . . . . . . . . . . . 47

3.3.3 Strength Compatibility . . . . . . . . . . . . . . . . . . . . . . 48

3.3.4 Lower Bound Optimization Problem . . . . . . . . . . . . . . 49

3.4 Analytical Solutions for Frictionless Contact . . . . . . . . . . . . . . 50

3.4.1 Cohesive Materials: Tresca and Von-Mises . . . . . . . . . . . 51

3.4.2 Cohesive–Frictional Materials: Mohr-Coulomb and Drucker-

Prager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Consideration of Interface Friction . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Cohesive Materials With Interface Friction . . . . . . . . . . . 56

3.5.2 Cohesive–Frictional Materials with Interface Friction . . . . . 58

3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4 Validation 61

4.1 Comparison With an Upper Bound Solution . . . . . . . . . . . . . . 61

4.1.1 Theoretical Background: Upper Bound Limit Theorem . . . . 61

4.1.2 Upper Bound Model . . . . . . . . . . . . . . . . . . . . . . . 63

4.1.3 Influence of the Back-Rake Angle θ . . . . . . . . . . . . . . . 69

4.1.4 Influence of the Internal Friction (α or ϕ) . . . . . . . . . . . 69

4.2 Comparison With an Original Limit Analysis Solution . . . . . . . . . 71

4.2.1 Presentation of the Solver . . . . . . . . . . . . . . . . . . . . 71

8



4.2.2 Comparison of the Results . . . . . . . . . . . . . . . . . . . . 74

4.3 Comparison with Elastoplastic Finite Element Solutions . . . . . . . 76

4.3.1 Finite Element Model . . . . . . . . . . . . . . . . . . . . . . 77

4.3.2 Influence of the Drucker-Prager Internal Friction Coefficient . 82

4.3.3 Influence of the Blade–Material Interface Friction . . . . . . . 83

4.3.4 Qualitative Comparisons of the Solutions . . . . . . . . . . . . 85

4.4 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

III Extension and Application of the Strength Model 90

5 Porous Materials 91

5.1 Strength Criterion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Hardness–to–Shear Strength Relationships . . . . . . . . . . . . . . . 97

5.2.1 Analytical Development of the Lower Bound Model for Fric-

tionless Interface . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.2 Optimization Results . . . . . . . . . . . . . . . . . . . . . . . 98

5.2.3 Function Fitting for the Frictionless Case . . . . . . . . . . . . 99

5.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Application 105

6.1 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Characterization of the Material With the Lower Bound Model . . . . 107

6.2.1 Cohesive Material and Frictionless Contact . . . . . . . . . . . 107

6.2.2 Cohesive-Frictional Material and Frictionless Contact . . . . . 108

6.2.3 Cohesive-frictional Material With Interface Friction . . . . . . 108

6.2.4 Cohesive-Frictional Porous Material With Interface Friction . 109

6.3 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

IV From a Strength to a Fracture Model 112

7 Limits of Validity of the Strength Model 113

9



7.1 Scale Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 From Strength to Fracture . . . . . . . . . . . . . . . . . . . . . . . . 115

7.3 Fracture Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.4 Finite Element Simulations . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.4.2 Presentation of the Simulations . . . . . . . . . . . . . . . . . 119

7.4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.4.4 Discussion: Validity of the Approach . . . . . . . . . . . . . . 122

7.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8 Conclusion and Perspectives 127

8.1 Summary of Main Findings . . . . . . . . . . . . . . . . . . . . . . . 127

8.2 Current Limitations and Future Perspectives . . . . . . . . . . . . . . 128

8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

A Optimization Code 131

A.1 User Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A.2 Optimization Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A.3 Minimized Function and non-Linear Constraints . . . . . . . . . . . . 137

10



List of Figures

2-1 Schematic of the scratch test . . . . . . . . . . . . . . . . . . . . . . . 24

2-2 Geometry of the scratch test considered in the analysis . . . . . . . . 32

2-3 Two-dimensional model of the scratch test . . . . . . . . . . . . . . . 33

3-1 Nomenclature of the yield design framework . . . . . . . . . . . . . . 38

3-2 Correspondence between the Mohr-Coulomb and the Drucker-Prager

criterion in the deviatoric stress plane (from [56]). . . . . . . . . . . . 43

3-3 Geometry of the 2D model of the scratch test. . . . . . . . . . . . . . 46

3-4 Geometry and stress fields in the frictional case . . . . . . . . . . . . 55

3-5 Effect of interface friction on scratch hardness: HT {k vs. θ1 for a

cohesive material. The line is solid (respectively dashed) for values of

θ1 compatible (respectively not compatible) with the friction law for

µi � 0.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3-6 Admissible values of θ1 vs. back-rake angle θ for different values of µi.

T pθ, µiq is the domain contained between the two curves corresponding

to the min. and max. values of θ1. . . . . . . . . . . . . . . . . . . . . 58

3-7 Hardness vs. interface friction coefficient for different back-rake angles

θ (cohesive material). . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3-8 Critical friction coefficient µcrit
i as a function of the back-rake angle θ for

different materials: VM = Von Mises, TR=Tresca, DP-α = Drucker-

Prager (with α the DP friction coefficient), MC-ϕ = Mohr-Coulomb

(with ϕ the MC angle of internal friction). . . . . . . . . . . . . . . . 60

4-1 Rigid blocks failure mechanism. . . . . . . . . . . . . . . . . . . . . . 64

11



4-2 Result of the upper-bound model optimization for a cohesive material

for (a) θ � 20� and (b) θ � 70�. . . . . . . . . . . . . . . . . . . . . . 66

4-3 Hardness–to–shear strength ratio vs. back-rake angle θ for Drucker-

Prager materials with different internal friction coefficients. . . . . . . 68

4-4 Influence of the depth–to–width ratio in the upper-bound model for

the scratch test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4-5 Hardness–to–shear strength ratio vs. Back-rake angle θ for a Von Mises

material. Comparison to lower bound and upper-bound solutions for

different w{d ratios. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4-6 Relative variation of the upper bound solution compared with the lower

bound solution vs. back-rake angle θ for a Von Mises material for

various values of the w{d ratio. . . . . . . . . . . . . . . . . . . . . . 71

4-7 Hardness–to–shear strength ratio vs. Drucker-Prager friction coeffi-

cient α. Comparison of lower bound and upper-bound solutions for

different back-rake angles θ. . . . . . . . . . . . . . . . . . . . . . . . 72

4-8 Relative variation of the upper bound solution compared with the lower

bound solution vs. Drucker-Prager coefficient α for different back-rake

angles θ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4-9 Geometry, mesh (1,416 6-node triangle elements) and loading condi-

tions of the upper bound solver. . . . . . . . . . . . . . . . . . . . . . 74

4-10 Principle stresses computed by the yield design software for a Drucker-

Prager material (α � 0.1) with θ � 20�, and normalized by the shear

strength k. The values expected with the lower bound solution are

superimposed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4-11 Correlation between the upper bound optimization solution (superim-

posed in red) and the solver’s solution for a Drucker-Prager criterion

(α � 0.1) and θ � 20�. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4-12 Yield design solutions compared to upper bound solver (1,416 ele-

ments) for Hardness-to-cohesion ratio for a Drucker-Prager material

with back-rake angle θ � 20�. . . . . . . . . . . . . . . . . . . . . . . 77

12



4-13 Geometry and loading conditions of the Abaqus finite element model

for θ � 20� (14,526 nodes and 4,742 plane strain quadratic elements). 78

4-14 Geometry and loading conditions of the Abaqus finite element model

for θ � 70� (56,063 nodes and 18,492 plane strain quadratic elements). 79

4-15 Typical Force–Displacement curves obtained with the FE simulations

for θ � 20�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4-16 Typical Force–Displacement curves obtained with the FE simulations

for θ � 70�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4-17 Hardness–to–shear strength ratio vs. Drucker-Prager friction coeffi-

cient α. Comparison of lower bound, upper-bound, and FE solutions

for θ � 20�, 70�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4-18 Hardness–to–shear strength ratio vs. interface friction coefficient µi for

a Von Mises material. Comparison of lower bound and FE solutions

for θ � 20�, 70�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4-19 FV {FT ratio vs. interface friction coefficient µi for a Von Mises mate-

rial. Comparison of lower bound and FE solutions for θ � 20�. . . . . 85

4-20 Principle stresses of the FE simulation for a Von Mises material with

θ � 20� and k � 11.5MPa. The values expected with the lower bound

solution are superimposed. . . . . . . . . . . . . . . . . . . . . . . . . 86

4-21 Correlation between the upper bound optimization solution (superim-

posed in red) and the FE simulation for a Von Mises criterion and

θ � 20�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4-22 Correlation between the upper bound optimization solution (superim-

posed in red) and the FE simulation for a Von Mises criterion and

θ � 70�. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5-1 Formalism and nomenclature used for a porous material. The rev of

the macroscopic problem (top) is itself heterogeneous (bottom) as it is

constituted of a solid phase and pores. Left: schematic of the matrix–

pore morphology; Right: disordered granular material morphology. . . 93

13



5-2 Homogenized strength criterion for αs � 0.2. It is elliptical for η   ηcr,

parabolic for η � ηcr, and hyperbolic for η ¡ ηcr. . . . . . . . . . . . . 96

5-3 Hardness normalized by solid shear strength versus packing density η

for α � 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5-4 Hardness normalized by solid shear strength versus packing density η

for α � 0.4. The upper bound solutions fail to converge for η ¡ ηcr

(ηMT
cr � 0.787, ηSC

cr � 0.847) . . . . . . . . . . . . . . . . . . . . . . . 101

6-1 Example of scratch test result: measured vertical and normal forces

along the scratch path [Test on cement paste, width w � 10 mm,

depth d � 0.5 mm; tests carried out by Epslog Engineering (Belgium);

data courtesy of Schlumberger]. . . . . . . . . . . . . . . . . . . . . . 106

6-2 Tangential force FT and vertical force FV vs. Projected contact area

A � wd for scratch tests of different width w and depth d [Tests on

cement paste; tests carried out by Epslog Engineering (Belgium); data

courtesy of Schlumberger]. . . . . . . . . . . . . . . . . . . . . . . . . 107

6-3 SEM-BSE image of Portland cement (A) and binarization of the ini-

tial grey-level BSE image (B) using the threshold tool of the image

software. From [52]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7-1 Tangential hardness HT vs. depth–to–width ratio d{w [Test on cement

paste; tests carried out by Epslog Engineering (Belgium); data courtesy

of Schlumberger]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

7-2 Tangential hardness HT vs. depth–to–width ratio d{w [Test on Vosges

Sandstones [51]]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7-3 Scratch tests on Vosges Sandstone with a rectangular indenter: (a)

ductile mode; (b) fracture mode. . . . . . . . . . . . . . . . . . . . . . 116

7-4 HT

?
w vs. depth–to–width ratio d{w [Test on cement paste; tests car-

ried out by Epslog Engineering (Belgium); data courtesy of Schlum-

berger]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7-5 HT

?
w vs. depth–to–width ratio d{w [Test on Vosges Sandstones [51]]. 118

14



7-6 Finite element geometry and mesh: (a) overall view; (b) close-up on

the crack zone [model presented: w � 1mm, d � 0.5mm, mesh size in

the crack zone: 0.02mm]. . . . . . . . . . . . . . . . . . . . . . . . . . 121

7-7 Computed compliance vs. crack length for w � 1 mm and d � 0.1 mm

and two mesh sizes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7-8 Comparison of the FE simulations discrete values and the fitted power

function (7.11). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

15



16



List of Tables

3.1 Definition of the strength criteria. c is the cohesion; k is the shear

strength; ϕ is the internal friction angle; α is the internal friction co-

efficient. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Uniaxial compressive strength σ0 for the classic strength criteria. c is

the cohesion; k is the shear strength; ϕ is the internal friction angle; α

is the internal friction coefficient. . . . . . . . . . . . . . . . . . . . . 44

4.1 Finite Element Model parameters . . . . . . . . . . . . . . . . . . . . 81

4.2 Influence of the elasticity coefficients in the FE simulation results (θ �
20�, α � 0.21) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.1 Determination of the cohesion (resp. the shear strength) and the fric-

tion angle (resp. the friction coefficient) of the scratched material mod-

eled by a Mohr-Coulomb (resp. Drucker-Prager) criterion. . . . . . . 108

7.1 Summary of the different FE calculations. . . . . . . . . . . . . . . . 120

7.2 Artificial length scales inherent to the numerical simulations . . . . . 125

17



Part I

General Presentation

18



Chapter 1

Introduction

1.1 Industrial Context

The scratch test is most likely the oldest mechanics-of-materials test for property

characterization. It suffices to recall the Mohs scale of mineral hardness which ratio-

nalized, in 1822, the scratch resistance into a quantitative metric for the classification

of various minerals [39]. The idea of the scratch test is simple: plowing and cutting

with a scratch device the surface of a weaker material; and quantifying the scratch

resistance by means of the scratch hardness [66]:

HS
def� FT

ALB

(1.1)

where FT is the horizontal force applied to the apparatus; and ALB is the projected

load bearing area resisting the horizontal force; that is, the horizontal projection of

the contact area between the scratch device and the scratched material. Thanks to

progress in force and depth sensing measurement devices, the scratch test remains a

popular alternative to other material property test methods, and is relevant today in

many fields of engineering, ranging from macroscopic testing of adhesion properties

of coatings [49], to damage and wear of metals and polymers [67], [12], and strength

of rocks [50], [51], [55].
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1.2 Research Objectives and Approach

The combination of advanced theoretical micromechanics and nanoindentation makes

it possible to understand and measure the properties of complex materials at micro-

or even nanoscopic scale. The technique developed by Ganneau, Constantinides and

Ulm [25] on cementitious materials, and by Gathier, Ortega and Ulm [43] on shales,

relies on the determination of two mechanical properties at the microscale: elasticity

and strength through the indentation modulus and hardness respectively. The overall

objective of the present work is to find relationships between material properties and

quantities measurable in a scratch test.

Our approach is based on yield design theory. Approximating the stress field that

develops in scratch tests, by a simple piecewise constant field depending on a few

degrees of freedom enables us to find explicit relations between scratch hardness,

material properties and geometric parameters of the test. This approach yields a

lower bound for the actual scratch hardness and is then validated by means of a

combination of the complementary approach of yield design theory, the upper bound

approach, and by finite element simulations of elastoplastic materials. Finally, the

application of these relations to real scratch tests on cement paste and rocks shows

both the potential and the limits of the strength model.

1.3 Thesis Outline

This thesis is divided in four parts: Part I briefly introduces the reader to the scratch

test, and sits the stage for the analysis by introducing assumptions and hypotheses on

which the model is based. Part II is devoted to the development and validation of a

lower bound model for the scratch test. The hardness–strength relations derived from

this model are compared with three other models: a simple upper bound model, an

advanced limit analysis solver yielding an upper bound for the hardness, and elasto-

plastic finite element simulations. In Part III, we show a possible extension of the

model to porous cohesive-frictional material by the implementation of a homogenized

20



strength criterion. Then we show an application of the model to actual scratch tests

performed on cement paste. In the final part, we discuss the limits of the strength

approach and means of overcoming these limitations by accounting for the possibility

of fracture. This leads us to the conclusion and perspectives for further work.

1.4 Research Significance

The scratch test is commonly used in industry to measure material properties. While

it is very appropriate to measure quantities such as the adhesion of coating or the

resistance to wear in frictional contact situations, the use of the scratch test to measure

classic material properties such as yield stress requires better models based on a

mechanistic understanding of the scratch test. Various analyses have been conducted

on different materials but to our knowledge no result on frictional material is available:

in this thesis we show how scratch hardness of materials represented by a Drucker-

Prager or a Mohr-Coulomb criterion relates to the cohesion and internal friction.

Validated against finite element simulations, the main contribution of this model is

its simplicity which enables us to find explicit relations between hardness, strength

properties, and geometry of the test. These relations can be used as benchmark for

refined analysis of the scratch test.
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Chapter 2

Presentation of the scratch test

2.1 Overall Presentation

The scratch test consists in pulling a hard indenter through a softer material (Figure

2-1). Yet, the simplicity of the procedure belies its complexity. In fact, a combination

of the following parameters affects the scratch response:

• The geometry of the test;

• The loading conditions: most tests are either realized at constant scratch speed

and controlled vertical loading, or constant scratch speed and controlled depth

of scratch;

• Interface properties: friction can occur at the interface.

2.1.1 Dimensional Analysis

Dimensional analysis [5] is a powerful tool often used in science to understand physical

situations involving various quantities. The fundamental idea is that physical laws do

not depend on arbitrarily chosen basic units of measurement. This basic idea leads

to the so-called Π-theorem which has been attributed to Buckingham [13]. It allows

one to identify key ratios in the problem and to reduce the number of parameters in

the different mathematical expressions. Dimensional analysis has proven to be useful
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Figure 2-1: Schematic of the scratch test

to the study of the contact mechanics for instrumented normal indentation [20]. We

follow here a similar approach on the steady-state scratch test.

We first choose our set of dependent variables, i.e. the quantities measured during

a scratch test and for which we seek predictive relationships with the controllable

parameters:

• The force required to pull the blade through the material at constant depth:

F � FT ex � FV ez (see Figure 2-1), where pex, ey, ezq are the basis vectors used

throughout this work, the x�direction being the direction of the scratch, FT

is the tangential force, and FV is the normal, or vertical, force applied on the

indenter.

• The contact area Ac between the indenter and the material. We define the

load-bearing contact area ALB as the horizontal projection of Ac. It enters the

tangential hardness definition (1.1) and represents the effective area through

which the tangential force FT is transmitted from the indenter to the material.

These variables depend on the test parameters, namely:

• The geometry of the test: There exist different geometries for the scratch test.

We will denote dj (j � 0, ..., n � 1) and θk (k � 1, ...,m), the n lengths and m
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various angles necessary to describe the geometry.

• The elastic properties of the blade (Young’s modulus Eb), and of the scratched

material: Young’s modulus E and Poisson’s ratio ν.

• The plastic properties of the material: strength (for example the uniaxial com-

pressive strength σ0, and the internal friction coefficient α) and hardening (for

example the hardening exponent n in the classic power-law of hardening).

• The fracture toughness of the material KIc.

• The interface friction between the blade and the material µi.

