
Infrastructure for an Intelligent Kitchen

by

Matthew Konefal Gray

S.B., Massachusetts Institute of Technology (1997)

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning in partial fulfillment of the requirements

for the degree of

Master of Science in Media Arts and Sciences

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 1999

@ Massachusetts Institute of Technology 1999. All rights reserved.

Author I.............

Program in Media Arts and Sciences,
School of Architecture and Planning

May 7, 1999

Certified by

Michael Hawley
Assistant Professor of M ia s and Sciences

Alex W. Dreyfoos ('54), Jr. Career elopment Professor
of Media Arts and Sciences

Accepted by.............................. 4)...... ... 1ao. 7 .. . m
Stephen A. Benton

Chair, Departmental Committee on Graduate Students
un in Media Arts and Sciences

MASSACHUSETTS INSTITUT5'
OF TECHNOLOGY

JUN 14 1999 ROC

LIBRARIES

-'- i / ' -*'-' A

Infrastructure for an Intelligent Kitchen

by

Matthew Konefal Gray

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning

on May 7, 1999, in partial fulfillment of the
requirements for the degree of

Master of Science in Media Arts and Sciences

ABSTRACT

In a world of growing numbers of "things that think", a software infrastructure for man-
aging complex systems of these things is a necessity. This paper presents such a software
system, Hive. Hive is a decentralized distributed mobile agents platform, addressing the
requirements of a infrastructure for "things that think". Hive addresses the need for ways
to manage highly heterogeneous sets of devices, methods for describing and discovering re-
sources, and an approach toward constructing applications.

To effectively evaluate this architecture, the particular testbed of a networked kitchen is
examined. The kitchen provides a dynamic and compelling application domain to explore
the Hive system. The kitchen described in this paper is capable of assisting a user in the
preparation of recipes, through use of a variety of sensing and actuation technologies.

In addition to the kitchen, a number of other Hive-based systems are discussed, including
a networked jukebox and a localization infrastructure for wearables. Hive is evaluated in the
context of the networked kitchen and these other applications. Hive is compared to other
distributed software systems, in particular Jini. Finally, areas for future work are suggested,
in both the Hive infrastructure and the networked kitchen application.

Thesis Supervisor: Michael Hawley
Title: Assistant Professor of Media Arts and Sciences
Alex W. Dreyfoos ('54), Jr. Career Development Professor
of Media Arts and Sciences

Infrastructure for an Intelligent Kitchen

Thesis Committee

Thesis Reader......... .- M. ..r .-

Michael awley
Assistant Professor of Media Technology

Alex W. Dreyfoos, Jr. Career Development Professor

Thesis Reader
Neil G shenfeld

Associate Professor of Media Arts an Sciences

Thesis Reader.................................
Jim Waldo

Sun Microsystems

ACKNOWLEDGMENTS

Without the support of my mother, father, Carrie, and all my friends, this would not have

happened.

CONTENTS

1 Introduction 9

1.1 Approach 10

1.2 Organization ... 10

1.2.1 Background 10

1.2.2 Hive and semantic labeling 11

1.2.3 Kitchen demonstration system 11

1.2.4 Other scenarios. ... 11

1.2.5 Jini .. 11

1.2.6 Analysis 11

2 Kitchens 12

3 Distributed Systems 14

4 Hive 17

4.1 Architecture Overview .. 17

4.1.1 Cells ... 18

4.1.2 Shadows 18

4.1.3 Agents ... 19

4.1.4 Lookup 20

4.2 Implementation ... 20

4.3 Applications ... 21

4.4 Summary 21

5 Semantic Labeling 23

5.1 Background. 23

5.2 Underlying technologies.................................. . 24

5.2.1 XM L 24

5.2.2 RD F . 25

5.2.3 CC/PP 26

5.3 Semantic Descriptions in Hive 26

5.3.1 Description of Descriptions 26

5.3.2 Description API .. 29

5.3.3 Analysis 31

6 The Networked Kitchen 33

6.1 System Design Overview .. 33

6.2 System Design Details .. 34

6.2.1 Recipe Agent 34

6.2.2 Manager Agents .. 35

6.2.3 Device Agents .. 36

6.2.4 Shadows .. 37

6.2.5 Recipe Scheduler 37

6.3 Analysis 39

7 Application Scenarios 41

7.1 "Honey, I Shrunk the CDs" ... 41

7.1.1 Extending the Scenario 42

7.2 Personal Location using RF Locusts 43

7.3 Hive Demonstration System 44

7.4 Other and Future Work .. 45

8 Jini 46

8.1 Basic Architecture 46

8.2 Architecture Comparison 47

8.3 Semantic Descriptions .. 49

8.4 Com patibility .. . 50

8.5 Analysis ... 51

53

53

53

54

54

9 Analysis and Conclusions

9.1 Kitchens

9.2 Hive

9.2.1 Semantic Labeling .

9.3 Future Work

9.3.1 Kitchens

9.3.2 Hive

9.4 Conclusion

A Documentation

A. 1 RDF for Configuration

A.2 How to use semantic descriptions

.

.

.

LIST OF FIGURES

The Hive Architecture .

Methods on a Hive Cell

The Hive Graphical User Interface

Sample XML Document

RDF graph of sample document

Sample RDF Description

RDF Structure of description shown in Figure 6

Progression of a sample query

Network Kitchen Architecture

Pre- and post-Hive feature comparison for the kitchen demonstration . .

Code complexity comparison

"Honey, I Shrunk the CDs" software configuration

... . 18

... . 21

.... 24

... . 25

... . 27

... . 28

... . 30

.... 34

.... 40

.... 40

... . 42

1. INTRODUCTION 9

1 INTRODUCTION

Distributed networks of "Things That Think"[TT] are far too rare.

Things That Think is used as a term to include essentially anything with

computation, sensing or actuation capability. Typically, however, it im-

plies items that have embedded computation, sensing, or actuation that

are not normally thought of as computational or thinking devices. Net-

works of these things are not common, despite the growing presence of

the things themselves. Distributed software networks are ubiquitous.

Distributed networks of things, however, are not.

Domestic environments provide a rich domain in which networked sys-

tems of things can be built. The kitchen in particular is an area ripe with

devices that could be networked together in a useful manner. Specifi-

cally, a kitchen capable of aiding in the execution of a recipe, particularly

in the planning, instruction, and sequencing of activities would be very

useful. Further, a natural extension of such a system would include in-

ventory management to allow questions like "What can I make with what

I've got?" to be readily answerable.

There are a number of problems associated with building a distributed

network of things, in the kitchen or otherwise, that are not addressed by

either disconnected things or most existing distributed software systems.

One such problem is a wider range of capabilities of components of the

system. In most distributed software systems, while there may be some

heterogeneity, most of the participants are similar computers. In a net-

work of things, capabilities are much more variable. Another problem is

that the description of the components of the system is not necessarily

limited to the capabilities accessible through an API.

This work will focus on issues of managing a range of heterogeneous

devices, semantic labeling of those devices, and building a recipe as-

sistant for the kitchen using this infrastructure. Some of the other is-

sues that are particular to distributed networks of things will also be

discussed.

The Author

1.1 APPROACH

1.1 APPROACH

A software system and application test bed to ease the construction of

these networks has been built. This system, called Hive[HIVI, has been

developed within the Media Lab by Matthew Gray, Nelson Minar, Oliver

Roup and Raffi Krikorian. Hive is intended to be a flexible, powerful

standard architecture to provide connectivity for distributed networks of

things that think. A system for solving the above problems will be built

into Hive.

Using the Hive system, a networked kitchen was built, and the "recipe

assistant" scenario implemented. Construction of this system highlighted

the strengths and weaknesses of the Hive architecture. Particularly, the

kitchen provided a good test bed for utilization of Hive's semantic labeling

system.

Further deployments of Hive within the MIT Media Laboratory, and

development of other applications altogether, such as the new "Honey, I

Shrunk the CDs" system' (a jukebox demo), has allowed evaluation of the

utility of the Hive system.

1.2 ORGANIZATION

This work will cover the background that has led to the exploration

of the networked kitchen and background in distributed computing sys-

tems. It will then describe the Hive system which was developed, and

then how it was applied to the kitchen. Other applications of the same

infrastructure will also be discussed, followed by an analysis of the ef-

fectiveness of Hive at addressing the problems associated with building

complex systems of "things that think".

1.2.1 BACKGROUND

A brief discussion of prior work in the domain of networked kitchens

appears in Section 2. This includes prior work at the Media Lab, commer-

Nelson Minar

Oliver Roup

ISee Section 7

1.2 ORGANIZATION

cial development work, and work on the "Universal Kitchen" project at the

Rhode Island School of Design. A description of other distributed systems

that were examined and share qualities with Hive appears in Section 3.

1.2.2 HIVE AND SEMANTIC LABELING

Section 4 describes the architecture of the Hive system, including de-

tails on cells, agents and shadows. It also covers the specifics of the

implementation. Section 5 covers the semantic labeling system used in

Hive, where it comes from, and how it is applied.

1.2.3 KITCHEN DEMONSTRATION SYSTEM

In Section 6, details of the kitchen demonstration system are covered.

The architecture and design of the system, and details of the implemen-

tation are covered. A comparison to prior work in the area is made, and

the effectiveness of Hive is evaluated for this application.

1.2.4 OTHER SCENARIOS

Hive has been applied in a number of other scenarios, and some of

these are covered in Section 7. The scenarios discussed include "Honey, I

Shrunk the CDs", an RF based location system, and the Hive demonstra-

tion system.

1.2.5 JINI

While Hive shares many qualities with other distributed systems, it is

more similar to Jini than any other. These similarities warrant particular

attention. Section 8 discusses the similarities, differences, and how these

systems can interact.

1.2.6 ANALYSIS

Section 9 analyzes the overall effectiveness of Hive, and identifies lessons

learned, and suggests areas for future work.

2. KITCHENS

2 KITCHENS

Kitchens are a rich, compelling and very personal, yet social domain

in which to explore networked systems of things that think. Within the

Media Lab, projects such as "Mr. Java"[MrJ] and "Counter Intelligence"

(CI) [CI] have begun scouting this territory. In particular, CI, initially devel-

oped by Joseph Kaye, Andy Wheeler, and Niko Matsakis, demonstrated

some basic concepts of an intelligent kitchen through a scripted demo,

but was not actually a functioning prototype.

The "Counter Intelligence" system ran into the problems of developing

large networked systems of things. While individual components worked

reasonably well, creating a well integrated, functional recipe assistant ap-

plication proved very difficult. Further, the system design ran into obsta-

cles, as it was not clear what sensor technology was going to be available.

An underlying framework for connecting a diverse and possibly changing

set of things that think was needed.

Additionally, controlling all of the devices in a kitchen in a centralized

way is not necessarily possible, and in a practical sense is undesirable.

The control system for a stove, refrigerator, and cabinets should be capa-

ble of being separate, but communicating, systems.

Finally, a system that allows for a flexible security architecture is valu-

able. While in a prototype system, security is not a paramount concern, in

an actual networked kitchen, malicious break-ins to one's appliances can

pose a serious threat. These could occur if the kitchen network were con-

nected to the Internet at large, or through intentional or accidental prob-

lems with software installed in the kitchen. Therefore, some allowance for

security is needed.

There has been little scholarly research on networked or future kitchens

in general. The little work that has been done has either been commer-

cial development and prototypes, or design oriented work that does not

directly consider the implications of new technology.

In the commercial development category, there are a number of exam-

ples of novel work in the kitchen that have appeared recently. Ariston

"Counter Intelligence"

The kitchen of the
future

2. KITCHENS 13

Digital, a division of Merloni, has created a line of home appliances that

network over power lines. They provide services such as warnings in case

of power failure, telediagnostics, power consumption management, and

through the "Home Smart Monitor", recipe access and Internet connectiv-

ity. Liebherr has developed an inventory tracking refrigerator. Electrolux

has produced the "Screen Fridge", which is essentially a refrigerator with

a laptop attached. Zanussi has a set of "intelligent" household appli-

ances named "LIVE-IN". In non-technologically motivated design of a fu-

ture kitchen, the Rhode Island School of Design (RISD) has designed the

Universal Kitchen prototype. None of these systems has yet approached

the vision of a truly networked kitchen.

