
Visual zation ofVibration Experienced in Offshore

Platforms

by

Alexander Marinos Charles Patrikalakis

S.B., Massachusetts Institute of Technology (2007)

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

AUG 2 4 2010

LIBRARIES

Submitted to the Department of Electrical Engineering and Computer
Science

in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the ARCHIVES

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

May 2010
AuvN- 700-

© Massachusetts Institute of Technology 2010. All rights reserved.

Author...................
Department of Electrical Eng neering a Computer Science

In,1 May 24, 2010

Certified by.........
Michael S. Triantafyllou

William I. Koch Professor of Marine Technology
Thesis Supervisor

Accepted by.
kS.Christopher J. Terman

Chairman, Department Committee on Graduate Theses

.... (,q.v....--.--------

...

Visualization ofVibration Experienced in Offshore Platforms

by

Alexander Marinos Charles Patrikalakis

Submitted to the Department of Electrical Engineering and Computer Science
on May 24,2010, in Partial Fulfillment of the

Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

In this thesis, I design and evaluate methods to optimize the visualization of vortex-
induced vibration (VIV) in marine risers. VIV is vibration experienced by marine
risers in offshore drilling platforms due to ocean current flows, and appears to be per-
pendicular to the direction of such flows. VIV causes oil companies large capital losses,
supply chain disruption, and environmental and brand name damage. For these rea-
sons, both researchers and manufacturers try to improve their models of VIV, while
creating risers more resilient to it. The first step to understanding VIV is rapid vi-
sualization, ie. the ability to efficiently visualize large amounts of simulated and field
data. In this thesis, I evaluate high and low level heuristics that optimize the run-time
performance of applications by taking advantage of 64 -bit machines with large mem-
ory stores. Such heuristics include the introduction of object-oriented programming
(OOP) with classes, dynamic binary loading, and source code management. I demon-
strate that using these techniques allows speedups of many orders of magnitude, de-
pending on the type of optimization and the structure of the input data. Finally, I
reengineer an existing collection of disparate visualizations to take advantage of these
heuristics, and achieve a run-time speedup of two orders of magnitude in most visual-
izations.

Thesis Supervisor: Michael S. Triantafyllou
Title: William I. Koch Professor of Marine Technology

4

Acknowledgments

I wish to thank my advisor Prof. Michael S. Triantafyllou for his guidance in arriving

at and completing this thesis.

In addition, I wish to thank my academic advisor Prof. Jeffrey H. Lang for his

guidance through my undergraduate and graduate studies at MIT

I would like to thank my colleagues Haining Zheng, Fillipos Chasparis, Harish

Mukundan, Yahya Modarres-Sadeghi, Rachel Price and Remi Bourget for their feed-

back on the VIV Suite visualizations.

I thank the Chevron and BP deep sea initiatives for funding this thesis.

Finally, I would like to thank my parents, Nicholas M. Patrikalakis and SandraJ. Pa-

trikalakis; my brother, Andrew N. R. Patrikalakis; my sister, Nikki L. A. Patrikalakis;

and, my friends, Georgios Papadopoulos, Yoshiaki Kuwata, Toshiyuki Takasaki, Taishi

Nishida, Naoyuki Satoh, Kazuma Yokoh, Tracey K. Liu, and Samuel Dyar for their sup-

port during the creation and completion of this thesis.

6

Contents

i Introduction

1.1 Background.

1.1.1 Marine Risers

1.1.2 Vortex Induced Vibration

1.2 Research Objectives

1.3 Thesis Outline

2 Domain Analysis

2.1 VIV Experiment Structure

2.1.1 Field Experiments

2.1.2 Controlled Experiments

2.1.3 Classification of Currently Available Data

2.2 Instrumentation

2.2.1 Strain Gauges

2.2.2 Accelerometers

2.2.3 Flow M eters

2.3 Information Content of Experimental VIV Data

Sets

.

.

.

.

.