We seek to express our dependent variables as functions of the independent parame-

ters:

FT � fT pdj, θk, E
b, E, nu, σ0, α, n, KIc, µiq (2.1)

FV � fV pdj, θk, E
b, E, nu, σ0, α, n, KIc, µiq (2.2)

ALB � fApdj, θk, E
b, E, nu, σ0, α, n, KIc, µiq (2.3)

Application of the Π-theorem to (2.1) to (2.3) yields the dimensionless relations:

FT

σ0d2
0

� ΠT

�
dj

d0

, θk,
σ0

E
,
σ0

Eb
, ν, α, n, µi, I � d0pKIc{σ0q2



(2.4)

FV

σ0d2
0

� ΠV

�
dj

d0

, θk,
σ0

E
,
σ0

Eb
, ν, α, n, µi, I � d0pKIc{σ0q2



(2.5)

ALB

d2
0

� ΠA

�
dj

d0

, θk,
σ0

E
,
σ0

Eb
, ν, α, n, µi, I � d0pKIc{σ0q2



(2.6)

The dimensionless functions ΠT , ΠV and ΠA depend on dimensionless parameters:

the geometry of the test (dj{d0, θk), the relative influence of elasticity over plasticity

(σ0{Eb,σ0{E), other elasticity and plasticity parameters (ν, n, and α), and the relative

influence of fracture over plasticity (I). This dimensionless parameter can be written

in the form I � d0

2πrp
where rp � 1

2π

�
KIc

σ0

	2

is the radius of the plastic zone, as used

in ductile fracture mechanics [68]. I is then the ratio of a characteristic length of the
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problem, d0, to the size of the plastic zone, as opposed to the characteristic length

scale of fracture phenomena. As a consequence, a great (respectively low) influence

of fracture will be characterized by a large (respectively small) value of I.

The main quantity of interest in scratch tests is the tangential hardness (1.1). Using

dimensional analysis, HS can be expressed as:

HS � σ0 � Π

�
dj

d0

, θk,
σ0

E
,
σ0

Eb
, ν, α, n, µi, I � d

pKIc{σ0q2



(2.7)

The problem thus defined can be studied from different points of view. In the following

paragraphs, we propose a brief review of several approaches adopted by previous

researchers in their study of the scratch test.

2.2 Main Application: Resistance to Wear

The underlying idea at the origin of the first scratch hardness classifications and test

procedures was based on surface wear: the hardness of a material is determined by

its ability to resist scratch. Mohs [39] and later O’Neill [42] measured the hardness

by visual examination of the damage created by a scratch performed under controlled

load. Today, the most common application of scratch tests is no doubt the measure

of the resistance to wear of a surface. Applied to various materials like polymers (see

e.g. [12] [67]), it is commonly used to measure the quality of films and coatings (see

e.g. [62] [31]). Even though this fields is not a direct application for this thesis, one

cannot present the scratch test without evoking its use as a measure of wear.

Surface wear of two bodies in contact is partially explained by the plowing of the softer

material by small asperities of the harder material. The scratch test seems the best

way to capture this process, the hard indenter playing the role of a hard asperity put

in contact with the material. In the normal configuration of a wear resistance test, a

very hard (diamond or carbide) indenter is drawn across the coated surface under an

increasing load until some well defined failure occurs at a load which is often termed

the critical load, LC [36]. The identification of failure is key to the reliability of this
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method. However, as pointed out by Bull for the testing of coatings [14], many differ-

ent failure modes are observed which include coating detachment, through-thickness

cracking and plastic deformation or cracking in the coating or substrate. In certain

cases, some of these failure modes may even occur simultaneously. Combined with a

significant effect of the test geometry [49], this makes the quantification of the quality

of a coating using scratch tests not yet well defined.

This difficulty calls for the use of standardized tests, which provide an accurate com-

parative measure of the quality of a surface. Most recent testing procedures detect

failure with three independent sensing tools: change in tangential force, acoustic emis-

sion or visual observation of the scratch groove using an advcanced optical device [28].

2.3 Scratch Test as a Means to Measure Strength

Properties

Progress in indentation tests have led to an accurate characterization of classical

material properties such as elasticity constants and strength, and its implementation

at the nanoscale [41] [20]. Based on the same idea, scratch hardness is believed to be

linked to strength properties. Here is a review of different approaches used to define

this link.

2.3.1 Link Between Indentation Hardness and Scratch Hard-

ness

In 1950, Tabor [58] showed that indentation hardness could be related to yield stress

of metals by a straightforward relation Hindentation � Cσ0, where C � 3. Like in-

dentation, scratch test is a measure of the resistance to penetration of a material,

and hence should also to some extent be linked to the yield stress or other strength

properties.

A first approach consists dividing the tangential force required to pull the indenter
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in two terms [66]:

FT � Fp � Fa (2.8)

where Fp is the ‘plowing’ force and Fa is the ‘adhesion’ force. The main idea of this

model is to decouple the force required to deform the material from the force due to

friction between the indenter and the material. The plowing force is expected to be

related to conventional indentation hardness and the adhesion term is measured by

subtracting the plowing force to the global tangential force FT . Briscoe showed [11]

that the plowing hardness is actually different from the normal indentation hardness,

which renders the decoupling between adhesion force and plowing force less relevant.

The fundamental difference between indentation and scratch tests is the significant

amount of plastic strain that occurs in the scratching direction. Models devoted to

the scratch test only are hence necessary.

2.3.2 Complete Models

The first models for the scratch tests are 2D models capable of predicting the overall

friction coefficient µ � FT {FV as a function of the shear strength k of the material and

the interfacial friction between the indenter and the material. In particular, Challen

and Oxley [18] [19] proposed several 2D models for the scratch of a soft material by

a wedge, describing the transition from plowing, where a plastically deformed wave

of material is pushed in front of the indenter, to chipping, where material is removed

from the surface. This yields a relation:

µ � FT

FV

� Πpθ, fq (2.9)

where θ is the back-rake angle and f is the interfacial friction coefficient defined as the

ratio of the interfacial shear stress to the shear strength of the material τ{k. Similar

results were obtained by Komvopoulos et al. [33]. These results are based on the

slip-line theory and are in good agreement with experiments carried out on metals.

However, they fail to extend to conventional 3D indenters such as pyramid, cones or
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spheres.

2.3.3 Upper Bound Models

Another way of tackling the problem is the use of upper bound solutions describing

the flow of material around the indenter during the scratch. A series of model for a

pyramidal indenter have shown good prediction of the tangential force as a function

of the geometry of the indenter θ1, the attack angle θ2, and the friction interface f

[63] [27] [1] [2]. In these models, a pyramidal indenter is dragged at constant depth

d through the material and the material flows around the tip in rigid blocks. These

models give a prediction of the tangential force FT , vertical force FV , and geometry

of the flow pattern, like the height of the ridges hr:$'''&'''%
FT � σ0d

2 � Πapθ1, θ2, fq
FV � σ0d

2 � Πbpθ1, θ2, fq
hr � d� Πcpθ1, θ2, fq

(2.10)

These results are given by the minimization of the total dissipated energy. However,

the application of the upper bound to determine the geometry of the flow pattern

was put into question by Azarkhin [4], on the basis of a more rigorous application of

the upper bound approach that yields significantly different results on the geometry

of the flow. The predictions of the tangential and vertical forces remain mostly valid.

2.3.4 Numerical Studies

The development of numerical simulation represents an opportunity to find solutions

for the scratch test and investigate the influence of new parameters, such as strain

hardening. In 2007, Bellemare et al. [7] developed a finite element model to predict

the normal hardness, tangential hardness and pile-up height hp observed in front

of a rigid conical indenter of semiapex angle θ � 70.3� in frictional sliding on an
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elastoplastic material with strain hardening:$'''&'''%
HV � σ0 � Πapθ � 70.3�, σ0

E� , n, µi � 0.15q
HT � σ0 � Πbpθ � 70.3�, σ0

E� , n, µi � 0.15q
hp � d� Πcpθ � 70.3�, σ0

E� , n, µi � 0.15q
(2.11)

where E� is the reduced contact Young’s modulus [32], n is the strain-hardening

exponent, µi is the Amontonian friction coefficient defined as the ratio of the tan-

gential force to the normal force of the contact, and d is the depth of scratch. They

conducted a comprehensive study of the influence of elstoplasticity through the ratio

E�{σ0 and strain hardening n. However, neither the dependence on the geometry nor

the influence of the friction coefficient µi were studied.

A similar approach was used by Lee et al. [35] to model spherical nanoscratch tests

[59], suggesting a normal scratch hardness relation of the form:

HV � σ0fpE, σ0q (2.12)

The obtained relation was found to be in agreement with known experimental values

and was proposed to be used as such to predict nanoscratch hardness of material with

small hardening. However, the fact that (2.12) is not in a dimensionless form hints

toward the unstudied influence of other parameters.

2.3.5 Scratch Tests on Rocks

All the models reviewed above are suitable for metals, thin coatings, or polymers.

Recently, scratch tests have been used for rocks and cementitious materials. The ease

of use of the scratch test represents a competitive argument for making it standard

procedure for rock strength testing compared to classical strength measurements (see

e.g. [54]). It is believed that the scratch hardness is correlated to the uniaxial

compressive strength (UCS) σ0. The model mostly used to interpret data from a

scratch test on rocks was developed during the last decade by Detournay et al. [37]

[50] [55], as an extension of the model of rock cutting [23]. In such tests, the indenter
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is rectangular of width w, and dragged through the material at constant depth d and

constant velocity V , with a back-rake angle θ. In the idealized case of a perfectly

sharp cutter, the so-called specific energy ε is defined as:

ε � FT

wd
(2.13)

The specific energy is associated with the amount of energy required to cut a unit

volume of rock. During experimental tests, the appearance of a wear flat on the cutter

leads to the creation of a frictional surface. Using an Amontonian friction law, the

term due to friction is subtracted from the measured force so as to yield the specific

energy, which corresponds to the more classical definition of tangential hardness (1.1).

The following empirical relation is found, based on tests on different types of rocks

with an angle θ � 15�, including limestones , sandstones and chalk:

ε � Cpwqσ0 ; with Cpw � 10mmq � 1.026 (2.14)

The experimental data show that ε depends on w, which calls for the standardized

use of a single width w in scratch tests on rocks. However, no satisfying explanation

of this dependence has yet been proposed.

2.4 Focus of the Study

The brief literature review conducted in the previous section shows the tremendous

diversity of scratch tests, that no complete model is able to capture. More specifically,

the good correlation between scratch hardness and UCS for rocks suggests that a

model applicable to cohesive-frictional materials would provide an analytical base for

this empirical relation. This motivates the forthcoming development.
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Figure 2-2: Geometry of the scratch test considered in the analysis

2.4.1 Geometry of the Test

In this thesis we consider the same scratch geometry as the one used by Detournay

et al. ([37]) to test rocks and used in the oil industry to test rocks extracted from

prospection fields. The rectangular blade of width w, is dragged through the tested

sample at constant depth d, inclined with a back-rake angle θ (Figure 2-2), at constant

velocity V . This geometry translates into a model as defined on figure 2-3. The two-

dimensional model consists in an infinite half-space with a pre-existing groove of

depth d. The surfaces in front of and behind the cutter are supposed stress free

(T d � 0), and no-displacement kinematic boundary conditions are imposed far from

the cutter Ud � 0 for |x| Ñ �8. The blade is pulled through the material at a

horizontal velocity V � V ex with an inclination θ. The reaction force necessary to

this displacement is F � FT ex � FV ez, FT and FV being positive. Given the size of

the system, gravity is neglected. Thus, no volume force is considered.

The third dimension (y-direction) is included in the model by adding a width w

to the blade and the groove. The geometry is then an infinite half-space grooved
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Figure 2-3: Two-dimensional model of the scratch test

between y � �w{2 and y � w{2 for x   0 (Figure 2-2). The definition of the

boundary conditions is a direct transposition of the 2D boundary conditions.

2.4.2 Assumptions

We now list the assumptions that are made in this thesis on which depend all the the

hardness–to–strength relations found in this thesis:

• The indenter is perfectly rigid Eb Ñ �8, such that σ0{Eb Ñ 0.

• The material is rigid (E Ñ �8, no more dependence on ν) and perfectly

plastic (n � 0). According to [66], this assumption is reasonable provided that

E{σ0 ¡ 200.

• Except for the last part of this thesis, where fracture is briefly investigated,

fracture phenomena are neglected: I Ñ 0.

As a consequence, the scope of this thesis is to find analytical expressions for different

materials with the relationship:

HS � σ0 � Π

�
d

w
, θ,

σ0

E
Ñ 0,

σ0

Eb
Ñ 0, α, n � 0, µi, I Ñ 0



(2.15)
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or:

HS � σ0 � Π̃
�

d
w
, θ, α, µi

�
(2.16)

2.5 Chapter Summary

In this chapter, we showed a glimpse of various applications of the scratch test. Several

rigid-plastic and elastoplatic models can be found in the literature for various types

of indenters (pyramid, conical, spherical) and test configurations. The recent surge

in the use of the scratch tests on rocks and its promising applications leads us to

develop the first rigid-plastic model for cohesive-frictional materials scratched with

rectangular indenters.
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Strength Model
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Chapter 3

Lower Bound Model

In this chapter we consider the scratch test using a static approach. We propose

a simple stress field developed in the material in reaction to the forces applied to

the blade. As stated by the lower bound theorem of yield design theory, this ap-

proach leads us to a lower bound for the tangential hardness. Purely cohesive and

cohesive-frictional are considered, as well as friction on the blade–material interface.

The hardness is found by solving an optimization problem. In the frictionless case,

this approach yields closed form relations between hardness, geometry and strength

parameters.

3.1 Theoretical Background

3.1.1 Lower Bound Limit Theorem

The underlying idea of yield design is that at plastic collapse the applied load is

entirely dissipated into heat form through plastic sliding in the material bulk and

along surfaces of discontinuity.

Mathematically, this is expressed by

Qlim � q �
»

Ω

σ : d dΩ�
»

Γ

T � vUw dΓ (3.1)
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Figure 3-1: Nomenclature of the yield design framework

where Qlim is the collapse load vector, q the associated velocity vector, σ the statically

admissible stress tensor, d the strain rate tensor, T � σ � n the stress vector on any

surface of discontinuity Γ oriented by the unit normal n, and vUw the velocity jump

vector over the surfaces of discontinuity (Figure 3-1).

Limit theorems provide estimates of the actual dissipation capacity at plastic failure,

as expressed by (3.1). In particular, the lower bound theorem approaches the actual

dissipation capacity through stress fields, which are:

• statically admissible, i.e. in equilibrium both internally and externally with the

applied load;

• plastically admissible (or strength compatible), i.e. compatible with the strength

domain of the material in all the domain.

Mathematically, the set of admissible stress field S is expressed by

S �
$'''&'''%σ1

���������
σ � n � T d on BΩT (a)

vT 1w � vσ1w � n � 0 along Γ (b)

div σ1 � 0 and σ1 � σ1T in Ω (c)

,///.///- (3.2)
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If we denote by fpx, σ1pxqq the scalar function representing the local strength domain,

then the global strength domain G is defined by:

G �  
σ1
��fpx, σ1pxqq ¤ 0 @ x P Ω

(
(3.3)

Then it can be shown, through application of the principle of maximum work [61],

that stress fields both statically admissible and strength compatible, in the sense of

(3.2) and (3.3), provide a lower bound to the dissipation capacity (3.1) of the system:»
Ω

σ1 : d dΩ�
»

Γ

T 1 � vUw dΓ ¤ Qlim � q ; @ σ1 P S X G (3.4)

This result leads to the lower bound limit theorem:

Theorem 1 Any stress field σ1 which is statically admissible with the loading Q1 and

which is everywhere below or at yield, σ1 P G, delivers a lower bound Q1 � q to the

actual dissipation rate Qlim � q of the ultimate load Qlim along the velocity field q:

Q1 � q ¤ Qlim � q �
»

Ω

max
σ1PSXGpσ1 : dq dΩ�

»
Γ

max
σ1PSXGpn � σ1 � vUwq dΓ (3.5)

The lower bound theorem turns the mechanical problem into an optimization problem:

maximize Q1 � q through the choice of appropriate stress fields so as to approximate

the actual limit load Qlim.

3.1.2 Material Behavior

Applying the lower bound limit theorem (3.5) requires the use of stress fields both

statically and plastically compatible. Statical admissibility, as expressed in (3.2), is

the continuum expression of Newton’s laws of equilibrium, whose accuracy is not dis-

puted at the scale of classical mechanical system. In contrast, strength compatibility

requires the use of incomplete models to represent phenomena still misunderstood.

We present in this section the law of friction used to model the blade–material inter-

face and the strength criteria used to represent the scratched material.
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Friction As stated by Rabinowicz [48], “friction is expressed in quantitative terms

as a force, being the force exerted by either of two contacting bodies tending to

oppose relative tangential displacement of the other one.” The most commonly used

model of friction comes directly from the experimental observations of the pioneers of

tribology, including Amontons and Coulomb. Their findings are summarized in the

following three laws:

1. The friction force F is proportional to the normal load N applied through the

area of contact (Amontons 1st law). The coefficient of proportionality is known

as the coefficient of friction µ:

µ � F

N
(3.6)

2. The friction force F does not depend on the apparent area of contact (Amontons

2nd law).

3. The friction force F does not depend on the sliding velocity (Coulomb’s law).

These three laws yield the classic Amontons-Coulomb friction law:

|F | ¤ µN (3.7)

This law accounts for two regimes. On the one hand, the inequality is strict for

static friction, in which there is no relative displacement of the two bodies in contact.

On the other hand, the inequality is saturated for kinetic friction, corresponding to

sliding of the bodies against each other.

This law has been proved to be an oversimplification of the complex phenomenon of

friction. First, the friction coefficient µ has different values in the static and kinetic

regimes: µs ¡ µk. The origin and nature of the static and kinetic friction coefficients

have been the subject of numerous studies (e.g. [10],[57]). It has also been shown

experimentally that the sliding velocity can affect the kinetic friction coefficient [47],

invalidating Coulomb’s law. Finally, several studies show that the friction coefficient

actually depends on the normal load [10] [15], invalidating Amonton’s first law.