3. DISTRIBUTED SYSTEMS 14

3 DISTRIBUTED SYSTEMS

The need for a system like Hive has evolved from experience with a

number of projects that demand useful connectivity between things. Hive

provides a distributed system of software components designed with the

"Things That Think" application domain in mind. The "Counter Intelli-

gence" project in the kitchen domain that this work is addressing has

been one motivating application, but it is worth mentioning other, earlier

systems that inspired the need.

The "Marathon Man"[Red98] project involved creating a belt that col-

lected a variety of biometric data from a person. While this project was

successful in doing so, it lacked a solid architecture for collecting and

presenting this data, especially for multiple simultaneous or consecu-

tive users. Other projects using variants of this hardware, including

the Everest Expedition[Eve98] and the "C2C Bike Ride"[C2C] required re-

implementing this data collection and presentation layer each time.

Other projects such as the Tangible Media Group's Pinwheels[DWI98]

and the "Net Weight" scale have suffered from the problem that despite

the fact that they are designed assuming network connectivity, this con-

nectivity is in fact absent. This missing connectivity, which many ap-

plication builders have chosen not to implement, leaves the applications

unsurprisingly incomplete.

Within the MIT Media Lab, there have been some projects which have

begun to address connectivity issues for things that think. Steve Gray's

work on Bit Bags[Gral focused on SNMP-based management of collections

of things. The Black Box projects (Marathon Man and Everest Expedition)

addressed some of the low level issues, using a serial hub made from an

IRX[Poo99] board, and later an 12 C bus.

Outside of the MIT Media Lab, most exploration of distributed systems

has been focused on, if not confined to, software systems. Distributed

object systems such as CORBA[OMG95], OpenDoc, and DCOM are ex-

amples. These systems could be adapted to provide distributed services

in an environment of networked things, however there are certain weak-

Everest Expedition
team

Coast to Coast Bike
Ride

3. DISTRIBUTED SYSTEMS 15

nesses due to the assumption that the components are software.

Sun Microsystems has developed a system called Jini[Wa1981 described

as a system that "enables spontaneous networking of a wide variety of

hardware and software" and as a "distributed system designed for sim-

plicity, flexibility, and federation." Jini provides a number of the neces-

sary pieces for a distributed network of things. The implications of Jini

with regard to this work are discussed in section 8.

Hive provides this needed connectivity layer. There are three concep-

tual layers to the Hive architecture. These are the devices themselves, a

device driver layer called shadows, and the agents layer where intention-

ality and applications are built.

Hive is implemented in the Java language[AG96] using version 1.1 of

the Java API[CLK98], and from the point of view of the Hive system, all

things are considered to run Java. In reality this is not currently the case.

One or more Java incapable devices may be connected to a Java capable

machine that will act as a proxy for it. The method by which these de-

vices connect to the Java capable machine is unimportant in terms of the

Hive system. Particularly, latency or bandwidth considerations caused

by limitations in the communication channel are simply considered to be

a limitation of the capability of the device in question. In practice, most

Java incapable systems communicate with the Java machine via a wired

or wireless serial communication channel.

On top of the actual device functionality, there is the shadow layer.

Shadows are local pieces of code that manage access to a local resource,

usually a device. Each shadow corresponds to a particular kind of de-

vice, and provides a programmatic interface to the underlying hardware,

whether through an intermediate protocol or not. Further, the shadow

manages concurrent access and provides any other mediation of access

or control that may be necessary. The separation of the shadow and agent

functionality is meant to clarify the distinction between local access and

remote communication. [WWWK97]

Finally, at the top layer of Hive is a mobile agents architecture that al-

lows agents to move from one computer to another, access shadows (and

3. DISTRIBUTED SYSTEMS 16

correspondingly, devices) as necessary, and communicate with one an-

other to provide the desired application-level functionality. These agents

are easily upgradable and modifiable by their nature as mobile code,

greatly enhancing the flexibility of the system.

Hive meets the needs of this emerging class of applications of net-

worked devices, such as the "Counter Intelligence" project. One addi-

tional capability that is needed above and beyond this basic connectivity

architecture is a way for the devices, shadows and agents to communi-

cate semantic descriptions of themselves to others. This is described in

Section 5.

4. HIVE 17

4 HIVE

Hive is a decentralized distributed mobile agents platform designed for

"Things That Think". Hive enables connectivity for devices, allowing in-

teractions without substantial reengineering, and creation of interactions

that needn't be anticipated at the time of the design of the original devices.

4.1 ARCHITECTURE OVERVIEW

The Hive architecture is composed of three pieces and a lookup scheme

to connect them. First, there are Hive "cells", or servers, which are the

environment in which Hive runs. They provide the infrastructure for lo-

cating resources, basic agent mobility and a bootstrap for initiating inter-

agent communications. Second, there are Hive "shadows", which are es-

sentially device drivers for local resources, whether that may be a display,

a piece of hardware, or any other manageable local resource. Third, Hive

"agents" are the pieces of mobile software that engage in all communi-

cation and interact to create applications. Finally, a combined syntac-

tic/semantic lookup scheme provides a mechanism for agents to discover

shadows and each other via a remote method provided by the cells. A

visual representation of the Hive architecture appears in Figure 1.

Hive Cell Hive Cell

Agents Agent Agent Agent Agent

Shadows Shadow Shadow Shadow

Devices y vi v

Figure 1: The Hive Architecture

4.1 ARCHITECTURE OVERVIEW 18

4.1.1 CELLS

A Hive cell2 provides a minimal interface to enable communication

between agents and to allow agents to access local resources. Figure

2 shows the primary methods provided by a Hive cell.3 The first two

methods, getAddress () and queryAgents (...) are the only methods

that are accessible remotely. These allow remote components to discover

agents in the cell. The second group of methods relate to management of

the agent life cycle and mobility, and the last two methods provide access

to the local resources known as shadows.

public class Server
public CellAddress getAddress();
public DescSet queryAgents (Object sender,

String[] syntactic, String[] semantic)

public boolean acceptAgent(byte [] agentBytes, Object token)
public AgentImpl createAgent (Class agentClass);
public boolean moveAgent (AgentImpl agent, CellAddress address)
public void killAgent(Agent agent);
public synchronized AgentImpl handleNewAgent (final AgentImpl agent);

public ShadowDB getShadowDB();
public DescSet getShadowDescriptions();

Figure 2: Methods on a Hive Cell

4.1.2 SHADOWS

Shadows provide a software interface to a local resource, typically a

piece of hardware. The responsibilities of a shadow are small, so as

to avoid pitfalls related to security, particular application concerns, and

maintainability. A shadow exposes an API to access the functions of the

device. It is responsible for managing concurrent access to the device as

well as protecting the device. It should not be possible to damage or oth-

erwise harm a device, despite the sequence, timing, or parameters of calls

2"Hive cell" and "Hive server" are often used synonymously. The term cell was chosen to
make clear the fact that Hive is a completely peer-to-peer system. The label "server" implies
a distinct client, which does not exist in Hive.

3A number of utility methods are not included in this list.

4.1 ARCHITECTURE OVERVIEW 19

to the shadow. Finally, a shadow is self-describing. This is described in

more detail in Section 5. Beyond this, a shadow should be as minimal as

possible.

The shadow model helps maintain a strong distinction between local

resources, and remote operations[WWWK97]. In this capacity, it provides

added security as well, which is necessary in an environment where full

agent mobility is possible. In a traditional sand box or capabilities-based

security model, a given agent could be restricted from communicating

with hardware, or only to particular hardware, but neither of these mod-

els is well suited to constraining the actual contents of that communica-

tion. For example, a motor controller may be connected via a serial port.

While a sand box or capabilities based model could prevent communica-

tion with other devices, there would be nothing to prevent an agent from

overdriving the motor. With a shadows based abstraction, all communi-

cation with local resources is mediated.

4.1.3 AGENTS

Agents are pieces of mobile code that reside in cells, locate and ex-

port or otherwise utilize the functions of shadows, and communicate with

other agents. Applications built on top of the Hive architecture are con-

structed as a set of interacting agents, or a so-called "distributed ecol-

ogy of agents"[Min98l. Some agents will essentially be direct proxies for

shadows, while others will be pure software services, and yet others will

coordinate the behavior of other agents.

By their mobility, agents can readily be used to modify the abstraction

by which a device is operated. A camera can be changed from a image

exporter to a motion detector by sending a new agent to communicate

with the camera shadow. The details and implications of Hive as a mobile

agents system are discussed in more detail in [Rou99] and [MGR+99].

4.2 IMPLEMENTATION 20

4.1.4 LOOKUP

In a small scale system, hard coding the connections and interactions

is reasonable, but as a system gets larger, it becomes desirable to have a

scheme for dynamically creating these connections. This is accomplished

in Hive via a combined syntactic and semantic lookup scheme.

The distinction between syntactic and semantic lookup is intended

as follows: An agent or shadow is syntactically described by its program-

matic interfaces or API, and the semantic description is composed of qual-

ities that are not accessible via the objects API, such as (in most cases),

location, physical description, or ownership. In Hive, syntactic lookup is

tied to the Java type system, specifically to the Remote interfaces of the

object in the case of agents.

In all cases, the user of the lookup system is an agent, though the

objects being looked up may be agents or shadows. The cells form a

default form of federation, where it is possible to locate all of the agents

inhabiting a particular cell by using the queryAgents (...) method on

the cell. Other agents may collect these descriptions and generate other

federations, such as a larger area federation, or those based on syntactic

type or based on a particular of the semantic description.

The semantic lookup scheme is described in detail in Section 5, and

compared with Jini's[Wal98] attribute[JLA99] based lookup scheme in de-

tail in Section 8.

4.2 IMPLEMENTATION

The Hive system is implemented in Java[AG96], using JDK 1. 1.7[JDK].

In excess of 22,000 lines of code have been written for Hive with under

10,000 lines composing the core of the system, and the remainder being

application agents and shadows. Hive utilizes a number of third party

packages as well: SiRPAC[Saa99], AElfred[AEll and SAX[SAX for pro-

cessing of XML-encoded RDF files, and javax.comm[Jav] and rxtx[RXT]

for serial communications. Figure 3 shows the GUI for Hive (which is it-

self an agent). Each icon represents an agent, and lines between agents

4.2 IMPLEMENTATION 20

4.3 APPLICATIONS 21

imply connectivity between those agents.

Figure 3: The Hive Graphical User Interface

4.3 APPLICATIONS

Hive was released internally within the Media Laboratory in January,

1999. A number of applications were built with Hive, including the pri-

mary application discussed in this work, the networked kitchen, which is

discussed in detail in section 6. Other applications included the "Honey,

I Shrunk the CDs" scenario 4, a set of interfaces by the Tangible Media

Group, a vision system and electrostatic tracking system for a MOMA in-

stallation, a personal location service for wearables5 , and a number of

sample applications developed by the Hive developers.

4.4 SUMMARY

The Hive system has been built and addresses many of the problems

associated with constructing networks of things that think. The core ar-

4Described in section 7.
5Also described in section 7.

4.4 SUMMARY 22

chitecture has proved flexible and useful in a number of particular appli-

cations discussed in the following sections.

5. SEMANTIC LABELING 23

5 SEMANTIC LABELING

5.1 BACKGROUND

A universal requirement of distributed systems is a mechanism to

find components. Systems such as search engines for the World Wide

Web[WWW] utilize a combination of the semantic mark up of HTML[HTM]

as well as textual analysis to determine whether a component (document)

matches a query. Many software systems, such as CORBA[OMG95] uti-

lize a naming service[OMG94] where components are mapped 1-to-I with

names. CORBA also utilizes a "trading service" which allows lookup by

interface (what Hive calls syntactic lookup).

