
In Form

Simon Greenwold
B.S., English & Applied Math
Yale University, June 1995

Submitted to the Program in Media Arts and Sciences,
School of Architecture and Planning, in partial
fulfillment of the requirements for the degree of

MASSACHUSELTS INSTITUTE Master ofScience in Media Arts and SciencesOF TECHNOLOGY
at the

JUL 1 4 2003 Massachusetts Institute of Technology
June2003

LIBRARIES
@ Massachusetts Institute of Technology
All rights reserved

ROTCH

Author: Simon Greenwold
Program in Media Arts and Sciences
May 16, 2003

Certified by: John Maeda
Associate Professor of Media Arts and Sciences
Thesis Supervisor

Accepted by: Dr. Andew B. Lippman
Chair, Departmental Committee on Graduate Studies
Program in Media Arts and Sciences

In Form

Simon Greenwold

Submitted to the Program in Media Arts and Sciences, School
of Architecture and Planning, on May 16, 2003, in partial
fulfillment of the requirements for the degree of Master of
Science in Media Arts and Sciences

Abstract
Spatial computing is human interaction with

a machine in which the machine retains and

manipulates referents to real objects and spaces. It

is an essential component for making our machines

fuller partners in our work and play. This thesis

presents a series of experiments in the discipline
and analysis of its fundamental properties.

In Form

Simon Greenwold

thedireader

thesis advisor

Joseph A. Paradiso
Associate Professor

MIT Program in Media Arts and Sciences

Co-Director, Things That Think Consortium
MIT Media Laboratory

Chris Csikszentmihalyi
Assistant Professor of Media Arts and Sciences

MIT Program in Media Arts and Sciences

John Maeda
Associate Professor

MIT Program in Media Arts and Sciences

Acknowledgements

A lot of people helped me write this.

Ben expounded,
Tom explained,
Megan offered,
James thought,

Justin twisted,

Elizabeth read,
Michael invented,
Missy laughed,
Ollie wondered,
Stephanie reminded,
Axel agreed,
Chris connected,

Joe knew,

John reacted,
Jeanna fed,
Craig prodded,
Tim extrapolated,
Jeana worried,
Ryan subverted,
Michelle gave,
Tad questioned,
Eric responded,
Jake reflected,
Thea felt,
Jess walked,
Sharon painted,
Joanne lavished,
Richard played,
Rebecca conspired,
Jeremy argued,
Mom checked,

Dad worked,
Diana played,
Amanda asked,
Roger understood,
Charlotte smiled,
Jenny did a million things every day.

Contents

Part I: Framework

Part 11: Experiments

1. Prelim inaries...................................... 8
1.1 Introduction 8
1.2 Definition 11

2. Background 13
2.1 History 13

2.1.1 The Machine in Space 13
2.1.2 Space in the Machine 16
2.1.3 Networked Space 20

2.1.4 The Denial of Space 21

2.3 The Problems With Realism 23

2.4 The Problems With Interactivity 30

3. Motivation....................................... 32

4. Enter Spatial Computing 33

5. Methodology................................... 34

6. Precedents 35

7. Roadmap of Experiments.............. 40
7.1 Installation 40
7.2 Internaut 41
7.3 Stomping Ground 41
7.4 Hotpants/LittleVision 42
7.5 Pointable Computing 43
7.6 EyeBox 44

8. Installation..
8.1 Introduction
8.2 System Description
8.3 Technical Details
8.4 Precedents
8.5 Evaluation and Critique
8.6 Future Work

47
47
48
51

52

54
60

9. Internaut.. 62
9.1 Introduction 62

9.2 Technical Description 63

9.3 Precedents 65
9.4 Evaluation and Critique 67
9.5 Future Work 70

1o. Stomping Ground 71
10.1 Introduction 71
10.2 System Description 71

10.3 Precedents 72

10.4 Evaluation and Critique 72

11. Hotpants/LittleVision 74
11.1 Introduction 74
11.2 System Description 74
11.3 Technical Details 75

11.4 Precedents 77

11.5 Evaluation and Critique 78

12. Pointable Computing 8o
12.1 Introduction 8o
12.2 System Description 82

12.3 Precedents 83
12.4 Use Scenarios 85

12.5.1 Universal Remote 85
12.5.2 Active Tagging 85
12.5.3 Getting and Putting 85
12.5.4 Instant Wiring 86

12.5.5 Reactive Surfaces 86

12.5 Evaluation and Critique 87

13. EyeBox.. 90

13.1 Introduction 90

13.2 System Description 91

13.3 Motivation 92

13.4 Technical Description 92

13.5 Precedents 95

13.6 Design and Operation 97
13.7 Evaluation and Critique 100

Part IlIl: Evaluation 14. Summary Conclusions....................
14.1 Editing

14.1.1 Suggestion vs. realism

14.1.2 Literalness vs. metaphor
14-1.3 Design vs. engineering

14.2 Qualities of Interactions

14.2.1 Full vs. limited

14.2.2 Feedback vs. one-way control

14.2.3 Predictablity vs. inconsistency

14.3 Shortcuts

14.3.1 Relativity of perception

14-3.2 Opacity

14.4 The Future of Spatial Computing

14.4.1 Technologies

14.4.2 Applications

102
102

102

103

104

104

105

105

105

106
106

107

108
108

109

15. References 111

Appendix A. Other Experiments 117

Appendix B. SBalls code 120

Appendix C. Hotpants tech. docs 129

1.1 Introduction

We have arrived at a critical point in the history
of the machine in space. Engineers are rapidly
banishing the last moving parts from consumer
electronics, allowing the machines to shrink into
near invisibility. Bulky CRTs are yielding to flat
panels, allowing us to embed them into the surfaces
we use daily and to free up valuable "real estate" on
our desks. The businesses of computer vision and
graphics have pushed our abilities to recover spatial
information from the world at large and represent
it recognizably to the eye. The long-standing divide
between the idealized spaces of computer science
and the heavy, cluttered spaces of real-world
engineering are wider than ever, polarizing research
around the world. Now that computation's denial
of physicality has gone about as far as it can, it is
time for a reclamation of space as a computational
medium.

The sublimation of the embodied world has not

gone unremarked or unchallenged. Criticism such

as Katerine Hayles' How We Became Posthuman,
[Hayles, 1999] explores the intellectual and

cultural roots of our sloughing the physical. In the

laboratory, Rodney Brooks has shifted the focus

of artificial intelligence research at MIT away

from software systems to robots with "embodied

intelligence," theorizing that intelligence exists only

in relation to a physical world [Brooks, 2001].

Recognizing the benefits of integrating systems into

existing places and practices, research in virtual

environments is growing to include facets of the

real, albeit often heavily filtered and digitized.

A recent survey of this trend, Mixed Reality:

Merging Real and Virtual Worlds, organizes

these efforts along an axis of "Extent of World

Knowledge" [Milgram, 1999]. According to this

heuristic, a computational system inside a purely

real environment has no need to model the world at

all, whereas an entirely virtual environment must
model the world in every particular. The systems
organized on this scale and the principles derived
from them properly belong to the field of Human-
Computer Interaction (HCI), whose literature has
ballooned beyond manageability.

In the middle of all this activity I place my own
research agenda, spatial computing, which borrows
from cultural criticism, theories of HCI, and
systems of mixed reality, but belongs to none of
them exclusively. This mongrel nature complicates
the dialectic of its presentation. There is both a
rhetorical and technical agenda to serve here.
Therefore, in the interest of clarity, I organize my
thesis into three parts.

Part I: Framework
I begin with a definition of spatial computing and
then sketch the conditions that give it currency.
Finally I give a brief chronology of the experiments
I have undertaken in the field.

Part II: Experiments
This section fully presents the six completed
projects. They are described roughly as they would
be for technical publication. Each system had its
own local set of concerns and conditions apart
from the larger context of spatial computing.
The analyses and critiques of each system in this
section, is with regard to its particular objectives.
An experiment (such as Internaut) that was not
an unqualified success in achieving its own goals
sometimes had a significant contribution to the
broader study of spatial computing.

Part III: Analysis
This section presents a combination of technical
and theoretical results. First I present an
incomplete list of guiding principles for the

successful implementation of projects in spatial

computing, synthesized from the technical analyses

of each of the projects. Next I offer a guesses about

the futures of the technologies involved in spatial

computing. Finally I describe a sample application

of the field.

But first we need a definition...

1.2 Definition

Figure 1.1. This project, Installation,
allows users to place virtual objects in
real space. It is a good example of spatial
computing. (Discussed in detail below.)

I define spatial computing as human interaction
with a machine in which the machine retains and
manipulates referents to real objects and spaces.
Ideally, these real objects and spaces have prior
significance to the user. For instance, a system that
allows users to create virtual forms and install them
into the actual space surrounding them is spatial
computing. A system that allows users to place
objects from their environments into a machine for
digitization is spatial computing. Spatial computing
differs from related fields such as 3D modeling
and digital design in that it requires the forms and
spaces it deals with to pre-exist and have real-world
valence. It is not enough that the screen be used to
represent a virtual space-it must be meaningfully
related to an actual place.

I use "virtual space" broadly here not just to refer
to three-dimensional Cartesian worlds, but any
space maintained by a computer and supposed
to appeal to a human sense of space. By this
definition a "desktop" in a graphical user interface
is a virtual space. Similarly spatial computing does
not necessarily take place in a three-dimensional
representation. For many human purposes a piece
of paper is better understood as a two-dimensional
surface than a three-dimensional object. In fact,
spatial computing may not present a space to the
user at all. It necessarily maintains an internal
representation of space, even if it is only implicit in
collected data, but its interaction with a user need
not be visual or spatial. The simplest example may
be an auto-flushing toilet that senses the user's
movement away to trigger a flush. This is trivial
spatial computing, but it qualifies. The space of the
system's engagement is a real human space.

Figure 1.2. The desktop is a virtual
space. Notice here shading and occlu-
sion.

The criterion that the objects and places in spatial

computing have physical instantiation is not an

arbitrary or trivial distinction. There are specific

characteristics that make the production and

analysis of spatial computing systems different

from purely synthetic virtual systems. This

distinction does not imply a value judgment-

virtual systems have their place. However there are

many cases, some discussed below, in which spatial

computing could significantly benefit existing

virtual systems.

It may seem that the category of computational

systems that engage true space is too broad to

tackle in a single thesis. That is likely true, and I

wish to be careful with the generality of the claims

I make. But I do not think that the diversity inside

the topic defeats the purpose of considering it as a

whole. Instead, I think it may be useful to do so in

order to upset a traditional taxonomy, one which

would not allow the analysis of physical systems

next to software systems. In presenting spatial

computing as an organizing principle, I allow

several systems I have engineered to be brought

into analysis together closely enough that they can

shed light on one another.

2.1 History

Spatial computing proposes a tight linkage of
the space in the machine (the space of digital
representation) and the machine in space (physical
presence). The starkness of the divide owes
something to the fundamental differences of the
media but a great deal also to social and historical
construction. In order to understand our present
dilemma it is necessary to examine a history of
computation in physical space.

2.1.1 The Machine in Space

The earliest machines designed as engines for
calculation did not try to deny their physicality.
They wouldn't have because they were purely
mechanical devices. The abacus, from about
6oo BC, for example, encodes numbers entirely
spatially. It is programmed as it is read, in position.
Here there is absolutely no abstraction of space.
Data space is physical space [Ishii, 1997].

Early computers couldn't help but be spatial.

Figure 2.1. The abacus is a physical They took up space, and they used the nature and
computer not only in its computation, qualities of the physical world to perform their
but also in its input and output. work. This continued to be true as the calculating

machines abstracted their input and output away
from physical configuration to digital displays, as in
Blaise Pascal's mechanical adder of 1640.

The critical shift did not occur until electrical logic
became cheaper, smaller, faster, and more reliable
than physical switching. Motors and gears gave way
to tubes and wires. Suddenly physics, which had
been a computational medium became an enemy
to be conquered. Computers were too big and too
heavy, and things needed to get denser. Initially,
computers were made into furniture as in 1957's

IBM 705, which doubled as a desk in order to make
its outlandish size more palatable.

Transistors, of course, proved to be the vehicle
for shrinkage. As they replaced tubes, computers
became objects in space as opposed to defining
their own spaces. The rest of this history is common
knowledge, how the computer shrank and shrank
until we began to fold them up and put them in
our pockets. But what does this neutron-star-like
compression imply?

First, it puts a clear value-system in place: for
computation smaller is better. This seems obvious,
but it is not the case for many things-houses and
snack food, for instance. There is a clear advantage
to a computer that is small enough to carry. And
physical space has emerged as perhaps world's
primary limited resource. But we never seem to
stop the furious miniaturizing, and that has to do
with computing power. The outsides of electronics
have on whole stopped getting smaller. We have
already seen cellular phones hit an uncomfortable
level of tininess and bounce back somewhat in
size. Things that are of the body must remain
proportionate to it, but the computational cores of
electronic objects are not bound to the body. If they
are, it is only as added weight to be minimized. The
parts of computation that are necessarily human-
scale are the points at which the machine meets
the user-input and output. So there is a tension
introduced as the limits of human physiology keep
computers from spiraling into nothingness, but at
the same time we must keep making the insides
smaller so that the objects themselves can become
more powerful.

No one feels this tension more acutely than the
electronics hobbyist. Traditionally integrated
circuits, the bread and butter of any reasonably

Figure 2.2. The IBM 705 from 1957.
The computer as furniture.

Figure 2.3. Not so long ago computers
made their own spaces. The 1951 Whirl-
wind computer.

Figure 2.4. The SG2200 from Sewon
claims to be the smallest cell phone.

Figure 2-5. Current phones are larger
than they were. Now they hide behind
large color displays.

complicated electronics project, have been available
in packages of sufficient size to allow them to be
handled with fingers and soldered by hand-DIP
"dual inline packages," for instance. But many
of today's technologies such as BlueTooth are
available for use only in packages with leads so
many and so small that no human being could
reasonably expect to manipulate them. These
types of chips are produced for companies who
design circuits on a computer and then have them
assembled by robots. This happens, of course,
because the economics of serving a hobbyist
population doesn't justify the expenditure. But
there is the feeling that consumer electronics
technologies are shrinking away from accessibility
to individual experimenters.

The physical shrinkage of the machine manifests
itself as an embarrassment of the flesh. The
thinner the notebook computer, the better.
Computation is an anorexic industry. As Katherine
Hayles understands it, we owe this desire for the
eradication of the body to

a conceptualization that sees information and
materiality as distinct entities. This separation
allows the construction of a hierarchy in which
information is given the dominant position and
materiality runs a distant second... embodiment
continues to be discussed as if it were a
supplement to be purged from the dominant
term of information, an accident of evolution we
are now in a position to correct. [Hayles, 1999;
12]

Spatial computing proposes to celebrate
corporeality of data rather than trying to deny it.

Figure 2.6. Cygnal proudly offers us
the C8051xxx microcontroller family.
Good luck soldering that one. [http:
//www.cygnal.com/]

2.1.2 Space in the Machine Figure 2.7. The 1982 film Tron demon-
strated the cultural fascination with and
fear of being swallowed by the machine.

Our fascination with the space inside the machine
is not new. The Aristotelian universe was essentially
a mechanical system that described planetary
motions as part of a giant machine. Describing life
inside space stations and bubbles large enough
to hold populations has been the bedrock of
science fiction for as long as we've had it. In 1964
Archigram even reimagined the city as a huge
walking robot that could dock with other cities.

At least as far back as the Renaissance, artists such
as Durer used machines to help them represent
space. In the second half of the twentieth, however,
the growing internal power of machines began to
allow them to represent spaces and objects directly
to our eyes, often spaces and objects with no
referent in the real world. Computers turned out
to be masters of perspective and simple shading,
a few of the artist's simplest tricks for conveying
depth. Suddenly there appeared to be whole open
landscapes inside the machine.

And as the outsides of the machines shrank and the
"space" of memory and storage inside exploded, it
became possible to popularize the idea of moving

Figure 2.8. In 1959, the DAC-i (Design
Augmented by Computers), developed
by General Motors and IBM, became the
first interactive 3D computer graphics
system.

Figure 2.9. Archigram's Walking City,
1964. [Herron, 1964]

Figure 2.10.4,ooo bytes of memory
from the 1951 Whirlwind computer,
standing roughly 9 feet tall. Today we
put 1,ooo,ooo,ooo bytes on a single
chip.

Figure 2.11. A typical representation of
a machine-generated "space" from the
soon to be released online environment,
Second Life [Linden Labs, 2003].

ourselves wholesale out of messy old real space
and into virtual space. A magnetic core memory of
4,ooo bits weighed tons in 1951, but now (April 9,
2003), we store a billion bits on a chip the size of a
fingernail. The scarcity, expense, and imperfection
of real land made the idea of a boundless internal
landscape too tempting to resist. This notion was
also greeted with anxiety as demonstrated by
movies such as Tron and Lawnmower Man, in
which humans are sucked into and trapped inside a
virtual environment.

Early computer-generated spaces tended to be
(and still often are) rigidly planar expanses of
exaggerated linear perspective. Lines are straight,
corners are perfect, and ornamentation is minimal.
Interestingly this represents something of a return
to Modernist form. In 1908 in an essay entitled
"Ornament and Crime," the architect Adolf Loos
wrote, "The evolution of culture is synonymous
with the removal of ornament from utilitarian
objects" [Loos, 1908]. This spare, functionalist
notion cast a long shadow over architecture. Mies
van der Rohe's architecture, for instance, exhibits
what he called "universal space" and the "open
plan." It results in floating planes and broad

Figure #: The Barcelona Pavilion by Mies Van der Rohe. One of
the few real spaces that looks virtual.

gridded plazas. Lev Manovich also finds a return to
a kind of "soft modernism" in the aesthetics of the
web [Manovich, 2002].

The functionalist rationalization of pure forms

("Form follows function" [Sullivan, 1918]) paved
the way for Le Corbusier, in many ways the
father of Modernist architecture, who famously
called the house, "a machine for living in" [Le
Corbusier, 1923]. This was possible to espouse
at the turn of the century, but could not survive
the deconstructive assault of Derrida and others
that followed World War II: "It is now a familiar
story how deconstruction exposed the inability
of systems to posit their own origins, thus
ungrounding signification and rendering meaning
indeterminate" [Hayles, 1999; 285].

Further, these "functionalist" spaces, pristine in
their first realization, did not stand up well to
weather and time. They were extremely difficult to
build and maintain. Interestingly it is exactly their
ease of production and maintenance in machines
that keeps them present as virtual architecture
although they had faded from prominence in
physical architecture before the first computer
graphics arrived.

What this really serves to demonstrate is that
form follows economics of production. Computers
make it cheap and easy to make clean corners,
so that's what we see. Baseboards help cover up
irregularities in physical meetings of wall and floor,
so most real buildings have them. That virtual
environments are becoming more detailed and
more topographically complex is due to improved
tools for their construction and deployment. There
seems to be little ideology driving the development
of a virtual "style" except for the quest to do
whatever technology has made newly possible. See

Figure 2.12. Villa Savoye a Poissy by Le
Corbusier, who famously called a house
"a machine for living in."

Figure 2.13. It is obvious the floating
object is artificial because its colors are
too consistent, its lines and corners too
sharp.

Figure 2.14. A bronze Buddah ren-
dered with a procedurally-generated
patina. [Dorsey, 1996]

Figure 2.15. Solutions such as this may
have difficulty catching on.

Figure 2.16. Robert Venturi and
Denise Scott Brown see the world as a
layering of signs and symbols. [Venturi,
2001]

for example the web sites of makers of graphics
hardware, such as nVidia [www.nvidia.com]. The
features of the cards drive the aesthetics of virtual
environments.

One of the hallmarks of the unreality of virtual
spaces is their over-perfection. On a computer
screen, things look like their ideals (or at least
anything with corners and flat faces does). A line
is a line and a cube is a cube. These images are
unconvincing because we know that there is no
real substance looks so perfect. Much time and
attention in computer graphics nowadays goes
toward making things look imperfect enough to be
convincing [Dorsey, 1996], [Paquette, 2001]. It is a
hard problem, and it isn't yet solved.

Computer graphics' primitive appeal to an
impossible purity makes the idea of virtual
space feel somewhat immature and naive, and
its throwback to long outgrown architectural
ideologies doesn't help either. The proponents of
virtual environments have suggested without irony
that we use systems that make us look like cyborg
monsters. There really isn't anything appealing
about this vision to many important sectors of
culture. All of this leads to some deserved ridicule
surrounding the field of virtual reality.

Where computer graphics diverges completely from
spare modern spaces is in matters of graphical
interface. The collapse of Modernism brought
forward the dominance of the symbol. Architecture
blossomed with overt historical quotations and -
references. Robert Venturi and others recognized
that there is no form that does not carry infinite
layers of meaning. What is suggested is as real as
what is physically present. This is the language
of graphical user interface, where the icon reigns
supreme, and language is larded over the top of
everything.

up

This mess of signifiers is pretty much where
software spaces remain today. Spatial computing
does away with icons, lists, and menus as much as
possible, to allow things to stand for themselves.

2.1.3 Networked Space

The advent of the Internet considerably
complicated the relationship of computation to
space. Suddenly connections made inside the
machine had the potential actually to span half the Figure2.17. Venturi and Scott Brown's

globe. Every screen became a portal onto the same vision of architecture makes the world
look a lot like software interface.

shared, parallel world.

The bright side was the promise of an end to
solitary virtual existence, replaced by virtual
networked communities. And it is true that much
of Internet traffic consists of e-mail and instant
messages. However, one of the strange qualities
of web space is that the user is always alone in
it. No matter how many other people are looking
at the same information, no one sees each other.
Everyone has the feeling of having the entire vast
Internet to themselves.

People saw the expanding World Wide Web itself as
a kind of virtual space, and it did take root even if
it didn't replace the physical world as many feared.
It seemed that the Internet could act as a kind of
spatial prosthesis, a vastly enhanced telephone.
Everything on the web is a single address away-a
click, maybe two. (Advertisers consider three clicks
to be an unacceptably long "distance.") But what
is the product of total equidistance if not collapse
into singularity? It's not a new spatiality, it's a non-
spatiality.

The spatial analog of the hyperlink would be the
teleportation terminal. Such a terminal opens a

hole in space, a discontinuity which we cannot
contextualize in actual space specifically because
it is not of real space. If the essence of spatial
connectedness in a network is supposed to be the
hyperlink, we are building a space out of holes in
space, which is like trying to constitute a sponge out
of its voids.

A further problem of networked space results from
its devaluation to the point that it can be minted
practically for free. Space becomes valueless. As
soon as some space becomes ruined, we can just
make another new one twice its size. There is
no limiting condition to generate value. Perhaps
what makes the Internet valuable is that it is non-
spatial and attempts to introduce space to it may be
fundamentally flawed. (I will have more to say on
that in my analysis of my own attempt to do this,
Internaut.)

2.1.4 The Denial of Space

The Internet is not the only agent of spatial denial
in computer science. The dream of escaping the
imperfect and unpredictable real world is the
engineer's heaven. It is a denial of heaviness,
friction, death, and decay. The memory spaces
of computer science are the site of huge projects
in idealized engineering-where programmers
construct machines of astonishing complexity in
the absence of gravity and corrosion.

Escape from the uncontrollable and capricious real
world into a perfect world of rules, where every
consequence has a cause if one knows enough to
discover it helps explain the motives of strange
hackers and virus writers who measure their
success by the quantity of their access and breadth
of their spread. These people, powerless in the real
world, are masters of the machine, perfect in its

willingness to do as it's told. The author can attest
that this kind of power can be very compelling to
a young person who longs for a ordered world in
which every problem eventually yields to logic.
It also helps explain why virtual spaces have had
only one resounding area of success-violent first-
person games in which players shoot each other at
will. These scenarios appeal to the same crowd of
teenage boys.