This very brief overview of the modeling of friction illustrates the difficulty of dealing
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with frictional contact problems. In fact, the most commonly admitted explanation

of kinetic friction involves ploughing and abrasion phenomena which are themselves

problems that can be viewed as scratch tests at the scale of the asperities of the

materials in contact. A better understanding of the scratch test can hence itself help

for a better modeling of friction.

Cohesive and Cohesive-Frictional Materials Cohesive materials are materials

which fail when submitted to a limit shear stress that does not depend on the hydro-

static pressure. The first model proposed to encompass their behavior is attributed to

Tresca in 1864 [60]. Based on an extensive series of experiments on various materials,

Tresca inferred that a solid could flow like a fluid when submitted to sufficient shear,

namely the cohesion of the material. This behavior is represented by the inequality:

fpT � σ � nq � |Tt| � c ¤ 0 (3.8)

where Tt � t�σ�n is the shear stress applied on the material surface oriented by n. This

criterion can also be expressed as a function of the principal stresses σI ¥ σII ¥ σIII :

fpσq � σI � σIII � 2c ¤ 0 (3.9)

In 1913, von Mises proposed another criterion suitable for ductile materials such as

metals [64], known as the von Mises criterion. Like the Tresca criterion, it predicts a

failure due to limited resistance to shear of the material independent of the hydrostatic

pressure. It differs from the Tresca criterion by involving the three principal stresses

in its calculation of the equivalent stress:

fpσq � σd � k �
c

1

6
ppσI � σIIq2 � pσII � σIIIq2 � pσIII � σIq2q � k ¤ 0 (3.10)

where k is the shear strength of the material, σd �
b

1
2
s : s is the deviatoric stress,

and s � σ � 1
3
trpσq 1 is the deviatoric stress tensor.
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A lot of materials, including most geomaterials, are pressure sensitive: their co-

hesion increases with the hydrostatic pressure, resulting in stronger response in com-

pression than in tension. As a result, they cannot be satisfyingly represented by either

Tresca or Von Mises criteria.

This increase of the cohesion is explained by the frictional forces that act in-between

the grains of the material: an increase in the hydrostatic pressure results in an increase

of the normal load governing the contact between grains. According to Amontons-

Coulomb law (3.7), this, in turn, increases the maximum tangential friction force,

yielding a greater cohesion for the confined material. Based on this premise, the

Mohr-Coulomb criterion is expressed as surface stress criterion reading:

fpT � σ � nq � |Tt| � µTn � C ¤ 0. (3.11)

where Tn � n � σ � n is the normal stress on a surface oriented by n, µ � tan ϕ is

the friction coefficient, and ϕ the Mohr-Coulomb friction angle. In terms of principal

stresses the criterion reads:

fpσq � σI � σIII � pσI � σIIIq sin ϕ� 2c cos ϕ ¤ 0 (3.12)

The Mohr-Coulomb criterion is hence the frictional generalization of the Tresca crite-

rion with a confining stress σI�σIII . The Tresca criterion (3.9) is obtained by letting

the friction angle ϕ equal 0.

The Drucker-Prager criterion [24] is a generalization of the Mohr-Coulomb criterion

which involves the three principal stresses. The confinement stress is σm � 1
3
tr σ �

1
3
pσI � σII � σIIIq and the criterion is expressed as:

fpσq � σd � ασm � k ¤ 0 (3.13)

where α is called the friction coefficient, k is the Drucker-Prager cohesion. Letting

α equal 0 yields the Von Mises criterion (3.10). Given that both criteria represent

the same kinds of materials, it can be useful to be able to relate them. This is done
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Figure 3-2: Correspondence between the Mohr-Coulomb and the Drucker-Prager cri-
terion in the deviatoric stress plane (from [56]).

by projecting the Drucker-Prager strength function on the deviatoric stress plane,

defined in the principal stresses space by σI � σII � σIII � 0. In this plane, the

Drucker-Prager criterion can be considered as a Mohr-Coulomb criterion by using

relations linking Drucker-Prager coefficients (k,α) to Mohr-Coulomb parameters (c,ϕ)

[56]. As shown on figure 3-2, several choices are possible. Among them are found

the ones yielding the greatest (internal cone) and the smallest (compression cone)

Mohr-Coulomb cohesions for a given couple (k, α):

Compression Cone c � 3�sin ϕ

2
?

3 cos ϕ
k sin ϕ � 3α

α�2
?

3

Internal Cone c �b
3�sin2 ϕ
3 cos2 ϕ

sin ϕ �b
3α2

3�α2

(3.14)

It is important to note that there is a limitation in the choice of the friction coefficient

α [22]:

α  
c

3

4
(3.15)

Indeed, this value corresponds to a friction angle of ϕ � 90� for the ‘internal cone’
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Criterion fpσq
Tresca σI � σIII � 2c

Von Mises
b

1
6
ppσI � σIIq2 � pσII � σIIIq2 � pσIII � σIq2q � k

Mohr-Coulomb σIp1� sin ϕq � σIIIp1� sin ϕq � 2c cos ϕ

Drucker-Prager
b

1
6
ppσI � σIIq2 � pσII � σIIIq2 � pσIII � σIq2q � α

3
pσI � σII � σIIIq � k

Table 3.1: Definition of the strength criteria. c is the cohesion; k is the shear strength;
ϕ is the internal friction angle; α is the internal friction coefficient.

Criterion σ0

Tresca 2c

Von Mises
?

3k

Mohr-Coulomb 2c cos ϕ
1�sin ϕ

Drucker-Prager
?

3k
1�α{?3

Table 3.2: Uniaxial compressive strength σ0 for the classic strength criteria. c is the
cohesion; k is the shear strength; ϕ is the internal friction angle; α is the internal
friction coefficient.

correspondence of the Mohr-Coulomb criterion (3.14).

Table 3.1 summarizes the four strength criteria considered in this chapter. From a

practical point of view, the uniaxial compressive strength (UCS) σ0 is commonly used

as a measure for the strength of geomaterials due to the simplicity of its experimental

measurement and its model-independence. It can be linked to the material parameters

(c, k, ϕ, α) by considering the case (σI � σII � 0, σIII � �σ0) in the strength functions

fpσq. The correspondence for each material is listed in Table 3.2.

3.2 Application of the Lower Bound Theorem to

the Scratch Test

3.2.1 Formulation of the Plastic Work Rate

Consider the problem of the scratch test defined in chapter 2 (Figure 2-2): a rigid

blade of width w is pulled through the material at a velocity V � V ex at constant

depth d, inclined with an angle θ w.r.t. ez. The loading associated with the velocity
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V is the force imposed by the blade on the material F � FT ex � FV ez. All the other

boundaries have either zero-velocity or stress-free conditions. As a result the plastic

dissipation rate is given by:

Qlim � q � F � V � F lim
T V (3.16)

The material is considered rigid perfectly plastic. Therefore the contact area between

the blade and the material is known and its horizontal projection is wd. Using defini-

tion (1.1) of the hardness, we find that F lim
T � H lim

T wd, which yields the dissipation

rate as a function of the limit hardness HT :

Qlim � q � H lim
T wdV (3.17)

3.2.2 Application of the Lower Bound Theorem

Let us denote HT pσ1q the tangential hardness yielded by any stress field σ1. Inserting

relation (3.17) into the lower bound theorem (3.5) and dividing the result by the

positive constant (i.e. independent of σ1) term wdV yields:

H 1
T pσ1q ¤ H lim

T @ σ1 P S X G (3.18)

This fundamental inequality constitutes the basis of the lower bound approach. Any

stress field both statically and plastically admissible yields a tangential hardness HT

smaller than the actual hardness of the material H lim
T . The application of the theorem

naturally calls for the following step-by-step procedure:

1. Propose a family of stress fields with limited degrees of freedom;

2. Apply the conditions for statical admissibility;

3. Apply the conditions for strength compatibility;

4. Obtain the best lower bound reachable with the chosen family of stress fields by

maximizing the hardness HT with respect to the remaining degrees of freedom.
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Figure 3-3: Geometry of the 2D model of the scratch test.

It is worthwhile to note that, in accordance with the notion of plastic collapse, that is

an uncontrolled indefinite yield, the scratch velocity V appears as a dummy parameter

of the problem.

3.3 Development of the Lower Bound Model

3.3.1 Family of Stress Fields

For purpose of analysis, consider the scratch plane in the pxzq plane divided in three

zones (Fig. 3-3) delimited by straight lines inclined w.r.t. the z axis by an angle β.

For these three zones, consider piecewise constant diagonal stress fields enriched by

a shear stress τ � σxz:

σJ � σJ
xexbex�σJ

y eybey�σJ
z ezbez�τJ pex b ez � ez b exq ; J � I, II, III (3.19)

This defines a subspace of stress fields of dimension 12 (4 variables per zone). It is

worthwhile to note that the shape of the stress field is chosen in accordance with the

plane strain rate assumption, which is suitable to infinitely wide scratch test in the
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y-direction.

3.3.2 Statical Admissibility

We first tackle the statical admissibility of σ1 of the shape described in (3.19). First, it

is immediate to check that the local equilibrium (3.2c) is satisfied by these symmetric

piecewise-constant stress fields. As a consequence, the statical admissibility is only

restricted by the boundary conditions on BΩI , BΩII , and BΩIII , and the interface

conditions on ΓI�II and ΓII�III .

on BΩI : σI � n � HT cos θex �HV sin θez (3.20)

ô
$'''&'''%

τ tan θ � σx � HT paq

τ cot θ � σz � HV pbq
(3.21)

on BΩJ ; J � II, III : σJ � ez � 0 ô σJ � �
σJ

xex b ex � σJ
y ey b ey

�
(3.22)

on ΓI�J ; J � II, III : σI � nβ � σJ � nβ (3.23)

ô

$''''&''''%
σz tan β � �τ paq

σJ
x � σx � τ 2

σz

pbq
(3.24)

where n � � cos θ ex� sin θ ez is the (outward) normal to the scratch blade–material

interface BΩI ; HT � FT { pwdq and HV � FV { pwd tan θq are the average force com-

ponents acting per projected contact area on BΩI ; nβ � cos β ex � sin β ez is the

normal at the interfaces ΓI�II and ΓI�III between the three domains. Let us notice

that the same boundary and interface conditions apply on σII and σIII . Given the

same material in both zones, the strength compatibility conditions must also be the

same. As a consequence, σII � σIII . From now on we do not distinguish them, using

for both the same superscript II, whereas we omit the superscript I for the stress

components of σI .

The angle β, which serves as one degree of freedom in the optimization problem,
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is geometrically restricted to �β   θ which is equivalent in our range of angles to

� tanpβq   tanpθq. In the light of relation (3.24a), this implies:

τ

σz

� tanpθq   0 (3.25)

The subset of statically admissible stress fields S described by (3.2) is then reduced to

five stress unknowns
�
σx, σy, σz, τ, σ

II
y

�
linked together by equations (3.21) and (3.24),

and constrained by (3.25).

3.3.3 Strength Compatibility

The set of strength compatible stress fields G includes both the strength behavior of

the scratched material and the frictional nature of the scratch blade–material inter-

face. The strength behavior of the material is represented by scalar strength functions

fpσq ¤ 0 (Table 3.1). The strength compatibility condition imposed by the material

plastic law reads:

fpσJq ¤ 0; J � I, II (3.26)

Denoting by σt � t � σI � n and σn � n � σI � n the tangential and normal stress

components of the stress vector at the blade–material interface, Amontons-Coulomb

law of friction (3.7)reads:

|σt| � µiσn ¤ 0 (3.27)

with σn ¤ 0, which ensures contact between the blade and the material. Note that

this condition is included in (3.27) provided that µi � 0. Using the relationships

(3.21) and (3.24) derived from statical admissibility, we find the expressions of these

stress components at the interface:

σt � t � σI � n � pσz � σxq sin θ cos θ � τ
�
sin2 θ � cos2 θ

� � cos θ sin θ pHT �HV q
(3.28a)

σn � n � σI � n � σx cos2 θ � σz sin2 θ � 2 sin θ cos θ τ � � cos2 θHT � sin2 θHV ¤ 0

(3.28b)

48



These inequalities, in combination with the strength of the material, give the expres-

sion of the set of strength compatibility:

G �
$'''&'''%σJ

���������
fpσJq ¤ 0

2 sin θ cos θ τ � �
σx cos2 θ � σz sin2 θ

� ¤ 0��pσz � σxq sin θ cos θ � τ
�
sin2 θ � cos2 θ

��� ¤ µi

�
2 sin θ cos θ τ � �

σx cos2 θ � σz sin2 θ
��

,///.///-
(3.29)

or equivalently:

G �
$'''&'''%σJ

���������
fpσJq ¤ 0

cos2 θHT � sin2 θHV ¤ 0

|cos θ sin θ pHT �HV q| ¤ µi

�
cos2 θHT � sin2 θHV

�
,///.///- (3.30)

3.3.4 Lower Bound Optimization Problem

A combination of relations (3.20) to (3.30) leads to the following expression of the

lower bound optimization problem:

HS � H lim
T ¥ Hopt

T � sup
 
τ tan θ � σx|pσx, σy, σz, τ, σ

II
y q P R5

(
(3.31)

s.t.

$'''''''''&'''''''''%

τ

σz

� tan θ   0 paq
σn ¤ 0 pbq

|σt| � µiσn ¤ 0 pcq
f
�
σI
� ¤ 0 pdq

f
�
σII

� ¤ 0 peq

(3.32)

As stated previously, condition (3.32b) is included in (3.32c) in the case of a non-

zero friction coefficient. However it is necessary to consider it in the frictionless case,

µi � 0, to ensure the contact between the blade and the material.

While derived here for a scratch test in the pxzq plane, and thus for an unspecified

scratch width, the previous set of equations also holds for scratch tests of finite width

w with orthogonal frictionless boundaries. Indeed, it suffices to consider diagonal
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stress fields in adjacent material domains of the form (3.19). As a consequence, this

lower bound model does not show any dependence of the hardness on the depth–to–

width ratio d{w.

3.4 Analytical Solutions for Frictionless Contact

The optimization problem thus defined can be easily solved with appropriate opti-

mization software. For some simple reference yield surfaces, closed form solutions can

be derived, which is the focus of this Section. Throughout this section we will assume

frictionless interface conditions (µi � 0), so that, using (3.28), HT � HV and:

on BΩI : σI � n � σnn � �HT n (3.33)

In this case, the eigenvectors of σI are oriented by n, t, and ey:

σI � σ1tb t� σ2ey b ey �HT nb n (3.34)

where σ1 � t � σI � t, σ2 � ey � σI � ey, and σ3 � n � σI � n � �HT are principal stresses.

The principal stress σ1 can be derived from the interface condition σI � nβ � σII � nβ

with nβ � sinpθ� βqt� cospθ� βqn. In the pn, tq base, the interface condition reads:

σ1 sinpθ � βqt� σ3 cospθ � βqn � σII
x pex � nβqex (3.35)

Projecting this equality on vectors ex and ez yields the following scalar equations:

σ1 sinpθ � βq sin θ � σ3 cospθ � βq cos θ � σII
x cos β (3.36)

σ1 sinpθ � βq cos θ � σ3 cospθ � βq sin θ � 0 (3.37)

This yields:

σ1 � �HT
tan θ

tanpθ � βq (3.38)
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while:

σII
x � �HT p1� tan θ tan βq (3.39)

These relations largely simplify the derivation of analytical solutions for some simple

yield criteria, reducing the optimization problem to two stress unknowns, σ2 � σI
y

and σII
y , in addition to angle β. Ordering the principal stresses according to σI ¥

σII ¥ σIII yields:

σI ¥ σII ¥ σIII

Zone I: σ1 � �HT
tan θ

tanpθ � βq σI
y P rσI , σIIIs σ3 � �HT

Zone II: σII
z � 0 σII

y P rσI , σIIIs σII
x � �HT p1� tan θ tan βq

(3.40)

3.4.1 Cohesive Materials: Tresca and Von-Mises

We start by considering purely cohesive materials, as expressed by the Tresca and

Von Mises strength criteria defined in Table 3.1. Consider first the Tresca case. The

use of the principal stresses (3.40) in the strength criterion fpσq � σI � σIII � 2c ¤ 0

yields:

HT � 2c max
β

$'''''&'''''%
�

1� tan θ

tanpθ � βq

�1

Zone I

1

1� tan θ tan β
Zone II

(3.41)
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The solution of the optimization problem is achieved for fpσIq � fpσIIq � 0, which

entails1:

HS ¥ maxβ HT � 2c p1� sin θq ; with: β � π

4
� θ

2
(3.42)

Consider next the Von-Mises case, which distinguishes itself from the Tresca mate-

rial through the contribution of the intermediate principal stress σII in yield function

(Table 3.1). Thus, the optimization must include σII , in addition to angle β. It is

readily understood that the best σII is the one that minimizes the strength function

fpσJq for given values of σI and σIII :

Bf
BσII

����
σI ,σIII

� 0 ô σII � 1

2
pσI � σIIIq (3.43)

Introducing this optimal value into the function reduces the Von-Mises criterion to a

Tresca form:

fpσJ
I ¥ σII � 1

2

�
σJ

I � σJ
III

� ¥ σJ
IIIq � ��σJ

I � σJ
III

��� 2k ¤ 0 (3.44)

It follows that solution (3.42) remains valid for the Von-Mises criterion provided one

replaces the Tresca cohesion c by the Von-Mises shear strength k. It should be noted,

however, that due to the difference in uniaxial strength–cohesion relationship of the

two criteria, displayed in Table 3.2, the scratch hardness–to–yield strength relations

1

fpσIq � fpσIIq ô tanpθ � βq
tanpθ � βq � tan θ

� 1
1� tan θ tan β

ô tan β � 1� sin θ

cos θ
using tanpθ � βq � tan θ � tan β

1� tan θ tan β

Given that cos θ � 1�u2

1�u2 and sin θ � 2u
1�u2 with u � tan θ

2 , we find:

tan β � 1� u

1� u
� tan π

4 � tan θ
2

1� tan π
4 tan θ

2

� tan
�

π

4
� θ

2
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differ:

HS

σ0

¥ HT

σ0

� p1� sin θq

$''''&''''%
1 Tresca pσ0 � 2cq
2?
3

Von-Mises
�
σ0 � ?3k

� (3.45)

3.4.2 Cohesive–Frictional Materials: Mohr-Coulomb and Drucker-

Prager

Pressure sensitive materials are best represented with the Mohr-Coulomb and Drucker-

Prager criteria, whose expressions are given in Table 3.1. Following the same pro-

cedure as developed for the Tresca and Von-Mises case, we arrive at the following

hardness–cohesion–friction relationships:

• For the Mohr-Coulomb material:

HS ¥ maxβ HT � 2c
cos ϕp1�sin2 θq

1�sin θ cos ϕ
?