In a environment where the components are "things that think", nei-

ther of the above described approaches work well. While a direct naming

scheme could be used, this primarily defers the problem to one of creat-

ing a directory service so those names may be usefully associated with

descriptions of the services they provide. Hive utilizes two conceptually

distinct ways of locating agents and shadows: "syntactic lookup" and "se-

mantic lookup".

Syntactic lookup is the ability to locate components based on their

Java type. In the case of agents, these are completely composed of Remote

interfaces, and in the case of shadows, are composed of the shadow's

type and any interfaces it implements. This sort of lookup is necessary to

assure programmatic compatibility. Many very different devices, however,

may have identical interfaces.

A reasonable remote interface example is Toggleable, which would

apply to devices such as lamps, door locks, or any other simple output

device. While there is no programmatic distinction between these devices,

their actual role in an application would be substantially different. This

issue could be addressed by the creation of a number of so-called "tag

interfaces", such as Lamp, which extend Toggleable, but implement no

new methods themselves. This approach, however, has problems in that

these tag interfaces cannot be dynamically extended or modified at run

5.2 UNDERLYING TECHNOLOGIES 24

time, and their use creates substantial clutter in the Java type system.

5.2 UNDERLYING TECHNOLOGIES

In lieu of extending syntactic lookup this way, Hive implements a sep-

arate semantic lookup system. Associated with each agent or shadow is a

Description which describes the object. Hive semantic descriptions are

expressed using the Extensible Markup Language (XML)[BPSM97] seri-

alization of Resource Description Framework (RDF)[LS981 model in the

same style as those described in the Composite Capability/Preference

Proffle (CC/PP)[RHDS98] system.

The canonical example for an application of CC/PP is a cell phone. The

capabilities" portion would indicate how much memory the phone had, if

it was analog or digital, and what sort of screen it has. The "preferences"

portion would indicate that the user wants a particular ring style, certain

numbers on the speed dial, and the like. This naturally extends to the

broader world of things that think.

5.2.1 XML

The Extensible Markup Language provides a simple but flexible ba-

sis for sophisticated semantic descriptions. An sample XML document,

shown in figure 5.2.1

<thesis>
<author>

<name>Matthew Gray</name>

<email>mkgray@mit.edu</email>

</author>

<title>Infrastructure for an Intelligent Kitchen</title>

</thesis>

Figure 4: Sample XML Document

shows the basic form. Through use of SGML Document Type Defini-

tions (DTD)[SGM86] and Document Definition Markup Language (DDML)[BCMS99]

schemas, the structure and content of document can be validated.

5.2 UNDERLYING TECHNOLOGIES

5.2.2 RDF

The Resource Description Framework (RDF) is a framework for repre-

senting a directed labeled graph data structure and specifies a represen-

tation in XML. For example, the above XML document example, reformu-

lated in RDF (which requires substantially additional syntactic structure)

would produce the graph shown in Figure 5.

Figure 5: RDF graph of sample document

RDF is primarily distinguished from generic XML by the fact XML is

considered "document-centric" and RDF is "data-centric". This means

that two different RDF documents can correspond to the identical under-

lying data representation, while in XML, differences in formatting corre-

spond to differences in the resulting document. Additionally, RDF has

extensive syntactic requirements, making representations entirely unam-

biguous, but at the cost of simplicity and easy human readability. The

use of RDF versus plain XML for semantic labeling is discussed below.

5.3 SEMANTIC DESCRIPTIONS IN HIVE 26

5.2.3 CC/PP

The "Combined Capability/Preferences Profile" specification, as the

name suggests is a way of representing the capabilities and preferences

that correspond to a device. It provides a standard structure for repre-

senting default values, where those values may reside in an externally

referenced document, rather than requiring all metadata to be replicated

in each description.

The particular kinds of data CC/PP aims to describe are well suited

to the primary purpose of semantic descriptions within Hive. While it is

valuable to be able to include traditional metadata such as the owner of

a resource in Hive, the primary goal for these descriptions is to describe

capabilities and preferences. CC/PP is built on top of RDF.

5.3 SEMANTIC DESCRIPTIONS IN HIVE

The semantic description lookup scheme for Hive was implemented

utilizing RDF, CC/PP and XML. In a typical configuration, each Hive agent

or shadow would have a description that contained information about

the type of device it represented, its location, a "nickname", configuration

data, and any other metadata relevant to potential users of the service.

This approach has certain similarities with Jini's attribute[JLA99] based

lookup, which is compared in detail in Section 8.3. Other systems, such

as Ontolingua[FFR96] and KQML[KQM] have the disadvantage of sub-

stantial complexity, even in comparison to RDF, as they are targeted more

toward knowledge representation problems.

5.3.1 DESCRIPTION OF DESCRIPTIONS

A sample RDF description appears in Figure 6. It describes a "Quick-

Cam" camera located in room 468 of building E15. The representation of

the RDF structure that this represents is shown in Figure 7.

A schema, or particular set of conventions for describing an object,

is needed if multiple agents are going to interact. If one agent calls the

5,3 SEMANTIC DESCRIPTIONS IN HIVE 27

<?xml version="1.O"?>
<RDF

xmlns='http: //www.w3 .org/TR/WD-rdf-syntax#'
xmlns:RDF='http://www.w3.org/TR/WD-rdf-syntax#'

xmlns:thing='http://www.media.mit.edu/hive-syntax#'>
<Description about=""

thing:nickname="Pia Quickcam">
<thing:config thing:command="cqcam"/>
<thing: location

thing:building="E15"
thing: room=" 4681"/>

<thing: role>
<Description>

<thing:camera thing:kind="QuickCam"/>
</Description>

</thing: role>
</Description>
</RDF>

Figure 6: Sample RDF Description

place that something is located its "place", which has parameters of "lat-

itude", "longitude" and "elevation", and another calls it a "location", with

a "building" and "room", they will have a hard time usefully interacting.

Defining a particular schema is outside of the scope of this work. Ini-

tially, the goal, instead is to provide a sufficiently flexible description sys-

tem for exploring different schema, and how those schema might be con-

structed. In practical application, a few loose conventions were applied

as a preliminary Hive schema.

Hive does not provide a notion of a unique name for agents; an agent is

used by reference, and need to be discovered by the lookup mechanism.

Part of the reason for this is that it is hard to define the notion of identity

in a mobile distributed objects context. If an agent moves from one host

to another, is it the same agent? If an agent duplicates itself and both

copies move, which is the "original"? However, it is often useful to be

able to refer to an agent by name, or ask an agent its name so the "same"

agent can be found later. To avoid the semantic ambiguity of "same", Hive

utilizes the semantic description system to allow an agent to give itself a

name, and it can decide when its identity changes or remains the same.

5.3 SEMANTIC DESCRIPTIONS IN HIVE 27

5.3 SEMANTIC DESCRIPTIONS IN HIVE 28

Figure 7: RDF Structure of description shown in Figure 6

Due to the fact that the agents assign themselves these names, there

is no guarantee of uniqueness, and uniqueness may not even be desired.

Consider the case of a "phone book agent". If there are multiple identical

instances of this agent, they are all equally good. They may as well share

a common name. If there are multiple instances of a light bulb agent,

however, they should have very different names. This name is called the

"nickname" and in the case of the example in figures 6 and 7 is "Pia

Quickcam".

In the "Honey, I Shrunk the CDs" demonstration described in Sec-

tion 7, the central agent locates both the tag reader and the jukebox by

nickname, since it is looking for a particular pair of agents, the "Pia Demo

Tagreader" and the "Pia Jukebox". Most of the time, though, agents would

be found based on their other parameters.

In the kitchen demonstration described in Section 6, one agent col-

lects references to all of the tag-readers available. This is accomplished

via semantic lookup, without the use of nicknames or any other individu-

alized identifier. Specifically, the concentrator agent performs a query for

all agents which have as one of their "role"s the type "tag-reader". The pa-

rameter "role" is another piece of the preliminary Hive schema. It allows

5.3 SEMANTIC DESCRIPTIONS IN HIVE 28

5.3 SEMANTIC DESCRIPTIONS IN HIVE

a device to have multiple arbitrarily parameterized labels. In the exam-

ple in figure 6, the device has the role of "camera", and that role has the

parameter "kind" which in the example is "QuickCam".

Another example of roles, where a single agent may have multiple

roles, is shown in the AutoWiringAgent. This agent finds a pair of two

on screen agents to connect together. First, it locates all agents that have

the role of "screen-widget" to limit the selection to screen based agents.

Second, it selects an agent with the role of "button", and an agent with

the role of "event-display", each with appropriate syntactic types and con-

nects them together.

Lookup based on a combination of parameters is possible as well. An

extension to the kitchen lookup could include restricting the tag-readers

that are selected to those in a particular location (i.e., the kitchen). An

example of a scenario that uses the location portion of the preliminary

Hive schema for use by wearable computers is described in Section 7.2.

Further work on defining schemas and managing their creation is needed,

and Hive's semantic labeling approach provides the necessary flexibility.

Finally, in the example in figures 6 and 7, there is a portion of the

description labeled "config". This is configuration information rather than

actual semantic description. This is implemented to use CC/PP style

defaults, to easily allow a number of descriptions to share defaults, such

as having a default location. Further comments on the use of RDF for

configuration appear below in the analysis.

5.3.2 DESCRIPTION API

The fundamental unit used in queries is a set of zero or more descrip-

tions called a DescSet. The DescSet allows flexible manipulation of these

descriptions to identify the agents or shadows of interest to a particular

application.

The API for querying a DescSet is primarily composed of the se-

lect (String parameter, String value) method. The effect of this

call is, in each description, to traverse the path on the graph with the

label parameter that connects to a node with value value. If value is

5.3 SEMANTIC DESCRIPTIONS IN HIVE 30

null or absent, it will traverse the path regardless of the value of the node

it leads to.

location location location

Stage 1:

city building room city building room city building roon

Cambridge E15 468 Cambridge 10 250 Boston Sheraton 1043

location location location

Stage 2:

Stage 3:

Figure 8: Progression of a sample query

Figure 8 shows the steps in a simple query of a DescSet starting with

with 3 descriptions. In this example, the goal is to select all descriptions

that describe an object located in the city of Cambridge. Unrelated por-

tions of the graph are not shown for simplicity.

Stage 1 of Figure 8 shows the state of the DescSet before anything is

done. A DescSet may be reset to this state by calling DescSet . noContext (.

A call of select ("location") changes the state to that shown in stage

2. A final call of select ("city", "Cambridge") changes to what is

shown in stage 3. Note, the third description, which described an object

in Boston, was removed from the set.

In order to obtain a DescSet in the first place, an agent calls the

5.3 SEMANTIC DESCRIPTIONS IN HIVE 31

queryAgents (...) method on a cell, or constructs it from a pre-existing

list of agents or shadows. A number of other methods exist on DescSet

to retrieve matches following a set of selects, count matches, add and

remove descriptions, merge with other DescSets, and reset the graph

query. A practical guide to using RDF descriptions in Hive appears in

Appendix A.2.

5.3.3 ANALYSIS

This approach toward semantic labeling has proved flexible, extensible

and useful. The use of RDF has been a bit cumbersome, however. In the

small number of actual applications built so far, it has been capable of

usefully describing all the necessary components. As larger numbers of

components are constructed, and the interaction increase, better evalua-

tion will become possible.

The system's flexibility and extensibility has been evidenced by two

particular extensions: nicknames and configuration data. In the early

design of Hive, a decision was made not to assign unique names to ob-

jects; all objects would be the result of lookups. As discussed above, it

became clear that allowing agents to name themselves had utility. Adding

a "nickname" as part of a description was easy, but the use of RDF allows

for structured nicknames if so desired. That is, a nickname may have the

string value "Pia Quickcam", but it might have a parameter "assigningAu-

thority" of "Pia", or any other substructure desired. Another agent doing

a lookup that does not use this structure would not be interfered with.

During the development of Hive, the need for a method of doing per

agent configuration arose. Adding new per agent configuration files was

considered, but dismissed when it was realized that the configuration

could readily be put into the semantic description. The configuration

information in the semantic description is automatically translated into

JavaBeans(JB] method calls to configure the agent or shadow. Further,

more complex configuration structures can be put into the description

and utilized by the agent on its own terms.