Absurdity grows like a barnacle at sites of cultural
tension. All it takes is a look at the size and
complexity of the heatsinks that accompany any
modern microprocessor to know that engineering
is engaged in a fight with physics. We are poised at
a point of extreme tension in the spatial relations
of computation. I propose a computation that
embraces the machine as a spatial object at the
same time integrating it with the space inside
itself. Spatial computing shares an aspiration with
Katherine Hayles's vision for "posthumanity:"

my dream is a version of the posthuman that
embraces the possibilities of information
technologies without being seduced by
fantasies of unlimited power and disembodied
immortality, that recognizes and celebrates
finitude as a condition of human being, and
that understands human life is embedded in
a material world of great complexity, one on
which we depend for our continued survival
[Hayles, 1999; 5].

Figure 2.18. The size of this heatsink
relative to its host is a sign of the heroic
struggle of technology against the physi-
cal world.

Figure 2.19. The Cornell box is the
benchmark for photorealism. Ren-
dered images are compared against
pictures taken inside a real box.
(This one is rendered.) [http://
www.graphics.cornell.edu/online/box/
compare.html]

2.3 The Problems With Realism

Something that tends to go unchallenged is the
realism of virtual spaces. The increasing power of
processors and graphics cards enables more and
more accurate modeling of the physics of light and
the mathematics of surfaces. As Lev Manovich
understands it, realism has become a commodity
we can pay more to buy more of [Manovich, 1996].
But there is a subtlety that is missing from all of the
marketing and analysis of virtual systems.

There is a tremendous disconnect between screen-
based representations of reality and experiential
reality that makes increasingly accurate physical
simulations somehow less engaging than it seems
they ought to be. The computer graphics term for
rendered realism is "photorealism," and that hints
at the problem. The realism that computation tends
to aspire toward is the realism of a photograph.
Human beings do not experience a photograph as
an instantaneous and engaging reality in which they
are part. They do not imagine the camera's eye to
be their own. They remain firmly outside the image,
and understands it usually as a captured moment
of objective representation. It is undeniable that
there is something compelling about the asymptotic
approach to photorealism. Increasingly accurate
renderings continue to inspire wonder even now
that the game of chasing reality has grown old.

But the wonder masks an important distinction that
virtual reality denies. The wonder is the wonder
that the image was not produced by a camera,
not the wonder that the viewer was not present as
the perceiver of the scene. There hangs above the
discipline a notion that we are just a breath away
from producing representations that are sufficiently
accurate to fool the viewer into total engagement. It
can't happen that way.

This confusion of "realism" is apparent from
looking at the use of the term "realistic" as it is
applied to computer simulations such as games.
Sega's basketball game NBA 2K3 is hailed all over
the Internet as the most "realistic" basketball game
ever to be produced. What this seems to mean is
that the players bodies and faces are taken from
real NBA players and the camera shots look like
television coverage of basketball. The view is not
first-person from a player in the game, and not even
from a fan. Instead "realistic" here means creating
television with your thumbs. This could hardly be
farther from the reality of a player in the game.

This is again evident in the popular, "behind your
own back" view in first-person games. It is often
possible to switch the first-person viewpoint, which
is supposed to correspond to the player's eyesight
to a view that is over the player's own shoulder
or behind them. This is often more convenient
for game-play because it shows the player in the
context of the scene. The movement of the camera
from the virtual eye-the most privileged viewpoint
imaginable-to some arbitrary but convenient
location outside the virtual body ought to induce
extreme disorientation and shatter the vital illusion.
But it doesn't. It is surprisingly easy to digest, and
requires no special stretch of the imagination to
accommodate. The ease with which this translation
is accepted indicates that the egocentric view does
not lay special claim to the engagement of players
as if it were their own eyesight.

This has everything to do with the nature of
perception. The fundamental discovery of art and
the physiology of perception since the Renaissance
is that the eye is not a camera. Vision is a
constructed sense. We have a tiny area of acuity
with which we constantly and actively scan the

Figure 2.20. Sega's NBA 2K3. Widely
touted as "the most realistic basketball
game ever." [http://www.epinions.com/
content_859925o9o6o#]

Figure 2.21. The view from behind
yourself in One Must Fall Battlegrounds.
[http://thegamebd.tripod.com/
previews/OMF/Omf.htm]

world. Any notion of a photographic experience of
a real scene is one constructed by the brain. This
is different from the experience of a photograph,
which appears as a small colored patch in our
field of view. We can understand it as it relates to
our experience of the visual world, but it does not
mimic our experience of it.

There is nothing "natural" about a rendered
perspective projection. It is intelligible, but it isn't
how we see things. In some cases, increasingly
"realistic" representations only serve to alienate
us from what we are seeing. For instance, in
the Quake II engine from Id Software, as the
protagonist walks, the view bounces up and down.
It is particularly noticeable when the character is
walking close and parallel to a textured wall. It is
a bizarre sensation to watch the representation
of space bob up and down as the player moves
forward. But if one looks closely at walls while
walking in the real world, it actually does the same
thing. We just filter it out so we don't even notice
it. In our minds, walls don't bounce. So which is
the more "realistic" representation? There is a
perfectly valid argument that whatever alienates
the viewer less is the more realistic. Game players
say that after a while one ceases to notice the
bouncing, just as presumably, we cease to notice
it in the world because it is always present. But I
expect that learning to ignore this effect is the same
kind of learning that allows players to meld their
being with a paddle in Pong. They simply ignore the
clear signals that tell them there is an other reality
outside of this small area of focus as if it were not
the case.

E. H. Gombrich points out that vision proceeds
not as construction of a literal image but as

Figure 2.22. Eye-movement traces as a progressive hypothesis testing against actively
subject explores a picture of the bust of acquired percepts [Gombrich, 1969]. We refine
Nefertiti. [Yarbus, 1967]

our understanding of the world by actively testing
it with our eyes, which are attached to our heads.
That means if there is an uncertain condition
to our right, we may turn our heads. Any visual
information we gather there is added to our mental
image of the scene in front of us, but the image is
as much constructed in reverse from beliefs and
memories as it is from light hitting our retinas.
In fact patients with lesions in their visual cortex
called scotomas, which make it impossible to
perceive anything from large patches of their visual
fields, often fail to notice they have a problem
[Pessoa, 2003]. The process by which the brain
stitches the hole with pieces of what it thinks ought
to be there is called "filling-in," and it is an area
of active research. In fact we all such a blind spot
10' off the center of our visual focus, but we never
notice it unless we design a specific test to discover
it. A photographic image may well describe our
mental construction of what we perceive, but it
vision requires quite a bit of editing to produce
what we "see."

A photograph has done all the work of perception
for us. In its pure instrumentality, it supersedes the
eye. We are often inclined to trust it more than our
vision or our memories. It sucks the subjectivity
out of seeing, and allows us to revisit an instant (a
finer time slice, by the way, than was ever possible
for our eye) at our leisure. We scan the photograph
using the same mechanisms of active perception we
use in the world, and certainly this helps us focus
on different parts of it, but it does not help with any
ambiguity that is frozen into the photograph.

There are many conditions that appear visually
confusing in photographs that could never be in
reality. Sometimes a tree appears to be growing
out of a person's head. We almost never get
that impression in reality. The active quality of

Optic Nerve Head

Figure 2.23. Every eye has a blind
spot where the retina is joined to
the optic nerve. We don't notice it.
[www.nidek.com/blind.html]

Figure 2.24. A VR "CAVE" projects
10' X 10' images on four sides. [http:
//www.eds.com/services offerings/vr/
centers_theway.shtml]

perception disambiguates the situation before it
even becomes questionable in reality. For instance,
there is always motion in the real world, and
there will be differences in the relative speeds
of motion of the tree and the head in the visual
field. This effect, called head-motion parallax, is
more important to our perception of depth than
stereopsis [Arthur, 1993]. Our ability to perceive
is distinctly limited in virtual realms because
the system cannot possibly respond to all the
techniques for active perception that we use. Some
systems try to allow for it by using gaze or head-
position tracking, but the instrumentality of the
system always acts to flatten some of the nuance
that we rely on in our sensing dialog with the world.

Systems that use specialized hardware to try to
replace as much of a subject's sensory input with
synthetic representations of information are
called "immersive," and they all suffer the same
unavoidable problem. We have no experience of
"immersion" in our real existence. We are part
of it, and it is part of us. There aren't even clear
boundaries between the self and environment-it
has been contested for centuries. When subjects
are "immersed" in a virtual simulation such as
a "CAVE," which projects images on 10' square
walls all around a subject, they have an experience
of immersion, which is distinctly not a quality of
reality. Immersion is like diving into cold water.
One of reality's hallmarks is that its experience
is mundane, and any excitement it contains
comes from the thing experienced, not the act of
perception.

Paradoxically, the disconnect with reality become
most apparent in the most "realistic" simulations.
The more the viewer is supposed to be relieved of
the effort of constructing a reality out of partial
information, the more obvious it is when it fails.

This is why an artifact such as an aliased halo
around an otherwise well-rendered character is
so disturbing, or why the slightest anti-physical
movement is so disruptive. Sidestepping this
problem is the considerable work toward "cartoon"
renderings of virtual systems, which trade efforts at
photorealism for abstraction [Kline, 1999].

Abstraction is a powerful technique that chooses
to edit the qualities of a representation consciously
away from perfect concert with perceived reality.
Such an editing allows for parts of the scene that
do not contribute to authorial intent to be stripped
away or effaced, and other parts enhanced, offering
the viewer only the essence of the communication.
Abstraction, like photography, does some of the
work of perception for you, but it goes one step
further, not aiming to mimic the retinal image, but
the ideal image. Of course abstraction can proceed
beyond increased legibility into opacity, but this has
an artistic agenda more difficult to unpack.

The virtual cartoon dog Dobie T. Coyote from Bruce
Blumberg's Synthetic Characters Group at the
MIT Media Lab is a perfect example of abstraction
used to enhance communication. His movements
and facial expressions are in a way hyperreal
since they are a distillation of the visual cues we
use to recognize a dog's mood and behavior. It is
important to distinguish this kind of abstraction
from metaphor. The dog does not standfor a dog
simply because he is not "realistically" rendered.
There is no system of equivalence established to
which the dog as a symbol is appealing. We perceive
the cartoon dog as a specific dog and nothing
else. What abstraction does necessarily do is
universalize, which has the effect of eroding certain
particulars in favor of others. However, in the case
of a virtual construct that has no referent in the real
world, the missing specificity pre-exists nowhere.

Figure 2.25. Screenshot from the AMP
II game engine. Almost realistic but
not quite. [http://www.4drulers.com/
amp.html]

Figure 2.26. Dobie T. Coyote from
Bruce Blumberg's Synthetic Characters
Group. [http://web.media.mit.edu/
~bruce/whatsnew.html#Anchornewi]

Figure 2.27. Video conferencing facili-
ties are available at the New Greenham
Park Hotel. [www.greenham-common-
trust.co.uk/ images/video.jpg]

Abstraction successfully avoids the vain attempt to
build a virtual simulation with all of the detail and
richness of the real world.

This same failure through slavish adherence to
maximizing sensory information is apparent
in the virtual reality of telepresence, in which a
non-present party is brought into "presence" by a
virtualizing technology. In all of the telepresence
systems I have witnessed, the most obvious quality
of the remote parties is their non-presence. The
technology that is supposed to bring them closer
only serves to emphasize their distance from the
goings-on.

Having, experimented with webcams for personal
connection to help maintain a long distance
relationship, I can attest to their inadequacy. (We
went back to telephone only.) Often a mentally-
constructed or abstracted reality is more compelling
than a sloppily constructed representation of a
fuller set of sensory information. Readers usually
find this the case with film adaptations of books
they love.

The inadequacies of "realism" in virtual
environments make it worthwhile to look for
alternative modes for dealing with the space inside
the machine.

2.4 The Problems With Interactivity

Where the problems of realism are problems

of space in the machine, the problems with

"interactivity" are problems of the machine in

space.

There is an irony in the use of the words
"active," "interactive," and "reactive" to describe

computational objects-both physical and virtual. It

is a common practice, as though nothing had those

qualities until the computer swooped down and

started endowing ordinary objects with buttons and

microphones. The truth is that non-computational

objects are far more active, interactive, and reactive

than any working computational version of the
same thing. The reason is that in order to consider

an object computationally, we must derive data

from it, and that means outfitting it with sensors
in some way. As soon as we do that, we chop away

all of the interactions we have with that object that
are not meaningful to the specific sensor we have

chosen. No matter how many sensors we add, we

are taking a huge variety of interactive modalities
and reducing them to several. How could a
simulation of a cup ever be as interactive as a cup?

Some argue that adding sensors to a physical
object does not constrain its existing interactivity,
but augments it electronically. I believe that
is true as long as the object remains primarily

itself with respect to the user and does not
undergo some metaphoric transformation into a

virtual representation of itself or into a semantic

placeholder. That is difficult to achieve, and

cannot be done as long as users must consult a
secondary source to determine the quality of their

interactions. For users to check a screen or even

to listen to a tone to determine the pressure with
which they are squeezing an object supersedes their

own senses and reduces any squeezable object to a
pressure sensor. In order for a physical object to be
augmented rather than flattened by computation,
the computation must occur (or appear to occur)
inside the object and the consequences of the
computation be registered by the object. The object
must also not become fragile or restricted in its
manipulability.

This challenges the claim of mouse-based Flash
authoring to be "interactive design." It is perhaps as
interactive as a phone book, but it certainly isn't as
interactive as an orange. In order for us to design
computational objects that achieve that level of
interactivity we will have to concern ourselves with
more than the screen. The physical body of the
computational object is vital to its interactivity.

3. Motivation

My motivation as a researcher stems from a desire
to address some of the deficiencies in the current
state of our interactions with machines, as detailed
above. But there is a personal motivation as well.

My family used to take trips to national parks.
These were some of my favorite vacations because
I liked to walk inside landscapes that were much
larger than I was. I liked to be able to see things
distantly and then gradually to approach them and
find them to be even more richly detailed than I
had imagined them. I was a computer child too, so
I often thought about this in terms of resolution
and quantization-how the strongest flavors of
the real world were due to its infinite resolution.
Every pinecone had something interesting to say
under each one of its scales if you took the time to
examine it with eyes and fingers. No simulation I
had ever experienced had that power. They reached
only as far as the attention of their creators. But
I dreamed of making that simulation. My fantasy
was to be able to take flight from where I stood and
zoom in any direction to close in at high speed on
anything that caught my interest. I would be able to
experience it in all of its detail.

The fantasy has faded, but what hasn't left me is
a love of the real. What I understand better now
are the limits of computation. I no longer dream
about producing such a system inside the machine.
Instead I have turned my attention to an idea that
I think holds more promise: the integration of the
real and computed. Rather than try to simulate
the qualities of the world I love, why not let the
world stand and be present in all its complexity. I
have been trying to make systems that engage the
physical world rather than deny it.

Figure 3.1. 1 vividly remember Bryce
Canyon in Utah. [http://globetr.bei.t-
online.de]

Of course, thanks to the house, a great
many of our memories are housed, and
if the house is a bit elaborate, if it has a
cellar and a garret, nooks and corridors,
our memories have refuges that are
all the more clearly delineated. All
our lives we come back to them in our
daydreams.

-Gaston Bachelard
[Bachelard, 1964; 8]

"We are continually living a solution of 4
problems that reflection cannot hope to
solve."

- J. H. Van den Berg
[Van den Berg, 1955]

Enter Spatial Computing

Spatial computing proposes hybrid real/
virtual computation that erodes the barriers
between the physical and the ideal worlds. It is
computational design arising from a deep belief in
phenomenology. This emphasis delimits it inside
the body of HCI practice, the majority of which
concerns itself exclusively with what it can measure.
Spatial computing is more interested in qualities
of experience. Wherever possible the machine in
space and space in the machine should be allowed
to bleed into each other. Sometimes this means
bringing space into the computer, sometime this
means injecting computation into objects. Mostly
it means designing systems that push through the
traditional boundaries of screen and keyboard
without getting hung up there and melting into
interface or meek simulation.

In order for our machines to become fuller partners
in our work and play, they are going to need to join
us in our physical world. They are going to have
to operate on the same objects we do, and we are
going to need to operate on them using our physical
intuitions:

Because we have considered the relation between human
and machine as instrumental and prosthetic (subordinating
and conforming machines to the requirements of human
instrumentality), and even more because we have created
them in the image of an ideally isolated individual, we
have denied our computers the use of the shifters (here,
now, you, we...) that might transform their servitude into
partnership [Cubitt, 1998; 35].

If we are not already, we are bound to become
human beings embedded inside our connected
machines. We will be the processors working within
the giant spatial networks that surround us. How
will we use space, place, and objects to direct that
computation?

5. Methodology

My goal at the Aesthetics + Computation Group

has been to attack the boundaries between physical

and virtual spaces with small incursions from all

sides. Therefore my explorations have been many

and various in media and scope. Some have been

more about place, some more about objects. Each

one has led me further toward understanding

spatial computing. I imagine each of the projects

I developed as a component that could be

integrated into future systems that more powerfully

complicate the real and virtual than any of them

taken singly.

In the course of my study my primary method has

been to make things first, and ask questions later.

This process privileges intuition over scientific

inquiry because it does not produce artifacts

designed to test hypotheses. It is an engineering
methodology driven not by a functional brief but

instead only by the demand that the products have
bearing on a broad set of concerns.

I have taken pains as I produced these projects to

allow them to change as I made them to take their
best course. It becomes clear only in the process
of making what a thing's most valuable form will
be. This freedom to allow ideas to change as they
became real has made my work better. Nothing
leads to more tortured and awkward instantiations
of ideas than rigidity of purpose.

It was not always clear to me as I worked what the

connections between my projects were, and it has

required a period of introspection, a reprieve from

building, to hear what they have to say. The theory

has arisen from the artifacts, not the other way

around, and that is the only reason I have faith in it.
As William Carlos Williams said, "No ideas but in
things."

6. Precedents

Spatial computing is not a new discipline. It is
located well within the theoretical boundaries of
existing fields and programs of research such as
HCI, Ubiquitous Computing, Invisible Computing,
and Tangible Interfaces. Each of these is committed
in its own way to bringing together human and
machine space. All of the experiments I undertook
could easily belong to several of these. The
distinctions I mean to emphasize between them
and spatial computing are small but important
differences of focus and in some cases philosophy.

HCI is the umbrella over all of these fields. The
interaction between human and machine can be
construed in many ways.

Ubiquitous and Invisible Computing
In 1988 at the Xerox Parc research lab, Mark
Weiser first articulated the idea of Ubiquitous
Computing. It was a call for technology to recede
into the background of our lives where we would
not even notice its existence:

Our preliminary approach: Activate the world. Provide
hundreds of wireless computing devices per person per
office, of all scales (from 1" displays to wall sized).
This has required new work in operating systems, user
interfaces, networks, wireless, displays, and many other
areas. We call our work "ubiquitous computing". This is
different from PDA's, dynabooks, or information at your
fingertips. It is invisible, everywhere computing that does
not live on a personal device of any sort, but is in the
woodwork everywhere [Weiser, 1988].

Weiser understood Ubiquitous Computing to
be the opposite of virtual reality. It admits no
possibility for the machine to represent space back
to a user. It is the machine dissolved into space.
This is closely related to the invisible computer,
as espoused by Donald Norman [Norman, 1998].
Norman has trouble both with graphical user

interface (because it doesn't scale gracefully to the

level of complexity of modern software) and virtual

realities (because they confuse visual information

with spatial experience):

These well-meaning but naive technologists confuse what
people see when they move about the world with what
they experience. If we look only at the visual information
to the eye, there is no difference between moving the head
to the left while the world stays stationary and moving the
world to the right while the head stays stationary. The eye
"sees" a moving image in both cases, but our experiences
of the two cases are very different [Norman, 1998; 101].

Norman urges a move away from the multifunction

PC to the single-purposed "information appliance,"

whose operation is so obvious that it does not

require instructions. He advocates the purging of

metaphor from interface.

I primarily agree with Norman and Weiser's

critique of existing interface practice. Spatial

computing also does not employ graphical user

interface (GUI) because it is metaphorical rather
than direct. And spatial computing also criticizes
pure virtual environments as they are commonly

implemented. But it certainly does not advocate

invisibility of the machine in every circumstance.
And neither does it shun spatial representation
by computers. Spatial computing demands only
that we be careful with visual representations of
space, and rather than harbor vain hopes for their
replacement of experiential reality, link them in
meaningful ways to existing spaces and objects.

Perhaps the most important difference between

spatial computing and Ubiquitous/Invisible

Computing is that spatial computing is not

polemical. I acknowledge and accept the obvious

benefits of GUIs. There is no way that physical
reality can offer the kind of chameleon flexibility

and complexity that instant metaphor can. I do not
therefore advocate the replacement of the PC as it

exists with spatial computing. Spatial computing
is inappropriate for tasks such as word-processing,
which have no obvious physical connection to begin
with. It is well-suited to domains such as design,
which use the computer as virtual canvas or clay.

Tangible Interfaces
Some recent and ongoing research at the Lab also
shares much with spatial computing. In particular,
Hiroshi Ishii's Tangible Media Group has an
interest in physical manipulation of objects as
a medium for computational control. The work
of Brygg Ullmer such as his metaDESK [Ullmer,
1998], and mediaBlocks [Ullmer, 1997] provide a
variety of ways to use physical objects and spaces to
explore and manipulate digital information. One of
the primary differences between what Ullmer and
the rest of Ishii's group have done and what I am
have been doing is that their work focuses directly
on interface. They are willing to use physical
objects as icons "phicons." These are objects
without previous valence to the user, often abstract
blocks or disks. Their manipulation does provide
control over a system, but it isn't fundamentally

Figure 6.1. Brg mimer's metaDESK different from software interface except that it isuses a variety of physical tools and meta-
phors to allow users to interact with bound by physical laws. They call these systems
geographical data. "TUIs" for Tangible User Interfaces. I think

tangibility is important, but it is not my primary
concern. Tangibility is a necessary by-product of
computational engagement with real objects in real
spaces. I would not want to miss it, but I do think
that reducing physical object to interface controls
unnecessarily saps them of their own identity and
autonomy. As Ullmer points out, they are symbolic,
standing for something for something other than
themselves [Ullmer, 2001].

Figure 6.2. Brygg Ullmer's media- Unlike Tangible Media, which deals with physical
Blocks lets users store and manipulate objects as interface, my aim is to obscure and
media clips as if they were stored in distribute interface so that it becomes impossible to
wooden blocks.

locate its beginning. Interface itself is unavoidable.
It happens at the meeting of any two different
media. But in our interactions with physical objects
we are seldom aware of interface as such. Our
attention extends beyond the interface to the object
of our intention. I hope to allow for that push past
interface in spatial computing.

A group at the Lab that has done significant work
toward embedding computation in existing objects
is Joe Paradiso's Responsive Environments group.
They have placed sensors and computers in objects
such as shoes for dance and gait analysis without
making them fragile or limiting their use [Paradiso,
2000]. They are also interested in sensor networks,
which effectively spread the locus of interface so
widely that it may become invisible. Matt Laibowitz
is currently defining a "Phenomenological Model
for Distributed Systems" (based on the description
language SensorML), which deals explicitly
with issues of active computational perception
[Laibowitz, 2003]. These projects go a long way
toward integrating the machine into human space.

In recent talks, HCI promoter and researcher Bill
Buxton, has expressed concern over the difficulty
of transducing objects. We have very few ways to
get them into and out of our machines. This is a
concern central to spatial computing.

There are also important precedents very close to
home. The Visible Language Workshop was the
group at the MIT Media Lab that later became the
Aesthetics + Computation Group, of which I am a
member. They did much of the pioneering graphics
work on integrating perceptual depth cues other
than linear perspective into computer graphics.
In particular some of their research dealt with
layering, blur, and transparency [Colby, 1992].

Figure 6.3. Expressive footwear from
the Responsive Environments group.

Solutios 6f U,1 aAt

k4-fAww .Kfa f& **

It 0. AIU~ A K.-sk

Figure 6.4. The Visible Language
Workshop explored layering, translu-
cency, and blur as visual tools.

On the humanist side of this research, Anthony
Dunne and Fiona Raby have been looking at
ways people react to objects with technological
appendages [Dunne, 2001]. For instance they
embedded a GPS receiver in a table and had
people keep it in their homes for periods of time.
They found people became attached to the object
and its operation and were concerned when it
lost its signal. Some were compelled to take the
table outside where it could tell where it was.
The attachment people make to active objects is
of central importance to spatial computing. The
qualities of design that establish that pseudo-
empathic relationship are part of what I hoped to
engage.