1�ptan ϕ sin θq2�sin ϕ cos2 θ
(3.46)

with:

tan β �
a

1� tan2 θ � sin2 ϕ� tan θ

1� sin ϕ
(3.47)

• For the Drucker-Prager material, using σII � 1
2
pσI�σIIIq� α

2
?

1�α2{3pσI�σIIIq:

HS ¥ maxβ HT � 2k 1�sin2 θb
1�α2

3
�sin θ

b
1�α2p 1

3
�cos2 θq�α cos2 θ

(3.48)

with:

tan β � sin θ
b

1� α2

3
�b

1� α2
�

1
3
� cos2 θ

��
α �b

1� α2

3



cos θ

(3.49)

It is straightforward to verify that (3.46) and (3.48) reduce to (3.42) for the fric-

tionless case (ϕ � 0 and α � 0). Using the correspondence between σ0 and (c, ϕ) or

(k, α), we can formulate the hardness–to–UCS ratio of frictional cohesive materials
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in the Mohr-Coulomb and Drucker-Prager cases:

HS ¥ HT � σ0
p1�sin2 θqp1�sin ϕq

1�sin θ cos ϕ
?

1�ptan ϕ sin θq2�sin ϕ cos2 θ
(3.50)

HS ¥ HT � σ0
2?
3

p1�sin2 θqp1�α{?3qb
1�α2

3
�sin θ

b
1�α2p 1

3
�cos2 θq�α cos2 θ

(3.51)

From these relations we can draw two conclusions: first, there is no direct correlation

between tangential hardness and either cohesion or UCS. Instead, a dependence on

the internal friction of the material appears in the hardness–to–strength relations.

Secondly, no equivalence between the Mohr-Coulomb and Drucker-Prager formulas

can be found, i.e. no general relation between (c, ϕ) and (k, α), as expressed for

example in (3.14), leads to a common expression of HT {σ0.

3.5 Consideration of Interface Friction

Frictionless contact implies that:

FV

FH

� tan θ ðñ HT

HV

� 1 (3.52)

where we recall that HT � FT { pwdq and HV � FV { pwd tan θq represent the mean

pressures generated by the scratch force and the vertical force over the respective load

bearing areas. When HT {HV departs from unity, the presence of interface friction

needs to be considered; for instance, in the form of Amontons-Coulomb law of friction

(3.27):

|σt| � µiσn ¤ 0 (3.53)

We recall that inequality (3.53) is saturated when there is sliding between the material

and the blade and is strict when no relative movement occurs (adhesion of the material

to the blade). Taking the frictionless configuration as a reference, we model the effect

of (Amontonian) friction as an additional degree of freedom θ1, as depicted on figure

3-4, which represents the rotation of the principal directions of the stress tensor in
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Figure 3-4: Geometry and stress fields in the frictional case

zone I. The eigenvectors of σI are oriented by n1, t1, and ey:

σI � σ1t
1 b t1 � σ2ey b ey � σ3n

1 b n1 (3.54)

The boundary condition on BΩI gives a first relation between the principal stresses

σ1 and σ3 and the tangential hardness HT :

HT � σ1 sin2 θ1 � σ3 cos2 θ1 � tan θ cos θ1 sin θ1 pσ1 � σ3q (3.55)

The interface condition σI �nβ � σII �nβ (with nβ � sinpθ�θ1�βqt1�cospθ�θ1�βqn1)
yields:

σ3 � σ1
tanpθ � θ1 � βq

tanpθ � θ1q (3.56)

and:

σ1 sinpθ � θ1 � βq sinpθ � θ1q � σ3 cospθ � θ1 � βq cospθ � θ1q � σII
x cos β (3.57)
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Combining equations (3.55) and (3.56) gives the principal stresses σ1 and σ3 as func-

tions of HT ,θ,θ1, and β:

σ1 � �HT
tanpθ � θ1q

cos2 θ1 tanpθ � θ1 � βq � sin2 θ1 � tan θ cos θ1 sin θ1ptanpθ � θ1 � βq � tanpθ � θ1q
(3.58)

σ3 � �HT
tanpθ � θ1 � βq

cos2 θ1 tanpθ � θ1 � βq � sin2 θ1 � tan θ cos θ1 sin θ1ptanpθ � θ1 � βq � tanpθ � θ1q
(3.59)

3.5.1 Cohesive Materials With Interface Friction

To illustrate the effect of friction, consider first the cohesive material case described

by the Tresca or Von Mises criteria (Table 3.1). The solution of the optimization

problem is achieved for fpσIq � fpσIIq � 0, which entails for the Tresca criterion:

HT � 2c

�
sinpθ � θ1q � cos θ1 cospθ � θ1q

cos θ



with: β � π

4
� θ � θ1

2
(3.60)

This expression remains valid for the Von Mises criterion provided one replaces the

Tresca cohesion c by the Von Mises shear strength k. The goal is now to find the

optimum value of the θ1 angle, which yields the highest scratch hardness value. This

angle is constrained by the friction at the interface between the blade and the sample.

Using the value of β as set forth by (3.60), we can define a set of admissible values

for θ1 that depends on the back-rake angle θ and interface friction coefficient µi:

T pθ, µiq �
"

θ1
�������� tan θ1

sinpθ � θ1q
����� µi

�
1

cos2 θ1 �
1

sinpθ � θ1q


¤ 0

*
(3.61)

The following non-linear optimization problem for purely cohesive materials thus

needs to be solved:

HS ¥ max
θ1PT HT � 2c

�
sinpθ � θ1q � cos θ1 cospθ � θ1q

cos θ



(3.62)

The high non-linearity of the function makes it difficult to find an analytical solution

for (3.62), and calls for the use of numerical solutions. Figure 3-5 shows the depen-
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dence of HT on θ1 for three different values of the back-rake angle θ.For each value of

θ, there exists an optimum value θ1opt for θ1 that maximizes the hardness HT in the

sense of the lower-bound optimization problem (3.62). Furthermore, we identify a

critical angle sin θcr � �?
5� 1

� {2 (i.e. θcr � 38.17�) that separates two domains: for

θ   θcr, a positive value θ1 ¡ 0 is required to increase the hardness to its maximum

value; for θ ¡ θcr the inverse holds. At θ � θcr the effect of interface friction on the

scratch hardness annihilates: the maximum value of the hardness is obtained with

θ1 � 0, which corresponds to the frictionless case σt � 0.

Figure 3-5: Effect of interface friction on scratch hardness: HT {k vs. θ1 for a co-
hesive material. The line is solid (respectively dashed) for values of θ1 compatible
(respectively not compatible) with the friction law for µi � 0.2.

On the other hand, the optimum angle θ1opt must lie within the set of admissible

angles T pθ, µiq as defined by (3.60), and depicted in figure 3-6 for different values

of friction coefficient µi. The analysis suggests the existence of a critical friction

coefficient µcrit
i � µcrit

i pθq for a given back-rake angle θ: for µi   µcrit
i pθq, the friction

condition is saturated, i.e. |σt| � µiσn � 0; while θ1optpθq R T pθ, µiq. In return, for

µi ¡ µcrit
i pθq, a higher friction coefficient than the critical one does not increase the

hardness, meaning that θ1optpθq P T pθ, µiq. In this regime Amontons-Coulomb law is
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Figure 3-6: Admissible values of θ1 vs. back-rake angle θ for different values of µi.
T pθ, µiq is the domain contained between the two curves corresponding to the min.
and max. values of θ1.

not saturated; this condition implies that there is static friction between the tested

material and the blade. These two regimes are illustrated in figure 3-7, in form the

of a hardness–friction coefficient plot for different back-rake angles.

An overall trend thus emerges. For cohesive materials, interface friction enhances

the maximum value of the scratch hardness, up to a maximum value of µcrit
i pθq. For

the Tresca and Von-Mises case, this critical friction coefficient is displayed in figure

3-8 (Curve labeled VM-TR). For µcrit
i pθq   µcrit

i pθcrq, the critical interface friction

coefficient depends linearly on the back-rake angle.

3.5.2 Cohesive–Frictional Materials with Interface Friction

The trends found for purely cohesive materials are confirmed for materials exhibiting

internal friction (Mohr-Coulomb and Drucker-Prager), namely (Fig.3-8):

• The existence of a critical back-rake angle θcr, for which interface friction µi

does not affect the scratch hardness. This critical angle is a function of the

internal friction as represented by ϕ (Mohr-Coulomb) or α (Drucker-Prager).
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Figure 3-7: Hardness vs. interface friction coefficient for different back-rake angles θ
(cohesive material).

• The existence of a critical interface friction coefficient µcrit
i , below which the

interface friction coefficient is saturated, while higher interface friction does not

enhance the scratch hardness. This critical interface friction depends not only

on the back-rake angle but on the internal friction as well.

• For frictional materials, there exists a back-rake angle θ � 74.5�, for which

µcrit
i � 0.32, independent of the internal friction of the materials.

3.6 Chapter Summary

The application of the principle of maximum plastic work to the problem of the rect-

angular scratch test yields a lower bound estimate of the tangential hardness. The

proposition of a simple piecewise-constant stress field led us to the formulation of

explicit relations between hardness and strength properties of cohesive-frictional ma-

terials. Both the hardness–to–cohesion ratio and the hardness–to–UCS ratio increase

with higher internal friction. This dependence contradicts the idea of direct correla-

tion between hardness and UCS. Moreover, the similarity of the hardness–to–cohesion
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Figure 3-8: Critical friction coefficient µcrit
i as a function of the back-rake angle θ for

different materials: VM = Von Mises, TR=Tresca, DP-α = Drucker-Prager (with α
the DP friction coefficient), MC-ϕ = Mohr-Coulomb (with ϕ the MC angle of internal
friction).

formula in the Tresca and Von Mises cases may indicate that cohesion is a more rel-

evant strength property than the UCS in the context of the scratch test. In order

to be applicable, this model must now be validated through the comparison of the

results obtained with different approaches, which is the focus of the next chapter.
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Chapter 4

Validation

The litmus test for any yield design solution is the comparison of the lower bound

with an upper bound solution. In this regard, we develop a model based on the

complementary approach of yield design theory which yields an upper bound for the

scratch hardness. In addition, an original upper bound solution and elastoplastic finite

element solutions are also presented to validate the closed form solution obtained with

the analytical model.

4.1 Comparison With an Upper Bound Solution

4.1.1 Theoretical Background: Upper Bound Limit Theorem

In contrast to the lower bound theorem (see Section 3.1), the upper bound theorem

approaches the actual dissipation capacity at plastic collapse through kinematically

and plastically admissible velocity fields. These are velocity fields U 1 which

• satisfy the velocity boundary conditions:

U 1 P Kô U 1 � Ud on BΩU (4.1)
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• are compatible with the plastic flow rule of the material at collapse:$&% d1 � 9λ BfBσ ; 9λ ¥ 0 ; f ¤ 0 ; 9λf � 0

vU 1w � 9λ BfBT ; 9λ ¥ 0 ; f ¤ 0 ; 9λf � 0
(4.2)

Where d1 � 1
2

�∇U 1 � p∇U 1qT � is the plastic strain rate tensor, vU 1w is the velocity

jump along a surface of discontinuity Γ, T � σ � n is the stress vector, and f is the

strength function.

It can be shown, through application of the principle of maximum plastic work (see

[61] Chapter 9 for a more detailed presentation), that any kinematically and plastically

admissible velocity field provides an upper bound for the actual dissipation capacity,

that is:

Qlim � q ¤
»

Ω

σ : d11 dΩ�
»

Γ

T � vU 1w dΓ (4.3)

For a given yield surface, the flow rule (4.2) establishes a unique relation between the

stress tensor σ (respectively stress vector T ) and the strain rate tensor d1 (respectively

velocity jump vU 1w). It can be shown that, for a given d1 kinematically admissible,

the stress tensor σ which satisfies this flow rule yields a maximum for the dissipation

capacity:

σ satisfies (4.2) ô σ : d1 � sup
σ1PG

σ1 : d1 (4.4)

This leads to the definition of support functions, that express the maximum capacity

of the material to dissipate the externally supplied energy at plastic collapse into heat

for a given velocity field U 1:$&% πpd1q � supσ1PG σ1 : d1

πpvU 1w, nq � supσ1PG n � σ1 � vU 1w (4.5)

Inserting (4.5) into the right-hand-side of (4.3) yields the maximum dissipation ca-

pacity of the whole system, referred to as the power function, which depends only on
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the velocity field U 1:

P pU 1q �
»

Ω

πpd1q dΩ�
»

Γ

πpvU 1w, nq dΓ (4.6)

We can now formulate the upper bound limit theorem:

Theorem 2 Any kinematically velocity field U 1 delivers an upper bound P pU 1q to the

actual dissipation rate the limit load Qlim realizes along the actual velocity field q:

Qlim � q � min
U 1PKP pU 1q (4.7)

The dissipation rate P pU 1q is the maximum dissipation the material can afford, dissi-

pating energy in the material bulk and along surfaces of discontinuity into heat form.

4.1.2 Upper Bound Model

Application of the upper bound limit theorem The first step of the upper

bound approach consists in formulating the external plastic work rate Qlim � q. As

this approach is applied to the same problem as the lower bound approach developed

in chapter 3, the external plastic work rate supplied to the system remains expressed

by (3.17). The application of the upper bound limit theorem yields:

HS � H lim
T ¤ P pU 1q

V wd
; @ U 1 kinematically admissible (4.8)

We consider a frictionless contact between the blade and the material. It translates

kinematically into an unconstrained tangential velocity along the blade. Combined

with the non-penetration of the blade into the material, this condition leads to the

formulation of the kinematic boundary condition that a velocity field has to satisfy

to be k.a., thus defining the set K of kinematically admissible velocity fields:

K �
$&%U

������ Upxq � n � V � n � �V cos θ @x P OA

Upxq � 0 for |x| Ñ 8

,.- (4.9)
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Figure 4-1: Rigid blocks failure mechanism.

The upper bound approach consists now in finding a velocity field U P K that mini-

mizes the power function P pUq to find the best estimation of the tangential hardness.

Choice of velocity field We propose a rigid blocks failure mechanism as depicted

in figure 4-1. The application of the kinematic admissibility (4.9) yields U1n � U1 �n �
�V cos θ, thus reducing the proposed family of velocity fields to a 6-dimensional subset

of K, the 6 degrees of freedom being: U1t,U2x,U2z, xB, zB, and xC , where U1t � U1 � t
is the tangential component of the velocity at the interface between the blade and

the material. In this failure mechanism, energy is dissipated only at the surfaces of

velocity discontinuity OB, AB, and BC. It is indeed trivial to check that d � 0 in

Ω. As we assume that the contact between the blade and the material is frictionless,

there is no dissipation along OA. The total dissipation capacity P pUq reads then:

P pUq �
»

OB

πpx, n01, U1qdS�
»

BC

πpx, n02, U2qdS�
»

AB

πpx, n12, U2 � U1qdS (4.10)

Cohesive materials: Von Mises and Tresca criteria We start by considering

purely cohesive materials, as expressed by the Tresca or the Von Mises criterion (Table

3.1). It can be shown [53] that the support function for velocity discontinuities is, for
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the Tresca criterion:

πpn, vUwq �
$&% �8 if vUw � n � 0

c� |vUw| if vUw � n � 0
(4.11)

This expression remains valid for a Von Mises material, provided that the cohesion

c is replaced by the shear strength k. The consideration of constant velocities in the

three different rigid blocks allows us to express P pUq in terms of the different degrees

of freedom:

P pUq � c� p|U1| |OB| � |U2| |BC| � |U2 � U1| |AB|q (4.12)

with the constraint:

U1 � n01 � U2 � n02 � pU2 � U1q � n12 � 0 (4.13)

These three kinematic conditions are imposed by the shape of the power function

(4.11) and reduce by three the number of degrees of freedom. Developing them leads

to the expression of the three unknown velocity components U1t, U2x, and U2z as

functions of the geometric parameters xB, zB, and zC :$'''&'''%
U1t � V � zB

xB cos θ�zB sin θ
(a)

U2x � V � xB�xCpzB�1qpxC�d tan θq (b)

U2z � V � d
xC�d tan θ

(c)

(4.14)

Inserting these expressions into equation (4.12) yields:

P pUq � c� V � d� P̃ px̃B, z̃B, x̃Cq (4.15)

where P̃ is a dimensionless rational function of order 2 depending on the three di-

mensionless parameters x̃B � xB{d, z̃B � zB{d, and x̃C � xC{d. Applying the upper
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Figure 4-2: Result of the upper-bound model optimization for a cohesive material for
(a) θ � 20� and (b) θ � 70�.

bound limit theorem (4.8) hence yields in the cohesive case:

HS ¤ HT px̃B, z̃B, x̃Cq � c� P̃ px̃B, z̃B, x̃Cq @ admissible x̃B, z̃B, x̃C (4.16)

With kinematic admissibility satisfied by the choice of the shape of the velocity fields,

the term ‘admissible’ refers here to obvious geometric considerations and can be

expressed in the following way:$&% x̃B ¡ z̃B tan θ AB is in the material (a)

x̃C ¡ tan θ C is at the right of A (b)
(4.17)

We carry out the minimization of P̃ numerically with Matlab, using the fmincon

function based on a Newton-type algorithm. The initial value fed to the function is

by default rx̃B, z̃B, x̃Cs � r1, 0, 1 � tan θs, but can be adjusted if necessary to help

convergence. Results of the optimization are shown in figure 4-2 for angles θ � 20�

and θ � 70�. Figure (4-3) represents the hardness–to–cohesion ratio versus the back-

rake angle θ for various materials, including Von Mises and Tresca (labeled VM).
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Cohesive-frictional materials: Drucker-Prager and Mohr-Coulomb criteria

We now implement the Mohr-Coulomb and Drucker-Prager criteria to model frictonal-

cohesive materials. It can be shown [53] that the power functions of these criteria for

velocity discontinuities are:

πpn, vUwq �
$&% �8 if vUw � n   |vUw| sin ϕ

c
tan ϕ

� vUw � n if vUw � n ¥ |vUw| sin ϕ
(4.18)

πpn, vUwq �
$&% �8 if vUw � n   |vUw|b α2

1�α2{3
k
α
� vUw � n if vUw � n ¥ |vUw|b α2

1�α2{3
(4.19)

Unlike in the Tresca and Von Mises cases, the condition for the power function to be

finite is not an equality but a non-linear inequality, which accounts for the dilation

of frictional materials at plastic collapse. Direct relationships between geometric pa-

rameters xB, zB, xC , and velocity parameters U1t, U2x, U2z could hence not be found,

which calls for the use of a numerical optimization procedure on the 6 parameters

with non-linear constraints. Once again this is performed with the Matlab function

fmincon.