3 Design Description 29

3.1 System Overview . 29

3.2 Data Sources 31

3.3 Development and Deployment Platforms - - - --................. 31

3.3.1 Development Platform 31

3.3.2 Back-End Tools 31

3.3.3 Front-End Tools 32

3.3.4 Source Code Management 32

3.4 Extraction, Transformation, and Load - - - --.................... 33

3.4-1 Extraction and Transformation .. --................... 33

3.4.2 Loading with Iterators 33

4 Data Structures and Abstract Data Types 35

4.1 VivEvent - - - - - - - --..................................... 35

4.1.1 Base Fields and Their Representation Invariants- -36

4.2 VIVA Input File Record Types -- ---........................ 38

4.3 Iterators - - - - - - --...................................... 39

4.3.1 Iterator Interface 39

4.3.2 Implementing Subclasses 40

5 Algorithms 41

5.1 Plotting A PI 41

5-1.1 Plotters . 42

5.1.2 Composite Plotters 44

5.2 Visualizations 45

5.2.1 Natural Frequency Buckets 45

8

5.2.2

5-2.3

5.2.4

5.2.5

5.2.6

Scalograms

Reconstructions

Simulation Visualization with VIVOS

Simulation Visualization with Movies

Response Analysis -............

6 Design Analysis

6.1 Optimization Strategies

6.1.1 System-level Strategies

6.1.2 Program-level Strategies -..............

6.1.3 Statement-level Strategies

6.2 Preparation to Migrate to Free Development Platforms

7 Conclusion

7.1 C ontributions .

7.2 Future W ork .

A Tables

B Figures

67
67
68

71

75

. 48

. 50

. 51

. 54

-. - -. -.. -. -. - . 55

57

. 57

. 58

- - . - - - - - - 59

. 63

......... 65

IO

List of Figures

B-i A comparison of computation and render time for MATLAB subplots

generated interactively and in batch.. 76

B-2 A comparison of computation, render, and save time for MATLAB

subplots generated and saved interactively and in batch.......... .. 77

B- 3 A comparison of frame switch times when passing variables by value,

and when passing by using temporary files. 78

B- 4 A comparison of frame switch times when passing variables by value,

and when passing by using handle class instances 79

B-5 A comparison of static and dynamic array allocation times versus array

size. 8o

B-6 The mean-squared spectrum of the acceleration signals measured at

each of the accelerometers along the span of the riser in Chaplin event

number 10. The length of the riser is 13.12m, tension at the top of the

riser is 800N, and the flow velocity is 0.54m/s. 81

B- 7 The natural frequency content of the acceleration signals along the

span of the riser in Chaplin event numer 10, as computed from its mean

squared spectrum. The length of the riser is 13.12m, tension at the top

of the riser is 800N, and the flow velocity is 0.54m/s. 82

B-8 The natural frequency content of the displacement corresponding to

each accelerometer in Chaplin event number 10. The length of the

riser is 13.12m, tension at the top of the riser is 800N, and the flow

velocity is 0.54m /s. 83

B- 9 The natural frequency content of the displacement amplitude, cor-

responding to each accelerometer in Chaplin event number 10. The

length of the riser is 13.12m, tension at the top of the riser is 800N,

and the flow velocity is 0.54m/s. 84

B-1o A scalogram of the CF acceleration measured at the eighth accelerom-

eter in Chaplin event 10. The length of the riser is 13.12m, tension at

the top of the riser is 800N, and the flow velocity is 0.54m/s. 85

B-11 Summary plots of reconstructed displacement RMS with experimental

displacement RMS values superimposed thereupon for Chaplin events

numbers 10, 11, 12, and 18. The length of the riser is 13.12m, tension

at the top of the riser is 800N, and the flow velocity is 0.54, 0.60, 0.65,

and 0.95m /s, respectively. 86

B-12 Summary plots of reconstructed strain RMS with experimental strain

RMS values superimposed thereupon for Chaplin event numbers 10,

11, 12, and 18. The length of the riser is 13.12m, tension at the top

of the riser is 800N, and the flow velocity is 0.54, 0.60, 0.65, 0.95m/s,

respectively . 87

B-13 Visualization of the reconstruction of Chaplin event number 10. The

top-left plot is the nodal crests plot that differentiates between stand-

ing and traveling waves in a VIV event. The top-right plot is the 2-