Unfortunately, RDF has evolved into a very complicated specification,

5.3 SEMANTIC DESCRIPTIONS IN HIVE

and has become more difficult to use. While this complexity provides sub-

stantial customizability and a strong underlying data model, it is unclear

whether the tradeoff is worth it. Alternative approaches would include a

non-RDF, but still XML based representation, or a more complex knowl-

edge representation system.

Future work, particularly if RDF is kept as the description represen-

tation, should include implementation of a suite of utilities to generate,

modify, and view these representations. To some extent, this is motiva-

tion to continue to use RDF, as many such tools will be created for RDF

in general, independent of a particular application domain.

Details of how the semantic labeling system were applied in various

Hive applications are discussed in Sections 6 and 7. User documentation

for doing RDF based agent configuration appears in Appendix A. 1.

32

6. THE NETWORKED KITCHEN 33

6 THE NETWORKED KITCHEN

Imagine a kitchen in which all of the appliances are networked to-

gether. The pantry, cupboards, and refrigerator know their own contents.

When preparing a recipe, the kitchen would preheat the oven, identify

substitutions in recipes if the user were on a restricted diet, and would

reorder ingredients from the supermarket as supplies got low.

Specifically, consider a recipe assistant, capable of walking a cook

through the preparation of a recipe. An important sub-application of this

is a system to actually schedule the individual steps of a recipe.

The level of assistance provided by the kitchen would vary depending

on user preferences, the particular recipe, and the devices and sensors

available in the kitchen. The ideal system would be able to take advantage

of as much or as little capability as a kitchen might offer.

Particular hardware features built for use in the kitchen include a

tag reading system for identifying and locating cooking utensils, dishes,

and ingredients, a digital scale, a microwave oven, a display, and speech

output. The software for the system uses Hive's semantic lookup scheme

to take advantage of new, previously unknown hardware that matches

certain descriptions.

Mike Hawley,
Matthew Gray, and

Andy Wheeler
at the prototype

kitchen of the future

6.1 SYSTEM DESIGN OVERVIEW

This demonstration system for the spring Things That Think consor-

tium meeting was constructed. The demonstration system for the kitchen

is composed of nine kinds of agents. The basic architecture is shown in

Figure 9.

At the top level in an agent which manages the execution of the recipe,

in concert with the other service agents. At the second level are a set of

"manager" agents which coordinate interactions with individual or sets

of devices. Finally, there are the agents that correspond to the physical

devices and services available in the kitchen.

Although not utilized in the demonstration, an additional agent could

Wiring for the
demonstration

6.2 SYSTEM DESIGN DETAILS 34

Device Agents

Figure 9: Network Kitchen Architecture

be implemented above the the recipe agent to determine which recipes are

being used. Implemented, but not used in the demo system is a generic

recipe scheduler capable of managing multiple simultaneous recipes and

managing resource contention. A more detailed description of this sched-

uler appears below in Section 6.2.5.

6.2 SYSTEM DESIGN DETAILS

6.2.1 RECIPE AGENT

The recipe agent oversees interactions and activities in the kitchen by

interacting with the manager agents. This agent does not necessarily plan

the sequencing of the recipe itself, as that may come from an independent

scheduler, such as the one described below.

6.2 SYSTEM DESIGN DETAILS 34

6.2 SYSTEM DESIGN DETAILS 35

A separate recipe agent provides the flexibility to manage the execution

of a recipe in a way suitable to a particular user. Users might prefer the

use of different schedulers, or the ability to have custom recipe agents

that don't rely on a scheduler at all, as was used in the demonstration

scenario.

6.2.2 MANAGER AGENTS

The manager agents provide the the underlying "kitchen logic". These

agents manage an inventory of food and cookware, manage complex in-

teractions with hardware, and coordinate communication with the user

through whatever means are available. These agents provide an interface

to the above described recipe agents, without the recipe agent needing to

be concerned with the actual hardware available in the kitchen.

Further, these agents will also take care of identifying resources that

may become available that were not anticipated of at the time of the ini-

tial design. Sufficiently unexpected improvements in the functionality

available may require updates of individual agents to take advantage of

the new capabilities, however the agents will communicate via a set of

well-defined interfaces to ease expansion of the system. Individual users

are able to dramatically change the behavior of the entire system by ei-

ther tuning parameters of these agents, or replacing them individually,

without any pervasive change to the remainder of the system.

The UserCommunicationAgent manages all communications to the user

or users of the kitchen. In the demonstration system, this agent commu-

nicated with the user through verbal prompting as well as graphical and

textual on-screen feedback. This agent could be readily modified to pro-

vide location based projection, communication via a wearable computer 6,

or via an ambient display. In the demonstration system, the display sys-

tems were reusable generic display components.

The ScaleManager managed complex interactions with the scale. The

ScaleAgent itself (described below) reports only the current weight on the

6 See Section 7.2 for a particular application of Hive with wearables

6.2 SYSTEM DESIGN DETAILS

scale. The ScaleManager maintains a recent history, to identify if an item

has been added or removed, how much has been added since the last

step in the recipe, and how much more needs to be added, when it is

notified of the goal by the recipe agent. In a kitchen environment with

other devices that mandated complex interactions, similar management

agents would be created.

The inventory management agent, called the TagConcentrator, man-

ages data from any number of tag readers, of any types. Using the se-

mantic lookup system described in Section 5, the TagConcentrator dis-

covers all of the tag readers available to it, and organizes the presence,

absence, appearance, and disappearance of any and all tagged items. Ad-

ditionally, should new tag readers be introduced, the Tag Concentrator

will dynamically discover them.

These management agents provide a convenient abstraction for inter-

acting with varying hardware configurations. Beyond an abstraction,

however, they utilize Hive's semantic lookup scheme to automatically

identify the best piece or pieces of hardware to use in a given scenario.

This ability to dynamically utilize available hardware is one of the key

strengths of Hive, and this is accomplished through separation of func-

tionality into agents, and use of semantic descriptions.

6.2.3 DEVICE AGENTS

Agents to manage each of the individual tag readers, the microwave,

the scale, the speech output system, and the on-screen display were used.

The TagReaderAgent and ScaleAgent are both not specific to the kitchen

scenario, and are used in other scenarios.7 The speech output was ac-

complished using an agent previously used for playing music, called the

JukeboxAgent, and the on-screen text display utilized the StringDisplayA-

gent. The MicrowaveAgent is currently only utilized in the kitchen sce-

nario.

This reuse of components is straightforward in Hive. Above and be-

Canister with RFID
tag

Digitally controlled
microwave

7See section 7

6.2 SYSTEM DESIGN DETAILS 37

yond code reuse, however, is actual service reuse. In the demonstration

setup, a separate audio system was used for the kitchen demo than for

the jukebox demo8 , however if the second audio system had not been set

up, the kitchen software would have automatically located another audio

player, and utilized that.

6.2.4 SHADOWS

Shadows for each of the device described in the previous section were

used as well. Some of these shadows were particular to hardware only

utilized in the kitchen, such as the Transcell scale9 and the microwave,

while others such as the Swatch tag readers are identical to those used

in other scenarios.

6.2.5 RECIPE SCHEDULER

A general recipe scheduler is necessary for any regular use of the net-

worked kitchen. While it is possible to implement individual recipes, as

was done in the case of the demonstration peanut brittle recipe, it be-

comes impractical to do so for large numbers of recipes.

Most recipes are presented as a fixed schedule, however it is clear to a

person using such a recipe that in fact there are interdependencies, but

rarely is the sequence strict. For this reason it is useful to have a dynamic

scheduler that is capable of determining what sequence tasks may be

done in, to find an optimal sequence, to manage resource utilization, and

to adapt to unanticipated changes. Eventually, it would be useful to build

an entire planner, such as CHEF[Ham86], rather than merely a scheduler

to the system to allow creation of new recipes from a set of well established

rules.

A scheduler based in part on STRIPS[FN71] and on Sacerdoti's proce-

dural nets[Sac75] was implemented. Due to the highly constrained nature

8See Section 7.1
9While the shadow for the scale is particular to the kitchen demonstration, the agent

for the scale merely requires a shadow with a particular interface, and can be utilized with
both a kitchen scale, and a bathroom scale, such as the one used in the Net Weight[Gei99]
demonstration.

Digital scale

Peanut Brittle, in
process

6.2 SYSTEM DESIGN DETAILS 37

6.2 SYSTEM DESIGN DETAILS

of the recipe scheduling problem, and the fact that the initial implemen-

tation was to be a scheduler only, and not a generic planner, substantial

simplifications were possible. Further, in 1971 Fikes and Nilsson write in

[FN71]

However, since we envision uses in which the number of oper-

ators applicable to any given world model might be quite large,

such a simple system would generate an undesirably large tree

of world models and would thus be impractical.

In the nearly 30 years since then the "impractical" has become quite

practical, and the application domain distinctly limits the number of op-

erators. For this reason, the scheduler can reasonably employ a "simple

system" of an exhaustive search rather than requiring a the more complex

approach described in [FN711.

The scheduler accepts recipes as input which specify a list of steps,

their interdependencies and resource requirements. These interdepen-

dencies can include requirements that certain steps be completed as pre-

requisites, that certain steps be started within a certain time bound after

the completion of another step, and any combination of these timing con-

straints. The resource requirements may require a particular resource,

or a resource of a particular type for a flexibly specified time bound.

For the demonstration system, the scheduler was not integrated with

the system, as a single recipe was being demonstrated repeatedly, and

identically. Integrating the scheduler should be straightforward. Such a

combined system would then be capable of managing multiple simulta-

neous recipes as well.

Currently, the scheduler requires recipes in a fairly unnatural form,

with constraints explicitly stated. Future work could include attempts to

construct this internal constraint based representation from recipes in a

natural language form. Intermediate possibilities, such as a recipe that

is human-readable, but also contains some added constraint information

for the scheduler, should be readily doable.

As mentioned above, further work to develop a full featured recipe

planner, rather than simply a scheduler, would be a rich area for new

6.3 ANALYSIS

research. Simple planning features such as the ability to perform sub-

stitutions and modify recipes for different cooking equipment is a natural

next step. Beyond that, it is not unreasonable to suggest a planner that

is capable of constructing recipes from scratch, given a basic set of re-

quirements.

6.3 ANALYSIS

Hive proved a valuable toolkit in developing the kitchen. A particular

example of how Hive showed its flexibility in this development occurred

when the initially planned tag reading system was not available. Origi-

nally, the demonstration was intended to use a single large antenna poly-

phonic tag reader, in combination with a couple of the Swatch tag readers.

Two days prior to the demonstration, the polyphonic tag reader ceased

functioning. Without any code changes, the demonstration was capable

of substituting a larger number of Swatch tag readers to accomplish the

same functionality. This was possible due to the fact that Hive utilized a

modular agent architecture and performed all of its lookup based on se-

mantic parameters, such as requiring that something be a "tag-reader",

rather than a particular kind, or a particular number of tag readers.

One useful comparison to make to help determine the efficacy of Hive,

is to compare the kitchen demonstration system built with Hive to the one

built without Hive. Comparison of functionality, implementation com-

plexity and code and component reuse show conspicuously some of the

advantages of Hive for applications such as this.

The following table shows an itemization of the features present in

both the Hive and pre-Hive systems.

The Hive based system implemented the same feature set as the previ-

ous demo as well as a number of new features. The Hive recipe selection

GUI was substantially less attractive than the pre-Hive system, though

the pre-Hive system only allowed for the selection of a single recipe. Fur-

ther, while the pre-Hive system contained support for the microwave, it

was not actually used in the demonstration. Additionally, in the Hive

Vanilla on a tag
reader

39

6.3 ANALYsIs

Feature Hive pre-Hive
On-screen prompting yes yes
Audible prompting yes no
Digital scale yes yes
Tag readers yes yes
Arbitrarily many tag readers yes no
Microwave yes yes
Ability to execute a full recipe yes no
Ability to execute more than one recipe yes no
Inventory tracking yes no
Recipe Selection GUI yes yes

Figure 10: Pre- and post-Hive feature comparison for the kitchen demon-
stration

version, each system component is usable easily outside the context of

the specific demonstration. As an example during the demonstration, the

microwave was connected dynamically to an on-screen button to control

it.