Figure 4-3 shows that the addition of an internal friction coefficient increases the

scratch hardness by a factor, which itself increases with the angle θ.

Extension to 3D For the Von Mises and Tresca criteria, this model can easily

be extended to a three-dimensional problem by adding a width w to the blade and

the two rigid blocks in motion at plastic collapse. As a result, two new surfaces of

tangential velocity discontinuity are added: triangles OAB and ABC, using the same

nomenclature as in figure (4-1). The expression of the dissipation function becomes

then:

P pUq � c�rw � p|U1| |OB| � |U2| |BC| � |U2 � U1| |AB|q � 2 pxOABy |U1| � xABCy |U2|qs
(4.20)
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Figure 4-3: Hardness–to–shear strength ratio vs. back-rake angle θ for Drucker-Prager
materials with different internal friction coefficients.

where xy stands for the area of the triangle. Dimensionally speaking, we see that

the terms already appearing in the 2D model are of the order of dw, while the side

terms are of the order of d2. This extension to 3D will then converge to the 2D model

when w{d Ñ �8. Apart from these new terms, the details of the optimization are

similar to the 2D case. This 3D model makes it possible to study the influence of the

depth–to–width ratio d{w, as shown on figure 4-4. For width–to–depth ratios smaller

than 100, the effect of the third dimension is not negligible and must be accounted

for.

Summary The application of the upper bound limit theorem to the scratch test

problem led us to develop a simple model based on a 6-parameter velocity field.

An upper bound for the hardness is obtained for cohesive and frictional-cohesive

materials by numerical optimization. The comparison of these results with the lower

bound approach will serve as a validation for the closed form solutions obtained in

chapter 3.
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Figure 4-4: Influence of the depth–to–width ratio in the upper-bound model for the
scratch test

4.1.3 Influence of the Back-Rake Angle θ

We first compare the influence of the back-rake angle θ. Figure 4-5 shows the hardness

HT versus the back-rake angle θ for both the upper bound and the lower bound

solutions. The 3D upper-bound solutions diverge for large back-rake angles θ ¡ 85�.
This limit being set, the upper bound solution is very close to the lower bound. This

result shows that the actual solution for HS is found for back-rake angles smaller than

45� and w{d ratio smaller than 100 with an accuracy of less than 8% (Figure 4-6).

Typical scratch tests on rocks have a width–to–depth ratio between 10 and 100 [51].

In such a case, the yield design theory models predict with a 10% accuracy for angles

θ smaller than 30�.

4.1.4 Influence of the Internal Friction (α or ϕ)

The correlation between the upper bound and lower bound models are good for cohe-

sive materials modeled by Von Mises or Tresca criteria, especially at small θ angles.

Given the extensive application of this thesis to the fields of soil mechanics or cementi-
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Figure 4-5: Hardness–to–shear strength ratio vs. Back-rake angle θ for a Von Mises
material. Comparison to lower bound and upper-bound solutions for different w{d
ratios.

tious materials, the ability of the models to predict the behavior of pressure-sensitive

materials is of utmost importance. Figure 4-7 plots the hardness–to–shear strength

ratio obtained with lower bound and upper bound models versus the internal fric-

tion coefficient α for a Drucker-Prager material for three different back-rake angles

θ � 20, 50, 70�. These curves show a very strong correlation for the smallest angle θ

for almost all the range of α authorized (α  a
3{4 � 0.86). Figure 4-8 displays the

relative difference between the upper bound value and the lower bound value. For

θ � 20� the upper bound is less than 5% higher than the lower bound for α   0.67,

which encompasses most of the cohesive-frictional materials that can be modeled with

a Drucker-Prager coefficient. The tendency of the difference increasing for greater θ

angles already observed in the previous paragraph is observed again in the frictional

case and is amplified by internal friction. Indeed, for θ � 70�, the upper bound is

twice as large as the lower bound from α � 0.52 onward and more than three times

as large for α ¡ 0.62.
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Figure 4-6: Relative variation of the upper bound solution compared with the lower
bound solution vs. back-rake angle θ for a Von Mises material for various values of
the w{d ratio.

4.2 Comparison With an Original Limit Analysis

Solution

4.2.1 Presentation of the Solver

We here employ the computational yield design analysis solver developed by Borges

et al. [8],[46],[9]. The algorithm aims at directly finding a numerical estimate of the

stress and velocity fields which are a solution of the limit analysis problem. In fact,

the approach employs both stresses and velocities as degrees of freedom, and subjects

them to the following conditions:

1. The stress field Σ satisfies the weak form of the equilibrium condition (div Σ �
0). For the scratch test, this condition reads1:

HT pwdqV �
»

Ω

Σ : D1 dΩ (4.21)

1no discontinuities are considered in the model
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Figure 4-7: Hardness–to–shear strength ratio vs. Drucker-Prager friction coefficient
α. Comparison of lower bound and upper-bound solutions for different back-rake
angles θ.

Figure 4-8: Relative variation of the upper bound solution compared with the lower
bound solution vs. Drucker-Prager coefficient α for different back-rake angles θ.
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where D1 is the plastic strain rate tensor derived from the velocity field U 1

kinematically admissible in the sense of (4.9).

2. The stress field satisfies the strength criterion:

fpΣq ¤ 0 (4.22)

Among the classic strength criteria, Von Mises and Drucker-Prager are imple-

mented in the solver.

3. The strain rate D1 obeys an associated flow rule as defined by (4.2).

The implementation of the approach requires on the one side the discretization of

the domain Ω, and on the other hand an efficient formulation to solve the constraint

conditions. The first condition is achieved by using the classical procedures of finite

element analysis (see e.g. [6]). The infinite half-space Ω is replaced by a finite domain

Ω1 discretized by finite elements (See figure 4-9). The kinematic condition at infinity

U 1 � 0 for |x| Ñ �8 is replaced by the following zero-velocity conditions:$&% U 1x � 0 for x � xmin and x � xmax

U 1z � 0 for z � zmin

(4.23)

The second objective is achieved by using a complex algorithm presented in details

in [8].

All the simulations are carried out in 2D with the plane strain rate assumption for a

single back-rake angle θ � 20�. For a given material, the solver yields the hardness–to–

cohesion ratio HT {k, along with the kinematically admissible and strength compatible

velocity field. Unlike in the classic upper bound approach, both Σ and U 1 are used as

degrees of freedom for the optimization. However one can see that the difference lies

only in the formulation of the strength compatibility: while in the classic upper bound

approach the energy dissipation rate P pU 1q is computed using the support function

πpD1q, it is calculated in the solver using the strength compatible stress tensor Σ,

constrained by the associated flow rule (4.2). As stated in the presentation of the
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Figure 4-9: Geometry, mesh (1,416 6-node triangle elements) and loading conditions
of the upper bound solver.

upper bound limit theorem, such a stress tensor is unique and πpD1q � Σ : D1. As a

result, while the implementation is different, this solver also yields an upper bound

value for the dissipation capacity, and hence for the hardness.

4.2.2 Comparison of the Results

For a Von-Mises material, the limit analysis solver with the finest mesh available

(7,622 elements) predicts a tangential hardness –to–cohesion ratio of HT {k � 2.72.

This value is just 1.5% greater than the value provided with the closed form solution

(3.45) for the considered back-rake angle of θ � 20�:

2 p1� sin θq � 2.684 ¤ HS

k
¤ 2.72 (4.24)
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(a) Max. in-plane principle stress (b) Out-of-plane principle stress

(c) Min. in-plane principle stress

Figure 4-10: Principle stresses computed by the yield design software for a Drucker-
Prager material (α � 0.1) with θ � 20�, and normalized by the shear strength k. The
values expected with the lower bound solution are superimposed.

It is also 0.6% greater than the value obtained with the upper bound model based

on velocity discontinuities (HUB
T {k � 2.705). On the one hand, the relatively good

agreement of this model and the lower bound solution can be attributed to the ac-

curacy of the constant stress assumption field under the blade, which represents the

main restriction of the lower bound solution. In the current case this fits well with

what is seen in more complex simulations in which the stress field can vary. The

hardness is determined by the state of stress at the blade–material interface. The

upper bound model predicts the development of a plastic zone under the blade where

the stress field is constant (Figure 4-10), much like in the lower bound model.

On the other hand, the good agreement with the upper bound solution based on

velocity discontinuities presented in this thesis can be attributed to the accurate ap-

proximation of the velocity field and dissipation pattern developed in the material,

as shown by the superposition of the upper bound solutions on the solver’s solutions

(Figure 4-11).
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(a) Velocity field (b) Plastic Dissipation

Figure 4-11: Correlation between the upper bound optimization solution (superim-
posed in red) and the solver’s solution for a Drucker-Prager criterion (α � 0.1) and
θ � 20�.

A similar confrontation of lower and upper bound solutions is carried out for scratch

tests onto a Drucker-Prager material, with the objective to validate the closed form

expressions. This comparison is displayed in figure 4-12. Convergence of the upper-

bound limit analysis solver could only be achieved for α ¤ 0.12. In this range, the

upper bound solver’s solution differs from the lower bound solution by only 4%, which

confirms the accuracy of the proposed lower bound solutions for frictional materials

with small internal friction coefficients.

4.3 Comparison with Elastoplastic Finite Element

Solutions

Finally, an independent comparison is made with elastoplastic finite element solutions.

A first order comparison can be made with published FE-solutions of the scratch test:

Lee et al. [35] modeled the scratching of an elastic perfectly plastic material by a

rigid spherical indenter and obtained hardness–to–yield strength ratios ranging from

2 to 3.5. Bellemare et al. [7] modeled the frictional sliding (with interface friction

µi � 0.15) of a conical indenter (half-cone angle 70.3�) on an elastic plastic material

including hardening and obtained a hardness–to–yield strength ratio of 2.8 in the

case of very small hardening. While both results were obtained with other scratch
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Figure 4-12: Yield design solutions compared to upper bound solver (1,416 elements)
for Hardness-to-cohesion ratio for a Drucker-Prager material with back-rake angle
θ � 20�.

geometries than the straight scratch test considered in our approach, the values agree

reasonably well with the hardness–to–yield strength ratios for the pure Von Mises

material cohesive case obtained with the lower-bound approach. In fact, considering

a high back-rake angle θ � 70.3� yields a hardness–to–yield strength ratio of 2.3 in

the frictionless interface case, and a value of 2.85 for the frictional interface case.

The upper bound model gives a hardness–to–yield strength ratio of 2.71 without

considering friction at the interface. The good agreement with the FE results hints

toward a minor influence of the scratch geometry on the hardness–strength relation.

4.3.1 Finite Element Model

A more refined comparison is made here with finite element simulations for the

cohesive-frictional case considering our straight scratch test geometry. In the FE sim-

ulations we consider the actual contact between the rigid blade and the deformable

material sample. In these simulations the material parameters were chosen so as to
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Figure 4-13: Geometry and loading conditions of the Abaqus finite element model for
θ � 20� (14,526 nodes and 4,742 plane strain quadratic elements).
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Figure 4-14: Geometry and loading conditions of the Abaqus finite element model for
θ � 70� (56,063 nodes and 18,492 plane strain quadratic elements).

approximate as closely as possible, by means of elastoplastic2 simulations, the rigid

plastic case, namely a shear-strength –to– Young’s modulus ratio of k{E � 5.8�10�4.

Plane strain quadratic elements were used (CPEG8R, 10 mm thickness) with reduced

integration, and large deformations were allowed. Two geometries were used (Figures

4-13 and 4-14, corresponding to back-rake angles θ � 20� and θ � 70�, for a common

depth of scratch d � 1mm. For both geometries the typical size of an element was

0.1mm, to be compared with the size of the systems: L � H � 10mm � 5mm for

θ � 20�, and L � H � 20mm�10mm for θ � 70�. The displacement of the blade

was chosen such that plasticity would be activated. For the θ � 20� simulations fully

plastic behavior occurred with very little geometrical hardening for a displacement of

0.02mm as shown in typical Force–Displacement curves depicted in Figure 4-15. In

2In Abaqus, the built-in Drucker-Prager material are defined as follows:

k � d{?3 where d is the yield stress defined in Abaqus in shear mode

α � tan β{?3 where β is the friction angle defined in Abaqus. The dilation angle is set equal to β.
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Figure 4-15: Typical Force–Displacement curves obtained with the FE simulations
for θ � 20�.

the θ � 70� case, geometric hardening is more significant (Figure 4-16). In this latter

case, hardness is measured at a displacement of 0.2mm. This order of magnitude

difference between the displacements needed to activate plasticity can be explained

by the horizontal strain sustained by the material under the blade. It can indeed be

inferred that εxx9uθ
blade{pd tan θq. Given that tanp70�q � 7.5 tanp20�q and d equals

1mm in both geometries, getting approximately the same horizontal strain will re-

quire increasing the displacement of the blade by a factor close to 7.5. We chose to

use the value u70�
blade � 0.2mm but the presence of non-negligible hardening must be

kept in mind when interpreting the results.

In both cases, the value of the hardness–to–shear strength ratio is calculated by

dividing the force recorded (in N) by k � w � d � 11.5MPa� 10mm� df , df being

the actual height of the contact between the blade and the material measured at the

end of the step. This value df is less than 2% off the initial value d � 1mm in the

frictionless cases but can be more than 10% higher in the presence of interface friction

for the 70� geometry. A first general observation is that elastoplastic solutions predict

higher values than the lower bound yield design solutions. This hints toward a role

of the elastic energy stored in front of the interface into the material. This energy
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Figure 4-16: Typical Force–Displacement curves obtained with the FE simulations
for θ � 70�.

θ E (GPa) ν k (MPa) α µi d (mm) Blade displ. (mm) El. size (mm)
20� 20 0.4 11.55 r0, 0.4s r0, 0.5s 1 0.02 0.1
70� 20 0.4 11.55 r0.0.4s r0, 0.5s 1 0.2 0.1

Table 4.1: Finite Element Model parameters
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storage entails an increase of the resistance to scratching similar to plastic hardening.

The effects of the elasticity parameters (E and ν) are nevertheless not significant as

long as the plastic regime is reached (see table 4.2). In the next paragraphs we show

Simulation E (GPa) ν Reaction Force (N) HT {k Variation
1 (Ref) 20 0.4 470.9 4.08 –
2 20 0 469.4 4.06 �0.32%
3 20 0.2 470.3 4.07 �0.13%
4 20 0.49 472.2 4.09 �0.28%
5 200 0.4 473.0 4.10 �0.44%

Table 4.2: Influence of the elasticity coefficients in the FE simulation results (θ � 20�,
α � 0.21)

an investigation of the correlation between the FE simulation and the yield design

models for two different back-rake angles θ � 20� and θ � 70�.

4.3.2 Influence of the Drucker-Prager Internal Friction Co-

efficient

The comparison of the FE results with the yield design solutions for a Drucker-

Prager material (Fig. 4-17) yields two contrasting conclusions. On the one hand the

results of the finite element simulation for θ � 20� show a great deal of consistency

with the closed form solutions based on the lower bound solution, and with the

upper bound solutions (which were shown to be less than 5% higher), given that

the FEM results are 10% greater than the lower bound solutions over the range of

internal friction coefficient α. This difference can be reduced by finer meshing. The

proximity of the lower and upper bound does not allow us to use FE simulation to

validate one over the other. On the other hand, the results of the FE simulations

for θ � 70� are not showing the same increase rate of HT w.r.t. α. This lack of

consistency can be explained by the geometric hardening observed with this geometry.

Indeed, the increase of the friction coefficient α increases the yield strength of the

material and, as a consequence, delays the activation of plasticity. The choice of

measuring the hardness at a fixed value of the displacement of the blade can lead to
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Figure 4-17: Hardness–to–shear strength ratio vs. Drucker-Prager friction coefficient
α. Comparison of lower bound, upper-bound, and FE solutions for θ � 20�, 70�.

an underestimation of the hardness for greater values of α. Here again, it is impossible

to refine the models to a better accuracy for the lower or upper bound solutions since

these FE results are consistent with neither solution.

4.3.3 Influence of the Blade–Material Interface Friction

The Amonton type law of friction can be implemented in Abaqus. The FE model can

help us in validating the values obtained when friction is taken into consideration.

Once again, there is a very good correlation between the lower bound approximation

and the FE simulation as shown on Figure 4-18 for a Von Mises material. The

existence of a critical µcr
i pθq above which increasing the friction coefficient does not

affect the tangential hardness is clearly apparent, but its value differs from the one

obtained with the lower bound approximation (µcr,FE
i pθ � 20�q � µcr,FE

i pθ � 70�q �
0.2 while µcr,LB

i pθ � 20�q � 0.167 and µcr,LB
i pθ � 70�q � 0.282).

In actual scratch tests, both FT and FV are measured. While the frictionless

assumption imposes that FV {FT � tan θ whatever the scratched material, the con-

sideration of interface friction allows this ratio to depart from this value of tan θ in a
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Figure 4-18: Hardness–to–shear strength ratio vs. interface friction coefficient µi for
a Von Mises material. Comparison of lower bound and FE solutions for θ � 20�, 70�.

material-dependent way. Both the lower bound model and the FE simulation predict

two separate regimes for this ratio FT {FV as shown on figure 4-19:

• for µi   µcr
i , sliding occurs at the interface and the friction law is saturated:

|σt| � �µiσn. By means of geometric consideration, a direct relationship be-

tween the force ratio and the friction coefficient can be inferred in the framework

of the lower bound model:

FV

FT

� sin θ � µi cos θ

cos θ � µi sin θ
ô µi � cos θ FV

FT
� sin θ

cos θ � sin θ FV

FT

(4.25)

Measuring the ratio FV {FT in this regime gives access to the friction coefficient

µi.