D Fourier transform of the 500 reconstructed acceleration signals uni-

formly distributed along the span of the riser. The bottom-left plot

is the span-averaged PSD of CF acceleration. The bottom-right plot

shows the CF displacement time series at the 75% span point along

the riser. The length of the riser is 13.12m, tension at the top of the

riser is 800N, and the flow velocity is 0.54m/s. 88

B-14 The ba s i c_ba r e hydrodynamic database. These five plots, from left to

right and top to bottom, are all functions of reduced (nondimensional)

frequency The first plot displays the lift coefficient in phase with ve-

locity. The second plot shows the added-mass coefficient. The third

plot represents the first slope of the lift coefficient in phase with ve-

locity. The fourth plot is the second slop of the lift coefficient in phase

with velocity. Finally, the fifth plot displays nondimensional amplitude

A* = A/D, where the slope changes from the first to the second slope. 89

B-i 5 Summary plots of simulated displacement amplitude RMS with exper

imental displacement amplitude RMS values superimposed thereupon

for Chaplin event numbers 10, 11, 12, and 18. The length of the riser is

13.12m, tension at the top of the riser is 800N, and the flow velocities

are 0.54, 0.60, 0.65, and 0.95m/s respectively 90

B-16 Plot of the ratios of simulated harmonic frequency to experimental har-

monic frequency for the Chaplin event numbers 10, 11, 12, and 18. The

length of the riser is 13.12m, tension at the top of the riser is 800N, and

the flow velocities are 0.54, 0.60, 0.65, and 0.95m/s respectively. 91

B-1 7 NDP Sheared Straked 50% event number 5170 harmonic frequency

and amplitude summary plot. From left to right and top to bottom,

the first plot is a plot of the VIVA prediction of complex amplitude of

CF displacement harmonics at a particular point along the span of the

riser. The next plot is the time-domain representation of CF displace-

ment at the same point on the riser. The third plot is shows the VIVA

harmonics and their complex amplitudes in the frequency domain with

random phase # added. The random phase has a uniform distribution

over the interval [0, 2-r]. Finally, the last plot shows the VIVA predic-

tion of the probability that each harmonic will exhibit itself in a marine

riser, given the same experimental conditions. The length of the riser

is 38m, tension at the top of the riser is 5000N, and the flow velocity is

0.9m /s. .. 92

B-i8 The response analysis visualization for Chaplin event number 12. The

blue regions indicate steady-state response, while the red regions indi-

cate chaotic response. The length of the riser is 13.12m, tension at the

top of the riser is 800N, and the flow velocity is 0.65m/s. 93

List of Tables

A.i Execution environment for optimization strategy tests 72

A.2 Classification of Currently Available Data Sets 73

I6

Chapter x

Introduction

i.1 Background

In this section, I introduce the basic concepts of marine risers, and the destructive

physical phenomenon, known as vortex-induced vibration, that plagues these risers.

1.1.1 Marine Risers

A marine riser is a long, typically cylindrical, tube under tension that connects the

hydrocarbon well-head on the ocean floor with the drilling or production platform at

the surface of the ocean. Both crude oil and drilling equipment pass up and down

marine risers. The length of marine risers in use today ranges anywhere from 100

meters (shallow-sea installations) to 5000 meters (ultra-deep sea installations). As it is

difficult to create a single pipe that is so long, risers extend downwards towards the

ocean floor, and pipe sections of varying length are fed through the top of the platform

to elongate the existing riser. Each pipe section may have similar or different structural

properties. For example, the existence of strakes (fins), the angle at which strakes are

attached, the spacing of strakes, pipe thickness, and inner and outer radii are examples

of structural properties that can differ among each section. A riser may also contain a

combination of straked and bare sections, only bare sections, or only straked sections.