Each of the individual projects I describe in this
thesis had its own specific precedents, and those I
will detail in their own sections.

7. Roadmap of Explorations

The six projects I describe in this thesis could be
organized on several different axes. They could be
ordered by their bias toward real or virtual space,
or the amount they deal with objects versus the
amount they deal with space. Instead I will present
them as a chronology because it will give the
reader some idea of the circumstances that lead to
their conception and the forces that shaped their
development.

7.1 Installation

I arrived at the Aesthetics + Computation group
after two years studying Architecture at MIT. I was
ready to think about computation and space, and
eager to explore the resources the group had to
offer. Among these was a set of inductive position
and orientation sensors called a "Flock of Birds"
[http://www.ascension-tech.com/products/
flockofbirds.php], a surplus flat-panel LCD display
that I could be allowed to dismember, and a
miniature video camera. I quickly sketched out an
idea for a system called Installation that would
allow users to create and modify virtual sculptures
that were visible only through a viewing screen.
The viewing screen could be moved freely in space
to see the virtual constructs from any angle. This
involved the use of two of the inductive sensors
(one to use as a 3D stylus, and one to track the
position and orientation of a viewing screen); one
gutted flat panel; and the camera mounted on the
back of the screen. The system took shape quickly
and ended up surprisingly close to my original
intention. In the end the system allowed users to
sketch free-form blobs with the stylus and then
install them permanently at any depth into the
space of the room as seen through the view screen.
When the user moved the view screen, the objects

Figure 7.1. The Installation setup.

Figure 7.2. Internaut.

responded as if they were actually in the room.
I later wrote an external client for the system,
which I ran on several machines around the room.
Whenever a user threw an object close enough
to one of the clients, it would disappear from the
viewing screen and appear on the screen of the
client. This gave the strong impression that one had
actually flung a virtual object through real space.

7.2 Internaut

After Installation, I returned to an old idea that I
had wanted to realize for some time-a mapping of
the structures of web sites into three-dimensional
spaces that could be navigated with a first-person
game engine. I guessed that there would be
qualities of three-dimensional space that would
give some added richness to the experience of
navigating the web. After finding a suitable open
source game engine, Quake II, from ID Software,
I modified it to use maps that I generated from
the structure and content of web sites. I called the
system Internaut. The resulting virtual spaces
proved interesting in some regards but nearly
impossible to navigate. Users of the system thought
of many ways to improve the legibility of the spaces
generated, but I think the fundamental flaw was
the naive injection of space into a medium that
is fundamentally space-denying. Analysis of this
project led me to understand the importance of
retaining reference to real space.

7.3 Stomping Ground

Shortly after this I got the opportunity to work
with the Responsive Environments group on a
richly spatial installation at the MIT Museum. An
old project of theirs, the Magic Carpet, a carpet
as musical instrument, was to be permanently
installed in the MIT Museum, and they wanted to
add a visual component to it. The carpet had a grid

of piezoelectric sensor wires underneath it to sense
footsteps and two Doppler radars to sense upper
body movement. Users could control the music it
made by where and how hard they stepped on the
carpet and the overall speed and direction of their
body movements. The system had been used in
performance by dancers and had had a thorough
tour of the world. It was my job to take the same
sensor information that Kai-yuh Hsiao had made
into music and make it visual. The resulting
system, now renamed Stomping Ground, used
rear-projection to present people on the carpet
with greater than life size images of their own legs
and feet with blobs rising out of the floor wherever
they stepped. In the resulting piece, the space of the
carpet was legibly translated into a virtual space in
which people mingled with virtual forms.

7.4 Hotpants/LittleVision

After these experiments in screen-based virtuality,
my work took a turn toward the hand-held
object. I was part of a team that helped teach an
undergraduate class in microcontroller design. Our
advisor, John Maeda, had us create a development
environment from the ground up, which we
called Nylon. A common problem in elementary
hardware design classes is a frustrating bottleneck
in actuation. No matter how interesting or exciting
student designs are, they are limited in their range
of actions: maybe spinning a motor or lighting a
few LEDs. We decided to alleviate this problem by
building for them a palm-size output device that
had significant expressive range. We called the
circuit Hotpants. It was a grid of 10 by 14 red LEDs
each of which could be on, off, or half brightness.
We wrote a display language that a microcontroller
onboard the display interpreted so that students
could send primitive graphics commands to
the displays to do things like draw points, lines,
rectangles, and circles.

Figure 7.3. Stomping ground.

Figure 7.4. The Nylon microcontroller
teaching platform.

Figure 7.5. A proud workshop partici-
pant and his Hotpants.

For the purposes of the class, the device served as
a display. But because of its size and shape, it was
more than a screen. It was a physical entity to be
handled and manipulated. Because each pixel was
visible, it wasn't possible to forget the physicality
of the device and become seduced by the image
surface. The image was always teetering on the
edge of legibility, requiring the viewer to position
themselves in space at just the right distance to
make it properly resolve. That said, some projects
from the class did not deal thoroughly with the
object qualities of the display, and instead tacked
it on as though its operation as a display somehow
excused it of its body.

But the embodiment of the display was of intense
interest to me, and after the class I began to explore
it as an independent object. It had its own processor
and I supposed it could be used to store and play
back small video sequences. I wrote software that
allowed image sequences to be compressed and
burned directly into the display. This use of the
display we called LittleVision. Justin Manor wrote
video software that allowed us to shoot movies with
a webcam and downsample them to the resolution
of the device. We ran several workshops in which
participants filmed tiny movies using their bodies
and large foamcore props. They got surprisingly
good results. The most engaging characteristics
of LittleVision were its size and weight, just large
and heavy enough to feel good in the hand. It was a
morsel of video, an object to which a person could
become attached. Its thingness, its substance in the
world was its most important quality.

Figure 7.6. The Word Toss handhelds 7.5 Pointable Computing
demonstrating pointable computing.
Smoke provided by Justin Manor. (Note: As I began to use LittleVisions, I started to think
breaks in the beam here are where the
smoke is thin. We don't modulate it at about the possibilities and implications of their
the speed of light.) communicating with each other, which led me to an

analysis of the spatial qualities of different modes
of wireless information transfer. It struck me that
as the world moves away from wires and infra-
red communication in favor of radio-frequency
(RF) technologies such as 802.1 and BlueTooth,
we are losing the specificity of address that a
spatially directed connection offers. It is always
possible to tell what a wired device is attached
to-just follow the wire. And infra-red devices like
remotes are aimable within a fairly narrow cone
as is obvious when using a television remote. But
RF communications extend almost spherically
from their source, making directional intention
impossible. We have to resort to selecting the
objects of our intentions from a list of names or
identifiers. My idea was to emphasize directionality
and specificity of spatial communication over
all other qualities, and therefore for my carrier
of communication, I chose a laser beam, the
apotheosis of directionality. I built a system for
communication between devices that operates
much like an infra-red transceiver, but since it
was laser-bound, it was longer-range and totally
pointable. This pointability and the feedback the
aimer got as a red spot on the object of control were
obvious examples of the benefit of maintaining a
spatial relationship with computational objects.

7.6 EyeBox

My last experiment, EyeBox, went further in the
direction of integrating existing physical objects
into computation than any of the previous projects.
I made a simple 3D scanner out of a collection of
inexpensive webcams. I used a technique called
"visual hull" reconstruction, which bounds the
volume of an object based on the intersection of
generalized cones produced from silhouettes of
the object taken at multiple angles around it. The
technique is described more fully below. It is not
capable of reproducing every topography, but it

Figure 7.7. EyeBox is a mini-fridge
turned 3D scanner.

take surprisingly little sensing to produce a very
good representation of many everyday objects.

As interesting as EyeBox was as a 3D scanner,
it was at least as interesting as a model of a new
spatial interaction with a computer. The screen
in EyeBox was mounted on the door of the fridge,
and the system was operated by opening up
the computer and putting an object inside. The
repurposing of the space inside the machine as
an active space, not just a cavity containing the
guts of the machine engaged people's spatial
understanding. It made intuitive sense to them
that they should be able to open the machine and
put things inside. It was a very pleasurable and
complete interaction.

Figure 7.8. The six projects organized along five different axes. They are positioned vertically on the scales of Space/
Object, Physical/Virtual, Feedback/Blind, System/Component, and Visible/Invisible. They are sized in the chart ac-
cording to the amount that the project directly addresses that axis.

Space

Wx

Physical Feedback System Visible

WI

L

y WOI
1?

)

Component

.T11 1

Internaut Stomping Ground LittleVision Pointable Computing

Object Virtual Blind

Legend:

Installation

Invisible

EyeBox

Wa

A

8. Installation

8.1 Introduction
Figure 8.1. Installation allowed users
to create virtual forms and install them
permanently into real space. My first project was Installation, a system for the

creation of virtual forms and their permanent
installation into real space. Installation consisted
of a viewing window and stylus. A tiny camera on
the back of the viewing window showed a live feed
of the room behind the screen. The stylus and the
viewing window were tracked in three dimensional
position and orientation to calibrate virtual
coordinates with real viewing position. Virtual
objects created in the system responded as though
they were physically in the space of the room. Once

objects were placed in the environment, they stayed
there in perpetuity, pulsing and growing over time.

8.2 System Description

Installation was an exploration in what is
traditionally called "augmented reality," to indicate
that rather than trying to replace an experienced
reality with a virtual substitute, we are adding to
an existing reality with virtual constructs. This
certainly qualifies as spatial computing.

Installation presented itself as a cloth-draped
chest-height table with a very light flat-screen
panel resting on it, which had been liberated from
its housing and placed in a translucent plexiglass
frame with handles that allowed it to be held and
moved in two hands. In the panel, users could see
the room behind the screen in a live video feed. This
feed was coming from a tiny camera mounted in
the middle of the back of the screen. The screen did
not quite appear to be transparent, but somehow
it was an obvious leap for users to allow it to stand
in place of their eyes. Also resting on the table was
the end of a long black cord with a half-inch red
cube and a single button at its tip-the stylus. When
users picked up the stylus they noticed a pencil-like
object that appeared onscreen and closely tracked
the stylus in the spatial representation. There
was no difficulty in understanding this mapping;
it was a literal translation of real space to virtual
space, and users spent no time disoriented by it or
adjusting to it.

When users brought the stylus in front of the
screen, a white haze settled over the video feed of
the room as if it had become suddenly foggy. The
fog cleared up if they moved the stylus behind the
screen. The foggy and clear states represented
the two operational states of the system, object

Figure 8.2. The Installation setup in
context.

Figure 8.3. The back of the system
showing the camera.

Figure 8.4. The stylus.

Figure 8.5. Object creation mode. The
form tracks the user's gesture.

Figure 8.6. In object placement mode,
the user can throw the object into the
space of the room.

creation, and object placement. In object creation
mode, with the stylus in front of the window,
when users pressed the button, a blobby substance
appeared to be squirted out from the end of the
pencil-like cursor. If users stopped moving, the
blobby form continued to inflate. If users moved
the stylus quickly, the form was a thin track of the
gesture in space, but if they moved slowly, the blob
inflated in place, making a thicker form. In this
way, users had direct gestural control over virtual
forms created in the system. It was easy to make
pretzel-like knots or letters this way. Installation
was not intended as a drafting tool, but a simple
gestural sketcher for organic blobby forms. Users
could add many separate blobs to a single form by
stopping and starting their drawings.

Once a form had been created, if users moved the
stylus behind the screen, the pencil-cursor was
shown emitting a ray of laser-like red light. This
was object placement mode. The orientation of the
stylus was tracked, so they could point the beam
in any direction they pleased, even back toward
themselves. The object they created in creation
mode appeared attached to the laser beam a few
inches away from the tip of the pointer. Wherever
the user pointed the beam, the object followed.
When they pressed the button on the stylus, the
object shot further down the beam. A grid appeared
which helped to show users how far they had
cast the object into the scene. Otherwise it would
have been very difficult to tell how far away it was
since the object was of purely invented form, and
its relative size held no information. When users
had positioned an object in the space of the room
where they wanted it, they could bring the stylus
back to the front of the screen, and the blob was
left floating in space wherever they had put it. They
could then use the stylus to create other forms to
further populate the space of the room.

When a user picked up the viewing window, the
video feed moved in a predictable way because
the camera moved. The virtual forms represented
onscreen moved in exactly the way they would if
they were truly positioned in space where they were
placed. This allowed the user to move the viewing
window to look at the objects they had made from
any angle, even to cut through them by pushing
the window through space they occupied. Through
the viewscreen, the objects as seen through the
window were fully fledged members of the space
of the room. They floated wherever they had been
put. In order to add some life to the system I gave
the forms the ability to change shape and grow over
time. If they were left too long, they grew out of
control, filling the space of the room.

The system had no representation of the actual
geometry of the room. Therefore the only occlusion
that occurred to the objects came from other objects
in the system. If a user wanted to place an object
a mile away, they could, and at no point would it
disappear behind the far wall of the room. This
detracted somewhat from the completeness of the
illusion. One of the very nice qualities of the system,
however, was that it was entirely self-calibrated.
That meant that it would work just as well in any
space. I did, in fact, show it in a remote location,
and it required no special calibration. That movable
quality could be important to potential applications
of the system, so it would not do to have it interact
with a single pre-constructed 3D model of the scene
in front of the screen. However, gathering real-time
range data and integrating it into the system would
be an interesting future effort.

I added a networked client feature to the system, by
which objects could be "thrown" to other machines
in the room-including the printer. To set up a

Figure 8.7. Moving the viewscreen
around causes the forms to react as
if they were exactly where they were
placed in the room.

Figure 8.8. A client screen (outlined in
blue tape) as seen through the views-
creen.

Figure 8.9. System diagram.

client, I installed the client software, which in
its default mode, simply displayed a blank white
screen. I then entered a special mode on the master
system (the flat panel), in which I placed a sphere
into the room directly surrounding each client. I
taped blue tape around the border of the monitor
of each client, so that a user of the system could
identify them. Whenever a user was in placement
mode, and they threw an object close enough to a
client, it would disappear from the viewing window,
and immediately show up on the client's screen,
rotating slowly in space. I set up the printer as a
client too, and when an object was sent there, it
disappeared from the viewing window and got
printed out. In this way, users actually had the
sense that they were making objects and throwing
them around the room.

8.3 Technical details

Installation was a fairly simple piece of
engineering. It had six primary components, the
PC, the client machines, the sensing system, the
display, the stylus, and the camera. The PC and the
clients were totally ordinary Windows machines.
The PC talked to the client machines over wired
Ethernet. The camera was a small NTSC CMOS
camera that went right to a capture board in the
PC. The display was a flat-panel LCD monitor
with all its housing and shielding removed. Once
such an operation is done, a flat panel monitor
is a very light, wonderful thing (if perhaphs
not 100% FCC compliant). It had a laser-cut
plexiglass frame surrounding it that had handles
for its manipulation. This frame went through
two iterations, making it smaller and lighter.
The single button on the stylus, and the several
control buttons on the back of the display were
implemented as stolen key switches from a hacked-

up keyboard-probably the easiest way to get a
bunch of momentary switches into a PC.

Sensing System
The sensing system was a "Flock of Birds" from
Ascension Technologies, an off-the-shelf inductive
position and orientation sensing system. This
system itself consisted of three separate types of
unit-the signal-processing boxes, which talked
to the PC via a serial connection, the base station,
and the sensing coils. The base station was placed
out of sight under the blue cloth. It was about as
large and heavy as a brick. It emitted a magnetic
field along three axes that reversed itself at a
certain frequency. The two sensing coils, one for the
display, and one for the stylus were just coils of wire
wrapped in three different axes. By sensing the flux
caused by the field in each of the three directions
for each of the three axes of magnetic field, the
signal processing box is able to reconstruct the
location and orientation of the sensor.

Software
All of the software was written in C++ using
OpenGL for graphics. Software development fell
into three categories. The first software layer
processed and integrated data from the sensors,
buttons and camera. The second layer acted to
calibrate the virtual space to the real space to
establish an appropriate projection for the viewing
window. The third layer was for creating the forms
themselves. I developed a method using spheres
connected with Catmull-Rom splines, which
provided a fast way to model and render complex
organic-looking forms.

8.4 Precedents

ARToolkit
Installation shares features with many augmented
reality systems. Some, like AR Toolkit [Billinghurst,

Figure 8.1o. Flock of Birds diagram.

Figure 8.11. The blobby forms were
spherical nodes connected with Catmull-
Rom splines.

Figure 8.12. The ARToolkit is used to
composite a virtual plane into a video
image. [http://www.equator.ecs.soton.a
c.uk/projects/arproject/fokker-ar.jpg]

Figure 8.13. Rekimoto's "Magnifying
Glass" approach uses a handheld screen
to superimpose information. [Rekimoto,
1995] [http://www.csl.sony.co.jp/
person/rekimoto/navi.html]

Figure 8.14. The Diorama system
[Karahalios, 1998]

Figure 8.15. The MARS project at Co-
lumbia University implements a mobile
augmented reality overlay system. [http:
//www1.cs.columbia.edu/graphics/
projects/mars/]

2002], are purely vision-based. They spot known
patterns in the world which a user prints out ahead
of time. They infer the location and orientation
of the pattern by vision algorithms, and then
composite previously-defined objects into the scene
at the same point. These systems typically act to
annotate prepared scenes with prepared overlays.
They do not easily allow for creation of new forms
or positioning them in arbitrary places in space.

Overlay systems
Many augmented reality systems are used to
display information about the world directly onto
it as a kind of floating wall text [Karahalios, 1998],
[Feiner, 1997], [Rekimoto, 1995]. Like Installation,
these systems calibrate virtual coordinates to real
spaces, but they are quite different in their focus
and intent. Augmented reality systems call upon
the virtual to annotate the real. Iconic tags or
symbols appear overlaid onto scenes to indicate
for instance, if there is mail in your mailbox. There
is little attention to the forms or space in the
virtual, or their interactions with the real, and as a
consequence the virtual layer is entirely dominated
by the real, appearing as little more than an
intelligent heads-up display.

By contrast, Installation places more attention on
the virtual than the real. If there is a subordinate
world in Installation, it is the real world, which
appears as a reactive underlay for a richer
virtual environment. Perhaps Installation is less
augmented reality than augmented virtuality.

"Eye in hand" systems
George Fitzmaurice seems to have been among
the first to describe and develop systems with
handheld screens tracked in space. He called
these "eye in hand" systems [Fitzmaurice, 1993].
(Interestingly, he used the very same tracking

device I did ten years earlier. It is shocking how
little the field of 3D tracking has progressed.) It is
surprising, considering that- they do in fact map the
eye to the hand, how intuitive the "eye-in-hand"
model is. This is seen to be a primary advantage
of the technique [Tsang, 2002]. Since 1993, there
have been several notable systems for augmented
reality using handheld screens. One, the Virtual
Car, by Art + Com, used an overhead armature to
track the viewpoint of a screen used to display a
highly detailed model of a virtual Mercedes [Art +
Com, 1997]. The Boom Chameleon, a similarly car-
oriented device also uses a hinged rig to track the
screen [Tsang, 2002]. This device traces its lineage
directly back to Fitzmaurice's original concept.

There even appears to be a related product on the
market, WindowsVR from Absolut Technologies
in Brazil. Surprisingly, few of the other 3D eye-in-
hand systems uses a live camera feed. An exception
is a system from NTT, which uses the ARToolkit for
vision-based registration [Matsuoka, 2002]. The
video feed was one of the most important features
of Installation, and the easiest to implement. It
is possible that they eschewed it out concern that
reference to the real world would make small errors
in calibration noticeable. My research indicates that
people are tolerant, even ignorant, of a great deal of
misregistration as long as it is of the right kind.

This list of precedents, most of which I was
shamefully unaware of as I produced Installation,
indicates that this work has a rich history and also
an active present.

8.5 Evaluation and Critique

Installation removed the layer of spatial metaphor
inherent in most graphical computing by dealing
directly in the space of a room. An object created
two feet in front of the user was two feet in front of

Figure 8.16. A rendering of Art +
Com's Virtual Car system. [Art + Com,
1997]

Figure 8.17. The Boom Chameleon.
[Tsang, 2002]

Figure 8.18. The WindowsVR rig has
joysticks to register translation. [Abso-
lut, 2002]

the user. They were free to step around it to operate
on it from the side. This kind of readjustment
of viewing and working angle is exactly the kind
of maneuver that we do continuously without
ever thinking about it in the real world, but
which we must master some interface to achieve
in computational design. As Tsang points out,
manipulation of viewpoint in "eye-in-hand" systems
requires essentially no new learning. Furthermore,
in traditional three-dimensional modeling,
operations that change the position of objects
viewed through the screen, implicitly change our
physical position relative to the scene. But since we
know that we have not moved, we must imagine
that the entire virtual world displayed in front
of us has reoriented without the slightest hint of
inertia or other true physical effect. It makes the
interaction feel cheap and unreal, and separates us
from our work.

This problem with the traditional computational
representation of space became obvious on
watching people interact with Installation. They
experienced delight that the objects they created
behaved the way their intuition demanded they
should. There was an immediacy to the interaction,
which people had ceased to expect from machines.
It is ironic, perhaps sad, that the operations
that seemed magical to users of Installation are
the most mundane features of our real physical
lives. That lifting a viewing window and looking
at a scene from a different angle was cause for
wonderment, bespeaks the distressing inadequacy
of typical human-machine interaction.

In the corner opposite augmented reality,
privileging the virtual to the complete exclusion
of the real are immersive virtual environments.

Figure 8.19. An immersive CAVE What Installation called into question about these
simulation. Is this more convincing? systems is whether it is necessary to jettison all
[http://resumbrae.com/info/mcno-
session3/]

of the richness and intricacy of the real world to
create a convincing virtual experience. The ease
with which Installation aroused a response from
its users indicated that there is a sumptuous
experiential quality to be gained by embedding a
virtual world within a real one.

Forgiveness and relativity
Some human qualities that proved quite consistent
over the course of my projects first became
apparent with Installation. First, it was reassuring
to discover how forgiving of certain discrepancies
the human sensory system is. This might be
expected given the tremendous extent to which our
notions of a consistent reality are constructed from
fragmentary sensory evidence and expectation. But
it was a surprise to me. The linear algebra I was
doing to reconstruct the scene as users moved the
viewing window was only so good. It corresponded
very roughly with what an actual window would
see. Yet the illusion was fairly convincing. That
had a lot to do with relativity of sensing. We have
almost no absolute references for sensing anything.
We gauge things entirely relatively to what else
we are experiencing at the moment. This can be
demonstrated in countless ways. There are color
experiments that show that we perceive color values
almost exclusively by value relative to the visual
field surrounding a point. This is well-known to
any photographer or videographer who has to take
white-balance into account. We cannot perceive
small global shifts in color temperature unless they
happen quickly enough that we can compare them
to a fresh memory.

I was fortunate also not to be overlaying virtual
objects onto real objects, in which Ronald Azuma
states discrepancies of 1/60th of a degree may be
noticeable. Instead there was a strong separation Figure 8.20. Three paintings of Salis-

between the physical and the real objects, and I bury Cathedral by John Constable. They
all use a different color palate to render
the scene, but they are all convincing.

Figure 8.21. A translation takes the
gesture from in front to directly behind
the screen.

did not endeavor to tie them tightly to each other.
Azuma in his survey of existing augmented reality
applications notes that these discrepancies are
severely limiting for certain applications like
medical imaging [Azuma, 1997].

Feedback
The believability of spatial connectedness was
quite strong. Although the screen did not behave
exactly as it would physically, it was impossible to
say exactly how it was off, and it hardly seemed to
matter since the misalignments were predictable,
consistent, and could be counteracted by physical
feedback. Azuma refers to a phenomenon called
visual capture, in which any contradictory sensory
information tends to be overridden by the visual.
This effect was certainly noticeable in Installation.
Although the physical movement of the screen
may not have exactly matched the screen's
representation, the visual took precedence, and the
discrepancy went mostly unnoticed.