• for µi ¡ µcr
i , static friction takes place, meaning that there is adhesion of the

material to the blade. In this case, relationship 4.5 cannot be used and the

measurement of FV {FT does not bring more information than the fact that

µi ¡ µcr
i .

Relationship 4.5 is a priori purely geometric and the fact that the FE simulation is
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Figure 4-19: FV {FT ratio vs. interface friction coefficient µi for a Von Mises material.
Comparison of lower bound and FE solutions for θ � 20�.

not perfectly correlated hints toward the existence of a mixed-regime in which the

contact area is divided in a region of adhesion and a region of sliding. The fraction

of adhesive area progresses from 0 to 1 with the increase of µi, whereas it is an on/off

phenomenon (at µi � µcr
i in the lower bound model in which stress field is constant

under the blade).

4.3.4 Qualitative Comparisons of the Solutions

The overall good agreement between the lower bound and the FEM solutions is at-

tributable to the form of the stress field that develops in the immediate surrounding

of the blade–material interface (Figure 4-20), which appears to be well approximated

by the rough but accurate stress fields (3.19) considered in our lower bound approach.

The measured hardness depends only on the state of stress at the blade–material in-

terface, thus the ability of the model to approximate the stress field in this particular

location is key to the good prediction of the hardness.

For the θ � 20� geometry, the upper bound also shows a very good correlation with

the FE results. The upper bound is based on the plastic dissipation of energy that
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(a) Max. in-plane principle stress (b) Out-of-plane principle stress

(c) Min. in-plane principle stress

Figure 4-20: Principle stresses of the FE simulation for a Von Mises material with
θ � 20� and k � 11.5MPa. The values expected with the lower bound solution are
superimposed.
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(a) Displacement field (b) Plastic Dissipation

Figure 4-21: Correlation between the upper bound optimization solution (superim-
posed in red) and the FE simulation for a Von Mises criterion and θ � 20�.

occurs on the surfaces of discontinuity represented on figure 4-1. The good corre-

lation of this model with the FE result may be explained by the proximity of the

solution of these surfaces of discontinuity with the dissipation pattern observed in the

FE simulation. Though continuous, the displacement field in the FE simulations is

actually well approximated by surfaces of discontinuity as used in the upper bound

model. Figure 4-21 shows indeed that the dissipation and velocity patterns are close

to the yield design approximation.

In the θ � 70� case, the qualitative correlation is not as good, as shown on figure

4-22. For this geometry, the Von Mises solution of the upper bound approximation is

however very close to the FE solution, whereas the velocity and dissipation patterns

are not very well approximated by the simple discontinuities proposed in the upper

bound model.

4.4 Chapter Summary

In this chapter we have compared the hardness–cohesion–friction solutions obtained

with the lower bound approach to three different approaches: a simple upper-bound

approach based on velocity discontinuities, an advanced upper bound limit analysis

solver, and elastoplastic finite element simulations carried out for two geometries with

Abaqus. The correlation with the lower bound solutions and the other approaches is

very good, especially for small angles θ, for which the solution for the frictionless 2D
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(a) Displacement field

(b) Plastic Dissipation

Figure 4-22: Correlation between the upper bound optimization solution (superim-
posed in red) and the FE simulation for a Von Mises criterion and θ � 70�.
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problem is found with an accuracy of 1%. It proves then that the relations found with

the lower bound approach are correct, provided the intial hypotheses are verified. A

comparison to experimental values is now required to test the hypotheses. This is the

focus of the next part of this thesis.
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Part III

Extension and Application of the

Strength Model
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Chapter 5

Porous Materials

The striking feature of the lower bound model developed in Chapter 3 for cohesive-

frictional materials and validated by two upper bound models and elastoplastic finite

element simulations in Chapter 4, is its simplicity. In this chapter, we take advantage

of this simplicity to extend its fields of application to more complex materials. Most

geomaterials are porous [38], which must be accounted for in the modeling of their

behaviors. We use here the strength criterion for porous cohesive-frictional materials

developed by Ortega, Gathier and Ulm [43]. Carrying out the lower bound analysis

with this new strength criterion leads us to relations between hardness, porosity

and strength properties of the material similar to the relations recently derived for

indentation hardness [16],[25],[44].

5.1 Strength Criterion

We consider the porosity through the use of the strength criterion developed by

Ortega, Gathier, and Ulm [43] based on the Linear Comparison Composite theory

[17] to upscale strength properties from the mesoscopic to the macroscopic level.

In this paragraph we define the parameters entering the homogenization procedure.

For a detailed development of the strength homogenization procedure, the reader is

referred to Ref. [43] and [26]. Consider a material whose macroscopic representative

elementary volume (rev) is a heterogeneous material composed of a solid phase and
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pores (Figure 5-1). The volume fraction of the solid phase η � Vs{V is called the

packing density. It is related to the porosity (volume fraction of the pores) φ � Vp{V
by the simple relation:

η � 1� φ (5.1)

To apply continuum mechanics theory at the macroscale, a homogeneous equivalent

to this heterogeneous rev must be found. The two input parameters for this specific

case of strength homogenization are:

• the strength criterion of the solid phase fpσq ¤ 0.

• the morphology of the rev. Two microstructures are considered (Figure 5-1).

The first one relates to a solid matrix–pore inclusion morphology. The homog-

enization scheme that represents it best is the so-called Mori-Tanaka scheme

[40]. This matrix–inclusion composite can develop a mechanical response for

the entire range of solid concentrations (η P r0, 1s). The second case relates to

a highly disordered composite, in which no phase can play the role of matrix

or inclusion. This morphology is captured by the self-consistent scheme, which

originated independently from Hershey [30] and Kroener [34]. When applied

to a two-phase composite made of a solid phase and pores, it is characterized

by a percolation threshold η0 which is the solid concentration under which the

composite material shows no strength at all and therefore cannot produce any

mechanical response to loading.

The solid phase is chosen to be a cohesive-frictional material represented by the

Drucker-Prager criterion:

fpσq � ?σd � ασm � ks ¤ 0 (5.2)

where σm � 1
3
trσ � σI�σII�σIII

3
is the mean stress while σd �

b
1
2
s : s is the deviatoric

stress, and s � σ� σm1. The application of the homogenization procedure requires a

strictly convex strength domain. This is not the case of the Drucker-Prager strength

criterion (5.2), which in addition exhibits a point of singularity (σm � ks{α, σd � 0).
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Figure 5-1: Formalism and nomenclature used for a porous material. The rev of
the macroscopic problem (top) is itself heterogeneous (bottom) as it is constituted
of a solid phase and pores. Left: schematic of the matrix–pore morphology; Right:
disordered granular material morphology.
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A family of regular hyperbolic criteria is used to circumvent this drawback:

fpσq � 1� pσm � σ0q2
A

� σ2
d

B
¤ 0 (5.3)

This criterion tends to the Drucker-Prager criterion when:$'''&'''%
B � α2A

σ0 � ks

α

A Ñ 0

(5.4)

The homogenization procedure yields the following dissipation function for the Drucker-

Prager case in consideration:

ΠhompDq � Σhom
0 Dv � sign pBqbAD2

v � 4BD2
d (5.5)

with AD2
v � 4BD2

d ¥ 0 (5.6)

where Dv � tr D and Dd �
b

1
2
∆ : ∆ are the first two invariants of the strain rate

tensor and ∆ � D � 1
3
Dv1, and with:

A
k2

s

� η2K pη � α2Kq
pη � 2α2Kq2 ;

B
k2

s

� ηM pη � α2Kq
η � 2α2K ;

Σhom

ks

� ηαK
2α2K � η

(5.7)

where K and M are the morphology factors whose estimations in the Mori-Tanaka

(5.8) and Self-Consistent (5.9) schemes read as:

KMT � 4η

3p1� ηq � 4α2
; MMT � ηp9� 8α2q

15� 6η � p20� 12ηqα2
(5.8)

KSC � 4ηMSC

4α2MSC�3p1�ηq ;

MSC � 1
2
� 5

4
p1� ηq � 3

16α2 p2� ηq
� 1

16α2

a
144pα4 � α2q � 480α4η � 400α4η2 � 408α2η � 120α2η2 � 9p2� ηq2

(5.9)
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The existence of a percolation threshold in the self-consistent case is contained in

relations (5.9): for η Ñ 0.5, η ¡ 0.5, KSC ,MSC Ñ 0. This yields a material with

no strength for packing densities smaller than η0 � 0.5. In contrast, the matrix–pore

morphology yields an actual strength for any packing density greater than η0 � 0.

Finally, we use the yield design definition that links stresses to the dissipation

function at yield:

Σ � BΠhom

BD ; Σm � 1

3
tr Σ � BΠhom

BDv

; Σd �
c

1

2
S : S � 1

2

BΠhom

BDd

(5.10)

where S � Σ � Σm1 is the macroscopic deviatoric stress tensor. The application of

(5.10) to (5.5) yields the relation defining the boundary of the strength domain Ghom:

Σ P BGhom ô
�
Σm � Σhom

0

�2

A � Σ2
d

B � 1 (5.11)

It is recognized that the sign of B determines whether the homogenized strength

criterion is an elliptical (B ¡ 0) or a hyperbolic criterion (B   0) (Figure 5-3). The

strength domain is thus represented by the function F defined as:

FpΣq � signpBq
�pΣm�Σhom

0 q2
A � Σ2

d

B � 1



¤ 0 (5.12)

For a given internal friction coefficient α of the solid phase there exists a critical

packing density ηcr bellow which B   0 and above which B ¡ 0. This critical packing

density depends on the homogenization scheme (MT or SC):

0 ¤ ηMT
cr � 1� 4

3
α2 ¤ 1 (5.13)

2

3
¤ ηSC

cr � 1�
?

1216α4 � 432α2 � 81� p16α2 � 9q
2p20α2 � 3q ¤ 1 (5.14)

It is worthwhile to note that condition (5.6) is the translation of the compatibility

of the velocity field with the flow rule (4.2). It is always satisfied in the elliptical

regime for which pA,Bq ¡ 0, but must be imposed in the hyperbolic case and leads
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Figure 5-2: Homogenized strength criterion for αs � 0.2. It is elliptical for η   ηcr,
parabolic for η � ηcr, and hyperbolic for η ¡ ηcr.

to convergence difficulties when implemented in an optimization algorithm.

For η Ñ 1 the hyperbolic criterion tends toward the Drucker-Prager criterion of the

solid phase, which of course is necessary for the consistency of the model. This is

illustrated on Figure 5-3. In the same way, the homogenized support function ΠhompΣq
(5.5) and its flow rule compatibility condition (5.5) tend toward the expression of the

power function of the Drucker-Prager criterion (4.19)[53].

Our upper bound model relies on velocity discontinuities. The support function

(5.5) needs therefore to be adapted to encompass these discontinuities. Consider a

velocity discontinuity V along a surface oriented by n in a material whose support

function is ΠhompDq. In the local coordinate system of the discontinuity, one can

write: V � Vn n� Vt1 t1 � Vt2 t2, where t1 and t2 are two orthonormal vectors in the

discontinuity plane. It can be shown [53] that the support function for such a velocity

discontinuity is related to the power function for an equivalent bulk strain rate:

Πhompn, V q � Πhom
�
D̂pn, V q	 (5.15)
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where D̂pn, V q � Vnnbn� Vt1

2
pnb t1 � t1 b nq� Vt2

2
pnb t2 � t2 b nq is the equivalent

strain rate tensor. Its invariants are:

D̂v � Vn � V � n ; D̂d � 1

2

c
|V |2 � 1

3
V 2

n � 1

2

c
V � V � 1

3
pV � nq2 (5.16)

which yields the support function for a velocity discontinuity:

Πhom pn, V q � Σhom
0 V � n� sign pBqb�A� 1

3
B� pV � nq2 � BV � V (5.17)

with

�
A� 1

3
B


pV � nq2 � BV � V ¥ 0 (5.18)

One can easily verify that this expression reduces to πpn, V q � ks

α
V �n with pV � nq2 ¥

V � V b
α2

1�α2{3 when η Ñ 1, which is the support function expression for the Drucker-

Prager criterion (4.19).

5.2 Hardness–to–Shear Strength Relationships

5.2.1 Analytical Development of the Lower Bound Model for

Frictionless Interface

We follow the same procedure as in section 3.4 to find analytical expressions of the

hardness–to–strength ratio for porous cohesive-frictional materials represented by the

homogenized strength criterion (5.12). The static admissibility of the stress field

(3.40) is still valid. As a consequence, the extremal principle stresses ΣI and ΣIII

depend only on HT and the angle β. To obtain the maximum hardness reachable

with our shape of stress field, we must choose the out-of-plane stress components σy

and σII
y of the stress tensors in zones I and II so as to minimize the strength function

Fpσq. A minimization of FpσI , σII , σIIIq yields:

σ0
IIpΣI , ΣIIIq � CσI � σII

2
� p1� CqΣhom

0 (5.19)
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where C � 3A�2B
3A�B . Inserting this value in the strength function to get the minimum

value of F for given ΣI ,ΣIII yields:

FpΣI , Σ
0
II , ΣIIIq � D

�
ΣI � ΣIII

2
� E
D

2 � ΣIΣIII

B �
� E
D

2 �H (5.20)

with D � p4�C2q � 1
9A
�
, E � �

1
9A � 1

3B
� CΣhom

0 p1�Cq� 2Σhom
0

3A , and H � �
1

9A � 1
3B
� p1�

Cq2 �Σhom
0

�2 � 1� pΣhom
0 q2
A .

The optimum angle β is found by letting:

FpΣIq � FpΣIIq (5.21)

Letting then the strength function be equal to 0 in both domains yields the maxi-

mum hardness. However, the presence of the coupling term ΣIΣIII

B in (5.20) makes

(5.21) a fourth order equation of tan β whose general solution cannot be found. As a

consequence, like in the case with interface friction, we propose numerical solution as

closed-form analytical solutions for the hardness–to–strength relationship of porous

cohesive-frictional materials cannot be derived.

5.2.2 Optimization Results

The implementation of the homogenized strength criterion in the optimization code

developed for the frictional case (see Appendix A) consists in changes in the non-

linear conditions representing the strength compatibility in zones I and II, using the

strength criterion (5.12). For the upper bound model, the support function (5.17)

is implemented in the calculation of the dissipated energy. In the hyperbolic case

(η ¡ ηcr), condition (5.18) is applied as a non-linear constraint. We can now predict

the hardness–to–shear strength ratio for any angle θ, internal friction coefficient α,

porosity ϕ � 1 � η, morphology (MT or SC), and interface friction µi. For θ � 20�,
the yield design solver developed by Borges is used as a validation tool but converges

only in the elliptical case η   ηcr. The upper bound model proposed in this thesis

also has convergence problems in the hyperbolic case, for which the initializing of the
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optimization parameters needs to be very close to the solution. As a result, the lower

bound model can only be validated by the upper bound models in the elliptical case.

As displayed on figures 5-3 and 5-4 the correlation between upper bound and lower

bound solutions is very good for small packing densities. As expected the solutions

converge to the solid Drucker-Prager values when η Ñ 1.

5.2.3 Function Fitting for the Frictionless Case

It is possible to derive fitting functions that summarize the discrete simulation results

in closed form expressions to be used for data analysis. The format of the scaling

relations is chosen in the following form:

HT

ks

� hspθ, α, ksqΠ pθ, α, η, η0q (5.22)

where hspθ, α, ksq is the hardness of the Drucker-Prager solid whose expression was

derived analytically in chapter 3 (3.48), and Π pθ, α, η, η0q captures the influence of the

porosity and the morphology of the composite material (MT or SC) and must satisfy

Π pθ, α, η � 1, η0q � 1. For a given packing density and scheme, the Π-function is well

approximated by a function of the shape aα2 � c. We hence propose the following

decomposition of Π:

Πpθ, α, η, η0q � Π1pθ, η, η0q � α2Π2pθ, η, η0q (5.23)

Due to the complexity of the optimization, we fit functions for given geometries only

and do not propose any general dependence on θ for Π1 and Π2. To illustrate the

procedure, we fit functions for two geometries: θ � 15� and θ � 70�. θ � 15� is a

geometry commonly used for the testing of rocks [50]. θ � 70� is the typical back-rake

angle obtained when using other geometries such as spherical indenter [7] [35] and is

used to show the relevance of the shape functions.
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Figure 5-3: Hardness normalized by solid shear strength versus packing density η for
α � 0.1.
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Figure 5-4: Hardness normalized by solid shear strength versus packing density η
for α � 0.4. The upper bound solutions fail to converge for η ¡ ηcr (ηMT

cr � 0.787,
ηSC

cr � 0.847)
.
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• For the Mori-Tanaka case, we use the following 8-parameter function:$&% ΠMT
1,θ pηq � η p1� aθp1� ηq � bθp1� ηq2 � cθp1� ηq3q

ΠMT
2,θ pηq � ηp1� ηq pdθ � eθp1� ηq � fθp1� ηq2 � gθp1� ηq3 � hθp1� ηq4q

(5.24)

An application of the method of least squares on 808 discrete values of HT {hs

(α � 0, 0.1, ..., 0.7, η � 0, 0.01, ..., 1) for θ � 15�, 70� yields the parameters

a, b, ..., h:

MT, θ � 15�

$''''''&''''''%
a15� � �0.9062 e15� � 14.8919

b15� � 0.8711 f15� � �11.4005

c15� � �0.4089 g15� � �5.9572

d15� � �6.2702 h15� � 8.3834

(5.25)

MT, θ � 70�

$''''''&''''''%
a70� � �1.9405 e70� � 21.1757

b70� � 2.4411 f70� � �19.1115

c70� � �1.1720 g70� � �8.9584

d70� � �7.0391 h70� � 14.2613

(5.26)

• For the self-consistent scheme, representing perfectly disordered granular mate-

rial, we use a 7-parameter function:$&% ΠMT
1,θ pηq � ?2η � 1 p1� aθp1� ηq � bθp1� ηq2 � cθp1� ηq3q

ΠMT
2,θ pηq � ?2η � 1p1� ηq pdθ � eθp1� ηq � fθp1� ηq2 � gθp1� ηq3q

(5.27)

The method of least squares applied to 408 discrete values (α � 0, 0.1, ..., 0.7,

η � 0.50, 0.51, ..., 1) for θ � 15�, 70� yields the parameters a, b, ..., g:

SC, θ � 15�

$''''''&''''''%
a15� � �0.9246 d15� � �6.0780

b15� � �0.1948 e15� � 4.9562

c15� � �0.0612 f15� � 3.1910

g15� � 1.5310

(5.28)
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SC, θ � 70�

$''''''&''''''%
a70� � �2.1914 d70� � �4.8556

b70� � 1.2477 e70� � 2.9409

c70� � 0.8978 f70� � 1.9639

g70� � 0.9572

(5.29)

With relationships between packing density, cohesive-frictional strength parameters,

and scratch hardness in place and well approximated by smooth, closed-form fitting

functions, an inverse approach to analysis of scratch results is possible.