Measuring implementation complexity and code reuse is difficult, how-

ever "lines of code" provides one metric. The following table shows the

number of lines of code used in each system, and the portion that is

shared with other applications.

Hive pre-Hive
Non-shared lines of code ~450 ~3000

Shared lines of code ~350 ~300

Figure 11: Code complexity comparison

The Hive scenario, of course, requires a large amount of generic infras-

tructure. The implementation complexity for the kitchen demonstration

however, is clearly much less under Hive. Additionally, more code is ca-

pable of being used in multiple applications under Hive.

The kitchen is clearly a domain which is open to substantially more

exploration. Immediate extensions of this system include upgrading to

the originally planned polyphonic tag system, adding new appliances, and

extending software capabilities. Future possibilities are discussed further

in 9.

7. APPLICATION SCENARIOS 41

7 APPLICATION SCENARIOS

Hive has been utilized in a number of other applications in addition

to the kitchen demonstration described in Section 6. These systems have

provided further examples of Hive's capabilities.

7.1 "HONEY, I SHRUNK THE CDs"

Consider a bowl full of small discs, each representing a song or artist.

One of these discs is selected and placed on a surface in front of the bowl.

The corresponding music plays, and the disc is thrown back in the bowl.

As a demonstration of Hive, a music playing system, "Honey, I Shrunk

the CDs"10, was developed. This was a system of three agents and two

shadows constructed to provide a novel interface to playing music.

The demonstration was composed of a Radio Frequency Identification

(RFID) tag reader which had a series of small circular tags with a resem-

blance to small CDs (hence the name of the system) and an MP3 based

jukebox. Figure 12 shows the basic software configuration for the sce-

nario represented by "Hive Cell 1" and "Hive Cell 2". "Hive Cell 3" shows

the extensions made to the system, as discussed in Section 7.1.1.

The three agents, shown in cells 1 and 2 of the figure were the TagRead-

erAgent, which watched the tag reader for the appearance of disappear-

ance of tags, the JukeboxAgent, which was responsible for playing re-

quests, reporting songs played and reporting when the end of a song was

reached, and the HoneyIShrunkTheCDs agent, which managed the entire

application. Each of the JukeboxAgent and TagReaderAgent communi-

cated with a corresponding shadow.

The HoneyIShrunkTheCDs agent contained all of the real application

intelligence for this scenario. On startup, it would do a series of lookups

using the lookup system described in Section 5 to locate the demonstra-

tion system tag reader and the jukebox, and would connect itself to each.

If one or neither was available, it would wait until they were. Once these

"Honey, I Shrunk the
CDs" demo

101n reference to the film "Honey, I Shrunk the Kids"[GS89

7.1 "HONEY, I SHRUNK THE CDs"

Hive Cell 3

Strin Dipa get SrngSnig gn igRedButtn Agent BaQE Agn

HiCell 2 Hive Cell 1

JukeBox Agent Tag Reader Agent HoneyI Shrunk

JukeBox Shadow Tag Reader Shadow

Figure 12: "Honey, I Shrunk the CDs" software configuration

connections were established, it would translate incoming information

about the tags on the tag reader into either changes in its internal state

(such as whether the request should be continuous or one time only), or

requests to the jukebox to play a song.

While a very simple application, it proved to be a good test of the

stability of the Hive software over long periods of time. The demonstra-

tion system ran continuously for weeks under regular use, without any

substantial problems, including successfully handling numerous inter-

actions that were intended to crash the system, as well as many less

maliciously intended extensions to the system, as described below.

7.1.1 EXTENDING THE SCENARIO

Once the scenario was in regular use, a number of extensions were

implemented. Some of these were for actual use, to make the system

more useful as a jukebox in a public space, and others were simply to

show what was possible.

The first extension was string based control of the jukebox. Often, it

was desirable to request a particular song without associating a particular

RFID tag with that song. This was accomplished without writing any new

code; A StringSendingAgent, which allows a user to enter a string, could

42

7.2 PERSONAL LOCATION USING RF LOCUSTS 43

simply be connected to the JukeboxAgent and songs could be requested

by name. This exhibited one of the key features that Hive was designed

for: ability for interaction between components that weren't conceived of

as interacting when they were first designed. The Jukebox was designed

with only the tag reading system in mind, and the string sending agent

was a simple standard utility agent.

Second, as a demonstration of the ease of interoperability, a bar code

reader was able to be put into the setup in the same role as the RFID tag

reader. Just as the HoneyIShrunkTheCDs agent translated RFID tags into

song names, it could do so (once again, with no code modifications) for

bar codes.
Finally, the "Big Red Button" was hooked up to cause the jukebox to

play a random song. This required minimal code modifications, as the The "Big Red Button"
button agent did not generate string events, as the tag reader, bar code

reader and string sending agents did. It also could have been accom-

plished with no code modification and the creation of a new agent which

would monitor the button and submit new requests to the jukebox.

In order for this system to be useful as a mechanism for playing music

as well as as a demonstration system, even more convenient interfaces

need to be constructed. Currently, control of the system is either through

the tag reader, or by starting a Hive cell with local agents, such as a string

sender, and connecting to the jukebox. More convenient for most users

would be a web browser based interface. The beginnings of a web based

mechanism for controlling agents has been implemented and it will be

straightforward to utilize in this scenario.

7.2 PERSONAL LOCATION USING RF LOCUSTS

Another application of Hive was the implementation of a personal loca-

tion service using RF Locusts[SKA97] and a wearable computer, by Brad

Rhodes. A "locust" is a device which transmits a location beacon. The

original locusts did so using infrared, and a later revision[Lof] transmitted

RF at 416 MHz. A user with a wearable computer receives this transmis- Brad Rhodes with
wearable

7.3 HIVE DEMONSTRATION SYSTEM

sion, and can identify its location. The wearable computer then chooses

how to utilize this information, whether to publish it for consumption by

outside applications, or to act on it.

Hive enables sophisticated actions to be performed based on this data.

A simple initial application caused a particular song to be played on a

jukebox (the same code as the one in the previous example) when a person

arrived in a particular room. Additionally, Hive allows for easy selection

of whether or not to make the location available to the outside world. The

case of the arrival song is an example of limited publication. In this case,

entering a particular room, causes an action, which may been caused by

another source, and entering other rooms may not cause any effect.

Additionally, further development of this scenario will utilize the loca-

tion component of semantic descriptions to allow a wearable to identify

resources available to it when it enters a particular room. That is, a room

may have a jukebox, display, or other devices that the wearable could

utilize if it was "aware" of the fact that it is in the same room. Hive and

semantic descriptions enable this. This is discussed in more detail in

[RMW99].

7.3 HIVE DEMONSTRATION SYSTEM

A Hive demonstration system was constructed with a variety of generic

devices to use to exhibit Hive's features. These included a number of

screen based agents as well as a number of physical devices. The screen

based agents included buttons, image displays, flashing dots, and string

inputs. The physical devices included the "Big Red Button", a toggle

switch, a "Tickle Me Cookie Monster", a AC relay used to toggle a light, a

number of cameras, a motion detector, and a cricket[MMB+99] (a small

lego robot).

These devices were connected together in a wide variety of ways. Most

of the connections were one-to-one connections of the various event sources

to the event receivers. Examples included the big red button causing

cookie monster to laugh, using the toggle switch, or cookie monster's

"Tickle Me Cookie
Monster" with
electronic guts

44

7.4 OTHER AND FUTURE WORK 45

tickle sensor to trigger a light, using the motion detector to trigger move-

ment of the cricket, and use of the button in the Cookie Monster doll to

cause a picture to be taken. This demonstration showed the flexibility of

Hive in connecting devices in ways not anticipated in the device's original

design.

7.4 OTHER AND FUTURE WORK

A number of other projects within the Media Lab are utilizing Hive.

Craig Wisneski has built a variety of tangible interfaces that are connected

to Hive. Brygg Ullmer is developing "Strata", a project exploring the design

of layered, electronically-augmented physical models that serve as tangi-

ble interfaces to specific dataspaces, that uses Hive to connect displays

to data sources.

Future applications of Hive may include connecting Brad Geilfuss'

Net Weight and Inner ViewlGei99] projects, as well as providing low-level

transport mechanisms for Hive, such as via Hyphos, by Rob Poor.

Net Weight prototype

8. JINI

8 JINI

Jini and Hive share many qualities. Both are distributed software

systems designed to be simple and flexible and targeted at small appli-

cations involving spontaneous networks of small devices. Additionally,

both are implemented in Java, and share many of the modes of interac-

tion that this implies. Finally, both have a concept of component services

or agents which are mobile. While both systems utilize code mobility,

Jini has a somewhat different paradigm of operation: the services export

their interfaces and stubs, while in Hive there is this mode of mobility as

well as the ability for an agent to entirely move from place to place. This

section discusses the basic Jini architecture, compares it with Hive, and

explores their differences, inter-compatibility and strengths.

8.1 BASIC ARCHITECTURE

Jini was developed by Sun Microsystems to "enable impromptu net-

working of a wide variety of devices"[JFS]. As with Hive, Jini is imple-

mented in the Java language, however, as it was developed within Sun,

utilized a later version of Java, JDK 1.2 (aka "Java 2"). Jini was initially

released in January, 1999.

The basic components of a Jini system are called services and clients.

These services join a Jini federation via the discovery and lookup pro-

tocols, which are used to locate other services. Jini also incorporates

specific notions of leases and events into its architecture. A client uses

the discovery and lookup protocols to locate services, but does not join a

federation itself.

The discovery and lookup protocols provide a mechanism for Jini ser-

vices to find one another. "Discovery" in the Jini sense, is the process of

a new service locating a nearby lookup service. This is done by sending

a broadcast or multicast packet which contains enough information for

the Jini lookup service to establish communication with the new service.

The new service then registers itself with the lookup service, and other

JIN[

46

8.2 ARCHITECTURE COMPARISON

services can then use the lookup services to find it. After this, all com-

munication between services is currently via RMI[RMIJ, though individual

services may implement their own protocol, if desired.

Jini services, in addition to interacting with each other, may be con-

nected to directly by a client. A client uses the discovery and lookup

protocol to find a desired service, but does not register itself as a service.

Leases are the mechanism Jini utilizes to deal with distributed failure.

One service's interaction with another is specified for a limited lease time,

which must be renewed. If the other service, or the intermediate network

has failed, this lease renewal fails, providing an opportunity for the service

to gracefully respond to the outage.

Jini also defines a mechanism for sending "Distributed Events"[JDE].

These events are closely tied to the standard Java Event Model, but are

adapted for use in a distributed environment. Events provide a conve-

nient mechanism for devices to send general notifications, such as the

availability of a new service.

Though not strictly part of Jini, Sun provides two standard and gener-

ally useful Jini services: JavaSpaces and a Transaction Manager. JavaS-

paces provide a network "location" for interaction between distributed

components. Requests, responses, or other types of data may be posted

in a JavaSpace for examination and potential use by other services. The

Transaction Manager provides a way to execute complex transactions in

the face of potential failures. This sort of service is critical for many

applications, and while it could readily be implemented within each ap-

plication, Sun chose to provide it as a general Jini service.

8.2 ARCHITECTURE COMPARISON

At a fundamental level, Hive and Jini are closely related; both are Java

based distributed object systems implemented in Java that communicate

principally via RMI, and provide mechanisms for discovery of other ser-

vices. In a number of ways, such as Hive's notion of a cell, the particular

approach toward lookup, and how code mobility is treated, they are quite

47

8.2 ARCHITECTURE COMPARISON

different.