The importance of feedback can hardly be
overstated. As Norbert Weiner wrote, many
control problems disappear in the presence of a
human operator with sufficient feedback [Weiner,
1948]. For instance, how hard should one push
a door to open it? The answer is "hard enough."
We don't know how hard we are going to have
to push a door, so we adjust our own exertion
based on instantaneous feedback we feel about
whether the door is yielding. Everything is relative
to momentary circumstance and experience. The
feedback loops inherent in Installation were very
tight. The control of the 3D cursor onscreen by
means of the stylus was one instance. The cursor
was easy to control because it followed the hand
directly and it provided onscreen visual feedback
immediately. In fact, in object creation mode, there
was an inherent spatial translation in effect that

took the gesture being made from in front of the
screen to behind it. Almost no user of the system
even noticed it. An absolute translation became
unnoticeable in the face of tight feedback and good
relative correlation.

How little it takes
Another observation that became apparent
accidentally during the operation of the system
(when the camera stopped working) was how
much I was getting from how little. All the camera
provided was a live video feed of the room to be
plastered behind the virtual objects. It was not
calibrated or manipulated in any fashion. But
the moment it was removed, the system became
entirely flat. Even though users could still use the
screen to view the virtual forms from different
angles, the primary experience of their existing
in the room was utterly gone. It was a shock, and
worth remembering how powerful a simple live
image can be to create context.

Difficulty of depth
The challenge of conveying depth on a two-
dimensional medium is ancient. Installation
added to that discussion the capability to move
the display surface through the scene. But many
of the traditional problems of conveying depth
remained. J. J. Gibson identified 13 different cues
we use to perceive depth [Gibson, 1979]. Not very
many of them made it intact into Installation.
Stereo vision, a favorite of many augmented-reality
implementations, was gone. In the absence of any
physical referent for the shapes, it was impossible
to use their relative size in the scene as a depth
cue. Almost the only things remaining to use
for depth-cueing were occlusion (of the objects
with themselves only), surface shading (but no
shadows), and relative speed of movement in the
visual field. It was this last that proved the most

Figure 8.22. Without the background,
blobs are just blobs.

Figure 8.23. Georges Braque's Fruit-
dish uses many perceptual cues to give a
rich illusion of depth without relying on
linear perspective.

Figure 8.24. These letters were legible
from the front. I wonder what they said.

useful, and the illusion of depth was best when
there were multiple objects in the scene at different
depths and the user was actively moving the
viewing window.

It was interesting also to note how difficult it
was for users to draw in an unconstrained 3D
environment. They were used to having the
structure of a flat surface to press against when
making an image. It was difficult for them to
control the depth of their drawing. Often if they
were drawing letters, for instance, they would be
using as feedback only the single 3D view that the
stationary viewscreen gave them. So they would
close their shapes only to the point of visible closure
in a single 2D projection. When they then moved
the screen, they would see that their letters went
way out of plane and did not topologically close
at all. Most letters people drew were not legible
from angles different from the viewing angle at
which they were drawn. To the extent that this
was a failure of the system to translate the spatial
intention of the user, I think it should be addressed.
What it represents is a failure of feedback. With
enough spatial information, users could certainly
close their forms. What it would require is a system
that allowed for users to change their viewpoint
easily as they drew so they could actively perceive
their forms. This would probably best be attached
to the eye so that head movement could be used in
its natural way to disambiguate 3D projection.

Simplicity
One of Installation's best innovations was a lack of
any visible onscreen interface elements except for
a cursor. This helped the system to disappear. In
particular there were no graphical elements that
called attention to the plane of the viewscreen as
anything other than a window onto a 3D space. Any
buttons, sliders, or text would have set up a virtual

plane that would have been impossible to ignore.
It would have distracted from the sense of pure
transparency that Installation aspired to. Mappings
were clear and reactive enough that the systems
driving them could be forgotten.

The throwing of objects to client screens was a good
example. When a user sent an object to a client,
the information to reconstitute the blob on the
client screen actually travelled over an Ethernet
network. It may have taken a trip to another floor
of the building and then back before appearing on
the client, but it was invisible and irrelevant to the
interaction. As far as experience was concerned,
the object flew through the air and landed on that
screen.

The importance of this transparency was made
obvious by its unfortunate lack in one case. One
client, the printer, sat in exactly the wrong place
to be aimed at by the system (way in front of the
screen, behind the user). Therefore rather than have
people throw their objects to the physical printer,
I printed out a piece of paper with a picture of a
printer on it and taped it to the wall in front of the
system as a physical icon for the printer. When
people threw their objects to this icon, they printed
out on the printer behind them. This separation
of the icon from the actual device shattered the
illusion of the object's spatial travel, and it exposed
the network plumbing underneath it all. Anywhere
that metaphor becomes visible, it exposes its
separation from the reality for which it stands.
It became an important design criterion to avoid
metaphor and apparent interface wherever possible.

8.6 Future Work

A Platform for collaboration Figure 8.25. Giving forms a shared

The ideas explored in Installation become spatial context allows them to be the

particularly powerful when we imagine several objects of collaborative effort.

Figure 8.26. Microsoft Bob suggested
the home as a metaphor for informa-
tion organization. But it took place in a
fictional iconic space.

Figure 8.27. [Dourish, 2000] studied
storage and retrieval from a spatial
model like this. It doesn't have much to
say about our experience of real space.

Figure 8.28. Web Forager from Xerox
Parc organized web data in a virtual
library [Card, 1996].

windows at once looking onto the same evolving
environment. Then it becomes a model for
luxurious collaborative computation. This model
is applicable to any kind of communal form-
making, whether it's physical form or abstract
information, meaning the ideas could equally
find use in architectural design or large-systems
engineering. The fundamental idea is that once
a work object is placed into space it has a shared
context for simultaneous manipulation. This
facility is demonstrated by Tsang's system, which
he explicitly proposed as a prototype for the
collaborative 3D design markup and critique
[Tsang, 2002].

Storage and retrieval
It is easy to imagine the ideas in Installation being
used for storage and retrieval of information. What
could be more natural than to look for something
you placed in a physical location? A hierarchy of
folders offers very little to the eye to act as retrieval
cues. Under most conditions, we cannot even be
sure that the position of an item will be constant
on our screen. We spend time and energy orienting
ourselves to the ad-hoc spaces that the machine
tosses at us as fast as we can handle them. Instead
why not let the machine orient itself to our own
naturally inhabited space?

There have been attempts to apply a physical
metaphor to information storage, but few of them
have used a real space as the containing envelope.
Most of the spaces have tended to be iconic or pure
raw regions of linear perspective. I believe neither
one has the potential for association that a well
correlated real space has.

Installation explores the mixing of real and virtual
spaces, and in so doing, begins to fulfill the promise
of models for computation that respond to our basic
human facilities and intuitions.

9. Internaut

9.1 Introduction Figure 9.1. A web space made into a
virtual space by Internaut. A map of the
area is shown in the upper right.

After Installation, I turned to a slightly more
abstract spatial problem. I wrote Internaut, a
system for mapping Internet structures into three-
dimensional virtual environments and exploring
them in a first-person game engine. As such, it did
not meet the requirements for spatial computing
as outlined above, but was, in fact, a project whose
deficiencies were instrumental to my construction
of that definition. The analysis of its flaws led
directly to my understanding of the importance
of spatial computing as opposed to purely virtual
environments.

9.2 Technical Description

Figure 9.2. A map begins from a web
pages and trolls the links on that page.

Figure 9.3. A map grows. The root
node is shown in red.

Figure 9.4. In this detail we see that
the page "cover" links at least to pages
"demo," "intro," and "ideas." These
are connected by springs (black lines),
which will punch doorways in the walls
of the rooms (blue lines).

The Internet constitutes an enormous electronic
architecture that defines places without regard to
physical structure. We navigate these spaces with
web browsers, moving from place to place with a
click on a link. Internaut proposed that a physical
architecture could be derived from the shape of the
network and navigated with a first-person 3D game
engine. This was a several-step process, which
involved first making spatialized maps from web
sites and then processing them into a form in which
they could be virtually explored.

The maps were generated starting from a given
seed web page by a fairly simple procedure that
guaranteed several criteria in the three-dimensional
map that I deemed important for them to be
meaningful. First, every page from the same site
as the seed that was accessible by any path of links
should be represented. Second, any two pages that
linked together should be immediately accessible
to each other. There are numerous ways to design a
process to do this, but the one I implemented relied
on a simple physics simulation running in Java.

The first page was represented by a node in a 2D
graph with a point location. All links on this page
to pages at the same site were traversed in order,
and these sites were added to the graph as nodes
with springs connected to the root node. These
simple simulated springs pulled nodes together
with a force proportional to their length plus a
constant factor for their rest length. It should be
no surprise, that these new nodes, which were
added to the graph at random locations settled
into a ring around the root site. A user was allowed
to click and pull on any node in the graph at any
time. All springs stretched to accommodate such
manipulation, and snapped back into a relaxed

FOR

configuration when released. Each new page was
then processed in the same way as the root node
in the order in which it was added. The resulting
network of nodes connected with springs was
a stretchy gyrating mass that was constantly
attempting to relax into the lowest energy state
consistent with its topology of connections.

The nodes were then separated from each other
with walls that were the divisions of a Voronoi
diagram. A Voronoi diagram associates each node
with the area surrounding it that is closer to it than
to any other node. This is always a lattice of convex
polygons surrounding each node, guaranteeing
that each node gets some share of physical space.
The springs connecting the nodes intersected these
Voronoi-generated walls at many points. Anywhere
they intersected, a doorway was drilled in the
wall, insuring that any link became a navigable
path from one cell to another. This structure
successfully located pages in a 2D map close to
pages to which they were linked. Obviously there
are linking conditions possible in web sites that are
not possible to represent in a 2D map with strict
adjacency, but the method guarantees that these
will be pulled together more strongly the further
they are separated, so it does a good job of creating
spatial representations of web structures.

The next task was to go from a map in this Java
application to a map usable in a 3D game engine.
I chose a modified form of the Quake II engine
from ID Software because it is now a mature
open source project. I generated a map file for
this engine with the largest image on any page
tiled onto its walls as repeating wallpaper. This
surface image was the only distinguishing feature
of any room. I undertook extensive changes to the
engine to demilitarize it, removing the guns and
gangs of monsters bent on killing the explorer, and

Figure 9-5. The map is then processed
in a Quake map editor.

Figure 9.6. 1 then had to demilitarize
the game.

Figure 9.7. After removing the gun and
adding a mapping feature.

Figure 9.8. Soap bubbles make
voronoi patterns [Boys, 1959]. Refer-
enced from [www.snibbe.com/scott/
bf/bubbles.htm].

adding a mapping feature which displayed a map
of the entire site onscreen at all times. I retained
the engine's capability to run in a networked
mode in which multiple players could explore
environment together, seeing each other, and even
communicating via typed messages.

I showed the project repeatedly, letting users select
the starting web site and then allowing them to
navigate the resulting three-dimensional map. As
I watched them try to orient themselves to this
remapping of Internet space, I became aware of
several things that would inform my subsequent
work.

9.3 Precedents

Figure 9.9. Scott Snibbe's Boundary
Functions [http://www.snibbe.com/
scott/bf/]

Figure 9.10. Jared Schiffman's honey.
[Shiffman, 2000]

For the self-organizing map component of the
project, I had many good precedents. This sort
of problem has interested scientific and artistic
communities for a long time. Voronoi diagrams
have broad application to many problems in
analytic geometry and self-organizing systems. For
instance they can be used to position nodes in self-
organizing neural networks [Suanders, 2001]. And
they arise naturally in many situations in which
surface energies are being minimized as in soap
bubbles. They appeal to computational artists and
designers for their organic appearance and ease
of production. Jared Shiffman used them for their
organic visual quality in Honey, an exercise in
cellular form [Shiffman, 2000]. Scott Snibbe used
them for their partitioning ability in Boundary
Functions, in which participants stepping on a
platform are automatically separated from each
other by boundaries projected from above [Snibbe,
1998].

Simulated springs are even more commonly used
in computational design. They lend movements a

squishy, organic feel. Benjamin Fry used springs
to organize web spaces in Anemone, which tracks
web traffic as a continually evolving network of
nodes representing web pages [Fry, 2000]. Judith

Donath has used springs to create a self-organizing
visualization of human social networks [Donath,

1995].

Ideas of organic form and self-organization have
become popular in theoretical architecture in recent
years. Greg Lynn uses such forms as "blobjects" in
his designs.

Mappings of non-spatial networks into virtual
spaces are not new either. In 1996 Apple briefly
promoted a 3D flythrough technology called
Hotsauce for web page meta-information [Apple,
1996]. AT&T Research produced a system called
CoSpace, which used an additional layer of VRML
on top of existing web pages to represent web
spaces [Selfridge, 1999].

Other networked virtual environments were
designed spatially from the beginning. Certainly
networked first-person shooter games like Quake
III Arena have been successful. It is easy to convene
teenage boys in a virtual space with the lure of their
being able to shoot each other with impunity. We
are currently experiencing a small explosion of
nonviolent networked virtual environments that
are not meant to represent existing web spaces,
but to establish parallel virtual Internet spaces that
are constructed and inhabited by a broad public.
Examples include the Sims Online [Electronic Arts,
2003], Second Life [Linden Labs, 2003], and There

[There, 2003]. Several systems like these already

exist, but do not find wide use.

A strange feature of the places that users construct
in these virtual environments is that they mimic

Figure 9.11. Ben Fry's Anemone [Fry,
2000].

Figure 9.12. A study model of Greg
Lynn's.

Figure 9.13. Apple's Hotsauce meta-
content 3D web flythrough plug-in.
[Apple, 1996]

Figure 9.14. CoSpace, a 3D web
browsing system from AT&T research.
[Selfridge, 1999]

Figure 9.15. The Sims Online. [Elec-
tronic Arts, 2003]

structures in the real world. They put "roofs" on
their "houses," for instance. Why? There isn't
any rain, or in fact weather of any kind to defend
against. And enclosure represents no protection
from outsiders. It must be a desire for familiarity
that drives people to make designs that take
no advantage of the liberation that they might
experience in these worlds without physical
limitation.

9.4 Evaluation and Critique

Users found wandering around the spaces
generated by Internaut engaging, but also found
them confusing and difficult to navigate. Even with
the help of a map, they had difficulty finding their
way around or remembering where they had been.
I think there were several probable contributing
factors.

First there was the elimination of all text. I expect
people would have difficulty navigating any web
sites that had all the text removed and left only a
single image to denote each page. Links would no
longer describe their destinations in words, but be
tiny thumbnail images of the image on the page
they linked to. Navigating spaces like this would, I
expect be somewhat bewildering too.

But even in the absence of text, there was a
difficulty in navigating the structure due to its
unfamiliar and inhospitable physical structure.
There is a reason that we do not construct
our building plans as Voronoi diagrams. The
spaces that these generate tend toward spatially
undifferentiated rotundas of doorways that make it
impossible to identify a dominant spatial axis. Even
when there is one, it is not shared by any adjacent
cells. Under such conditions, it is often impossible

even to identify the portal through which one
entered a space.

We are careful in architectural plans to define
circulation space. We do not expect rooms to
function both as destinations and corridors for
movement at once. The Voronoi plans make no
such circulation. There are no clear means of
passage between spaces that do not directly abut.
To get from one end of the space to the other it
is necessary to turn at every room, potentially
even away from the final destination. There is no
organizing logic that makes the space serve an
intention other than aimless wandering.

Use of an organizing geometry other than
Voronoi could potentially help this. There are
experiments in grammatical architectures that
could help point the way to saner structures
[Brown, 1997]. That is one possibility for future
research. These geometries might allow for the
use of more information from the web sites
than simple topology. It should be possible, for
instance, to identify the primary entrances to the
web site. These should represent entrances to the
virtual space as well. (In the existing geometry
they are most likely to be buried at the center and
surrounded by a ring of ancillary pages.) It is likely
that some links from a page are more dominant
than others-larger text or higher on the page.
These should be represented by larger openings or
grander access.

Another possibility is that part of what makes
the Internet successful is that it is fundamentally
non-spatial. Certain conditions of spatiality do not
apply to it. For instance there is no such thing as a
one-way connection in space. There are doors that
lock from one side, but adjacency is commutative.
Not so in a non-spatial network. One page may

Figure 9.16. Internaut tended to offer
the user a bewildering array of self-simi-
lar doorways.

0

Figure 9.17. Rule-based design from
Gero [4.290 Production Systems, Fall
2002].

link to another that has no idea of the existence of
the referrer. This network of one-way streets has
the tendency to channel users toward sites that are
commonly linked to [Barabisi, 2002; 57]. These
have a higher chance of being useful than the sites
that are seldom referenced. There is also a trail of
bread crumbs that web-surfing leaves that a user
can always use to backtrack via the "Back" button.
No such facility exists in real space, although it
could be simulated by having movement leave a
trace in a virtual environment.

The most damning concern may be that the
fundamental property of Internet space is the
collapse of distance. Distances are measured in
the number of clicks the path takes, and a long one
may be three. This implosion of space is necessary
to what makes the Internet a useful complement
to the real world. An advantage of shopping online
is that every store is equidistant at a distance of
one click, or the typing of its address. In order
to spatialize this condition, it would require a
bewildering portal-a spherical mall with thousands
of openings that would be a thrilling sight, but
hardly useful. It must not be necessary to cross any
space to have access to another. Once the intended
destination is identified, the need to "walk" there
only represents wasted time. Access must be as fast
as the delivery of information will allow. So perhaps
the idea of a spatial Internet is fundamentally
flawed. Cyberspace as Jean Baudrillard puts it is

Where all trips have already taken place; where the
vaguest desire for dispersion, evasion and movement are
concentrated in a fixed point, in an immobility that has
ceased to be one of non-movement and has become that
of a potential ubiquity, of an absolute mobility, which
voids its own space by crossing it ceaselessly and without
effort [Baudrillard, 1988, p. 32] .

In a study of the necessity of legibility for virtual

spaces, Ruth Dalton concluded that global

intelligibility is not important in systems such
as the web where that structure is not used for
navigation. Web space developed without any need
for an intelligible global structure, and to try to
impose one is likely a fool's errand.

9.5 Future Work

Lots of the issues raised in the first part of my
critique could be addressed with sufficient
further work. We could try to generate rule-based
architectures that are more legible and easier to
navigate. While I think the program of virtual
representation of Internet structures has something
to teach us, particularly in using visualization to
uncover topologies and flows of the network, I do
not think its spatialization for browsing purposes is
generally useful.

People suggest that it would be a good shopping
interface, in which a user could walk around and
see merchandise disposed around a space while
talking to others virtually browsing with them.
That is a possibility, and I think it would initially
be exciting to some, but I don't think its long-term
effectiveness would be any greater than nicely
displaying merchandise on a web page. The Sims
Online may well succeed, but I believe that that
will have more to do with its nature as a game than
as a networked space. Remember that the non-
online version of the Sims was wildly popular too. I
have come to believe that there is more interesting
territory to explore in the realm of spatial
computing, in which the spaces involved are real
spaces that the user already has attachment to and
experience with.

10. Stomping Ground

Figure 10.1. A kid engrossed in Stomp-
ing Ground.

Figure 10.2. Rewiring the carpet with
piezoelectric wires. [Photo by Stephanie
Hunt].

10.1 Introduction

Stomping Ground is a permanent installation at the
MIT Museum consisting of a musical carpet and a
projection of live video with superimposed blobs. It
is a collaboration between Joe Paradiso director of
the Responsive Environments group at the Media
Lab, who made the carpet and the radars, Kai-yuh
Hsiao of the Cognitive Machines group, who wrote
the music, and myself, who designed the space and
programmed the visual interaction.

10.2 System Description

The carpet tracks the location and intensity of
footfalls with a grid of sensors. Doppler radars
mounted on the sides of the projection wall track
the overall direction and intensity of upper-body
motion. This information is used to create a
musical composition that has two modes: one has
a richly layered ambient sound, and the other is

aggressively percussive. The same data is fed to the
graphics system, which produces blobs that grow
upwards from the locations of footsteps. The blobs
are superimposed on a live video image showing the
legs and feet of people on the carpet (whole bodies
of very small people). The video and the forms in
it are warped by a virtual fluid simulation, which is
stirred by stomping and upper-body activity.

10.3 Precedents
Figure 10.3. K(ids exploring the carpet.

Prior to my involvement, the carpet had been
exhibited as part of exhibits on musical instruments
and hosted dance performances. As should be the
case in the extension any good work, the past work
served as my foremost precedent. I studied footage
of these events, the sound and code of the music-
making, and the technology behind the operation of
the carpet [Paradiso, 1997].

One of the music's modes has a watery background
sounds, which led me to give the graphics an
undersea feel. I used an intuitive 2D fluid-flow
model by Jeffrey Ventrella to warp the projection
based on flow induced by "forces" from the radars mode fromeee 1997a u low

[Ventrella, 1997]. the video image.

The blobby forms I adapted from Installation,
connecting their nodes with springs, and subjecting
them to reverse gravity, which pulls them up from
the base of the display and out of the picture.

10.4 Evaluation and Critique

It was an interesting challenge to come into a
project that already had such a thorough life
independent of visualization. I wanted both to fit
into the framework as it existed-the expressive
qualities of the music, the two modes-but I wanted
also to make my portion of the project my own. I

wanted the visual component in the end not to be
separable from the whole experience.

Invisibility

Stomping Ground represents an intermediate
step in the integration of physical and virtual
environments. The real space of the carpet is
represented on the screen while virtual artifacts
swirl around on top. It is an augmented and
distorted mirroring. Unlike the direct and obvious
form-making control users have with Installation,
in Stomping Ground, the link between behavior
and form produced is less obvious. More was being
decided by the system, making the system itself
more present as an agent. As much as it was a goal
of Installation's to make the system invisible, it was
a goal of the Stomping Ground's to become a focus
of attention. It was the exhibit as much as the forms
and sounds made by it were. In that way it blurred
the line between instrument and artwork.

11. Hotpants/LittleVision

11.1 Introduction Figure 11.1. A bunch of LittleVisions
running tiny movies.

Hotpants was a handheld display device originally
designed for use with the NYLON microcontroller
system [nylon.media.mit.edu], which we
produced to teach basic microcontroller design to
undergraduates. Then as I became interested in
the display's potential for autonomous operation, I
untethered it from NYLON, renamed it LittleVision,
and began to use it as a standalone device for the
recording and showing of short video segments.

11.2 System Description

Hotpants/LittleVision consists of a very simple
circuit which uses a PIC microcontroller to
drive four shift registers and two current source

chips, which in turn drive a matrix of 10 X 14 red
LEDs. These LEDs can be set to display at full
brightness, half, or off. The board exposes a set of
programming pins, which are used to connect the
board to a PC for downloading of new movies. The
board stores about 300 frames, depending on how
well they compress, and plays them back at 12 per
second, for a total of 25 seconds of video. After
this period (or shorter if the movie contains fewer
frames), the movie loops. I have recently developed
a second board, a camera board, which can be used

Figure 11.2. The Hotpants circuit lay- to record movies directly to the LittleVision without
out. For a usable version, see Appendix the use of a PC.
C.

The circuit and its components are quite
inexpensive, and were designed with that criterion
in mind. There are much nicer display elements
available than these red LED arrays, but they are
all more costly. We have run several workshops in
which participants film movies of themselves or
other props and then burn them to the devices and
take them home. In one two-day workshop, we had
participants build their boards the first day and
make movies the second day.

Figure 11.3. A standalone camera 11.3 Technical Details
board turns LittleVision into a self-con-
tained tiny video camera.