5.3 Chapter Summary

In this chapter, we implemented a homogenized strength criterion for cohesive-frictional

porous materials in the lower bound model. The results given by the lower bound

model are validated in the elliptical regime of the strength criterion by our upper

bound model and Borges’ model. A simple optimization procedure written for Mat-

lab gives access to the prediction of the tangential hardness for any angle θ, solid

properties (ks, α), porosity (φ � 1�η), and interfacial friction coefficient µi. While it

was not possible to obtain closed form relations between hardness and material prop-

erties like in the case of classical strength criteria, we were able to fit regular functions

predicting the hardness in the frictionless case and for a fixed angle θ. These rela-

tions represent a first step towards the implementation of a reverse analysis procedure

aimed at determining the mechanical properties of porous cohesive-frictional materi-

als from scratch tests measurements.
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Chapter 6

Application

This chapter illustrates how strength properties of a material can be inferred from

experimental scratch data through the use of the hardness–strength relations given

by the lower bound model. A set of force recordings of scratch tests carried out at

different widths and depths on cement paste was provided by Schlumberger, along

with the experimental value of the uniaxial compressive strength σ0. Through the

formulation of different hypotheses, we deduce the strength properties of the tested

material.

6.1 Experimental Data

The overall satisfying comparison of the lower bound solutions with upper bound

and finite-element solutions suggests that the simple closed-form solutions provide

an accurate means to determine strength parameters from a scratch test. This is

illustrated here for scratch results on cement pastes, the hydraulic binding phase of

concrete materials. The material is a cement paste prepared at a water–to–cement

mass ratio of 0.44. The uniaxial compressive strength (UCS) measured is σexp
0 �

43� 2MPa.

We here analyze three series of 20 scratch tests carried out on this cement paste

material. The tests consist of cutting a groove of width w on the surface of a sample

with a Polycrystalline Diamond Composites cubic cutter under controlled depth of
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Figure 6-1: Example of scratch test result: measured vertical and normal forces along
the scratch path [Test on cement paste, width w � 10 mm, depth d � 0.5 mm; tests
carried out by Epslog Engineering (Belgium); data courtesy of Schlumberger].

cut d varying between 0.1 mm and 0.6 mm, and constant velocity. The back-rake

angle in all tests was θ � 15�. The three test series differ in the scratch width, w � 2.5

mm, 5 mm and 10 mm. In each scratch test, the mean tangential and vertical force

is determined as the arithmetic mean of the forces recorded along the scratch path

(Figure 6-1).

Figure 6-2 displays the range of mean tangential and vertical force values in all

tests as a function of the projected contact area, ALB � wd. The curved shape means

that the scratch hardness in the sense of Eq. (1.1) is not a constant, but changes

with the projected contact area. Such a dependency is indicative of size effects that

cannot be explained by strength of materials theory. On the other hand, considering

the hardness as the mean contact pressure, by analogy with classical mechanics-of-

materials stress definition, one can define the scratch hardness asymptotically from

the initial slope of the FT � ALB curve:

HS � lim
ALBÑ0

FT

ALB

� dFT

dALB

����
ALB�0

(6.1)

We thus fit the FT � ALB curve with a 2nd order polynomial, to derive a scratch
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Figure 6-2: Tangential force FT and vertical force FV vs. Projected contact area
A � wd for scratch tests of different width w and depth d [Tests on cement paste;
tests carried out by Epslog Engineering (Belgium); data courtesy of Schlumberger].

hardness of HS � 62 MPa.

6.2 Characterization of the Material With the Lower

Bound Model

We now want to link this scratch hardness to strength properties. We will here

consider different cases, ranging from the simplest materials used in the model to the

more advanced porous material presented in chapter 6.

6.2.1 Cohesive Material and Frictionless Contact

Let us assume that the material is a cohesive material of either the Tresca or the

Von-Mises type. Assuming in addition frictionless interface conditions, a straightfor-

ward application of relations (3.45) for θ � 15� yields a HS{σ0 ratio of 1.26 for the

Tresca material and 1.45 for the Von Mises material. The corresponding compres-

sive strengths are σ0 � 49 MPa and σ0 � 43 MPa, for the Tresca and Von Mises
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Measurements Mohr-Coulomb model Drucker-Prager model
UCS (MPa) Hardness (MPa) c (MPa) ϕ k (MPa) α

41 62 12.0 29.4� 22.9 0.055
42 62 13.0 26.6� 23.9 0.022
43 62 14.1 23.5� – –
44 62 15.3 20.3� – –
45 62 16.7 16.9� – –

Table 6.1: Determination of the cohesion (resp. the shear strength) and the friction
angle (resp. the friction coefficient) of the scratched material modeled by a Mohr-
Coulomb (resp. Drucker-Prager) criterion.

case, respectively. Both values are not far off the experimental value of σexp
0 � 43� 2

MPa. However, the assumption of a purely cohesive material can be questioned, given

that cement-based materials are known to exhibit an asymmetric strength behavior

in tension and compression, indicative of a pronounced pressure sensitive strength

behavior.

6.2.2 Cohesive-Frictional Material and Frictionless Contact

The material is a cohesive-frictional material of either the Mohr-Coulomb or the

Drucker-Prager type. Assuming frictionless interface conditions, application of the

closed-form solutions (3.46) and (3.48) require as input the scratch hardness-to-

strength solution; that is: HS{σexp
0 � 1.44� 0.07. Table 6.1 lists the values obtained

by application of (3.46) and (3.48), showing a pronounced frictional behavior in the

Mohr-Coulomb case and a low-to-zero pressure sensitivity for the Drucker-Prager case.

Note that the Drucker-Prager characterization can be applied only for HS{σ0 ¡ 1.45,

which corresponds to the α � 0 case (Von Mises).

6.2.3 Cohesive-frictional Material With Interface Friction

In both cases considered above, interface friction was neglected, which can be debated,

given that the experimental force ratio limALBÑ0 FV {FT � 0.60 (Figure 6-2) is greater

than tanpθ � 15�q � 0.27 expected in the frictionless case (see Eq. (3.52)). We

thus shall assume interface friction following Amonton’s Laws. If we assume that
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Amonton’s law (3.53) was saturated, such that Ft � µiFn, the tangential and vertical

forces are related by (4.1), which is recalled here:

FV

FT

� sin θ � µi cos θ

cos θ � µi sin θ
ô µi � cos θ FV

FT
� sin θ

cos θ � sin θ FV

FT

(6.2)

We thus obtain an interface friction coefficient µi � 0.285. We then distinguish:

1. In the case of a Mohr-Coulomb criterion with interface friction, an application

of the algorithm gives c � 19.5 MPa, and ϕ � 5.5�. We then determine the

critical interface friction from (3.61), that is µcrit
i pϕ � 5.5�q � 0.24, which is not

far off the interface interface friction coefficient µi � 0.286. This means that the

interface criterion is at or close to saturation, as assumed in the determination

of the interface friction coefficient (6.2).

2. In contrast, in the case of a Drucker-Prager material, the lowest value for the

hardness-to-strength ratio predicted by the cohesive-frictional model for θ � 15�

and µi � 0.286 is HT {σ0 � 1.56, which is obtained for zero internal friction α �
0. This predicted value is greater than the experimental value HS{σexp

0 � 1.44�
0.07; meaning that the Drucker-Prager model cannot explain the experimental

observations.

6.2.4 Cohesive-Frictional Porous Material With Interface Fric-

tion

We have so far modeled the material as a homogeneous cohesive-frictional material.

The model developed by Ortega, Gathier, and Ulm and presented in chapter 6 allows

us to consider the porosity of the cement paste and have access to the properties

of the solid phase. Comparing the density of the cement paste to the density of

water and hydrated cement gives access to the porosity of the tested cement paste:

φ � 0.33, which is in close agreement with the value obtained from Mercury Intrusion

Porosimetry (MIP) carried out on the same material [52]. The problem is hence to

find a configuration (ks, α, morphology) such that HT {σ0 � 1.44, σ0 � 43 MPa,
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Figure 6-3: SEM-BSE image of Portland cement (A) and binarization of the initial
grey-level BSE image (B) using the threshold tool of the image software. From [52].

η � 1 � φ � 0.67, and FV {FT � 0.60. It is impossible to satisfy all these conditions

with the model, mainly because the critical friction coefficient µcrit
i is smaller than

0.285 in this configuration. As a result, FV {FT never reaches 0.60 in our model. One

way of dealing with it is to assume that there is actually sliding at the interface. If

we force the saturation of the law of friction, we reach FV {FT � 0.60 for µi � 0.286,

using relation (6.2). In such a case we can propose two different materials:

• Matrix–inclusion microstructure (Mori-Tanaka scheme): ks � 38MPa, α �
0.195.

• Granular microstructure (Self-Consistent scheme): ks � 43Mpa, α � 0.452.

Figure 6-3 shows an SEM image of the cement on which were carried the tests. At this

scale the material exhibits a matrix–inclusion microstructure and would hence be best

represented with the Mori-Tanaka scheme. However the matrix is not a homogeneous

material. Its representation with a Drucker-Prager criterion can thus be argued.
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6.3 Chapter Summary

The overall trend which emerges is that cement paste’s pressure sensitive strength

behavior is better captured by the Mohr-Coulomb criterion than by the Drucker-

Prager criterion. The use of a material model including porosity gives access to the

properties of the solid phase of a porous material, provided that its microstructure is

known. This approach represents a way of acquiring micro-properties with an easy

and relatively cheap macroscopic test. In addition, the approach is able to identify

the presence of friction at the blade-material interface, for which (6.2) provides a first-

order estimate, which could (and should) be refined by e.g. separate measurement

of the interface friction. As such, the lower bound scratch hardness-strength solution

with interface friction provides an upper bound estimate for the cohesion, and no-

doubt a lower bound estimate of the internal friction.
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Part IV

From a Strength to a Fracture

Model
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Chapter 7

Limits of Validity of the Strength

Model

We have so far regarded the scratch test as a pure strength problem: neither elasticity

nor fracture were considered. While finite element simulations hint toward a minor

influence of the former, the latter has not been studied and is the subject of this

chapter. We show here the limits of the strength interpretation by means of incom-

patible scale effects observed on experimental data. A finite element investigation of

the possible influence of fracture is then presented to account for these scale effects.

7.1 Scale Effects

The tests on cement paste presented in chapter 6 exhibit a trend that cannot be

explained by the strength model. Indeed, as depicted on figure 6-2, the tangential

force FT required to pull the blade through the material is not a linear function of

the load-bearing contact area ALB � wd. Yet, according to the dimensional analysis

carried out in chapter 2, one should expect that HT � FT {ALB depends on the

geometry only through dimensionless quantities θ and d{w (Eq. 2.9):

HT � σ0Π̃

�
d

w
, θ, α, µi



(7.1)
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Figure 7-1: Tangential hardness HT vs. depth–to–width ratio d{w [Test on cement
paste; tests carried out by Epslog Engineering (Belgium); data courtesy of Schlum-
berger].

Figure 7-1 displays the tangential hardness HT � FT {pwdq as a function of the ratio

d{w for the tests on cement paste. If relationship (7.1) was satisfied, all the points

would collapse on a single curve, irrespectively of the width w of the cutter. This

is obviously not the case since one can identify three curves, corresponding to the

three different blade widths. Another series of tests with different depths of scratch

and blade width has been carried out on Vosges Sandstone by a research team of

University of Minnesota [50] [51] [21]. The results are displayed in figure 7-2. While

the trend is somewhat different from the one observed on cement paste, a dependence

on the width is observed: the two smaller widths tested (w � 2.56mm and w � 5mm)

show a different behavior than the two larger with an increase of the hardness HT

when the depth of scratch is increased. Once again, a pure strength model cannot

account for this geometric effect.
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Figure 7-2: Tangential hardness HT vs. depth–to–width ratio d{w [Test on Vosges
Sandstones [51]].

7.2 From Strength to Fracture

Scale effects are typically associated with fracture processes in which free energy

stored in the bulk of the material is dissipated during the crack propagation through

the creation of free surfaces. Pictures of the tests performed on Vosges sandstones

are displayed in figure 7-3. It depicts two different modes of failure:

• The so-called ductile mode (a), which takes place at small depths of scratch

(typically d ¤ 1mm) on the sandstone. It is characterized by a pile-up of failed

material being pushed by the blade.

• The fracture mode (b), taking place at depths d ¡ 1mm, in which chips of

material are removed in front of the cutter with the propagation of a macroscopic

crack.

All the data presented in the previous paragraph were measured in the ductile mode.

However the appearance of macroscopic cracks for values of d of the same order might

indicate the formation of microcracks even in the ductile mode, which could explain

the actual scaling not expected in a pure strength configuration. The idea is not new:
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(a) (b)

Figure 7-3: Scratch tests on Vosges Sandstone with a rectangular indenter: (a) ductile
mode; (b) fracture mode.

in 2004, Atkins proposed a way of determining fracture toughness of ductile materials

through a cutting process [3].

7.3 Fracture Approach

A new dimensional analysis in which linear elastic fracture mechanisms [68] are pre-

dominant over plasticity is now performed. In equation (2.7), we now consider the

case I � dpKIc{σ0q2 Ñ 8, removing the influence of the strength parameters σ0, α, n.

This yields a new dimensionless relation for the hardness:

HT � KIc?
w

Π̃f

�
d

w
, θ,

E
?

w

KIc

, ν, µi



(7.2)

where KIc (expressed in MPa�?m) is the fracture toughness and can be linked to the

fracture energy of the material Gf � K2
Ic

E1 where E 19E depends on the configuration

of the problem (e.g. E 1 � E{p1� ν2q in plane strain)1.

Considering relation 7.2 the actual quantity of interest is no longer the scratch hard-

1Gf is used in the classic crack propagation law based on Griffith’s work [29]:

pG�Gf q ¤ 0 ; 9Γ ¥ 0 ; pG�Gf q 9Γ � 0

where Γ is the crack surface, 9Γ the crack surface growth rate, and G � � BEpotBΓ the energy release
rate.
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Figure 7-4: HT

?
w vs. depth–to–width ratio d{w [Test on cement paste; tests carried

out by Epslog Engineering (Belgium); data courtesy of Schlumberger].

ness HT itself but HT

?
w (or HT

?
dq, which should be proportional to the fracture

toughness KIc of the material. Figure 7-4 backs up the fracture interpretation since

the data from the three different widths collapse on a single curve. Fitting a power

function, an experimental relation for the hardness can be found:

HT9KIcw
�0.185d�0.315 (7.3)

Figure 7-5 does not show the same collapse of the data from different widths on a

single curve. However, despite some scattering, the power function (7.3) seems to fit

the overall trend for w � 5, 10, 15 mm. The w � 2.56 mm case exhibits a behavior

that neither the strength model, nor the fracture model can explain.

7.4 Finite Element Simulations

Relation (7.3) relies on dimensional analysis and results from experimental data. In

this paragraph we investigate the scaling relations between hardness, energy release

rate, and geometry by means of finite element simulations.
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Figure 7-5: HT

?
w vs. depth–to–width ratio d{w [Test on Vosges Sandstones [51]].

7.4.1 Principle

Our approach is based on the energy and compliance method developed initially

by Watwood [65]. In the LEFM framework the only source of dissipation is the

crack growth. Based on this premise, the energy and compliance method consists in

comparing the energy stored in the material before and after crack propagation. Let

us call a the crack length. The compliance of the system is:

Cpaq � u

FT

paq (7.4)

where u is the horizontal displacement of the point of application of FT . The potential

energy for an imposed displacement u is:

Epot � 1

2

u2

C
(7.5)

Inserting this relation in the definition of the energy release rate yields:

G
def� �BEpotBΓ � 1

2

BC
BΓ F 2

T (7.6)
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where Γ � p2d{w � 1qwa is the crack area.

Finally we consider that in actual scratch tests the crack propagation is equal to the

displacement of the blade, which is true on-average and seems a reasonable assump-

tion when the development of microcracks causes the failure of the material. As a

consequence, in reaction to the displacement of the blade, the material will release

energy at the rate defined by the law of crack propagation:

G � Gf for 9Γ ¡ 0 (7.7)

Combining (7.6) and (7.7) yields the expected tangential force:

FT �a
2Gf

�BC
BΓ


�1{2
(7.8)

We actually do not need to know Gf . Indeed, we are only interested in the scaling

relations of the force FT with the geometric parameters w and d. We hence normalize

all the values by a reference configuration: d0, w0, and FT0 �a
2Gf

�BCBΓ ��1{2���
w�w0,d�d0

.