Hive includes the notion of a "cell", in which agents and shadows re-

side. In Jini, there is no notion of collocation. Correspondingly, Jini lacks

the notion of a shadow. The shadow abstraction becomes more useful

when software components are fully mobile, for the reasons discussed in

Section 4.1.2. Jini services can act as a proxy for a local device, in much

the same way a Hive shadow does. In Jini, if a full software mobility layer

were added, services would have to implement all communications with

a device themselves, or an equivalent of the shadows abstraction would

have to be created. Additionally, in Hive, all components that communi-

cate over the network are expected to be agents, and there is no distinct

concept of a client.

In Hive, the structure of a cell provides a default discovery mechanism.

When an agent is "born", it is told where (which cell) it is, and correspond-

ingly does not need to engage in any sort of discovery protocol directly. To

some extent, this simply defers the discovery problem to the level of the

cells: How do cells discover one another? Certainly a broadcast/multicast

approach such as Jini could be utilized, or a more mobile-agents-oriented

approach could be taken, such as having "discovery agents" hopping from

cell to cell, identifying other cells that are known, and sharing this infor-

mation as it travels. This does not completely solve the problem, as it re-

quires bootstrapping via either centralized or hierarchical long-lived/well

known cells, or via a Jini like discovery protocol. However, even without

this, the cells themselves provide a convenient form of limited federation.

The way actual lookup occurs is somewhat different between Hive and

Jini. In Hive, each cell acts like a Jini lookup service, but individual

agents may provide lookup services for other agents collected from mul-

tiple other cells. Further, the Jini approach of "Attributes" and Hive's

semantic labelling share many qualities, and are worth exploring sepa-

rately. This comparison appears below in Section 8.3.

Hive lacks Jini's feature of leases altogether, though the Jini leasing

system could be readily used within Hive with minimal changes to Hive.

Further, Hive uses the identical distributed event model as Jini. Hive pro-

vides a number of default services, such as an agent that allows creation

of a user interface, a server list agent which manages a list of currently

known cells, but no JavaSpaces analog or transaction manager is used.

One of the more significant differences between Hive and Jini is the

approach taken toward code mobility. In Hive, agents are fully mobile,

and may fully transfer their code and thread of execution to another ma-

chine, at will. Then, any network communication with this agent is done

via dynamically downloaded RMI stubs. In Jini, a service is not capable

of initiating movement on its own, and only implements the latter form

of mobility. In either case, there is nothing to prevent the dynamically

downloaded stubs from being a full implementation of the service, rather

than just an RMI proxy.

8.3 SEMANTIC DESCRIPTIONS

Semantic descriptions in Hive play the same role as Jini Lookup Attributes[JLA99].

In Jini, services are registered with a lookup service as a ServiceItem,

which is composed of a reference to the service, and a set of attributes.

These attributes are Java classes. When lookup is performed, exact

match checks are performed against the public instance variables in the

attribute classes, with null acting as a wild card. One key difference

between this approach and the Hive system is the lack of hierarchical

descriptions.

The Jini Attribute system has the advantage of being strongly typed,

due to the fact that it utilizes the Java type system. This advantage is less-

ened, however, by the lack of hierarchical descriptions. Because of this,

the fields of many attributes will be represented as strings, rather than

actual data structures. For example, an object may have an attribute of

"Owner" which has the fields "name", "email", and "department". It would

be convenient if the "department" field could then have fields like "super-

visor". In the Jini attribute approach, it is necessary for the "department"

to be a String or equivalent for the matching to work. Looking up all

services whose owners work for a department supervised by a particular

8.3 SEMANTIC DESCRIPTIONS 49

8.4 COMPATIBILITY

person becomes impossible within the lookup system. This requirement

is mitigated by the fact that it is often easy to just flatten such structures,

but this does not scale well.

As mentioned in Section 5, Hive's semantic labeling system can alle-

viate some of the weaknesses of having no strong typing through use of

DTDs and DDML schemas. Further, this allows Hive descriptions to more

readily interoperate with non-Java based descriptions.

In Jini, the description, or attributes, is not directly tied to a service.

Due to the fact that the attributes and the service reference are wrapped

together into the service Item bundle, it is possible that the same service

could be referred to by multiple ServiceItems, each of which has differ-

ent attributes. This has certain advantages, in flexibility, and certain

disadvantages, in the case of an object listed in multiple lookup services

that wants to make a single change.

8.4 COMPATIBILITY

Once Hive is moved to Java 2, it should be straightforward to allow

a Hive agent to act as a Jini service. It would need to participate in the

discovery and lookup processes on its own, and manage leases. Other

than this, communications from other Hive agents and other Jini services

could proceed as usual, including event generating agents using a single

receiver list composed of Hive and Jini components.

Similarly, a Jini service would require minimal modification for it to be

able to be instantiated inside a cell as a Hive agent. The Jini service would

need to implement methods related to the Hive agent life cycle. Event ori-

ented agents would also utilize Hive's mechanism for event subscription,

although even within Hive this is not a strict requirement.

It would be further possible to enhance Jini and Hive interoperability

by recasting the Hive cell itself as a Jini service. This would provide a

mechanism for adding Hive-style mobility to Jini, where services could

initiate movement from one location to another. The cell service would

provide the mobility methods and the Hive lookup methods. Additionally,

50

8.5 ANALYSIs 51

Jini's lookup service would provide a way for cells to initially discover one

another.

Without any changes, Hive an Jini share the same distributed event

model. Utilizing this commonality may be difficult due to the bootstrap-

ping problem of a Jini service getting a reference to a Hive agent or

vice versa. If this bootstrap problem were solved, however, Jini and

Hive services could readily obtain references to one another, as both sys-

tems use the distributed event system to notify interested parties of new

agents/services.

8.5 ANALYSIS

When compared to Jini, Hive has a number of advantages and dis-

advantages. Most of its advantages make it better suited for use in a

research environment, and less well suited for commercial deployment,

which is appropriate given the context of the development of each sys-

tem.

The advantages of Hive include the approach toward semantic label-

ing, Hive-style code mobility, and an explicit distinction between local

and network resources, in agents and shadows. The semantic labeling

approach used in Hive is especially useful in exploration of ontologies for

the things that think domain. By allowing arbitrarily structured, dynam-

ically modifiable descriptions, new techniques and schema can be tried

out somewhat more flexibly and quickly than the Jini Lookup Attribute

approach. This flexibility is at the cost of some added complexity, how-

ever.

Hive also provides complete mobility. This provides a number of ad-

vantages, most of which have not yet been thoroughly explored. Jini's

stub mobility provides much of the needed features in common applica-

tion domains, and with custom generated stubs, some of the possibilities

of full mobility become available. Further, as mentioned above, full mo-

bility could be added to Jini without a total redesign.

Hive explicitly includes a notion of locality. This is necessary for its

8.5 ANALYsIs

approach toward mobility; if an agent wants to move, it needs a place to

move to. This concept of locality allows a way for agents to find localized

resources. Hive's shadows layer provides a standard way for these agents

to communicate with local devices, such as described in the Jini Device

Architecture Specification[JDA99], but in such a way to accommodate

the mobility of the agents. Jini can accomplish some of the same goals by

using a capability based security model for untrusted services.

Jini currently has substantial advantages in terms of initial discovery.

Hive cells have no bootstrap mechanism other than specifying a well-

known cell or cells, to join the larger network. Additionally, Jini provides

the stability one would expect from a commercial system, in contrast to

Hive's lesser stability, as would be expected from a research system.

9. ANALYSIS AND CONCLUSIONS 53

9 ANALYSIS AND CONCLUSIONS

9.1 KITCHENS

Only the very beginning of the exploration of a networked kitchen has

begun in this work. The Hive system proved useful in development of a

flexible, decentralized demonstration networked kitchen. The implemen-

tation should also provide a good platform on which to extend and further

examine possible applications in the kitchen.

A recurring theme in all attempts to build a "kitchen of the future"

have been that opinions as to how it should work are strong, varied and

often diametrically opposed. A componentized system for kitchens, such

as the one built with Hive, will be necessary to experiment with scenarios

to determine which approaches are successful, which are not, and which

depend on the particular user preference.

9.2 HIVE

Hive has succeeded in allowing a number of complex systems of things

that think to be built. The kitchen demonstration system alone is the

largest individual Hive application built so far, and it did not run into

any scaling related problems itself. During the Spring IT meeting, a

number of other projects within the lab utilized Hive, and some systems

experienced problems related to too many RMI sockets being produced.

In both the fall and spring demonstrations, many unanticipated ways of

connecting devices together were tried with no other difficulties.

Further, the Hive system proved to be relatively straightforward for

other users to utilize, despite only minimal documentation and personal-

ized help being available at the time of the demonstrations. A number of

the other projects, particularly the wearables project described in Section

7.2 continue to use Hive extensively.

9.3 FUTURE WORK 54

9.2.1 SEMANTIC LABELING

The RDF-based semantic labeling approach also proved successful in

application in a small number of systems. In the kitchen demonstration,

it allowed for flexibility in the use of hardware. This became especially

relevant when the tag reader planned on being used turned out to be

broken, as described in Section 6.3.

Continuing work using semantic labels will help evaluate whether RDF

is a suitable solution, givens its disadvantages of complexity. This may

be mitigated or eliminated by the production of RDF tools, either as part

of the Hive project or as general RDF tools.

9.3 FUTURE WORK

There are many directions in which to continue this research. Both

the kitchen demonstration and the Hive infrastructure have shown sub-

stantial promise.

9.3.1 KITCHENS

In the kitchen, an initial area for work is the addition of new devices

to the repertoire of the system. This will include new devices similar

to those that exist, such as a superior tag reading system, as well as

currently unimplemented devices, such as blenders, stoves, sinks, and

ovens. An important step in pursuing this is moving the research into a

real kitchen rather than the prototype mock up that has served so far.

Further, integration of a scheduling system into the recipe manager, as

well as a more sophisticated inventory manager will provide challenging

software projects.

Once an actual kitchen with a standard array of appliances is avail-

able, experiments in usability and stability can begin. User interface in

the kitchen is of especial importance, as a traditional screen display is

not well suited to the environment. Various input and output forms, in-

cluding projection, speech in and out, use of wearables, and novel display

9.4 CONCLUSION

devices should be explored.

9.3.2 HIVE

The Hive infrastructure should continue to be developed in a number

of ways. The current mobility layer is incomplete, and completing this

will allow for a variety of interesting explorations into uses of mobile code.

Experience with users of Hive has shown that while Hive is useful and

approachable to most users, there is room for a number of utilities to

manage semantic descriptions and configurations, more documentation

for implementors, and a more straightforward method to install Hive.

Other future developments are likely to include some integration with

a web server to allow "web application server"-like systems. A variety of

novel applications of code mobility can be examined, including a mobile-

code-based discovery system and implications to security. Partial or full

integration with Jini is a further possibility. A release outside of the Media

Lab is also planned.

9.4 CONCLUSION

Hive has provided the necessary infrastructure to construct a suc-

cessful prototype kitchen that can be extended and developed further.

Additionally, Hive has achieved initial success in making it substantially

easier to build complex networked systems of things that think.

55

A. DOCUMENTATION 56

A DOCUMENTATION

A. 1 RDF FOR CONFIGURATION

| OVERVIEW |

Hive configuration files allow you to do a number of things:

o Specify which shadows and agents get automatically started
o Specify communication channel parameters (baud rate, etc)
o Specify other agent or shadow configuration
o Specify a different PPM icon for a particular instance of an agent
o Specify semantic descriptions for agents and shadows

This makes it easy to create an application built on top of Hive that
just involves running Hive, and requires no manipulation or
configuration through the GUI. This is useful for demos so that you
can avoid clicking through multiple PropertySheet's and the like.

These files are stored in a single directory, be default .hive in your
home directory. A different directory can be specified on the
command line with the -configdir option. For example:

"java edu.mit.media.hive.server.Server -configdir=/home/mkgray/democonfig"

| STANDARD CONFIG FILES I

There are two default hive configuration files plus one per shadow or
agent that you want to have custom configuration for. This section
describes the two default files. The format of the per shadow/agent
config files is in the next section.