A marine riser may be also partially covered by buoyancy modules reducing its effective

weight in water and in turn diminishing the required magnitude of tension that needs

to be applied on the riser from the offshore platform hydraulic system.

i.i.2 Vortex Induced Vibration

Vortex induced vibrations are an important design consideration for offshore plat-

forms that extract hydrocarbons from well-heads on the ocean floor and transport

them through risers to the ocean surface production offshore platforms, because the

risers attached to such platforms are subject to large amounts of mechanical stress.

One source of mechanical stress comes from the flow of sea water around such marine

risers. The risers get in the way of the flow of water, and flow patterns known as vor-

tices created in the wake of such flows cause the risers to vibrate, leading to substantial

strain on them [3, 8, 11, 131. These vibrations may cause fatigue damage and render the

risers useless, so it is prudent to design the risers so that these vibrations are reduced.

Bluff solid bodies placed in a flow of fluid matter, such as liquid or gas, may cause

the fluid stream to shed vortices (areas in the wake of a flow where the fluid appears

to twist around itself) [91. These vortices create alternating areas of low and high

pressure behind the solid, causing the solid to vibrate in a direction perpendicular to

the direction of fluid flow. These vibrations are known as vortex-induced vibrations.

The risers attached to platforms are a good example of bluff objects subjected to vortex

induced vibrations. Attaching strakes, or long helical fins, to the surface of risers has

the effect of reducing the vibration response of risers to constant fluid flow [121.

VIV in marine risers is a real problem for oil companies that build and maintain

offshore platforms for five reasons. First, damage to a marine riser represents a one-

time capital loss for the oil company. Second, the loss of a marine riser to VIV-induced

damage lowers the production capacity of the offshore platform in question, disrupt-

ing the supply chain of oil crude in all production streams. Third, a structural break

in a marine riser also means that crude oil leaks into the ocean, causing environmental

damage [71. Next, the oil company is liable for unlimited cleanup costs and reparations

up to 75 million dollars in damages to adversely affected industries, such as the fishing

and tourism industries [51. Finally, the oil company suffers a heavy blow to their brand

value as a result of the environmental damage caused by riser failure [41. For these

four reasons, around ten percent of the cost of constructing an offshore platform is

dedicated to countering the effects of VIV.

1.2 Research Objectives

The objective of this thesis is to demonstrate ways to make the visualization and anal-

ysis of VIV in marine risers more efficient and automatic. Taking advantage of the

vast amounts of memory offered by modern 64 -bit machines, as well as introducing

modern software engineering practices to VIV visualization software, such as object

oriented programming (OOP), dynamic library loading, and source code management

all improve the run-time performance of programs. Specifically, I demonstrate how

these optimizations improve the performance of VIV Suite, a suite of visualizations

for VIV

1-3 Thesis Outline

I provide an overview of this thesis in Chapter i. In Chapter 2, I analyze the data

domain of VIV events and analyze the information content of these events. In Chap-

ter 3, I give a system overview of the VIV Visualization Suite, describing the class

hierarchy, module interaction, external dependencies, development environment, and

the Extract-Transform-Load (ETL) aspect of VIV events. In Chapter 4, I describe the

data structures and abstract data types (ADT) used in VIV Suite, including VIV events

in VIV experiments, VIVA simulator configuration files, and iterators. In Chapter 5, I

describe the visualization and plotting algorithms developed for VIV Suite. In Chap-

ter 6, I perform a design analysis of the improvements made to the unorganized col-

lection of programs that was the predecessor of VIV Suite. Finally, I conclude in

Chapter 7, by summarizing my contributions to VIV visualization methodology and

giving directions for future work.

Chapter 2

Domain Analysis

In this chapter, I describe the data domain of VIV events.