Hardware
The whole circuit was controlled by a PIC 16F876
microcontroller running at 20 MHz. It had 22
usable I/O pins. We were using it to drive four 5 X
7 LED arrays. The LED elements in the arrays were
referenced by row and column, so we did not have
simultaneous unique access to each one. Basically
what we had to do was turn on one column at a
time and light each row that needed lighting in
that column. Then we quickly switched to the
next column, and so on. That meant that each
column was only lit for a fraction of its possible
time. This was sad, as it cut down on brightness,
but unavoidable. We did, however, play one nice

Front
shift registers

current sources

PIC

oscillator

- LED arrays

trick, which was to treat the four arrays as two tall
columns rather than one large array. That way we
could control each LED while keeping the columns
lit 1/5 of the time rather than 1/10, effectively
doubling the brightness. (This may make more
sense on inspection of the PIC code that drives it.
[Appendix C])

Unfortunately, that meant that we had to control
two columns of 14 LEDs independently. With 10
columns and 28 effective rows, we were saddled
with a burden of 38 outputs, which the PIC couldn't
provide by itself, so we used shift registers. Shift
registers turn serial outputs parallel by piping
clocked values to their output pins on a specific
signal. We hooked up 4 shift registers in series, and
ended up with 32 extra outputs controlled by 3 pins
on the PIC (data, clock, and output enable).

Finally we had a potential problem with constant
brightness. We wanted all of the LEDs to be
equally bright, but the PIC had a limited ability to
sink or source current, which meant that when it
was lighting 14 LEDs at once, they would be too
dim, and when it was lighting one, it would be too
bright. So we ran the PIC column outputs through a
Darlington current source chip to give it muscle. On
four AA batteries, the circuit ran with intermittent
use for about six months.

Figure 11.4. Annotated images of the
circuit innards.

Back

Software
There were several different incarnations of
software for Hotpants because it was used in a
number of different contexts. All of the software for
Hotpants had two components, one on a PC and
one on the board. A system by Megan Galbraith
allowed a user to write programs in the Nylon
language and send them to Hotpants. I wrote the
setup that lets a user take movies with a webcam
and send them to the board. The software on the
PC side and the firmware on the PIC is different for
each application. We burned a bootloader onto the
PIC ahead of time to make it easier to download
different programs to the board to change its
functionality.

The basic operation of the firmware on the PIC was
to change the values in the display buffer over time.
That became an animation. The actual refresh of
the screen column by column was done by timed
interrupt, so it remained consistent no matter what
else was going on on the PIC.

We got three pixel levels (ON, HALF-ON, OFF) by
using two alternated screen buffers. A pixel that

Figure 11.5 Justin filming a tiny was half brightness was on in one buffer and off in
the other. That way it got half duty cycle. (Actually
it only got 1/3 duty cycle because we displayed
the second buffer two times out of three. That was
because it made the contrast between all-on and
half-on better.)

11.4 Precedents

Precedents for Hotpants are somewhat hard to
find. It seems that existing technologies are always
either more or less than Hotpants. Handheld
displays that do more than Hotpants/LittleVision
are everywhere. These are on PDAs and the backs
of digital cameras. There are beginning to be backlit

LCD picture frames sold, which are somewhat
similar in spirit to Hotpants, but deliver more
image fidelity than object-relationship. Products
less than Hotpants are the LED array components
themselves, which come in a huge variety of sizes
and configurations but have no built-in control
circuitry to drive them.

Pixilated LED displays are everywhere as banners,
and even architectural surfaces. People are starting
to have video displays as small as watches. But
all of these try for an imagistic resolution. An
exception is Jim Campbell, an artist whose work
with LED arrays explores pixilation, motion, blur,
and form. His pieces led me to realize that putting
a blurring filter over a highly pixilated display
makes the image easier to decipher. His pieces also
demonstrate how much recognition we get from
motion.

11.5 Evaluation and Critique

Hotpants/LittleVision brought my attention to the
realm of the handheld object, a scale which allows
users to form totally different kinds of attachments
than room-sized environments. LittleVision
essentially compressed room-scale activity and
placed it in the hand as a small electronic brick with
a pleasant heft. Participants had a connection with
the scenes they were filming, and then immediately
thereafter held them in their palms. It was a very
different experience than it would have been to see
them on a television screen, or even on the LCD
panel of a handheld video camera. This difference
had a lot to do with a level of abstraction that the
limited resolution enforced.

10 X 14 is not very many picture elements. Complex
scenes are not recognizable. This forced an act
of imagination onto the experience of viewing
a LittleVision that, like the cartoon rendering

Figure 11.6. A digital picture frame
from Ceiva. [http://www.ceiva.com/]

Figure 11.7. The Nasdaq exchange in
New York has a full color LED wall.

Figure 11.8. From Motion and Rest
#5, Jim Campbell, 2002. [http://
www.jimcampbell.tv/]

Figure 11.9. Can you tell what this
movie is about? (Hint: It swims in the
ocean and has big sharp teeth.)

discussed above, removed the distracting quality of
near-perfection. The viewer could slip in and out
of seeing figure, ground, or even individual pixels.
This slippage was also tied tightly to the distance
at which the object was viewed, which made people
experiment with it, bringing it close to their faces or
holding it as far away as possible. As in Campbell's
work, scenes that were impossible to understand
would sometimes snap into focus when they started
to move. Interestingly in Installation it was also
motion that brought out the sharpest qualities of
depth. Human visual recognition owes a great deal
to motion [Nakayama, 1985].

The screens on PDAs are designed not to confuse
the issue of pixel versus image. They display
images as faithfully as they are able at high enough
resolution that they are instantly recognizable.
Their displays are primarily surfaces of interface,
which take up as much of one side as possible.
The interface draws the user's attention to a flat
space of text and buttons, which totally overpowers
the substance of the object itself. They are always
fighting their physical existence, trying to become
thinner and lighter. They are rectangular to
overlap the palm in one dimension. This makes it
impossible to fold one's thumb down across the top
of them-the natural desire for holding palm-sized
objects. They are held like a stick, not a rock. There
is something that destroys intimacy having to wield
an object that you would cup if you could.

The object-qualities of LittleVision are its most
important. It is appealing because its size, shape,
and weight make sense to the eye and hand. Any
smaller, and it would fall below a satisfying palmful.
Any larger and it would be unwieldy. LittleVision
satisfies my goals for spatial computing by its being
a computational object that compresses space into a
small body while not having its object nature over-
powered by its computational process.

12. Pointable Computing

12.1 Introduction Figure 12.1. Word Toss handhelds
sending information over a visible laser.

One way to understand remote communication
is as a battle with the separating qualities of
space. AT&T's old slogan "Reach out and touch
someone," made that explicit. The phone was to be
an electronic prosthesis for contact. But it has not
only been long distances that we have put effort
into nullifying. The "remote" in remote control
typically connotes no more than 15 feet. This kind
of spatial collapse attempts to bring things just out
of the sphere of reach into contact with the fingers.
It functions as an extension of touch, and most

remote controls resemble the kinds of interface we
would expect to encounter on an appliance itself.
This is not an interaction about communication,
however. It is strictly about control, and it operates
unidirectionally.

Remote control has moved a step further in recent
years to encompass remote data access. This has
pushed the technology beyond the capacity of
infra-red communication and into radio-frequency
territory with 802.11 and BlueTooth. The spatial

idea behind these technologies is different
from the directed-connection spatial model of
telecommunication and remote control. Instead,
these technologies are proposed to replace wires.
Wires are simply physical connectors designed
to carry signals. They do exactly what their shape
implies. It has been possible until recently to tell
what a machine is connected to by tracing its wires.
Now the wires are going away, and it is totally
unclear what connections are being made from
machine to machine. A useful assumption may be
that everything is connected to everything. There
is no disconnect to privilege any one particular
connection over another.

And that is a problem. Now that we have essentially
conquered spatiality with communication
technology, we are left floating in an
undifferentiated spacelessness. True we may have
eliminated the need to crawl around to the back
of our machines to plug in devices, but we have
replaced that inconvenience with a new burden of
reference. We must assign everything with which
we want to communicate a unique identifier so
that we can select it from a list of things in range of
communication. We have essentially become like
our machines, who have no notion of directionality
or focus, and therefore must refer to things by ID.
This is not a humanizing direction of development.

What I proposed in Pointable Computing was
a solution to this crisis of non-space in wireless
communication.

12.2 System Description

Pointable Computing was simply a handheld
system for remote communication over visible
lasers. It was the absolute epitome of directed
communication. Until I learned to spread the beam
slightly, it was so sharply directed that it was hard
to use at all. The purpose of the project was to
explore the possibilities and experiential qualities
of highly-directed communication and contrast it
with undirected technologies.

Technical description
The system consisted of two handheld devices
equipped with laser-diodes and phototransistors for
sending and receiving of signals. I spread the beam
slightly with a lens system to make it eye-safe and
easier to control for distant targets. Each handheld
had a display board (a repurposed Hotpants
display), a single button and a control wheel. I also
made a standalone wall-mounted receiver with
three Hotpants displays. Each of these systems was
driven by a PIC microcontroller.

Word Toss
The proof-of-concept application I designed for
the devices I called Word Toss. Each handheld
showed two words stacked vertically, a transitive
verb on top and a noun on the bottom. In one of the
devices, rolling its wheel changed the verb, and in
the other device, it changed the noun. Each device's
laser was on by default. When the devices were
aligned, their lasers hit the other's receiver, and a
pixel in the top right of the receiving device would
light to indicate that it had acquired a signal. When

Figure 12.2. One of the two handheld
devices.

Figure 12-3. The innards of the hand-
held. Clockwise from top: laser, send
button, receiver, Hotpants display, bat-
teries, more batteries, and thumbwheel.

rM

Figure 12.4. It was also possible to use
the handhelds to send messages to this
wall-mounted unit.

Figure 12-5. Laser tag systems have
used the total directedness of vis-
ible lasers for entertainment. [http:
//www.lazerrunner.com/primer.html]

either device's button was pressed, its laser was
pulse-modulated to send a message to the other
device. The message in Word Toss was simply the
verb or noun selected with the wheel. The other
device received the message and changed its word
to match the word sent. It was also possible to use
the handhelds to send words to the wall-mounted
device, which displayed them. I was successful in
sending messages from more than 30 feet away.

12.3 Precedents

Sending information on visible lasers has been
done for a long time. The field is called "Free Space
Optics" to denote that it is an optical transmission
that requires no medium of conveyance other
than air. Systems have been developed that can
communicate up to 2 miles and at speeds of up to
622 Mbits/sec. These devices do not use visible
lasers, and are certainly not handheld. But they
do demonstrate a kind of spatial pointing that
is similar in spirit if not in scale to Pointable
Computing's.

Certainly existing infra-red communication, which
tends to have a conical spread, was a datum. The
most common specification IrDA allows many
devices to communicate with each other. The IrDA
specification demonstrates a vision very much like
the point-and-communicate model of Pointable
Computing [IrDA, 2000]. The deficiencies of
infra-red LEDs are that their illumination quickly
spreads too much to be detected, making it suitable
only for very short range applications. By contrast
low power visible lasers can extend hundreds of
feet without dissipating too much to be useful. The
limiting factor at long range with handheld lasers
is the unsteadiness of the hand, which distance
multiplies. The other liability of infra-red is that

it is invisible, so the user is never quite sure is a
connection is being made or is reliable.

Pointable Computing's second lineage is the whole
family of computational pointing input devices.

Figure 12.6.

Pointing Devices

Metaphorical

Arrow Keys

Organized by Domain of Operation

Documentary

Camera

Literal

Inductive Sensors

Jovstick Range Finder

Eye Tracker

Trackball
3D Digitizer

Touch Screen

Mouse

Pointable

Tablet

Metaphorical devices map spatial gestures and actions to a metaphorical machine space.
Documentary devices recover spatial qualities of the world and report them to the machine.
Literal devices are active operators that report an actual spatial or bodily condition. Literal devices
are differ from metaphorical devices in that they directly connect agent, environment, and machine.
Metaphorical devices are concerned only with the input environments locally relative to themselves.

IM

12.4 Use Scenarios

Figure 12.7. Universal remote sketch.

Figure 12.8. Active tagging sketch.

I developed several use scenarios to illustrate
possible applications of pointable computing.

Universal remote
The most obvious use of Pointable Computing
would be to make a universal remote. Pointing
the device at any enabled object would turn the
handheld into a control for that object.

Active Tagging
Imagine yourself walking down an aisle of products.
You see one you would like more information
about or two you would like to compare. You point
your handheld device at them and they transmit
information about themselves back to you. Why is
this different from giving each product a passive
tag and letting an active reader look up information
in a database? The answer is about autonomy and
decentralization. If the information is being actively
sent by the object scanned, it does not need to be
registered with any central authority. It means
that no central server of product information is
required, and anyone can create an active tag
for anything without registering some unique
identifier. Note also that in this scenario we see
the likely condition that a non-directed wireless
communication like BlueTooth would be useful in
conjunction with a Pointable. The two technologies
complement each other beautifully.

Getting and Putting
In a vein similar to Brygg Ullmer's mediaBlocks
project, it would make sense to use Pointable
Computing to suck media content from one source
and deliver it to another [Ullmer, 1998]. Here
again it would not be necessary to display much
on the handheld device, and one button might
be sufficient. An advantage in media editing that

the Pointable has over a block is that there is
no need to touch the source. That means that it
would be possible to sit in front of a large bank of
monitors and control and edit to and from each one

without moving. It might even make sense to use a

Pointable interface to interact with several ongoing

processes displayed on the same screen.

Instant Wiring
In this simple application, the Pointable is used
simply to connect together or separate wireless

devices. If, for instance, a user had a set of wireless

headphones which could be playing sound from

any one of a number of sources, there is no reason
they couldn't simply point at the headphones and
then point at the source to which they wanted it
connected.

Sun Microsystems likes to say, "The network is
the computer." This is a fairly easy formulation
to agree with considering how many of our
daily computational interactions are distributed
among multiple machines. Any form of electronic

communication necessarily involves a network.

The shrinking and embedding of computation into

everyday objects implies that informal networks
are being created in the physical fabric of our
homes and offices. If we assume that the network
of wireless devices around ourselves is essentially
a computer, we must admit that we spend our days
physically located inside our computers. Being
located inside the machine is a new condition for

the human user, and it allows the possibility of

directing computation from within. A pointing

agent, a kind of internal traffic router, is one

potential role for the embedded human being.

Reactive surfaces
Reactive surfaces are building surfaces, exterior
or interior, covered with changeable materials

Figure 12.8. Getting and putting
sketch. The pointable sucks up informa-
tion from the computer on the left and
spits it out onto the computer on the
right.

Figure 12.10. Instant wiring sketch.
The user connects the computer to
headphones by pointing at it and then
at them.

Figure 12.11. Reactive surfaces sketch.
A user makes a patch of transparency in
an opaque surface.

coupled to arrays of pointable sensors. They make
use of new materials that have changeable physical
properties such as LCD panels, electrochromic
glass, OLEDs, or electroluminescents. It would
be possible with a pointable device to write a
temporary message on a desk or wall or define
a transparent aperture in an otherwise shaded
window wall. Such an aperture might follow the
path of the sun during the day.

12.5 Evaluation and Critique

Pointable Computing takes as its starting point
an emerging reality in which everyday electronic
devices communicate wirelessly. These devices
already have identities tied to their functions, be
they headphones, storage devices, or building
controls. They are not crying out for an additional
layer of interface. How can we address the new
capacity of things to talk to each other without
further mediating our relationships with them? We
need the remote equivalent of touch, an interaction
focused on its object and containing its own
confirmation. Pointable Computing offers that by
way of a visible marker, a bright spot of light. The
user does not need to consult a screen to determine
if they are properly aligned. It is apparent. The
receiver may indicate that it has acquired the beam,
but that indication will always be secondary to the
visual confirmation that the object is illuminated.

The system did feel substantively different from
existing modes of wireless communication. And
its primary difference was its spatial specificity. It
felt much like using a laser pointer, which has a
remarkable quality of simultaneous immediacy and
distance. This I believe is due to its antiphysical
quality of tremendous length with infinite
straightness and lightness. It is like an ideal rod.
Also like a physical pointer, Pointable Computing

is usable because it offers feedback. As can be

demonstrated by a game of "pin-the-tail-on-

the-donkey" we cannot point very well without
continuing to reference what we are pointing at. A
laser spot is the perfect feedback for pointing-ask a
sniper with a laser scope.

As Norbert Weiner pointed out, any system

containing a human being is a feedback system

[Weiner, 1948]. As users, people automatically

adjust their behavior based on the overall
performance of the system. What makes the

Pointable Computing a robust communication

system is that the feedback loop containing the
human being is direct and familiar. The human eye
has an area of acuity of 1-2*, implying that narrow,
beam-like focus is the norm, not the exception for
human perception. The rest of the visual field is

sampled by eye movements and then constructed in

the brain. Tight visual focus is the way we solve the

problem of reference without naming in a spatial
environment. The feedback loop that enables the
act of looking entails our observing the world and
correcting our body attitude to minimize error of
focus. It happens so quickly and effectively that

we do not even notice it. The same feedback loop
can be applied to a point of focus controlled by the
hands. It is not quite as immediate as the eyes, but
it is close. And, as it turns out, it doesn't suffer from
the kinds of involuntary movements that plague
eye-tracking systems. This is the same mapping as
the "eye-in-hand" virtual window model.

Pointing is an extension of the human capacity to
focus attention. It establishes a spatial axis relative
to an agent, unambiguously identifying anything in

line-of-sight without a need to name it. This brings

our interactions with electronic devices closer to
our interactions with physical objects, which we

name only when we have to.

Pointable Computing successfully takes
computation away from the screen and into the
space between things. Its use of simple, inexpensive
components, and its surreptitious hijacking of the
human machine as a very fine controller make
it more appealing than many other options like
motion-tracking, inductive position sensing, or
computer vision for establishing simple spatial
relations to a user. It requires no calibration, it
operates robustly under almost any conditions,
and it weighs next to nothing. I expect to see
more systems employing laser-directed spatial
interaction.

13. EyeBox

13.1 Introduction Figure 13.1. The EyeBox 3D scanner
with a small windup robot inside.

My final project at ACG turned my attention very
much toward physical objects. It focused on finding
a good way to get them into the computer. As many
people, including Bill Buxton have noted, even as
our machines get tremendously more powerful
internally, our abilities to get things other than
printed material in and out of them have not
progressed very far. The engines of computation
have digested very little of our world. In order for
our machines to become fuller partners in our
work and play, they are going to have to join us in

Figure 13.2. Working with a scanned
form (a vice) on the computer.

our physical world. That means we are going to
have to introduce them to the objects that form the
substance of our lives.

In EyeBox, I made a computer at which a user
could sit and work, and then they could open it
up and place an object inside. The object was
scanned in 3D and its form became available
for digital manipulation. However important it
was as an inexpensive 3D scanner, I think it was
more important as an example of a simple spatial
interaction with a computer that made sense to
everyone who tried it. How should we get an object
into the computer? Open it up and put it in. That
is how we get anything into anything in the real
world. It broke the barrier of the screen by making
it a door that hinged open to reveal a usable space
behind it.

13.2 System Description

Figure 13-3. The screen was embedded
in the door of a mini-fridge.

EyeBox was made out of mini-fridge, three
webcams, two fluorescent lights, a microwave
turntable, and a flat panel display. Any dark-colored
object nine inches on a side or less could be placed
into the box, and in approximately twenty seconds,
the machine rotated the object once around and
produced a full volumetric reconstruction of it
from the visual hull of 24 silhouette images (eight
from each camera taken during the rotation). The
user began by opening up the fridge. They would
place an object on the turntable inside, which had
hash marks around its edge. They would close the
fridge, and the turntable would begin to spin. The
user would see the camera images from the three
cameras displayed onscreen as the object rotated.
After a full rotation, the screen would change to
a 3D projection showing the 24 silhouette images
in their positions around the platform, and an
iteratively refining 3D reconstruction of the object

on the platform. Over the course of the next few

minutes, the representation of the volume of the

object would get progressively finer until it reached

a resolution of 512 X 512 X 512 voxels. Then it was

filtered to smooth the voxels, giving it a smoother

shape.

13.3 Motivation

A goal in the project was to keep costs low. Very

nice 3D laser digitizers are available for $8,000.

EyeBox is not as accurate as these, but it cost

$1oo to build (minus the flat panel, which is

necessary to the spatial interaction but auxiliary to

the scanning). There is an obvious place for such

inexpensive devices in industries such as rapid

fabrication, design, and entertainment.

Less obvious, but perhaps more important in the
long term is the need for computers to be able

to recover geometries from the world simply to

be more useful in problems that are meaningful
to human beings. Computers are wonderful

devices for cataloging objects. It would be

great to be able to catalog objects as full three-

dimensional reconstructions of themselves. These
representations could be sent to others and printed

out either locally or remotely, yielding respectively
a 3D copier, and a form teleporter. Museums might
be interested in this to catalog artifacts or to exhibit
pieces in a way that users could place them in a
cabinet to find out more about them. It could be

used to let people leave impressions of objects in

places where they would not leave the actual object.

13.4 Technical Description

EyeBox used a technique called visual hull

reconstruction to recover volumes from the
silhouettes of objects. Methods of visual hull

Figure 13-4. The silhouette of the vice
relative to the camera on top represents
a cone of volume in which the vice must
lie. The intersection of this cone from
each camera is the visual hull.

Figure 13.5. Figure showing how a
cup's rim always hides its inside in
silhouette.

processing fall loosely into three categories: image-
based [Matusik, 2000], polyhedral [Matusik 2001],

and volume carving [Szeliski, 1993]. All of these
techniques rely on the same basic principle-that a
silhouette relative to a calibrated camera produces
a generalized cone of volume in which the object
must be located. These cones from several cameras
can be intersected to produce a representation
of the volume at which they are all looking. It
takes surprisingly few cameras to get a fairly good
approximation of most common shapes.

Techniques for reconstructing form from silhouette
data are all capable of producing its "visual hull"
relative to the views taken. Abstractly, the visual
hull of an object is the best reconstruction that
can be made of it assuming views from every
angle. The visual hull, as discussed in Petitjean, is
a subset of an object's convex hull and a superset
of its actual volume envelope [Petitjean, 1998].
Specifically, a visual hull technique cannot ever
recover a full topographical concavity, such as the
inside of a bowl. Such an indentation will be filled
in by the visual hull. This is because the technique
reconstructs volumes from their silhouettes, and
no matter what angle one views an object from, a
complete concavity will be obscured by its rim in
silhouette.

Image-based
Image-based techniques are the fastest because
they do not reconstruct three-dimensional form
at all. Instead they synthesize new views from
any angle by selectively sampling from the source
images directly. Since there is no volumetric
representation produced, they are not suitable
for true volumetric reconstruction problems. It is
possible to imagine, however, reformulating many
volumetric problems as image-based problems.
For instance, volumetric object-matching may

be construed as an image search for the best
reconstruction to match a given image of an
unknown object. The challenge would be making it
fast enough to search all possible orientations of all
possible matching objects.

Polyhedral
Polyhedral techniques produce a surface
representation of the object (easily converted
into a volumetric representation if required) by
geometrically intersecting polygonalized versions
of the cones. This is relatively quick, and provides
an unaliased representation without the need for
iterative refinement. Extensions to this technique
are able deal with the hulls as splines to let them
curve as in Sullivan and Ponce [Sullivan, 1998].
Polyhedral techniques allow for easy texture-
mapping of the original images back onto the
reconstructed surfaces, giving another level of
detail. I implemented this technique in several
different ways, but each time I ran into the same
problem: it is highly sensitive to calibration and
numerical error. It is imperative that the geometric
operations used to construct the volumes be
numerically robust and have adjustable geometric
tolerances. Methods for general volumetric
intersection (constructive solid geometry) that have
these necessary characteristics are challenging to
implement and difficult to find as free software
libraries. So although in theory this may be the best
class of methods, it is very difficult to get it to work
reliably on real-world data.

Volume carving
This is the simplest technique to implement and
also the slowest. It projects voxels from world space
onto each of the camera views. If a voxel projection
falls fully outside any of the silhouettes, it can be
discarded. This produces an explicit volumetric
representation at the cost of voxel aliasing and lots

Figure 13.6. Image-based visual hulls
from [Matusik, 2000].

Figure 13.7. A polyhedral reconstruc-
tion of a vice produced by the first ver-
sion of EyeB ox.

Figure 13.8. Gumby as volume-carved
by a single camera from the top.

Figure 13.9. An octree node may be
subdivided into eight subnodes.

Figure 13.10. An object after smooth-
ing.