The default filename for the first is "agentConfig", but can be
specified to be something else with the -agentconfig command line
option. The default filename for the other is "shadowConfig", and can
be specified to be something else by the -shadowconfig command line
option.

Both of these files have the same format. On each line, an agent or
shadow class is specified and the name of an RDF configuration file is
listed. A line beginning with a '#' is considered a comment. Class
names must be fully qualified. For example, an agentConfig file to
start up a running graph agent with the configuration file mygraph.rdf
would look like this:

A. 1 RDF FOR CONFIGURATION

------- cut here-------
Just start up my running graph agent
edu.mit.media.hive.agent.desktop.RunningGraphAgentImpl mygraph.rdf

-cut here-------

If you wanted to start up multiple running graph agents, with
different configurations, you'd do something like this:

cut here-------
Start up three running graph agents

Start two graphs with my standard settings
edu.mit.media.hive.agent.desktop.RunningGraphAgentImpl mygraph.rdf
edu.mit.media.hive.agent.desktop.RunningGraphAgentImpl mygraph.rdf

And start another with my other settings
edu.mit.media.hive.agent.desktop.RunningGraphAgentImpl myothergraph.rdf

cut here-------

The shadowConfig file is the same. For example, if you wanted to
start two cricket shadows, running on different serial ports:

cut here-------
Start up our cricket shadows
edu.mit.media.hive.shadows.CricketShadow cricket-coml-config.rdf
edu.mit.media.hive.shadows.CricketShadow cricket-com2-config.rdf

cut here-------

One added important piece is that if you use a shadowConfig file,
these are THE ONLY SHADOWS that will ever be allowed to be started.
For example, if you use the above configuration and then try to start
an agent that tries to use another shadow (say, a QuickCam shadow), it
will be forbidden. So, be sure to specify all shadows you want
started. You are still free to start arbitrary agents.

I RDF FILES |

The RDF files specified in the agentConfig and shadowConfig files
determine the configuration for each individual agent or shadow.
These files are found in your hive config directory.

All Hive RDF files should contain the following at the begin-
ning of the file:

------- cut here--------
<?xml version="1.0"?>
<RDF

A. 1 RDF FOR CONFIGURATION 58

xmlns='http://www.w3.org/TR/WD-rdf-syntax#'
xmlns:RDF='http://www.w3.org/TR/WD-rdf-syntax#'
xmlns:thing='http://www.media.mit.edu/hive-syntax#'>

<Description about="">
cut here --------

and at the end of the file:

-cut here --------
</Description>
</RDF>
------- cut here --------

The rest of this section will describe what goes in between these. In
order to specify a configuration parameter for a agent or shadow, you
use something like the following:

<thing:config thing:iconPPMName="scale.ppm"
thing:sampleRate=".5"/>

This specifies that the iconPPMName is "scale.ppm" and that the
sampleRate is ".5".

To configure a serial port is slightly more complicated:

<thing:config thing:parameterFoo="blah">
<Description>
<thing:channel thing:baudRate="9600"/>
</Description>
</thing:config>

This sets parameterFoo to "blah", and the baud rate of the se-
rial port
used by this shadow to 9600.

Now, how does an agent or shadow use the values specified in these
config files? By using Java Beans. For example, in the previous
example, an agent would need to implement two methods:

public String getParameterFooo;
public void setParameterFoo(String s);

and, automatically setParameterFoo would be called with the value from
the config file. This happens between agent construction and the call
to arriveAt(, so the agent will not even have a Server ref-
erence yet
when it is configured, so best practice is to store away the value
when setParameter(...) is called, and use it in arriveAt() or
doBehavior(). Configuration parameters may be String's, int's,
float's, double's, boolean's and anything else there is a

A. 1 RDF FOR CONFIGURATION

PropertyEditor for (java defines the ones listed by default).

To allow serial port or other LocalChannel configuration, you don't
need to do anything other than specify the parameters in the config
file, if you've used the standard Hive serial port and external
process support.

The configurable parameters for a serial port channel are:

Parameter Value

baudRate 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200
serialPort 1, 2, 3, ... (note these correspond to COM1, COM2, ...

or ttySO, ttyS1, ttyS2, ...)

The configurable parameter for a process channel is:

Parameter Value

processCommand a string specifying the external command to run

Additionally, AgentImpl has one default configurable parameter:

Parameter Value

iconPPMName A string specifying the filename of a 32x32 raw PPM
(this file should be in your hive config dir)

Finally, an RDF file may be used to provide a semantic descrip-
tion of
the agent or shadow. This is a substantial topic in and of it-
self,
and will be addressed separately, at another time.

I EXAMPLES |

Here is a set of sample configuration files that would work to-
gether,
with descriptions of what they do.

===== agentConfig =====
Create a couple of agents
edu.mit.media.hive.agent.desktop.RunningGraphAgentImpl mygraph.rdf
edu.mit.media.hive.agent.thing.ScaleAgent scale.rdf

-==shadowConfig
Start the shadow for the scale

A. 1 RDF FOR CONFIGURATION

edu.mit.media.hive.shadows.TranscellScale transcell.rdf

This configures the graph to update every half second, and have a

scale of .0625 (1/16) so that when hooked up to the scale it will show

a graph of ounces over time. "updateInterval" and "scaleFac-

tor" are

parameters that the RunningGraphAgentImpl accepts.
===== mygraph.rdf =====
<?xml version="1. 0"'?>

<RDF

xmlns='http://www.w3.org/TR/WD-rdf-syntax#'
xmlns:RDF='http://www.w3.org/TR/WD-rdf-syntax#'

xmlns:thing='http://www.media.mit.edu/hive-syntax#'>

<Description about="">

<thing:config

thing:updateInterval="500"

thing:scaleFactor="0.0625"/>

</Description>

</RDF>

This just specifies an alternate PPM for the scale
====== scale.rdf ======
<?xml version="1. 0"?>

<RDF

xmlns='http://www.w3.org/TR/WD-rdf-syntax#'

xmlns:RDF='http://www.w3.org/TR/WD-rdf-syntax#'

xmlns:thing='http://www.media.mit.edu/hive-syntax#'>

<Description about="">

<thing:config

thing:iconPPMName="scale.ppm"/>

</Description>

</RDF>

Configure the scale to be on port 1 at 9600 baud.

This file isn't actually necessary, since port 1 and

9600 baud are the defaults.
==== transcell.rdf ====
<?xml version="1.0"?>

<RDF

xmlns='http://www.w3.org/TR/WD-rdf-syntax#'

xmlns:RDF='http://www.w3.org/TR/WD-rdf-syntax#'

xmlns:thing='http://www.media.mit.edu/hive-syntax#'>

<Description about="">

<thing:config>

<Description>

<thing:channel

thing:baudRate="9600"

A.2 HOW TO USE SEMANTIC DESCRIPTIONS 61

thing:serialPort="1"/>

</Description>

</RDF>

A.2 HOW TO USE SEMANTIC DESCRIPTIONS

HOWTO use semantic descriptions in Hive

INTRO

Semantic descriptions in Hive are based on RDF. This means everything

is a directed labeled graph. Using the Lookup utility class or the

DescSet.select() method, you can query these graphs and find resources

that match your requirements.

SAMPLE

Here's a sample RDF file, describing a camera in room 468:

<?xml version="1.0"?>

<RDF

xmlns='http://www.w3.org/TR/WD-rdf-syntax#'

xmlns:RDF='http://www.w3.org/TR/WD-rdf-syntax#'

xmlns:thing='http://www.media.mit.edu/hive-syntax#'>

<Description about=""

thing:nickname="Pia Quickcam">

<thing:config thing:command="cqcam"/>

<thing:location

thing:building="E15"

thing:room="468"/>

<thing:role>
<Description>

<thing:camera thing:kind="QuickCam"/>

</Description>

</thing:role>

</Description>
</RDF>

The rdf statements this makes are:

The "nickname" of (the described object) is "Pia Quickcam"

The "config" of (the described object) is FOO

The "command" of FOO is "cqcam"

The "location" of (the described object) is BAR

A.2 HOW TO USE SEMANTIC DESCRIPTIONS 62

The "building" of BAR is "E15"

The "room" of BAR is "468"

The "role" of (the described object) is BAZ

The "camera" of BAZ is QUUX
The "kind" of QUUX is "QuickCam"

Note, it says about="". Leave this as is, and Hive will automatically

generate the correct object associations. Putting something else in

the about field may produce strange results.

This may seem like a mess (and it is), and in general you won't need

to think about things this way to generate descriptions, or query

them, but it is useful to know when starting out.

IN GENERAL

In general, to discover a new agent, you would do one of the following

two things. Say you wanted to find a camera, such as the one

described above. You might do:

Agent a = Lookup.findAgentMatch(myServer, this,
"edu.mit.media.hive.EventTranslatingAgent",

Description.HIVE+"camera");

This will give you the first agent it finds that is of syntac-

tic type

EventTranslatingAgent and has the role of camera. The

"Description.HIVE" prefix, is the RDF name space stuff, which I explain

in the details below. If you don't care about the details, always

prefix types with it.

If instead you want to find all agents in room 468, you might do:

DescSet set = Lookup.findAgentMatch(myServer, this, null, null);
set = Lookup.require(set, Description.HIVE+"location",

Description.HIVE+"room",

"468");

These lines say, correspondingly "Give me all the agents on this

server", and "Give me all the agents whose location has a room of

468". (note, this code will give agents in room 468 of any building)

Then if you want an enumeration of the matching objects you would do:

Enumeration e= set.elements(;

Or, if you want the first match, you would do:

Object o = set.elementAt(O);

A.2 HOW TO USE SEMANTIC DESCRIPTIONS 63

If you want the number of matches, you would do:

int n = set.matches();

DETAILS

So, how do you discover a particular agent? For agents, you do so by

calling queryAgents(...). For example, to get all of the

EventSendingAgent's on the local cell, you could do the "raw" query:

String[] esa = { "edu.mit.media.hive.agent.EventSendingAgent" };

DescSet mySet = myServer.queryAgents(this, esa, null);

or, more likely, to save you the trouble of creating the tem-

porary array,

you use the utility method in Lookup:

DescSet mySet = Lookup.getAgentSet(myServer, this,
"edu.mit.media.hive.agentEventSendingAgent",

null);

queryAgents and getAgentSet each take arguments of the caller, a

string array or string corresponding to the agent syntactic type you

want, and a string array or string corresponding to the agent semantic

role you want. Either of these may be null to match any. getAgentSet

also has as a first argument the RemoteServer to query.

[Note: in all the examples from here on in, I'm not prefacing types with

Description.HIVE or any other name space prefix. This is because

it's messy looking and I don't feel like it, not because it isn't

needed]

Now you have a DescSet object which is a set of 0 or more descriptions

which can be queried and manipulated. Now, say you want to se-

lect the

agent from this set that has the nickname "Pia Quickcam". To do so,

you would do:

DescSet mySet = mySet.select(Description.HIVE+"nickname", "Pia Quickcam");

Select takes two arguments, the label of the RDF graph edge to fol-

low,

and a second optional argument of the required value of that node. To

clarify, here's another more complicated example:

set = set.select("owner"); // This selects the owner of each item

set = set.select("birthday"); // This selects their birthdays

set = set.select("month", "July"); // This selects those whose birth-

day is in

A.2 HOW TO USE SEMANTIC DESCRIPTIONS

// July

Each select causes the new, potentially pared down, set to be
returned. If a description in the set does not have an owner at all,
the first call will eliminate it. The second will eliminate all owners
that don't have birthdays, and the third will eliminate all owners
whose birthdays whose months are not "July". Get it?