The change in compliance BCBΓ is found by using two finite element calculations: one

with a crack length a (crack surface Γ � p2d{w � 1qwa), the other with a crack

length a � ∆a (Γ � ∆Γ � p2d{w � 1qwpa � ∆aq). We use the classic discretization

approximation: BC
BΓ � Cpa�∆aq � Cpaq

p2d{w � 1qw∆a
(7.9)

7.4.2 Presentation of the Simulations

We use a 3D Abaqus model for our simulations. Tests are performed on nine different

geometries: three values of width and three values of depth (see Table 7.1), spanning

a depth–to–width ratio d{w from 10�2 to 1. A unique back-rake angle is considered,

θ � 15�. To obtain comparable results, the meshing of the part must be similar in

all the different geometries. However, while fine mesh is required in the smallest case

(w � 1mm, d � 0.1mm), CPU time becomes a limit for larger geometries. We hence

chose to mesh the material in three distinct zones: the ‘chip’ part is in contact with
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the blade and constitutes the most critical zone in terms of stresses. It is meshed

with 8-node linear hexahedra of size 0.02 mm (blue on figure 7-6b). It is tied to the

‘core’ part, which makes the transition to the surrounding material with a 4-node

tetrahedron linear element mesh whose sizes varies from 0.02 mm on the surface of

contact with the ‘core’ part (node-to-node tie) to 0.2 mm on the surface of contact

with the surrounding material, which is itself meshed with 8-node linear hexahedra of

size 0.5 mm. This mesh allows us to apply the no-displacement boundary conditions

far from the scratch zone, have reasonable accuracy and limited mesh size dependence

in the scratch zone, with a tractable number of elements in all cases (from 36,283 to

102,245). We use a purely elastic material with Young’s modulus E � 20 GPa and

Poisson’s ratio ν � 0.4. A displacement of 0.01 mm is imposed to the blade, which

is in frictionless contact with the material. The tangential force is recorded and the

compliance is extracted using formula (7.4). Finally, a crack is open by removing the

tie constraint between nodes of the ‘chip’ part and nodes of the ‘core’ part. For each

geometry, three simulations are performed corresponding to a � 0 (no crack), a � 0.1

mm, and a � 0.2 mm.

width (mm) depth (mm) crack length (mm)
1,3,10 0.1,0.5,1 0, 0.1, 0.2

Table 7.1: Summary of the different FE calculations.

7.4.3 Results

We choose (d0 � 1 mm, w0 � 10 mm) as a the reference configuration. The 27

simulations yields expected values of FT for two crack growths: from 0 to 0.1 mm,

and from 0.1 to 0.2 mm. Slight differences are observed for the calculation of the

tangential force FT for these two different crack growths. A complementary analysis

of the influence of the mesh size and crack growth increment leads us to consider only

the crack growth from 0.1 to 0.2 mm for quantitative comparisons between geometries.

Indeed, the calculation of the derivative of the compliance is affected by the size of

the growth increments when starting from no crack, while it remains constant for the
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(a)

(b)

Figure 7-6: Finite element geometry and mesh: (a) overall view; (b) close-up on the
crack zone [model presented: w � 1mm, d � 0.5mm, mesh size in the crack zone:
0.02mm].
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growth of pre-existing cracks (Figure 7-7). Using the method of least square on the

9 computed values of FT {FT0 to fit this ratio as a power function of w{w0 and d{d0

yields:
FT

FT0

� 1.018

�
w

w0


0.8603 �
d

d0


0.4701

(7.10)

Figure 7-8 shows that this fitted function fits well the finite element data. In terms

of tangential hardness, (7.10) reads:

HT

HT0

� 1.018

�
w

w0


�0.1397 �
d

d0


�0.5297

(7.11)

This expression is in relatively good correlation with the experimental data of scratch

tests on cement paste (7.3). However, the FE results depart from the shape expected

when using dimensional analysis (7.2): for given elastic constants and back-rake angle,

the product HT

?
w cannot be written as a function depending only on the ratio d{w.

7.4.4 Discussion: Validity of the Approach

The validation of the fracture model (7.2) by the finite element simulations can be

disputed. To improve the accuracy of the method and obtain reliable scaling relations,

a comprehensive study of the effect of the simulation parameters was performed. For

example, Figure 7-7 shows that the calculation of BCBΓ on which the method is based is

dependent of the choice of the crack growth increment for a � 0. To compare geome-

tries to each other requires to find a normalized crack growth increment. However,

no such scaling backed up by analytical reason could be found. We reach here the

main problem of the simulations: meshing and crack modeling add length scales to

the problem (Table 7.2). While this is not always a problem (the compliance method

was successfully implemented in several finite element analyses, see e.g. [45]), it here

interferes with the goal of finding scaling relations to understand the role of the dif-

ferent length scales of the problem, which makes the use of the compliance method

disputable for this particular problem.
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(a) Mesh size: 0.05 mm

(b) Mesh size: 0.02 mm

Figure 7-7: Computed compliance vs. crack length for w � 1 mm and d � 0.1 mm
and two mesh sizes.
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(a) FT {FT0 vs. normalized depth d{d0 for crack propagation 0.1 Ñ 0.2 mm.

(b) FT {FT0 vs. normalized width w{w0 for crack propagation 0.1 Ñ 0.2 mm.

Figure 7-8: Comparison of the FE simulations discrete values and the fitted power
function (7.11).
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Actual problem Numerical simulations
width w width w
depth d depth d

mesh size
crack growth increments ∆a

Table 7.2: Artificial length scales inherent to the numerical simulations

7.5 Chapter Summary

In this chapter we showed that geometric scaling relations of experimental data are in

contradiction with the assumption that the scratch test is a pure strength problem.

A first investigation of the scratch test as a fracture problem partly accounts for

the scaling for the tests on cement paste. However, the correlation with sandstones

data is not as good. The finite element simulations based on the compliance method

yields scaling relations close to the ones found on experimental data on cement paste.

However, the method does not seem adapted to the problem due to the creation of

artificial length scales. A better understanding of the fracture phenomena will surely

involve a robust analytical model.
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Chapter 8

Conclusion and Perspectives

The scratch hardness – strength relations given by our model based on yield design

theory constitute a step toward a better use of the scratch test in testing cohesive-

frictional materials. A similar approach to indentation initiated a decade ago led to

the use of nanoindentation as a means to probe complex granular and porous ma-

terials. Further developments could allow the scratch test technique to become a

complementary tool to measure microproperties of such materials. We here summa-

rize the main contributions and limitations of our work for a better understanding of

the scratch test.

8.1 Summary of Main Findings

1. In the application of the lower-bound approach, a simple stress field shape was

proposed in response to the problem of the scratch test with rectangular in-

denter. Its simplicity allowed us to find explicit relations between the scratch

hardness and the strength properties of cohesive and cohesive-frictional materi-

als represented by the Tresca, Von Mises, Mohr-Coulomb, and Drucker-Prager

criteria.

2. The hardness–to–strength relations given by the model show that there is no

direct correlation between the uniaxial compressive strength and the hardness.

127



The formulas obtained on purely cohesive materials (Tresca and Von Mises)

show that a more relevant strength quantity measured in a scratch test is the

cohesion (or shear strength).

3. This highly adaptable model allowed us to consider friction at the blade–

material interface, and to implement a strength criterion representing porous

materials. The results are given in this case by a quick and stable non linear

optimization.

4. The lower-bound results are validated against upper-bound and finite element

models. The good predictive power of such a rough model is explained by

its comparison with the stress field solution of the finite element calculation:

the scratch hardness is determined by the stress field in the zone situated just

bellow the blade, which is precisely the location where the constant stress field

approximation is the closest to the solution.

5. The use of dimensional analysis and the comparison of the prediction of the

strength model with experimental results on cement paste and sandstone hints

toward the influence of fracture phenomena in scratch tests on rocks or cemen-

titious materials.

8.2 Current Limitations and Future Perspectives

1. The lower-bound model is applicable with good accuracy only to the rectangular

indenter case. The presence of tilted free surfaces in the groove for other classical

shapes of indenters (spherical, pyramidal, conical) limits the use of piecewise

constant stress fields to capture the complex stress fields.

2. The assumption that the scratch test is a pure strength problem limits its

application. Although the elastoplastic FE simulations seem to confirm the

very small influence of elasticity on the scratch hardness, this consideration

may become critical in nanoscale scratch tests for the measurement of the width
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and/or depth of indentation in case of non negligible elastic recovery. In cases

where fracture is the main phenomenon at work during a scratch test, the

strength model is no more relevant. The conditions in which a scratch test

can be modeled as a strength or a fracture process are not yet known. The

determination of these conditions will require the development of a fracture

model, as initiated in the last chapter of the thesis.

3. The model is validated by other approaches but lacks comprehensive compar-

isons with experimental data. This calls for a future series of experiments with

well-known materials (e.g. cement paste) and controlled experimental condi-

tions.

8.3 Conclusion

The model presented in this work was developed in order to give analytical grounds

for the empirical correlation between scratch hardness and UCS of rocks found by

Detournay et al. [37]. This model, which yields a lower bound for the hardness,

predicts a minimum hardness–to–UCS ratio of 1.26 (obtained for the Tresca criterion

with θ � 15�), whereas Detournay et al. have found a ratio of the order of 1. This

discrepancy shows that macroscopic scratch tests on rocks cannot be explained by

strength alone. Instead they most likely involve fracture processes.

The strength model can however prove useful in application to nanoscratch experi-

ments, in which plastic phenomena are most likely to prevail over fracture phenomena.
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Appendix A

Optimization Code

In this appendix, we show the commented Matlab code used for the optimization

procedure of the lower bound approach. The upper bound approach optimization

procedure uses the same architecture.

A.1 User Environment

The hardness is obtained from a single function called wedge_uni, whose input pa-

rameters are the interface friction coefficient µi, the back-rake angle θ, the strength

criterion, the initial value used for the optimization, the normalization (cohesion or

UCS), and the saturation of the friction law (forced or free):

%Input: friction coefficient, back-rake angle (in degrees), criterion, criterion

%parameters (if applicable), initial values, normalization (1 = cohesion, 2

%= UCS), saturation of the friction law (0 = no, 1 = yes)

% Criterion parameters:

%------ TR & VM -> not applicable, leave blank or put any value

%------ DP -> cr1 == alpha (no dimension), cr2 & cr3 not applicable

%------ MC -> cr1 == phi (in degrees), cr2 & cr3 not applicable

%------ MT & SC -> cr1 == alpha (no dimension), cr2 == eta (packing density in

%[0,1])
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%

% Output: H_T, stress components, ratio F_V / F_T, angle beta

function [Ht,sigma,ratio,beta]=wedge_uni(m,th,criterion,cr1,cr2,ini,norm,sat)

% Set the default values of optional innput parameters

if nargin < 8

sat = 0

end

global saturation

saturation = sat;

if nargin < 7

norm = 1;

end

global init

if nargin < 6 || length(ini)~=5

init = [0;-0.8622;0.4978;-.9;-.1];

else

init = ini;

end

if nargin < 5

cr2 = 0;

end

if nargin < 4

cr1 = 0;

end
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% Define the global variables

global sigma

global Jval

global mu

mu = m;

global theta

theta = th;

global crit

crit = criterion;

global alpha

alpha = cr1;

global phi

phi = cr1;

global eta

eta = cr2;

% Call the Optimization code

Optim;

%Process the data

Ht = -Jval;

ratio = (sigma(3) - tand(theta) * sigma(2))/ (tand(theta) * sigma(3) - sigma(1));

if norm == 1

disp([’Ht / c = ’, num2str(Ht)]);

elseif norm == 2

if crit == ’TR’

Ht = Ht / 2;

sigma = sigma / 2;

elseif crit == ’VM’

Ht = Ht / sqrt(3);
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sigma = sigma / sqrt(3);

elseif crit == ’MC’

Ht = Ht * (1-sind(phi)) / (2*cosd(phi));

sigma = sigma * (1-sind(phi)) / (2*cosd(phi));

elseif crit == ’DP’

Ht = Ht * (sqrt(3)-alpha) / 3;

sigma = sigma * (sqrt(3)-alpha) / 3;

elseif crit == ’MT’ | crit == ’SC’

u = ucs_H1(A2,B2,SIG0);

Ht = Ht / u;

sigma = sigma / u;

end

disp([’Ht / UCS = ’, num2str(Ht)]);

end

%Value of the angle beta

beta = atand(-sigma(3)/sigma(2));

end

A.2 Optimization Code

The user function calls for the code optim, which is the core of the optimization

procedure:

%sigma is the vector of stresses: [s_x;s_z;tau;s_y;s_y2]

global sigma

%theta is the angle of the wedge

global theta

t = tand(theta);

%mu is the friction coefficient at the interface indenter-material
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global mu

%init is the initial value for the vector of stresses

global init

%saturation of the friction law

global saturation

%----------- STRENGTH PROPERTIES -----------------------------------------

%Strength properties: cohesion c = 1

global crit % crit is the criterion: ’TR’,’MC’,’VM’,’DP’,’MT’,’SC’

global alpha % alpha is the drucker-prager coefficient

global phi % phi is the friction angle for MC criterion

global eta % eta is the packing density for homogeneized criterion

% Homogeneized criterion: additional properties

global eta_cr % eta_cr is the critical packing density

%A2, B2 and SIG0 are the parameters entering the homogenized strength function

global A2

global B2

global SIG0

if crit == ’MT’

[K,M] = Mori_Tanaka(alpha,eta); %This function returns K^{MT},M^{MT}

eta_cr = eta_crit(alpha); %This function returns eta_cr

[A2,B2,SIG0] = Hom(alpha,eta,K,M); %This function returns A2,B2 and SIG0

elseif crit == ’SC’

[K,M] = Self_consistent(alpha,eta);%This function returns K^{SC},M^{SC}

[aaa,eta_cr] = eta_crit(alpha);%This function returns eta_cr

[A2,B2,SIG0] = Hom(alpha,eta,K,M);%This function returns A2,B2 and SIG0

end
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%-------------------------------------------------------------------------

%------------------ OPTIMIZATION -----------------------------------------

% Set the lower and upper bounds for the stress components

lb = [-100;-100;-100;-100;-100];

ub = [100;100;100;100;100];

% Set the linear constraints:

% - A*sigma - b < 0

% - Aeq*Sigma - beq = 0

global A

global b

global Aeq

global beq

if mu == 0

%1st row: geometric constraint on beta: beta > -theta

%2nd row: sigma_n < 0 (contact)

A = [0 t -1 0 0;1 t^2 -2*t 0 0];

b = [0;0];

%sigma_t = 0

Aeq = [t -t (1-t^2) 0 0];

beq = [0];

elseif mu ~= 0 & saturation == 0

%1st row: geometric constraint on beta: beta > -theta

%2nd row: sigma_n < 0 (contact)

%3rd row: mu*sigma_n < sigma_t

%4th row: sigma_t < -mu*sigma_n

A = [0 t -1 0 0;1 t^2 -2*t 0 0;(mu-t),(mu*t+1)*t,(t^2-1-2*mu*t),0,0;(mu+t),(mu*t-1)*t,(-t^2+1-2*mu*t),0,0];

b = [0;0;0;0];

Aeq = [];
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beq = [];

elseif mu ~= 0 & saturation == 1

%1st row: geometric constraint on beta: beta > -theta

%2nd row: sigma_n < 0 (contact)

A = [0 t -1 0 0;1 t^2 -2*t 0 0];

b = [0;0];

Aeq = [];

beq = [];

end

% Options of the minimization function

options = optimset(’LargeScale’,’off’,’Display’,’off’,...

’TolFun’, 1.0e-7,’TolX’, 1.0e-7);

%Minimization function:

% - J is the function being minimized, namely -H_T.

% - nonlcon is the function listing the non-linear constraints

[sigma, Jval] = fmincon(@J,init,A,b,Aeq,beq,lb,ub,@nonlcon,options);

A.3 Minimized Function and non-Linear Constraints

The optimization procedure displayed in the previous paragraph calls the fundamen-

tal functions J and nonlcon. J is the function which is minimized, which is �HT pσq.
nonlcon represents the non-linear conditions imposed to the stress tensor σ:

function f = J(s)

global theta

% -H = s_xx - tan(theta) * s_xy

f = s(1) - tand(theta)*s(3);

end
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%-------------------------------

function [c,ceq] = nonlcon(s)

global saturation

global mu

global theta

c=[C1(s);C2(s)];

if saturation == 0

ceq=[];

elseif saturation == 1

ceq = mu*(cosd(theta)^2*s(1) + sind(theta)^2*s(2) - sind(2*theta)*s(3))...

+ abs(cosd(theta)*sind(theta)*(s(2)-s(1))+s(3)*(1-2*cosd(theta)^2));

end

%-------------------------------

% Strength in domain 1 (under the indenter)

% input: s = [s_xx;s_zz;s_xz;s_yy;s_yy2];

function c = C1(s)

global crit

sig = [s(1),0,s(3);0,s(4),0;s(3),0,s(2)];

pr = eig(sig);

if crit == ’TR’

c = pr(3) - pr(1) - 2;

elseif crit == ’MC’

global phi

c = pr(3)*(1 + sind(phi)) - pr(1)*(1-sind(phi)) - 2*cosd(phi);

elseif crit == ’VM’

dev = sig - trace(sig)/3*eye(3);

J2 = 0.5 * trace(dev*dev);

c = J2 - 1;

elseif crit == ’DP’

global alpha

138



dev = sig - trace(sig)/3*eye(3);

J2 = 0.5 * trace(dev*dev);

c = sqrt(J2) + alpha*trace(sig)/3 - 1;

elseif crit == ’MT’ | ’SC’

global alpha

global A2

global B2

global SIG0

global eta

global eta_cr

sm = trace(sig) / 3;

dev = sig - sm*eye(3);

J2 = 0.5 * trace(dev*dev);

if eta < eta_cr

c = (sm - SIG0)^2 / A2 + J2 / B2 - 1;

else

c = -(sm - SIG0)^2 / A2 - J2 / B2 + 1;

end

end

end

%-------------------------------

% Strength in domain 2 (under the free surface)

% input: s = [s_xx;s_zz;s_xz;s_yy;s_yy2];

function c = C2(s)

beta = atan(-s(3)/s(2));

global crit

sig = [s(1) - s(3)^2/s(2),0,0;0,s(5),0;0,0,0];

pr = eig(sig);
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if crit == ’TR’

c = pr(3) - pr(1) - 2;

elseif crit == ’MC’

global phi

c = pr(3)*(1 + sind(phi)) - pr(1)*(1-sind(phi)) - 2*cosd(phi);

elseif crit == ’VM’

dev = sig - trace(sig)/3*eye(3);

J2 = 0.5 * trace(dev*dev);

c = J2 - 1;

elseif crit == ’DP’

global alpha

dev = sig - trace(sig)/3*eye(3);

J2 = 0.5 * trace(dev*dev);

c = sqrt(J2) + alpha*trace(sig)/3 - 1;

elseif crit == ’MT’ | ’SC’

global alpha

global A2

global B2

global SIG0

global eta

global eta_cr

sm = trace(sig) / 3;

dev = sig - sm*eye(3);

J2 = 0.5 * trace(dev*dev);

if eta < eta_cr

c = (sm - SIG0)^2 / A2 + J2 / B2 - 1;

else

c = -(sm - SIG0)^2 / A2 - J2 / B2 + 1;
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end

end

end
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