Figure 13.11. A swept-laser 3D digitizer
from Minolta.

of computation. I implemented it because I wanted
a volumetric representation for matching purposes
and it was the easiest to produce. Because of its
aliasing it is also somewhat more tolerant of error
in camera calibration than the polyhedral method.
This proved to be a significant advantage in the
turntable driven scanner.

Octree subdivision
Having chosen the volume carving method, I sped
it up by representing the volume as an octree. That
is a recursively refined volumetric tree starting
with a root node representing the entire volume
to be scanned. When a projected node was found
to be cut by the silhouette from any camera, it was
divided into eight subnodes. This way whenever
a large node was found to be outside of any of the
projections, it needed never to be subdivided or
otherwise considered again. This sped processing
up dramatically. Another speed advance was to
iteratively refine the octree representation by
one level at a time, running it on each camera at
each level. That way more large octree nodes were
rejected earlier, and did not slow it down. Octree
nodes that were wholly inside each silhouette were
marked too, so that on each iteration, the only
nodes that had to be processed were nodes that in
the previous level intersected silhouette boundaries
in some camera. This was tantamount to finding
the substantial structures early and then iteratively
refining their surfaces. It also meant that the user
saw the form improving over time and was free to
stop the process whenever it got to a level of detail
they were happy with. I smoothed the surface by
applying a Gaussian filter to the voxel data and then
finding an isocontour.

13.5 Precedents

There are existing 3D digitizers which work more
accurately than EyeBox. One such family measures

parallax in a laser beam that it sweeps over the
surface of an object. These return point clouds
which can then be surfaced. They are, however, two
orders of magnitude more expensive than EyeBox.

The technique of reconstructing volume from
silhouette data is not new. It is well worked out
and documented in a variety of sources. But it is
surprisingly rarely implemented. Perhaps that
is because of a fear of incompleteness-if it can't
promise to accurately digitize an arbitrary form,
what good can it be? I propose that a rough scan
can be quite useful. Typical setups for the process
involve a single well-calibrated camera viewing an
object on a turntable as in Kuzu and Rodehorst
[Kuzu, 2002]. The turntable is turned by hand or
motorized to provide an arbitrarily large number
of silhouette images to be acquired from a single
camera.

Fixed multiple camera setups exist, notably
Matusik, Buehler, and McMillan's [Matusik, 2001],

which is capable of scanning people in a room
in real time. This setup requires a computer per
camera and one more as a central processor, so
it doesn't qualify as a low-cost solution, but their
results are stunning. It is also not designed for
scanning palm-sized objects.

Figure 13-13. The iterative refinement
Figure 13-12. Four 1/loth life-size people from 54 Personen 1: of Gumby. The user can stop the process
10, 1998-2001, by Karin Sander. [http://www.karinsander.de] at any time.

Figure 13.14. The first version was
housed in a foamcore box.

Figure 13-15. The six cameras were
disposed as shown.

There are also cultural precedents related to 3D
scanning. Karin Sander took full body scans of 54
people and then mechanically reproduced them
at 1/10th life size. She then painted them from
photographs and displayed them on pedestals.

13.6 Design and Operation

EyeBox as a mini-fridge is a second generation of
the system. The first was less refined.

Version 1
The first version, a foamcore cube 18 inches on
a side with six cameras at fixed locations and
no turntable, was quite successful. The camera
positions in the original version had to be
carefully chosen to deliver the most amount of
non-redundant information. Therefore they were
not one-to-a-side, as might be supposed. Views
separated by close to 180* are primarily redundant
for silhouettes.

The first step in the construction was the
dismemberment of the webcams. Then I built an
18" X 18" X 18" cube out of foamcore and put a
plexiglass shelf in it 7" from the bottom. I cut holes
in the sides and top for the cameras and attached
two small fluorescent lights to the inside. I then
calibrated the cameras by Tsai's method embedded
in a custom application I wrote for the system [Tsai,
1987]. Then I was ready to write the reconstruction
software.

The first step was to acquire a silhouette image
from each camera, which was very easy because of
the well-controlled imaging environment. For each
camera, I simply subtracted an image of the empty
box and then thresholded the results.

Figure 13.16. With the lights on and
the original calibration cube inside.

The reconstruction proceeded as detailed in the
octree method outlined above.

Problems
There were some problems with the reconstructed
objects. Many of them had to do with the white
background. Light colored objects did not scan well
at all. Specularities on objects are always white and
tended to be seen as background, drilling holes in
objects. In a future version of the system, I would
use a blue background to make segmentation
simpler. Reflections off the plexiglass were
troublesome. Finally, the box was rather large for
an effective scanning volume of 6" X 6" X 6". That
could have been improved with wider angle lenses,
but the wider the field of view, the lower the quality
of the reconstruction. There were also errors of
volume just due to spaces not visible to any camera.
This could have been helped with more cameras.

The second version of the system set out to solve
some of these problems. It used a rotating platter
to effectively multiply the viewpoints from three
cameras into 24. The rotating platform also helped
shrink the necessary size of the system. Since
cameras were only looking at the object from
one side, it was the only side that needed visual
clearance. It imaged against a rounded background
to get rid of dark corners in the empty volume.

Version 2

Version 2 was housed in a mini-fridge. I chose a
mini-fridge because it fairly closely matched the
dimensions I determined were optimal, and I
could not resist the feeling of the seal made by a
fridge door. I gutted the fridge and drilled a hole
in the back to run cables out. I decided to orient
it standing up rather than lying down so as not
to evoke a coffin. Instead it is very clearly a mini-

Figure 13-17. Gumby reconstructed.
The images on the left show the silhou-
etting process.

Figure 13.18. Version 2 under con-
struction.

Figure 13.19. The three cameras show
real-time feeds on the display.

Figure 13.20. System diagram.

fridge, and its hybridity is part of its strong appeal.
I used a water-jet cutter to cut out a large opening
in the door and mounted an Apple Cinema Display
in it. I salvaged an AC gearhead motor from a old
microwave turntable and mounted it inside the
fridge with a shaft and a plexiglass turntable on
it. I glued three webcams to the interior of the
fridge looking slightly off-center at the turntable. I
turned them off-center to maximize the probability
that they would perceive the edges of objects-
the source of all of my information. I was not
concerned that they might not be able to see both
edges at once because I rotated every object a full
3600. I disassembled two small fluorescent lights
and mounted them inside the cabinet pointing
directly back onto the curved white back surface.
My hope was that this would completely backlight
the subject and get rid of all the problems with
specularity. In fact it ended up still giving a strong
side light. I mounted a reed switch on the door
hinge to control the platter motor. When the door
closed, the platter spun.

My setup avoided having to carefully control the
speed or position of the turntable by placing black
marks at its edges in 450 increments. The total light
value from a small patch of the camera looking
from the top was used to determine when the
turntable was in position to use a single video frame
from each camera as a still image from one angle.
Two of the marks were not black-one was red,
and one was cyan. These were present to indicate
the starting position (considered zero degrees),
and the direction the platform was spinning. It
was necessary to determine the direction in real
time because the turntable motor was a cheap AC
motor lifted from a microwave, and it was therefore
impossible to know which direction it would turn
when power was applied.

I calibrated the cameras by the same procedure as
the first version. Because I had not constructed the
whole system to engineering tolerances, I calibrated
each of the 24 views by hand rather than calibrating
three and performing rotations on them.

Results
All of the changes proved to be advantageous,
and my results were somewhat better with the
new system. The biggest disappointment was
how little it improved. The fantastic advantage of
the technique is that it takes so little information
to give very good results. After the first several
cameras, adding more gives diminishing returns.
It may be that 24 views is more than is necessary,
and rotating the object may therefore be as well.
With the current cost of webcams at about $15,
maybe I should just settle for 12 in a stationary
setup. Not rotating has several advantages-easier,
more consistent calibration, no moving parts, faster
operation. The primary advantage, though, to not
rotating the object is the improved magical quality
of producing a transformable 3D reconstruction
from an object that is totally stationary.

13.7 Analysis and Critique

EyeBox as a tool is more interesting as part of a
workflow that passes objects between physicality
and virtuality with ease. What it needs in order
to do this is a matching rapid output device. The
dominant model for architectural sketching is with
layers of trace paper placed down over the top of
an existing sketch. The sketch evolves as the layers
pile up. A means to rapidly reproduce form could
introduce this technique to three dimensional
modeling.

Several people have pointed out that EyeBox would
do very well coupled with Installation. Real objects

Figure 13.21. A scanned object. (A
lump of modelling clay that looked a lot
like this.)

100

Figure 13.22. A physical sculpture of
a skull that has been warped by compu-
tational transformation and then rebuilt
by hand in bone. [Robert Lazzarini,
"skulls," 2000]

could be virtually duplicated and placed in other
parts of the space. Or an object that is needed as a
reference could be duplicated and placed virtually
in the room before the actual object is removed. I
look forward to bringing to two together. It should
not prove too difficult.

A question that EyeBox naturally raises is what
is the relationship of a formal duplicate to the
original. It is a simulacrum, but functional only in
so much as the function of the original derives from
its form. And as a purely digital representation it
can serve no physical purpose without transduction
back into the real world. The power of the digital
model is its extreme malleability. We can operate
on it in ways we could not imagine working on
physical objects. We have used the idealized
machine space to break physical law. Hybrid real/
virtual form-making promises to push future design
in new directions.

101

14. Summary Conclusions

In the course of building and analyzing six
separate experiments in spatial computing, a
few fundamental design principles have become
apparent. These are not highly theoretical or
comprehensive but do offer a set of guidelines for
implementations of computational systems that
engage real space. I have not done enough to put
forward a comprehensive theory. My hope is that
that will never be possible, allowing me to work
productively toward it for the rest of my career. The
variousness of the experiments has been essential
to the inductive process. The qualities evident
from experiments so widely disparate in scale and
approach are likely to retain some validity over the
entire field.

Rather than restate everything from the analyses of
the individual experiments, here I will organize the
results briefly by theme and then propose a vision
of a future application for the field.

14.1 Editing
Certain decisions must always be made in how the
real world will enter into the system and vice versa.
These are essentially questions of editing.

Suggestion vs. realism
The power of the live video feed in Installation
demonstrated that often a suggestion of the real is
enough (particularly if the system is not immersive,
so that the simultaneous experience of the real is
not denied). The camera was not much to add, and
it certainly did not fool the eye. But it established
context of the interaction. The mind did the rest of
the work.

This is closely related to the kind of abstraction
at work in LittleVision, which presented a highly

102

pixilated, low-bandwidth representation of a visual
scene. It was just enough to indicate what was
going on. The work of the mind to bring the scene
into focus created an attachment to the interaction.
The understanding was a collaboration between the
object and the observer.

The message is this: Do not try to fool the senses!
It will not work. The senses are canny and aware of
much more than we will ever be able to simulate.
The closer we try to approximate reality, the more
noticeable our failure will be. Instead, we must
suggest what we want the experience to be and trust
the mind of the user to do the rest.

Literalness vs. metaphor
Donald Norman in The Invisible Computer inveighs
against metaphor, arguing that it always breaks
down somewhere [Norman, 1998]. Since there is
no true equivalence there must be difference that
the user cannot know when to expect. This may be
true, but I think a worse crime of metaphor is its
obscuring the identity of something real. However,
there is often no real referent for the metaphors of
computer interface, making them essentially free-
floating and instantly changeable. Hayles calls them
"flickering signifiers" [Hayles, 1999; 31]. There is a
fantastic convenience to working inside a metaphor
factory that runs on nothing. There is no need for
the cumbersome limitations and specificities of the
real. This cannot be denied, and I do not think that
all computer interface should give up metaphor. I
believe that there is currently no better alternative
for the control of most existing software. However,
it turns the screen into an impenetrable barrier,
and it has no place in spatial computing, which has
as its fundamental objective the union of the real
and computed. Objects should be themselves and
should not have to be referenced by an icon or a
name.

103

In graphical interfaces for all of these projects

combined, I believe I used a total of three buttons

and zero icons. I consider the buttons a mistake.

Design vs. engineering
The physical objects involved must be the

products of design, which goes beyond a process

of engineering. They should be approachable and

pleasing. They should not deny their physicality by
trying to disappear, but use their forms for all of

their potential value.

There are many factors at work in whether an

object will have resonance with an audience. I

identify two.

First, if it is to be held, it must have a form that is

pleasing in size, weight, and texture. LittleVision

demonstrated this.

Second, an object needs its own identity and

autonomy. It must have no wires trailing off

it unless the wires are specific to its identity.

Besides making an object a crippled dependent on

something external, wires restrict its manipulation.

A helpful technique, not exclusive of the others,
is to use objects with existing resonance and re-

purpose them. The mini-fridge cabinet of EyeBox

gave it an appeal to many that no custom cabinet

could have.

14.2 Qualities of interactions

One of the fields closely related to spatial

computing calls itself interaction design. The field

does not limit itself to interaction with computers,
but extends to other products of design such as

architecture. The notion that interaction itself can

104

be object of intentional design is an important
one, and my experiments indicate several essential
characteristics of interaction in spatial computing.

Full vs. limited
The ways a system appears to be usable are often
called its "affordances" [Gibson, 1979]. The

affordances of a successful spatial computation
system must be implemented so fully that there are
no invisible barriers to its operation that disturb the
illusion it is working to create.

My experiments achieved various levels of fullness.
The affordances of Installation were the handling of
the screen and the stylus. These were both heavily
cabled, and therefore fell short of the fulfillment of
free manipulation. EyeBox's shortcomings were in
the objects it did not handle well. The fullness of
the interaction was disturbed and questions of the
system's competence were unavoidable. LittleVision
was perhaps the fullest project by these standards.
It was entirely self-contained, and it did everything
a user might expect it to.

Feedback vs. one-way control
Feedback is essential to human control. The levels
and kinds of feedback offered by spatial systems
dramatically influence their usability.

Immediacy of feedback is the single most important
quality of interaction. We are able to control our
operations in the world only relative to feedback we
receive about how they are proceeding. If a system
limits such feedback it becomes difficult to control.
This was apparent in almost every experiment.

Predictablity vs. inconsistency
The second ingredient in accommodating human
control is not frustrating expectation. A user's
desire to control a system should require as
little conscious effort to achieve as possible.

105

This demands total consistency in operation and

gratification of expected behavior. These are the

foundations that allow us to plan action based on

intention. This does not preclude surprise as an

element, but too much surprise in the control of a

system is just uncontrolability.

However, as demonstrated by Stomping Ground,
perfect controllability is not always the goal. The

system itself seemed to have something of a will

of its own. Users knew they were effecting the

outcome, but it was not quite clear how literally

or directly. For a piece that had a strong artistic

identity of its own, this turned out to be quite

appropriate. It engaged users in a dialog with

the system through which they were trying to

understand their relationship to the sound and

graphics.

14.3 Shortcuts

Spatial computing is starting to seem like a lot of

work. But there are welcome shortcuts that help

make such systems possible to produce without

years of effort and outrageous expense.

Relativity of perception
The relativity of sensory experience is something
to leverage. Since we have no absolute benchmarks
it is often not necessary to calibrate to a hard
external standard, which can be extremely
difficult. This excludes certain applications that

demand calibrated precision, such as surgical

enhancement. But many fields (entertainment,
design, visualization, for instance) remain open to

a system that delivers the experience of real spatial

interaction without being absolutely true.

1o6

Opacity
Some systems should become transparent-
essentially unnoticeable to their users. Some should
remain solid and visible. There is no hard rule,
contrary to some opinions [Norman, 1998], that say
all successful systems become transparent. Much
depends on the intended focus of user attention. In
many cases the system itself is part of what should
be experienced. The extent to which a system
should assert its presence must be considered and
controlled closely by its designer.

Some systems exist to disappear. That was true of
Installation, for instance. The screen was to be seen
through. By contrast in EyeBox, the screen had an
important physical identity as a door to a cabinet.
It did not attempt to disappear. LittleVision always
remained present. Its presence as an object and its
unwillingness to render a photographic image kept
it from disappearing. Stomping Ground was very
much a solid presence. It was meant to be seen.

Many virtual environments and systems for
augmented reality see transparency as their goal.
This is may be a design consideration for the
specific project, but it is not intrinsic to the field.
Visibility is part of a system's not apologizing for
its existence. Since no system yet has become so
seamlessly integrated into our sensory apparatus
that it truly disappears, it behooves systems to deal
responsibly with their visibility rather than pretend
to be invisible and fail.

107

14.4 The Future of Spatial Computing

Technologies

We are beginning to see issues of space and
interface enter the mainstream computer market
as wireless networking and the tablet PC become
popular. These technologies respectively encourage
mobility and treatment of the screen as a literal
space. It remains, however, a planar barrier.

Display
OLED and other display technologies are going
to make digital displays larger, thinner, lighter,
brighter, and more flexible. We are going to see
them augment many fixed-appearance surfaces
such as desks, walls, ceilings, and billboards. There
is an opportunity for these surfaces to become more
than fixed surfaces, to fold, open, wrap, flip, stretch,
bend, hinge, or twist. I hope these potentials are
realized.

Another class of display that is becoming available
is the 3D display. The Spatial Imaging group at the
Media Lab has a new 3D display that is capable of
showing viewers full-color hologram-like images
from digital files. The illusion of depth is very
good. Displays like this one, particularly if they
can be transparent where there is no object, have
the potential to blend the real and virtual quite
powerfully.

Tracking
Tracking objects in space must become more
reliable and affordable before we see it used
commonly. GPS works well outdoors, but it is
useless inside or for precise location. Improvements
will come from either advances in computer vision

Figure 14.1. Some laptops now allow
their screens to be flipped and folded
down to make the machine into a tablet
controlled with a stylus. This is opens up
a whole variety of spatial interactions.

Figure 14.2. An image of a vice as seen
on the new 3D display from the Spatial
Imaging Group at the MIT Media Lab.
(The vice was scanned with EyeBox.)

1o8

algorithms or new physical technologies for spatial
sensing.

Scanning
Scanning objects in 3D will become faster, cheaper,
and easier. It is unlikely that 3D scanners will be
popular devices for the home unless there is a
compelling application other than design. Most
people do not own flatbed scanners today.

Printing

3D printing will become tremendously valuable
as the process speeds up and the machines and
materials drop in price. There is no reason that
many objects that are primarily formal cannot be
sold as digital representations and then printed
locally.

Applications

As the technologies improve we will begin to ask
more of our interactions with our machines. We
will demand to be treated as more than ten fingers
and a wrist.

Rather than try to augur the entire future of
the discipline, let me paint a picture of a single
application: a workplace with a spatially-sensitive
network "ZapNet" in place.

Every employee is issued a laser-pointer-like device
called a ZapStick. This is an enhanced pointable
device capable of sending data over its beam and
receiving it from a wireless LAN. Every display
device in the office, be it a projection surface,
laptop or desktop computer screen is outfitted with
sensors to detect and read the ZapStick beam.

Figure 14-3. The ZapStick. Any information being displayed can be sucked up
into a ZapStick or squirted out onto a display by

109

one (provided the user is authorized to have it).

Meeting notes can be shot out to participants as

they arrive. Notes and files can be shot between

machines during the meeting. Further, participants

can scribble on the projection with their pointers

during the meeting, and that writing will be saved

and incorporated as an annotation layer on the file.

Large stores of information could be associated

with physical objects around the office. In

addition to a networked server with a specific

name, an artifact such as a building model in an

architectural office could be the locus of all the

digital information pertaining to the project. The

ZapSticks could be used to pull information from

this site or send information to it. Groups of these
models could be gathered together and brought to
meetings or conversations where they are germane.

Of course all of these digital interactions and

sharing of information is possible without physical

analogs, but it is what a technology makes easier

that it promotes. In this case, the augmentation of a

data network with a physical network promotes the

flow of digital information on top of existing social

interactions. We tie the space of data flow closer to

the space of conversation.

This is one small idea for spatial computation. It is
all too easy to imagine others. The real learning will
come in building them.

110

15. References

[Absolut, 2002]

[Apple, 1996]

[Art+Com, 1997]

[Arthur, 1993]

[Azuma, 1997]

[Bachelard, 1964]

[Barabasi, 2002]

[Baudrillard, 1988]

[Billinghurst, 2002]

[Boys, 1959]

[Brooks, 2001]

[Brown, 1997]

[Buxton, 1997]

[Card, 1996]

[Carroll, 2001]

[Colby, 1992]

WindowsVR, www.abs-tech.com/Produtos/3DVR/VR-
Hardware/hmdsi/VirtualResearch/win-vr.html, 2002.

Apple Computer's Hotsauce, http://www.inxight.com/news/
appleinitiative.html.

Art+Com, Virtual Car for Daimler-Benz AG, 1997,
www.artcom.de.

Arthur, K. W., Booth, K. S., and Ware, C., Evaluating 3D task
performance forfish tank virtual worlds, ACM Transactions
on Information Systems, vol. 11, no. 3, July 1993, pp. 239-265.

Azuma, R., T., A survey ofAugmented Reality, in Presence:
Teleoperators and Virtual Environments, 6, 4, 1997, p. 355-
385.

Bachelard, G., The Poetics ofSpace, Jolas, M., trans., The
Orion Press, 1964.

Barabisi, A., Linked: The New Science ofNetworks, Perseus
Publishing, 2002.

Baudrillard, J., The Ecstacy of Communication, New York:
Semiotext(e), 1988.

Billinghurst, M. and Kato, H., Collaborative Augmented
Reality. Communications of the ACM, 45(7), 2002, pp. 64-70.

Boys, C.V., Soap Bubbles, Their Colors and Forces which Mold
Them. Dover Publications, 1959.

Brooks, R., The Relationship Between Matter and Life, in
Nature 409, pp. 409-411; 2001.

Brown, K. N., Grammatical design, IEEE Expert: Intelligent
Systems and their Applications 12, 1997, pp. 27-33.

Buxton, W., Living in Augmented Reality: Ubiquitous Media
and Reactive Environments. In Finn, K., Sellen, A., and
Wilber, S. (Eds.). Video Mediated Communication. Hillsdale,
N.J.: Erlbaum, 1996; pp. 363-384.

Card, S. K., Robertson G. G., York W., The WebBook and the
Web Forager: An information workspace for the World Wide
Web. Proc CHI'96 ACM Conference on Human Factors in
Computing Systems. New York: ACM Press, 1996; pp. 111-116.

In Human-Computer Interaction in the New Millennium,
John M. Carroll, ed.; Addison-Wesley, August 2001, pp. 579-
601.

Colby, G. and Scholl, L., Transparency and Blur as Selective
Cuefor Complex Information. Proceedings of SPIE'92.

[Conroy, 2002]

[Cubitt, 1998]

[Deering, 1992]

[Donath, 1995]

[Dorsey, 1996]

[Dourish, 2000]

[Dunne, 2001]

[Electronic Arts, 2003]

[Feiner, 1997]

[Fitzmaurice, 1993]

[Fry, 1999]

[Gibson, 1979]

[Gombrich, 1969]

[Hayles, 1999]

[IrDa, 2000]

[Ishii, 1997]

Dalton, R. C., Is Spatial Intelligibility Critical to the Design
of Large-scale Virtual Environments? International
Journal of Design Computing, vol. 4, 2002, http://
www.arch.usyd.edu.au/kcdc/journal/vol4/dalton.

Cubitt, S., Digital Aesthetics, SAGE Publications, Ltd.,
London, 1998.

Deering, M., High resolution virtual reality, in Computer
Graphics, 26, 2, 1992, pp. 195-202.

Donath, J., Visual Who: Animating the affinities and activities
of an electronic community, ACM Multimedia 95 - Electronic
Proceedings, November 5-9, 1995, San Francisco, California.

Dorsey, J. and Hanrahan, P., Modeling and Rendering of
Metallic Patinas. Proc. of SIGGRAPH '96. In Computer
Graphics Proceedings, Annual Conference Series, 1996, ACM
SIGGRAPH, pp. 387-396.

Dourish, P., Edwards, W.K., et. al., Extending Document
Management Systems with User-Specific Active Properties.
ACM Transactions on Information Systems, 2000. 18(2), pp.

140-170.

Dunne, A. and Raby, F., Design Noir, the Secret Life of
Electronic Objects, August / Birkhsuser, Berlin, 2001.