As you may have inferred by now, there is a "context" in a set, so
that you can do structured queries like the above one. What if in the
above scenario we wanted to, after all this, select only ob-
jects in
E15. If we immediately did:

set = set.select("location");
set = set.select("building", "E15");

That would be equivalent to having said: Give me all objects which
have a owner which has a birthday which has a month equal to "July"
which has a location which has a building equal to "E15". Since a
month does not have a location, and that's not what you meant, you
have to do something else. So, you have to reset the context. You do
this by doing:

set.noContext()

Note, this has no return value, it actually changes set, rather than
return a new one. Eventually I'll clean up the API to be more
consistent, but deal for now. So, the total sequence of:

set = set.select("owner"); // This selects the owner of each item
set = set.select("birthday"); // This selects their birthdays
set = set.select("month", "July"); // This selects those whose birth-
day is in

// July
set.noContext(;
set = set.select("location");
set = set.select("building", "E15");

This has the total effect of what was originally intended.
Additionally, DescSet has another method upContext(, which causes the
context to be moved up one level.

Now, say you want to do something with the values rather than exact
match, like get all the agents in even numbered rooms. To do that,
you would have to do the following once you got your DescSet mySet:

mySet = mySet.select("location");
mySet = mySet.select("room");

A.2 HOW TO USE SEMANTIC DESCRIPTIONS

DescSet newset = new DescSet();
for(int i=O; i < mySet.matches(); i++){

if(isStringEven(mySet.getValue(i))){
Object m = mySet.elementAt(i);
// Do whatever you want with the match m, like
// add it to a Vector or whatever, or maybe put its
// description back into a new descset for more queries:
newset.addDesc(m.getDescription());

}

Now, what if you want to look at the description of an object that you
already have? At the moment, this requires putting it into a descset
and manipulating it as above. Say I have an Agent foo (or any ob-
ject that
implements Describable), I do:

DescSet set = new DescSet(;
set.addDesc(foo.getDescription()

If you have a Vector of Describables, you can just throw that in the
constructor:

Vector foo = new Vector();
// Add some describables to foo
DescSet set = new DescSet(foo);

From this point you can manipulate the set as above.

Now, what do you do if you have multiple DescSet's and you want to
mush them together? (eg, you query multiple servers, and now want to
find all objects in room 468, on all the servers you queried) You use
DescSet.merge():

DescSet everything = new DescSet();
DescSet foo = Lookup.getAgentSet(serverl, this, null, null);
everything.merge(foo);
foo = Lookup.getAgentSet(server2, this, null, null);
everything.merge(foo);
foo = Lookup.getAgentSet(server3, this, null, null);
everything.merge(foo);
foo = Lookup.getAgentSet(server4, this, null, null);
everything.merge(foo);

This will cause the DescSet "everything" to contain the merged results
from all 4 queries. merge(...) will purge duplicates should the
occasion arise where you try to merge a set which contains repeats.

That is, set.merge(set) is a no-op.

65

A.2 HOW TO USE SEMANTIC DESCRIPTIONS

The Lookup class has a number of utility functions to make do-

ing this

sort of thing slightly easier, but this utility class is incomplete.

But, you can do anything with DescSet, if in a few more API calls.

Here's the relevant/useful methods on DescSet:

DescSet(Vector v)

Construct a DescSet from a Vector of Describable's

DescSet()

Construct a new empty DescSet

int matches()
Number of objects that match the current query

Enumeration elements()

An enumeration of the objects that match

Object firstElement()

Get the first match

Object elementAt(int i)
Get the object match at index i

Object pickOne()
Randomly select one of the matches.

String getValue(int i)

Get the value of the current query in the _description_
(ie, if you've selected the name of the owner, this will give

you the name of the owner, while elementAt() would give you

the object itself)

DescSet select(String p)

Prune the set to objects that have a parameter p in their

description and current context

DescSet select(String p, String v)

Prune the set to objects that have a parameter p with value v

in their description and current context

void merge(DescSet s)

Merge s into the current set

void addDesc(Description d)

Add a description to the set

void removeDesc(Description d)

Remove a description from the set

void upContext()
move the context "back" one

void noContext()

Reset the context

REFERENCES 67

REFERENCES

[AEl] Microstar's Java-Based XML Parser. http: //

www.microstar . com/aelfred.html

(AG961 Ken Arnold and James Gosling. The Java Programming Lan-

guage. Addison-Wesley, 1996. ISBN: 0-201-63455-4.

[BCMS99] Ronald Bourret, John Cowan, Ingo Macherius, and Simon St.

Laurent. Document Definition Markup Language. Technical

report, W3C, 1999. http: / /www. w3. org/TR/NOTE-ddml

[BPSM97] Tim Bray, Jean Paoli, and C. M. Sperberg-McQueen. Ex-

tensible Markup Language (XML). Technical Report PR-

xml-971208, W3C, December 1997. http://www.w3.org/

TR/PR-xml-971208

[C2C] Coast to Coast. http: / /www.media.mit. edu/c2c/

[CI1 Prospectus: Counter Intelligence. http: / /

www.media.mit .edu/ci/

[CLK98] Patrick Chan, Rosanna Less, and Douglas Kramer. The Java

Class Libraries, volume 1. Addison Wesley, 2nd edition, 1998.

[DW198] A. Dahle, C. Wisneski, and H. Ishii. Water Lamp and

Pinwheels: Ambient Projection of Digital Information

into Architectural Space. In Summary of Conference on

Human Factors in Computing Systems (CHI '98). ACM

Press, 1998. http://tangible.www.media.mit.edu/

groups/tangible/papers/AmbientFixturesCH198/

AmbientFixturesCH198.html

[Eve98] 1998 Everest Expidition, 1998. http: / /

everest .www.media .mit . edu

[FFR96] A. Farquhar, R. Fikes, and J. Rice. The Ontolingua Server:

A Tool for Collaborative Ontology Construction. Technical

REFERENCES

Report KSL-96-26, Knowledge Systems Laboratory, Stanford

University, September 1996. ftp://ksl.stanford.edu/

pub/KSL_/_Reports/KSL-96-26.ps

[FN71] Richard E. Fikes and Nils J. Nilsson. STRIPS: A New Ap-

proach to the Application of Theorem Proving to Problem

Solving. In Readings in Planning, pages 189-208. 1971.

[Gei99] Bradley Geilfuss, Jr. Net-Weight and Inner-View Personal

Health Data Monitoring and Interaction. Master's thesis, MIT

Department of Media Arts and Sciences, 1999.

[Gra] Steve Gray. Bit Bags.

[GS891 Stuart Gordon and Tom Schulman. Honey, I

Shrunk the Kids!, 1989. http://us.imdb.com/

Title?Honey,+I+Shrunk+the+Kids+(1989)

[Ham86] Kristian J. Hammond. CHEF: A Model of Case-based Plan-

ning. In AAAI 1986 Proceedings, pages 261-271, 1986.

[HIV] Hive Project Web Page. http: //hive.www.media.mit.edu/

projects/hive/

[HTM] HyperText Markup Language. http: / /www. w3 .org/MarkUp/

[Jav] Java Communications API 2.0. http: / / java. sun. com/

products/javacomm/index.html

[JB] JavaBeans: The only component architecture for Java.

http://java.sun.com/beans/index.html

[JDA99] Jini Device Architecture Specification. Technical report,

Sun Microsystems, Inc., 1999. http: / /ww. sun. com/ j ini

specs/deviceArch.pdf

[JDE] Jini Distributed Event Specification. http: / /www. sun. com/

jini/specs/ev.ps

[JDK] Java Development Kit. http: //java. sun. com: 80/

products/jdk/1.1/

REFERENCES 69

[JFS] http://www.sun.com/jini/factsheet/

[JLA99] Jini Lookup Attribute Schema Specification. Technical re-

port, Sun Microsystems, Inc., 1999. http: / /www. sun. com/

jini/specs/schema.pdf

[KQM] Knowledge Query and Manipulation Language. http://

www.cs.umbc.edu/kqml/

[Lof] Alex Loffler. http://wearables.www.media.mit.edu/

projects/wearables/locust/rf-locust/

[LS981 Ora Lassila and Ralph Swick. Resource Description Frame-

work (RDF) Model and Syntax Specification. Technical re-

port, W3 Consortium, 1998. http://www.w3.org/TR/WD-

rdf-syntax/

[MGR+99] Nelson Minar, Matthew Gray, Oliver Roup, Raffi Kriko-

rian, and Pattie Maes. Hive: Distributed Agents for

Networking Things. Submitted to ASA/MA '99, 1999.

http: //nelson.www.media.mit.edu/people/nelson/

research/hive-asama99/

[Min98] Nelson Minar. Desigining an Ecology of Distributed

Agents. Master's thesis, MIT Department of Media Arts

and Sciences, 1998. http: //nelson.www.media.mit.edu/

people/nelson/research/masters-thesis/

[MMB+991 B. Mikhak, F. Martin, R. Berg, M. Resnick, and B. Silverman.

In Alison Druin and James Hendler, editors, Robotsfor Kids.

Morgan Kaufmann Publishers, Inc., 1999.

[MrJ] Mr. Java. http://mrjava.media.mit.edu/

[OMG94] Common Object Services Specification. Technical report,

1994. http: //www.cs.wustl.edu/~schmodt/CORBA-docs/

coss . ps . gz

REFERENCES

[OMG951 Object Management Group OMG. The Common Object Re-

quest Broker: Architecture and Specification (CORBA), revision

2.0. Object Management Group (OMG), 2.0 edition, 1995.

[Poo99] Robert D. Poor. The iRX 2.1 ... where atoms meet bits,

1999. http: / /www.media.mit. edu/~r/proj ects /picsem/

irx2-/_1/

[Red98] Maria Redin. Marathon Man. Master's thesis, MIT

Department of Electrical Engineering, 1998. http://

ttt.www.media.mit.edu/SF/

[RHDS98] Franklin Reynolds, Johan Hjelm, Spencer Dawkins, and

Sandeep Singhal. Composite Capability/Preference Profiles

(CC/PP): A user side framework for content negotiation. Tech-

nical Report NOTE-CCPP-19981130, W3C, November 1998.

http://www.w3.org/TR/NOTE-CCPP/

[RMI] Java Remote Method Invocation (RMI) Interface. http: //

java.sun.com/products/jdk/rmi/index.html

[RMW99] Bradley J. Rhodes, Nelson Minar, and Josh Weaver. Ubiq-

uitous Computing Meets Wearable Computing: combining lo-

calization with personalization. submitted to The Proceedings

of The Third International Symposium on Wearable Comput-

ers (ISWC '99), 1999.

[Rou99] Oliver Roup. Hive: A Software Infrastructure for Things That

Think. Master's thesis, MIT Department of Electrical Engi-

neering and Computer Science, 1999.

[RXT] RXTX Home Page. http://jarvi.ezlink.com/rxtx/

index.html

[Saa99] Jaane Saarela. SiRPAC - Simple RDF Parser and Com-

piler, 1999. http://webl.w3.org/RDF/Implementations/

SiRPAC/

REFERENCES 71

[Sac75] Earl D. Sacerdoti. The Nonlinear Nature of Plans. In Interna-

tional Joint Coferences on Artificial Intelligence, 1975.

[SAX] SAX 1.0: The Simple API for XML. http://

www.megginson.com/SAX/

[SGM86] ISO 8879 - Standard Generalized Markup Language, 1986.

[SKA97] Thad Starner, Dana Kirsch, and Solomon Assefa. The Lo-

cust Swarm: An environmentally-powered, networkless loca-

tion and messaging system. In The Proceedings of The First

International Symposium on Wearable Computers (ISWC '97),

pages 169-170, 1997. http://1cs.www.media.mit.edu/

projects/wearables/locust/

Things That Think - MIT Media Lab. http: //

ttt.www.media.mit.edu/

[Wa198] Jim Waldo. Jini Architecture Overview. Technical re-

port, Sun Microsystems, Inc., 1998. http: / / j ava. sun. com/

products/ji /

[WWW] The World Wide Web. http: / /www. w3 . org/WWW/

[WWWK97] Jim Waldo, Geoff Wyant, Ann Wollrath, and Sam

Kendall. A Note on Distributed Computing. In Jan

Vitek and Christian Tschudin, editors, Mobile Ob-

ject Systems: Towards the Programmable Internet,

volume 1222 of Lecture Notes in Computer Science,

pages 49-64. Springer-Verlag, Heidelberg, April 1997.

http://www.sunlabs.com/techrep/1994/abstract-

29.html

[T]