Electronic Arts, Sims Online, 2003, http://www.eagames.com/
official/thesimsonline/home/index.jsp.

Feiner, S., MacIntyre, B., H6llerer, T., and Webster, A., A
Touring Machine: Prototyping 3D Mobile Augmented Reality
Systems for Exploring the Urban Environment. In Proc. ISWC
'97 (Int. Symp. on Wearable Computers), pp. 74-81, 1997.

Fitzmaurice, G. W., Situated information spaces and spatially
aware palmtop computers, Communications of the ACM,
Special issue on Augmented Reality and UbiComp, July 1993,
36(7), p.38-49.

Ben Fry, Anemone, 1999, http://acg.media.mit.edu/people/
fry/anemone.

Gibson, J.J., The Ecological Approach to Visual Perception.
Houghton Mifflin,Boston, 1979.

Gombrich, E. H., Art and Illusion, a study in the Psychology
of Pictorial Representation, Princeton University Press,
Princeton, NJ, 1969.

Hayles, N. K., How We Became Posthuman, The University of
Chicago Press, Chicago & London, 1999.

IrDA, Infrared Data Association, Point and Shoot
Profile, March 20, 2000, http://www.irda.org/standards/
specifications.asp.

Ishii, H. and Ullmer, B., Tangible Bits: Towards Seamless
Interfaces between People, Bits and Atoms, in Proc. of

112

[Karahalios, 1998]

[Kline, 1999]

[Kuzu, 2002]

[Laibowitz, 2003]

[Le Corbusier, 1923]

[Linden Labs, 2003]

[Loos, 1908]

[Manovich, 1996]

[Manovich, 2002]

[Matsuoka, 2002]

[Matusik, 2001]

[Matusik, 2000]

[Milgram, 1999]

[Nakayama, 1985]

[Norman, 1998]

[Paquette, 2001]

Conference on Human Factors in Computing Systems (CHI
'97), (Atlanta, March 1997), ACM Press, pp. 234-241.

Karahalios, K., Diorama. in Conference abstracts and
applications: SIGGRAPH '98, ACM Press, New York, p. 297.

C. Kline and B. Blumberg, The Art and Science ofSynthetic
Character Design. Convention of the Society for the Study of
Artificial Intelligence and the Simulation of Behavior (AISB),
Symposium on AI and Creativity in Entertainment and Visual
Art, Proceedings, Edinburgh, Scotland, April, 1999.

Kuzu, Y., and Rodehorst, V., Volumetric Modeling Using Shape
From Silhouette, 2002, www.fpk.tu-berlin.de/forschung/
sonder/pub/DT4_kuzu.pdf.

Laibowitz, M., Paradiso, J., Phenomenological Modelfor
Distributed Systems, http://www.media.mit.edu/resenv/
phenom, 2003.

Le Corbusier, Towards a New Architecture, 1923, Dover
Pubns; (February 1986).

Linden Labs, Second Life, 2003, http://lindenlab.com.

Loos, A., Ornament and Crime, 1908, in Ornament and
Crime: Selected Essays, Mitchell, M. trans., Ariadne Press,
1998.

Manovich, L., The Aesthetics of Virtual Worlds: Reportfrom
Los Angeles, CTHEORY, www.manovich.net, 1996.

Manovich, L., Generation Flash, www.manovich.net, 2002.

Matsuoka, H., Onozawa, A., Sato, H., Nojima, H., Regeneration
of Real Objects in the Real World, Conference Abstracts and
Applications of SIGGRAPH 2002, p.77,p.243.

Matusik, W., Buehler, C., and McMillan, L., Polyhedral Visual
Hullsfor Real-Time Rendering, in Proc. Twelfth Eurographics
Workshop on Rendering, 2001, pp. 115-125.

Matusik, W., Buehler, C., Raskar, R., Gortler, S., and McMillan,
L., Image-based Visual Hulls, in Proc. SIGGRAPH, 2000, pp.
369-374.

Milgram, P., Colquhoun, H., A Taxonomy ofReal and Virtual
World Display Integration, in Mixed Reality, (Ohta, Y.,
Tamura, H., eds.), Ohmsa Ltd., Tokyo, 1999.

Nakayama, K., Biological image motion processing: A review.
Vision Research, 25, 1985, 625-660.

Norman, D., The Invisible Computer, MIT Press, Cambridge,
MA, 1998.

Paquette, E., Poulin, P., Drettakis, G., Surface Aging by
Impacts, Proceedings of Graphics Interface 2001, June 2001.

113

[Paradiso, 1997]

[Paradiso, 1999]

[Paradiso, 2000]

[Pausch, 1997]

[Pessoa, 2003]

[Petitjean, 1998]

[Piekarski , 2002]

[Rekimoto, 1995]

[Robertson, 1997]

[Saunders, 2001]

[Selfridge, 1999]

[Shiffman, 2000]

[Slater, 2002]

[Sullivan, 1918]

[Sullivan, 1998]

Paradiso, J., Abler, C., Hsiao, K. Y., Reynolds, M., The Magic
Carpet: Physical Sensing for Immersive Environments, in Proc.
of the CHI '97 Conference on Human Factors in Computing
Systems, Extended Abstracts, ACM Press, NY, pp. 277-278
(1997).

Paradiso, J., The Brain Opera Technology: New Instruments
and Gestural Sensors for Musical Interaction and
Performance, Journal of New Music Research, 28(2), 1999, pp.

130-149.

Paradiso, J., Hsiao, K., Benbasat, A., Teegarden, Z., Design and
Implementation of Expressive Footwear, IBM Systems Journal,
Volume 39, Nos. 3 & 4, October 2000, pp. 511-529.

Pausch, R., Proffitt, D., and Williams, G., Quantifying
immersion in virtual reality, SIGGRAPH'97.

Pessoa, L., de Weed, P., eds., Filling-in: From Perceptual
Completion to Cortical Reorganization, Oxford University
Press, 2003.

Petitjean, S., A Computational Geometric Approach to Visual
Hulls, Int. J. of Computer. Geometry and Appl., vol. 8, no.4, pp.
407-436, 1998.

Piekarski, W., and Thomas, B. H., Unifying Augmented Reality
and Virtual Reality User Interfaces , Technical report, January
2002, University of South Australia.

Rekimoto, J., The Magnifying Glass Approach to Augmented
Reality Systems, International Conference on Artificial Reality
and Tele-Existence '95 / Conference on Virtual Reality Software
and Technology (ICAT/VRST '95).

Robertson, G., Czerwinski, M., and van Dantzich, M.,
Immersion in Desktop Virtual Reality, UIST'97.

Saunders, R., Simplified ART, http://www.arch.usyd.edu.au/
~rob/java/applets/neuro/SimplifiedARTDemo.html, August
2001.

Selfridge, P. and Kirk, T., Cospace: Combining Web-Brows-
ing and Dynamically Generated 3D Multiuser Environments,
SIGART 10, 1, 1999, pp. 24-32.

Jared Shiffman, Honey, 2000, http://acg.media.mit.edu/
people/jarfish/honey.

Slater, M., Presence and the Sixth Sense, in PRESENCE:
Teleoperators and Virtual Environments, MIT Press, 11(4),
2002, pp. 435-439.

Sullivan L., The Tall Office Building Artistically Considered,
in: Athey I., ed. Kindergarten Chats (revised 1918) and Other
Writings. New York 1947: 202-13.

Sullivan, S., and Ponce, J., Automatic Model Construction, Pose
Estimation, and Object Recognition from Photographs Using
Triangular Splines, IEEE Transactions on Pattern Analysis and

114

[Szeliski, 1993]

[There, 2003]

[Tsai, 1987]

[Tsang, 2002]

[Ullmer, 1997]

[Ullmer, 1998]

[Ullmer, 2000]

[Van den Berg, 1955]

[Ventrella, 1997]

Machine Intelligence, 20(10):1091-
1096, 1998.

Szeliski, R., Rapid Octree
Construction from Image
Sequences, CVGIP: Image
Understanding, 58, 1 (July 1993),
pp. 23-32.

There, Inc., There, 2003, http://
www.there.com.

Tsai, R. Y., A versatile camera
calibration technique for high
accuracy 3D machine vision
metrology using off-the-shelf TV
cameras and lenses, IEEE Trans.,
1987, RA-3, pp. 323-344.

Tsang, M., Fitzmaurice, G.,
Kurtenbach, G., Khan, A. and
Buxton, W., Boom Chameleon:
Simultaneous capture of 3D
viewpoint, voice and gesture
annotations on a spatially-
aware display. Alias IWavefront.
Submitted for publication, 2002.
[http://www.billbuxton.com/
boomChameleon.pdf]

Ullmer B., Ishii H., The metaDESK:
Models and Prototypes for
Tangible User Interfaces. Proc. of
UIST'97, pp.223-232.

Ullmer, B., et al., mediaBlocks:
Physical Containers, Transports,
and Controls for Online Media,
in Proceedings of SIGGRAPH '98,
ACM Press, 1998, pp. 379-386.

Ishii, H. and Ullmer, B., Emerging
Frameworks for Tangible User
Interfaces, in IBM Systems Journal
Volume 39 Nos. 3&4, 2000; pp.
915-931.

Van den Berg, J. H., The
Phenomenological Approach in
Psychology, Charles C. Thomas,
publisher. Springfield, Illinois, 1955,
p. 61. Quoted in [Bachelard, 1964;
xvii.]

Ventrella, J., Arrows in the Fluid
Mind, A 2D Fluid Dynamics
Model for Animation Based on
Intuitive Physics, 1997, http://
www.ventrella.com/Ideas/Fluid/
fluid.html.

115

[Venturi, 2001]

[Weiner, 1948]

[Weiser, 1988]

[Witmer, 1998]

[Yarbus, 1967]

[Zhai, 1996]

Venturi, R., Robert Venturi's Disorderly Ode, Metropolis,
Sept. 2001.

Weiner, N., Cybernetics: Or Control & Communication in the
Animal and the Machine, MIT Press, Cambridge, MA, 1948.

http://www.ubiq.com/hypertext/weiser/UbiHome.html

Witmer, B.G., Singer, M.J., Measuring Presence in Virtual
Environments: A Presence Questionnaire, Presence, 7 (3),
1998, pp. 225-240.

Yarbus, A. L., Eye Movements and Vision. Plenum Press, New
York, 1967.

Zhai, S., Buxton, W., and Milgram, P., The partial-occlusion
effect: Utilizing semitransparency in 3D human-computer
interaction, in ACM Transactions on Computer-Human
Interaction, 3(3), 254-284.

116

Appendix A:
Other Experiments

Figure A.1. Two photos of Tear Me as
installed in a gallery. The proximity sen-
sor is at the top edge of the board here.

The six projects featured in the body of the thesis
are those that best describe and comment on spatial
computing. In the time of my thesis work, however,
I completed a number of other projects with close
ties to my core ideas. I describe some of them here.

Tear Me

Tear Me is a line of six thermal print heads
suspended from the ceiling. When people walk
below it, they are sensed with infra-red proximity
sensors, and the printers near them print down
at them. Each printer repeats one word over and
over, and together they form a sentence: "let"
"me" "know" "if I'm" "reaching"' "you."' Viewers
are encouraged to tug on the paper, and to tear off
excess as it gets long and drop it on the floor at their
feet.

Weaver

Weaver is a dynamic formal exploration of woven
and braided patterns as a generator of architectural
form. It grew out of a project I began with
Professor Peter Testa when I was in the Architecture
department prior to my work at the Media Lab. He
was exploring woven carbon fiber as a structural
material for building, and I did some work creating
grammars for encoding weaves and writing
software to render the patterns.

Two years later, while at the Media Lab, I had the
opportunity to work with Testa again to update my
work, making it a dynamic, real-time, somewhat
interactive system. Users rolled a trackball to
orient the growing shape in space or click one of
its buttons to freeze the form for a few seconds for
closer inspection. The form itself was an evolving
weave that shots around the screen, intersecting
with itself, exploding toward the user, and creating
patterns of seemingly tremendous complexity out of

117

Figure A.2. Weaver explored the forms
of woven and braided strands.

a few simple geometrical rules. The shapes depend
both on the description of the weave pattern and
the topology of the surface on which the weave is
applied.

Active Statics

I worked with professors emeritus Ed Allen and
Waclaw Zalewski to create a set of eight highly
interactive demonstrations for teaching elementary
structural design to architecture or engineering
students. For maximum transparency and creative
potential, these demonstrations were based on
graphic statics, a body of techniques used by
such masters as Antonio Gaudi, Gustave Eiffel,
and Robert Maillart to create their structural
masterpieces.

The external forces on each structure are plotted to
a scale of length to force on a load line. Working
from the load line, the forces in the members of
the structure are determined by scaling the lengths
of lines constructed parallel to the members. The
diagram of forces that results from this process is
called the force polygon. In these demonstrations,
the force polygon is constructed automatically
and revised instantly and continually as changes
are made in the form or loading of the structure.
The intensities of member forces are indicated
by the lengths of the line segments in the force
polygon, the numerical values in a table, and by
the thicknesses of the members themselves. All
components of each demonstration are color-coded:
Blue indicates tension, red is compression, yellow
is zero force. External loads are black and reactions
are green.

What makes these demos important is their
feedback. Students are able to see analytical
feedback as a direct consequence of formal
manipulation. The directness of this feedback loop
is unprecedented, and it is a tremendous aid to the
development of intuition. Previously, the analysis Figure A.3. Three of the eight interac
stage had to happen subsequent to design, and the tive teaching demos Any yellow point

can be manipulated. The analysis up-
two processes were separate. There was a practical dates in real time.

118

limit to the number of times any designer would
modify a design and re-run an analysis. Only
with the analysis baked directly into the process
of design can the number of iterations become
essentially infinite.

The demos are currently in use for courses at
several universities. They are publicly available at
acg.media.mit.edu/people/simong/statics/data/.

Moment

Moment is a pure parametric design two-
dimensional design environment. It implements
a visual data-flow language for the prototyping
of dynamic graphics. The process of designing
in Moment is one of connecting terminals with
wires, spinning them together into bundles when
necessary.

Moment is the last incarnation of a project that
has had many aliases and iterations, first as a
series of two constraint-based languages called
RunningThings and Paragon, next as a visual data-
flow language, Paramour, and now finally, revised,
retooled, and expanded as Moment.

Figure A.4. The visual data-flow lan- Moment is available for download at
guage Moment. acg.media.mit.edu/people/simong/moment/.

High Definition

High Definition is a piece that like Internaut maps
an undimensioned space to a virtual space. In
this case the space of origin is the dictionary. The
piece begins with a single dictionary definition of
word chosen in advance. The definition trails the
word, flapping and waving in a circle in 3D space
on the screen. Every so often one of the words of
the definition quivers and explodes into its own
definition, starting a new circle. This process

Figure A.5 High Definition explored continues recursively, creating a boiling tangle of
the space of dictionary definitions. words and definitions. The user can explore this

definition space at will.

119

Appendix B:
SBalls Code

SBalls are useful for making organic-
looking blobby tube shapes like the ones
on the right. They are implemented in
C++ and require OpenGL and GLUT.

SBalls.h
#ifndef _SBALLSH
#define SBALLS H

#define BALLSLICES 30
#define FATNESSMULTIPLIER 1
#define BALLSTACKS 10
#define CAP STACKS 20

#define
#define
#define
define
define
#define

TOTALSTACKS (((nNodes-l)*BALL STACKS) + 2 * CAP STACKS +1)
VERTEX(slice, stack) (fullVertices+(((slice)*TOTAL STACKS+(stack))*3))
VERTEX_INDEXGL(slice, stack) ((slice)*TOTALSTACKS+(stack))
NORMAL(slice, stack) (normals+ (((slice) *TOTALSTACKS+ (stack)) *3))
QUADSLICE(slice) (quads+((sli ce)*TOTALSTACKS*2))
NODEVERTEX (slice, node) (nodeVertices+((((slice) *nNodes+ (node)) *3))

enum (BALLSANDWIRES = 0, SURFACES, BALLSANDSURFACES, WIRES);

// A node is a sphere in the
struct SBallNode {

// Settable
float pos[3]; // Starting node location
float dPos[3]; // Move this much on each update
float radius; // Starting radius
float dRadius; // Amount of radius change per update

// Internal
SBallNode *next;
SBallNode *previous;
int rotOffset; // Used to control twisting of outside surface

class SBalls
public:

// Public properties
int displayMode;
float color(4);
float offset[3];
bool useTexture;

How to draw: BALLS AND WIRES, SURFACES, BALLSANDSURFACES, or WIRES
Base color, RBGA
Offset of blob
Texture-map onto blob or not

// Construct/desctruct
SBalls (;
-SBalls ();

// Add nodes
void appendNode(float pos[3], float radius);
void appendNode(float posX, float posY, float posZ, float radius);
void appendNode (float posX, float posY, float posZ, float radius, float dX, float dY, float dZ, float dR);

void getExtents (float *xMin, float *xMax, float *yMin, float *yMax, float *zMin, float *zMax);

void draw(); // Issue the GL calls to draw the SBalls object
// If you're using a texture, you need to set it up before calling this
// with glTexImage2D or some such call

120

F

// Updates
void update();
void silentUpdateo;
void calculateo;

// Update node positions and sizes and recalculate every surface point (slow)
// Just update node positions and sizes (fast)
// Recalculate every surface point (slow)

int nNodes;

// The ends of the nodelist
SBallNode *startNode;
SBallNode *endNode;

private:

float
unsigned
float
float
float

*nodeVertices;
int *quads;

*fullVertices;
*normals;
*texCoords;

// Data
// Data
// Data
// Data
// Data

SBallNode* previousIfExists(SBallNode *cur);
SBallNode* nextIfExists(SBallNode *cur);

// Utility functions
float distSq(float vecl[3], float vec2[3]);
void vecCross(float vecl[3], float vec2[3], float result[3]);
void vecCopy(float in[3], float out[3]);
void vecMinus(float a[3], float b[3]);
void vecPlus(float a[3], float b[3]);
void vecTimes(float a[3], float b);
void vecAverage(float a[3], float b[3]);
void vecAverage (float fromA[3), float toA[3), float fromB[3],
float vecMag(float vec[3]);
void vecNormalize(float vec[3]);
void vecRotate(float vec[3],double theta, float axis[3]);
void catmullromPoint(int upToNode, int slice, float t, float
float catmullromBasis(int i, float t);
void fillQuadStructure();
void fillVertexDatao;
void makeNormals();

float
float
float
float
float
float
float
float
float
float

structure as straight vertices: SLICES * NODES * 3
structure as quad strips SLICES * ((NODES * STACKS) + 1) * 2
structure as straight vertices: SLICES * ((STACKS * NODES) + 1) * 3
structure SLICES * NODES * STACKS * 3;
structure SLICES * NODES * STACKS * 2;

float toB[3], float average[3]);

curvePoint[3]);

tempVec[3);
averageVec[3];
averageVecOrigin[3);
tempVec2[3];
tempVec3[3];
circleAxis[3];
tempVec4[3);
tempVec5[3];
inFromPrevious[3];
inFromNext[3];

#endif

121

SBalls.cpp

/* --*
/* SBalls forms a texture-mapped blobby surface as a series of
/* spheres of different radius located along a curve and connected by
/* Catmull-Rom splines.

/* Documentation in header.
/*
/* 10/07/01 Simon Greenwold
/* Modified 5/17/03
/*--*/

#include 'SBalls.h"
#include <GL/gl.h>
#include <GL/glut.h>
#include <foat.h>
#include <math.h>

/* Some <math.h> files do not define MPI...
fifndef M PI
#define MPI 3.14159265358979323846
#endif

#ifndef MIN
#define MIN(x,y) (((x) < (y)) ? (x) (y))
#endif

#ifndef MAX
#define MAX(x,y) (((x) > (y)) ? (x) (y))
#endif

SBalls::SBalls()
startNode - NULL;
endNode NULL;
nNodes - 0;
displayMode - BALLSANDWIRES;
color[O] - 0.0;
color[1] - 1.0;
color[2] - 0.0;
color[3] 1.0;
offset[O] - 0.0;
offset[l] - 0.0;
offset[2] - 0.0;
useTexture = FALSE;

SBalls::-SBalls()
SBallNode *cur - startNode;
SBallNode *next;
while (cur !- NULL)

next - cur->next;
delete(cur);
cur - next;

if (nNodes > 1) C
delete nodeVertices;
delete quads;
delete normals;
delete fullVertices;
delete texCoords;

void SBalls::getExtents(float *xMin, float *xMax, float *yMin, float *yMax, float *zMin, float *zMax)
*xMin - FLT MAX;
*xMax - FLT MIN;
*yMin - FLTMAX;
*yMax = FLTMIN;
*zMin - FLT MAX;
*zMax - FLTMIN;

float x, y, z, r;

for (SBallNode* nodePtr - startNode; nodePtr C- NULL; nodePtr - nodePtr->next) {
r = nodePtr->radius;

x = nodePtr->pos[0];
if (x - r < *xMin)

*xMin - x - r;
if (x + r > *xMax)

*xMax = x + r;

y = nodePtr->pos[l];
if (y - r < *yMin)

*yMin - y - r;

if (y + r > *yMax)

122

*yMax - y + r;

z - nodePtr->pos[2];
if (z - r < *zMin)

*zMin - z - r;

if (z + r > *zMax)
*zMax - z + r;

void SBalls::appendNode(float pos[3], float radius)
appendNode(pos[0], pos[l], pos[2], radius);

void SBalls::appendNode(float posX, float posY, float posZ, float radius)
appendNode(posX, posY, posZ, radius, 0, 0, 0, 0);

void SBalls::appendNode(float posX, float posY, float posZ, float radius, float dX, float dY, float dZ, float dR)
nNodes++;
SBallNode *newNode - new SBallNode;
newNode->pos[0] - posX;
newNode->pos[l] - posY;
newNode->pos[2] - posZ;
newNode->radius = radius;
newNode->rotOffset - 0;

newNode->dPos[0] - dX;
newNode->dPos[l] - dY;
newNode->dPos[2] - dZ;
newNode->dRadius - dR;

if (!startNode)
startNode - newNode;

newNode->next - NULL;
newNode->previous - endNode;
if (endNode)

endNode->next - newNode;
endNode - newNode;

if (nNodes > 1) {
delete nodevertices;
delete quads;
delete normals;
delete fullVertices;
delete texCoords;

nodeVertices - new float[BALLSLICES nNodes 3];
quads = new GLuint [BALLSLICES * TOTALSTACKS * 2];
fullVertices - new float [BALLSLICES * TOTALSTACKS 3];
normals - new float [BALLSLICES * TOTALSTACKS * 3];
texCoords - new float [BALLSLICES * TOTAL_STACKS 2];

fillQuadStructure();
calculate();

void SBalls::calculate()
// Draw average vectors

SBallNode *cur - startNode;
if (!cur->next)

return;

float rotAngle - 360.0 / BALLSLICES;
int numNode = 0;
int rotOffset - 0;
while (cur) {

if (cur -- startNode) { // First node
vecCopy(cur->pos, circleAxis);
vecMinus(circleAxis, cur->next->pos);

vecCopy(circleAxis, tempVec2);
tempVec2[l] +- 30;
tempVec2[2] += circleAxis[2] + 40;

vecCross(circleAxis, tempVec2, averageVecOrigin);
vecTimes(averageVecOrigin, FATNESSMULTIPLIER * cur->radius / vecMag(averageVecOrigin));

else if (cur -- endNode) { // last node
vecCopy(cur->previous->pos, circleAxis);
vecMinus(circleAxis, cur->pos);

vecCopy(circleAxis, tempVec2);
tempVec2[l] +- 30;
tempVec2[2] +- circleAxis[2] + 40;

vecCross(circleAxis, tempVec2, averageVecOrigin);

123

vecTimes(averageVecOrigin, FATNESSMULTIPLIER * cur->radius / vecMag(averageVecOrigin));

else (// a node in the middle
vecCopy(cur->pos, inFromPrevious);
vecCopy(cur->next->pos, inFromNext);
vecMinus(inFromPrevious, cur->previous->pos);
vecMinus(inFromNext, cur->pos);

vecAverage(cur->previous->pos, cur->pos, cur->next->pos, cur->pos, averageVecOrigin);

vecCross(inFromPrevious, inFromNext, tempVec2);
vecCross(averageVecOrigin, tempVec2, circleAxis);
vecTimes(averageVecOrigin, FATNESSMULTIPLIER * cur->radius / vecMag(averageVecOrigin));

// Get positions
float tempPts(BALLSLICES][3];

rotOffset +- cur->rotOffset;
for (int slice = 0; slice < BALLSLICES; slice++

vecRotate(averageVecOrigin, rotAngle, circleAxis);
vecCopy(averageVecOrigin, tempVec5);
vecPlus(tempVec5, cur->pos);
vecCopy(tempVec5, tempPts[slice]);

// Determine rotational offsets to prevent twisting
float minCost - FLT MAX;
SBallNode* prev;
float cost;

if (cur !- startNode) (// Offset of start is always zero
prev - cur->previous;
for (int rot - 0; rot < BALL-SLICES; rot++

cost - 0.0f;
for (int i - 0; i < BALL SLICES; i++

cost +- distSq(tempPts{(i + rot) % BALLSLICES], NODEVERTEX(i,numNode - 1));

if (cost < minCost)
minCost - cost;
cur->rotOffset - rot;

printf("Min cost %d: %f, %d\n", numNode, minCost, cur->rotOffset);

for (int i - 0; i < BALL SLICES; i++) {
vecCopy(tempPts[(i + cur->rotOffset) % BALLSLICES], NODEVERTEX(i, numNode));

cur - cur->next;
numNode++;

if (nNodes > 1)
fillVertexData();
makeNormalso;

void SBalls::fillQuadStructure(){
int nextSlice;
GLuint* index;

for (int slice - 0; slice < BALL_SLICES; slice++)
nextSlice = (slice + 1) % BALL-SLICES;
index - QUADSLICE(slice);

for (int stack - 0; stack < TOTAL STACKS; stack++)
index[0] - VERTEX INDEX GL(slice, stack);
index[1] - VERTEXINDEXGL(nextSlice, stack);

texCoords[VERTEX INDEXGL(slice, stack) * 2] - ((float)stack) / (TOTAL STACKS-1) (640.0f / 1024.0f);
texCoords[VERTEXINDEXGL(slice, stack) * 2 + 1] - ((float)slice) / (BALLSLICES-1) (480.Of / 512.0f);

index += 2;

void SBalls::fillVertexData()
float t - 0.0f;
float* index - fullVertices;
float curvePoint[3];
float stackInc = 1.0 / BALL STACKS;
for (int slice - 0; slice < BALL-SLICES; slice++)

if (nNodes > 1) {
for (int capStack = 0; capStack < CAP_STACKS; capStack++)

124

tempVec4[0] - NODEVERTEX(slice, 0)[0] - startNode->pos[0];
tempVec4[l] - NODEVERTEX(slice, 0)[1] - startNode->pos[1];
tempVec4[2] - NODEVERTEX(slice, 0)[2] - startNode->pos[2];

tempVec5[0] - startNode->next->pos[0] - startNode->pos[0];
tempVec5[1] - startNode->next->pos[1] - startNode->pos(1];
tempVec5[2] - startNode->next->pos[2] - startNode->pos[2];

vecCross(tempVec5, tempVec4, tempVec3);
vecRotate(tempVec4, (90.0 / CAPSTACKS) * (CAPSTACKS - capStack), tempVec3);
VERTEX(slice, capStack)[0] - startNode->pos(0] + tempVec4[0];
VERTEX(slice, capStack)[1] - startNode->pos[1] + tempVec4[1];
VERTEX(slice, capStack)[2] - startNode->pos[2] + tempVec4[2];

for (int node - 1; node < nNodes; node++)

t - 0.0f;

for (int stack = 0; stack < BALL STACKS; stack++)
catmullromPoint(node, slice, t, curvePoint);
VERTEX(slice, ((node - 1) * BALLSTACKS) + stack + CAP STACKS)[0] - curvePoint(0];
VERTEX(slice, ((node - 1) * BALLSTACKS) + stack + CAPSTACKS)[1] - curvePoint[l];
VERTEX(slice, ((node - 1) * BALL_STACKS) + stack + CAPSTACKS)[2] - curvePoint[2];

//printf("Catmull-rom: %f, %f, %f\n", index[0], index[1], index[2]);
t +- stackInc;

index +- 3;

VERTEX(slice, (TOTALSTACKS - 1))[0] - NODEVERTEX(slice, nNodes - 1)[0];
VERTEX(slice, (TOTALSTACKS - 1))[1) = NODEVERTEX(slice, nNodes - 1)[1];
VERTEX(slice, (TOTALSTACKS - 1))[2] - NODEVERTEX(slice, nNodes - 1)[2];

if (nNodes > 1)
int i - 0;
for (int capStack - (TOTALSTACKS - 1) - CAPSTACKS; capStack < TOTALSTACKS; capStack++)

tempVec4[0] - NODEVERTEX(slice, (nNodes - 1))[0] - endNode->pos[0];
tempVec4[l] - NODEVERTEX(slice, (nNodes - 1))[1] - endNode->pos[l];
tempVec4[2] - NODEVERTEX(slice, (nNodes - 1))[2] - endNode->pos[2];

tempVec5[0] - endNode->previous->pos[0] - endNode->pos[0];
tempVec5[l] - endNode->previous->pos[l] - endNode->pos[1];
tempVec5[2] - endNode->previous->pos(2] - endNode->pos[2];

vecCross(tempVec4, tempVec5, tempVec3);
vecRotate(tempVec4, (-90.0 / CAPSTACKS) * i, tempVec3);
VERTEX(slice, capStack)[0] - endNode->pos[0] + tempVec4[0];
VERTEX(slice, capStack)[1] - endNode->pos[1] + tempVec4[l];
VERTEX(slice, capStack)[2] - endNode->pos[2] + tempVec4[2];
i++;

void SBalls::makeNormals()
int nextSlice;
float around[3];
float down[3];

for (int slice = 0; slice < BALLSLICES; slice++)
nextSlice - (slice + 1) % BALL SLICES;
for (int stack - 0; stack < TOTALSTACKS - 1; stack++)

vecCopy(VERTEX(nextSlice, stack), around);
vecMinus(around, VERTEX(slice, stack));

vecCopy(VERTEX(slice, stack + 1), down);
vecMinus(down, VERTEX(slice, stack));

vecCross(down, around, NORMAL(slice, stack));
//vecNormalize(NORMAL(slice, stack));

vecCopy(NORMAL(slice, TOTALSTACKS - 2), NORMAL(slice, TOTALSTACKS - 1));

void SBalls::silentUpdate()
for (SBallNode* node = startNode; node; node = node->next) {

vecPlus(node->pos, node->dPos);
node->radius += node->dRadius;
if (node->radius <= 0.0)

node->radius - .05;

void SBalls::update()
silentUpdate();
calculate();

125

void SBalls::draw)
SBallNode *cur - startNode;

glPushMatrixo;
glTranslatef(offset[0], offset[l], offset[2]);
glLineWidth(1.2);

glDisable(GLTEXTURE_2D);

// Draw balls
if (displayMode -- BALLSANDWIRES |1 displayMode -- BALLS AND SURFACES)

glColor4f(l.0, 0.0, 0.0, 0.5);
cur - startNode;
while (cur) {

glPushMatrix();

glTranslatef(cur->pos[0], cur->pos[1], cur->pos[2]);
glutWireSphere(cur->radius, 20, 20);

cur - cur->next;
glPopMatrix();

if (nNodes <- 1)
glPopMatrix();
return;

// Draw wires

if (displayMode -- BALLSANDWIRES |1 displayMode == WIRES)

//draw the fast way
glEnableClientState (GL_VERTEXARRAY);
glVertexPointer(3, GLFLOAT, 0, fullVertices);
glDisableClientState(GL NORMALARRAY);
glDisableClientState(GLTEXTURECOORDARRAY);
glDisable(GLTEXTURE_2D);

glColor4f(color[0], color[l], color[2], 0.5); //color[3]);
for (int slice - 0; slice < BALL-SLICES; slice++) {

glDrawArrays(GLLINESTRIP, VERTEXINDEXGL(slice, 0), TOTALSTACKS);

// Draw surfaces
if (displayMode == BALLSANDSURFACES || displayMode -- SURFACES) {

glEnableClientState (GL_VERTEXARRAY);
glVertexPointer(3, GLFLOAT, 0, fullVertices);
glEnableClientState(GLNORMALARRAY);
glNormalPointer(GLFLOAT, 0, normals);

if (useTexture) {
glEnableClientState(GLTEXTURECOORDARRAY);
glTexCoordPointer(2, GL_FLOAT, 0, texCoords);
glEnable(GLTEXTURE_2D);
glTexParameterf(GLTEXTURE_2D, GL TEXTUREWRAPS, GLCLAMP);
glTexParameterf (GL TEXTURE_2D, GL_TEXTURE_WRAPT, GLCLAMP);
glTexParameterf (GL_TEXTURE_2D, GL_TEXTUREMAGFILTER, GL_LINEAR);
glTexParameterf (GL TEXTURE_2D, GL_TEXTUREMINFILTER, GL_LINEAR);
glTexEnvf (GL_TEXTUREENV, GL_TEXTUREENVMODE, GL_MODULATE);

glColor4f(color[0), color[l], color[2), color[3]);

for (int slice = 0; slice < BALLSLICES; slice++) {
glDrawElements(GL_QUADSTRIP, TOTALSTACKS * 2, GL_UNSIGNEDINT, QUADSLICE(slice));

glDisable(GL_TEXTURE_2D);

glPopMatrix();

//evaluate a point on the B spline
// i may vary from 2 to POINTS - 2
// beyond that interpolation breaks down
void SBalls::catmullromPoint(int upToNode, int slice, float t, float curvePoint[3])

/*float basis[4);
for (int j - -2; j<-1; j++)(

basis[j + 2) - catmullromBasis(j,t);

126

for (int i - 0; i < 3; i++) {
curvePoint[i] - basis[0] * previousIfExists(previousIfExists(upToNode))->circlePoints[slice][i] +

basis[1] * previousIfExists(upToNode)->circlePoints[slice][i] +
basis[2] * upToNode->circlePoints~slice][i] +
basis[3] * nextIfExists(upToNode)->circlePoints[slice][i];

float basis;
int index;
curvePoint[0] - 0.0f;
curvePoint[1] = 0.0f;
curvePoint[2] = 0.0f;

for (int j - -2; j<-l; j++){
basis - catmullromBasis(j,t);
index - MIN(MAX(upToNode + j, 0), nNodes - 1);
float* point - NODEVERTEX(slice, index);

// if (slice -- 2)
//printf("Retrieving, slice, index, [0]: %i, %i, %f\n", slice, index, NODEVERTEX(slice,index)[0]);
//printf('In Catmull-rom: %f, %i, %f\n", basis, index, point[0]);
//printf(" Still in Catmull-rom: %i, %i, %i\n", slice, nNodes, index);

curvePoint(0] +- basis * point[0];
curvePoint[1] +- basis * point[l];
curvePoint[2] +- basis * point[2];

// Catmull-Rom spline is just like a B spline, only with a different basis
float SBalls::catmullromBasis(int i, float t)

switch (i)
case -2:

return ((-t+2)*t-1)*t/2;
case -1:

return (((3*t-5)*t)*t+2)/2;
case 0:

return ((-3*t+4)*t+i)*t/2;
case 1:

return ((t-1)*t*t)/2;

return 0; //we only get here if an invalid i is specified

SBallNode* SBalls::previousIfExists(SBallNode *cur)
if (cur->previous)

return cur->previous;
return cur;

SBallNode* SBalls::nextIfExists(SBallNode *cur)
if (cur->next)

return cur->next;
return cur;

float SBalls::distSq(float vecl[3], float vec2[3])
return (vec1[0] - vec2[0]) * (vecl[O] - vec2[0]) +

(vec1[1] - vec2[]) * (vec1[l] - vec2[1]) +
(vecl[2] - vec2[2]) * (vec1[2] - vec2[2]);

void SBalls::vecCross(float vecl[3], float vec2[3], float result[3])
result[0] - (vec1[l] * vec2[2]) - (vec2[l] * vec1[2]);
result[l] - (vecl[2] * vec2[0]) - (vec2[2] * vecl[0]);
result[2] - (vec1[0] * vec2[1]) - (vec2[0] * vecl[l]);

void SBalls::vecCopy(float in[3], float out[3])
out[0] - in[0];
out[1] - in[2];
out[2] = in[2];

void SBalls::vecMinus(float a[3], float b[3]) { // a - b
a[0] - a[0] -b[0;
a[1] -a[1] -b[1];
a[2] - a[2] -b[2 ;

void SBalls::vecPlus(float a[3], float b(3]) { // a + b
a[0] - a[0] + b(0];
a[1] - a[1] + b[1];
a[2] - a[2] + b[2];

void SBalls::vecTimes(float a[3], float b) { // a * b

127

a[0] - a[0] b;
a[l] - a[1] b;
a[2] - a[2] b;

}

void SBalls::vecAverage(float a[3], float b[3])
vecPlus(a, b);
vecTimes(a, 0.5);

void SBalls::vecAverage(float fromA[3], float toA[3], float fromB[3], float toB[3], float average[3])
vecCopy(toA, average);
vecMinus(average, fromA);
vecCopy(toB, tempVec);
vecMinus(tempVec, fromB);
vecAverage(average, tempVec);

float SBalls::vecMag(float vec[3])
return sqrt(vec[0] * vec[O] + vec[1] vec[1] + vec[2] vec[2]);

void SBalls::vecNormalize(float vec[3])
vecTimes(vec, 1.0 / vecMag(vec));

Rotate a point p by angle theta around an arbitrary axis r
Return the rotated point.
Positive angles are anticlockwise looking down the axis
towards the origin.

*/

void SBalls::vecRotate(fioat vec[3],double theta, float axis[3])

float q[3] - {0.0,0.0,0.0);
double costheta, sintheta;

vecNormalize(axis);
costheta - cos(theta * MP / 180.0);
sintheta - sin(theta * MP / 180.0);

q[0] +- (costheta + (1 - costheta) * axis[O] * axis[0]) * vec[0];
q[0] +- ((1 - costheta) * axis[O] * axis[l] - axis[2] * sintheta) * vec[l);
q[]O +- ((1 - costheta) * axis[O] * axis[2] + axis[l] * sintheta) * vec[2];

q[l] +- ((1 - costheta) * axis(0] * axis(l] + axis[2] * sintheta) * vec[0];
q[1] +- (costheta + (1 - costheta) * axis[l] * axis[l]) * vec[1];
q[1] +- ((1 - costheta) * axis[1) * axis[2) - axis[0] * sintheta) * vec[2);

q[2] += ((1 - costheta) * axis[0] * axis[2) - axis[1] * sintheta) * vec[0];
q[2] +- ((1 - costheta) * axis[l] * axis[2] + axis[0) * sintheta) * vec[1];
q(2] +- (costheta + (1 - costheta) * axis[2] * axis[2]) * vec[2];

vec[0) = q[0];
vec[l] - q[1];
vec[2] - q[2];

128

Front

- LED arrays

Appendix C:
Hotpants Technical Documents
These documents describe the construction and
operation of the Hotpants circuit. All of these
documents and additional information is available
at http://acg.media.mit.edu/people/simong/
hotpants/tech.

Back
shift registers

current sources

PIC

oscillator

Component List

129

Component Distributor Part Number Quantity per board
Shift register Digikey TC74HC595AP-ND 4
Oscillator Digikey X9o9-ND 1

LED Displays Jameco 118906 4
Microcontroller Digikey PIC16F876-2o/SP-ND 1
Capacitor Digikey P965-ND 1
Current source Digikey TD62783AP-ND 2

Switch Digikey EG1906-ND 1
Header Digikey A19343-ND 1
Battery Case Digikey BC4AAW-ND 1

AA Batteries Digikey P107-ND 4

LittleVision firmware

o,' 6 J-This listing is the code that is burned into the
omicrocontroller onboard the Hotpants to enable it

O 0oto play movies. The movie data is loaded later with

o 00 do

a bootloader (optional) starting at address 0 xO0 3 96.
0 0- 0Movie data is encoded with a change-marking

ocompression. Assume the following states:

o o6 o ooF = o
1 HALFi

06 00 0 .. .FULL = 2

Board front (actual size) We start each frame in state OFF. We advance
from pixel to pixel, starting from the top left, and
proceeding across each row Of 14 down the display.

00 00 00We maintain a current global state. As we traverse
0 seel~tthe LEDs, we change the state of each LED to theO oo 1o 6oo,

0 global state. For each new LED, we read one bit

o o. o o
0 of data. If it is a zero, we keep the current global
0 00 state the same and simply set this LED to that. If it

is a one, we look at the next bit. If that bit is zero,
we add one to the current state (wrapping around

d - 00 0 oa o

04 O

to o after2). If that bit is one, we add two to the

mircnrle onor the Hopat to enbli

00 o global state. There are 14 bits per word in the PIC
13 0 o 6memory.

Boardcback (actual size) This code compiles using the PiCC compiler from
CCS [http://www.ccsinfo.com].

Shl r~q.#case
incude <16F876.H>

//#device *=16

Configure PlC to use: HS clock, no Watchdog Timer,
no code protection, enable Power Up Timer

____ #fuses 15, NOWDT,NOPROTECT,NOPUT, NOBROWNOUT, NOLVP

te#Ldesine caAS tTa Egoa sae Fo ec ne#define LEA wAeR read onebi

j define dOVIE START (DATASTART+1)

IUSE BOOTLOADER
#ORG OxlFOOOxlFFF /for the 8k 16F876/7

invoid loader(F 6

IDATA RESERVE
sw# i # nRG DATA START, xO7FF

void data() {I
#ORG OxOO,OxOFFF

Board silkscreen (actual size) void datai() {
#ORG Ox80,0Oxl7FF

130

void data2() {}
#ORG 0x1800,Ox1EFF
void data3() {}

// Tell compiler clock is 20MHz. This is required for delayms()
// and for all serial I/O (such as printf(...) .These functions
// use software delay loops, so the compiler needs to know the
// processor speed.
//
*use DELAY (clock-20000000)

// Hardware
#define
#define
#define

#define
#define
#define
#define
#define

definitions
OE
DS
CK

C4
C3
C2
Cl
Co

PIN Cl
PIN CO
PINC2

PIN B7
PIN B6
PIN B3
PIN B4
PINB5

// Hard parameters
#define W 10
#define H 14

#define SIGDELAY 4 // Anything lower doesn't seem to work
#define REFRESHPERIOD 7167 // Empirical. You can mess with it.

// Colors
#define OFF 0
#define HALF 1
#define ON 2

unsigned long movieWordPtr;
int movieWordLow;
int movieWordHigh;

#byte STATUS-Ox0003
#byte EEDATA-0xOlOC
#byte EEADR-Ox0lOD
#byte EEDATH-OxOlOE
#byte EEADRH-Ox0lOF
#byte EECONl-0xOl8C
#define EEPGD 0x0007
#define RD Ox0000

//Movie data
#define FRAMEDELAY 15 // Determines the speed of the movie

unsigned int delayCounter;

int movieBitPtr;
unsigned long curMovieData;
unsigned int movieDataLow;
unsigned int movieDataHigh;

unsigned int nowState;
unsigned long curFrame;
unsigned long frames;

// Buffer storage
int frameCol;
short int inBufRefresh;
int bufNum;
unsigned long bufO[10];
unsigned long buf1[10];

void clearScreen()
int i;
for (i - 0; i < 10; i++) {

buf0[i] - OL;
bufl[i] - OL;

bufl[x] I- (1L<<(long)y);

void getMovieWord()

movieWordLow = make8(movieWordPtr, 0);
movieWordHigh = make8(movieWordPtr, 1);

#ASM
movf movieWordLow, W
movwf EEADR
movf movieWordHigh, W
movwf EEADRH
bsf EECON1, EEPGD
bsf EECON1, RD
nop
nop
movf EEDATA, W
movwf movieDataLow
movf EEDATH, W
movwf movieDataHigh
#ENDASM

curMovieData - makel6(movieDataHigh, movieDataLow);

void initMovie()
nowState - 0;
curFrame - 0;
movieBitPtr 0;
movieWordPtr - MOVIESTART;
getMovieWord();

unsigned int getBits(int nBits)
int i;
unsigned int result - 0;

for (i - 0; i < nBits; i++)
result <<- 1;

if (curMovieData & (lL << (13L -
(long)movieBitPtr)))

result++;
movieBitPtr++;
if (movieBitPtr > 13)

movieBitPtr - 0;
movieWordPtr++;
getMovieWordo;

return result;

void nextFrame()
int x, y;
int nextBit;

for (y - 0; y < H; y++)
for (x = 0; x < W; x++)

nextBit - getBits(l);
if (nextBit) {

nextBit = getBits(l);
if (nextBit) {

nowState - (nowState + 1) % 3;

else
nowState - (nowState + 2) % 3;

point(x, y, nowState);

void point(int x, int y, int color)
//int x, y;

if (color -- OFF)
buf0[x] &- ~(L<<(long)y);
bufl[x] & -(1L<<(long)y);

else if (color -- HALF)
buf0[x] |- (1L<<(long)y);
bufl[x] &= -(1L<<(long)y);

else
buf0[x] |- (1L<<(long)y);

curFrame++;
if (curFrame -- frames)

initMovie();

void runMovie()
while (1) {

nextFrame();
delayms(FRAME_DELAY);

void clockSR)
output low(CK);

131

delayus(SIGDELAY);
outputhigh(CK);
delayus(SIGDELAY);

void setupCols()
if (frameCol - 0) {

output high(CO);

else
output low(CO);

if (frameCol -- 1)
outputhigh(Cl);

else
output low(Cl);

if (frameCol -- 2)
outputhigh(C2);

else
output low(C2);

if (frameCol -- 3)
outputhigh(C3);

else
output low(C3);

if (frameCol -- 4)
output high(C4);

else
output low(C4);

outputlow(OE); // oe

outputlow(DS);
else

outputhigh(DS);
delay_us(SIGDELAY);

clockSRO;

mask <<- 1;

clockSR();

// TOP RIGHT
mask - ObOO00000000000001;
for (i - 0; i < 7; i++) {

if ((buf[frameCol] & mask) != 0) // Light this row
outputlow(DS);

else
output high(DS);
delayus(SIGDELAY);

clockSRO;

mask <<= 1;
}
clockSR();

clockSR();
setupCols();

void initTimer()
frameCol - 0;
delayCounter - 0;
CCP_1 = REFRESH PERIOD;
enable-interrupts(INTCCP1);
enableinterrupts(GLOBAL);
setupccpl(CCPCOMPARERESETTIMER);
setuptimerl(TlINTERNAL);

void drawFrameCol(unsigned long* buf)
int i;
long mask;

output high(OE);
delayus (SIG_DELAY);

// TOP LEFT
mask - Ob0000000010000000;
for (i - 0; i < 7; i++) {

// oe

if ((buf[frameCol] & mask) !- 0) // Light this row
output low(DS);

else
outputhigh(DS);

delay us(SIGDELAY);

clockSRO;

mask <<- 1;

clockSRO;

// BOTTOM LEFT
mask - Ob0000000010000000;
for (i - 0; i < 7; i++) {

if ((buf[frameCol + 5] & mask) !- 0) // Light this
row

output low(DS);
else

output high(DS);
delayus (SIGDELAY);

clockSRO;

mask <<- 1;

clockSRO;

// BOTTOM RIGHT
mask - Ob0000000000000001;
for (i = 0; i < 7; i++) {

if ((buf(frameCol + 5] & mask) 1- 0) // Light
this row

132

inline void readNumFrames()
movieWordPtr = DATA START;
getMovieWord();
frames = curMovieData;

void main)
clearScreen();
readNumFrames();
initMovie();
initTimer();
runMovie();

#INTCCP1
void DRAW COL)

if (frameCol = 4)
if (bufNum -- 3)

bufNum - 0;
else

bufNum++;
frameCol = 0;

else
frameCol++;

if (bufNum =- 0)
drawFrameCol(buf0);

else
drawFrameCol(buf1);

-,7j