2.1 VIV Experiment Structure

Researchers obtain experimental VIV data from two broad categories of experiments:

field experiments and controlled experiments.

2.1.1 Field Experiments

Field experiments are carried out in ocean environments and allow researchers to ob-

serve outcomes in a natural setting rather than in a contrived laboratory environment.

However, there are more variables and effects to consider.

2.1.2 Controlled Experiments

Controlled experiments are carried out in research laboratories, where experimental

conditions, such as flow profile and the tension at the riser ends, can be controlled

with more precision and accuracy

2.1-3 Classification of Currently Available Data Sets

A classification of the data sets currently supported (processable) by VIV suite is listed

in Table A.2.

2.2 Instrumentation

In both field and controlled experiments, a variety of instrumentation is placed along

the span of a marine riser. They measure strain and acceleration from which other

useful signals, such as curvature and displacement, can be extrapolated. Flow meters,

if employed, measure fluid flow (current velocity and direction) along the span of the

riser.

2.2.1 Strain Gauges

Strain gauges measure the strain experienced by a riser at certain points along the span

of a riser.

Dimensional Analysis

Strain is a nondimensional physical quantity. Strain measures deformation in rigid

bodies defined as the elongation caused by the application of external forces divided

by the original length. As the order of magnitude of strain due to VIV in marine risers

is often around 10-4 , some visualizations use a quantity known as microstrain. An

example of an experiment where the strain is represented as microstrain to maintain

the precision of the mantissa of floating point numbers is the NDP riser experiments

[i. Microstrain is 10-6 times smaller than a standard unit of strain.

A related quantity, curvature, is a dimensional physical quantity that has units 1/L.

Curvature also measures deformation of rigid bodies.

Configuration

Strain gauges are placed at equal or unequal intervals along the span of the riser. Often,

multiple gauges of the same type, with different orientation, are placed at the same

locations on the riser {21; these gauges may measure cross-flow (CF) and in-line (IL)

strain. Here, IL means in the direction of the ocean current that causes the vibrations,

and CF means in the transverse direction. Experimental configurations with unequal

numbers of CF and IL strain gauges are unusual but not unheard of [i.

Output

Strain gauges output a time series of strain measurements and writes these samples to

text files. These measurements usually need to be adjusted for the calibration param-

eters of the gauges.

2.2.2 Accelerometers

Accelerometers measure the cross-flow and in-line accelerations, and by extension, the

forces experienced by marine risers as a result of VIV.

Dimensional Analysis

Acceleration is a dimensional physical quantity that has units listed in equation 2.1.

L
(2.1)

T 2

Acceleration is the rate of change of velocity of a moving body. In the case of VIV

events, acceleration refers to the rate of change of velocity of a riser subject to some

flow The SI unit of acceleration is meters per second squared.

Configuration

Accelerometers are placed at equal or unequal intervals along the span of the riser. Usu-

ally, an accelerometer is capable of producing three readings per sample, one for each

dimension of three dimensional space. Thus, they are configured to have one dimen-

sion (z) parallel to the length of the riser, and two dimensions (x and y) perpendicular

to the riser. Experimental configurations with unequal numbers of accelerometers in

the x, y, and z directions are rare. Thus, references such as the "13th accelerometer"

usually refer to the collection of x, y, and z accelerometers, located at the 13th ac-

celerometer position.

Output

Accelerometers output a time series of acceleration measurements in three dimensions

and writes these samples to text files. These measurements usually need to be adjusted

for the calibration parameters of the accelerometers. Additionally, to account for any

shifting and rotation, the acceleration time series in the x and y directions sometimes

need to be rotated

2.2-3 Flow Meters

Flow meters measure the velocity of fluid flows across marine risers. They are usually

used in field experiments {6, 141; in controlled experiments, relative flow velocity is

determined by keeping water stationary and measuring the motion of the riser relative

to the fluid [2, 1}.

Dimensional Analysis

Flow meters measure the velocity of the flow of a fluid - a dimensional physical quan-

tity that has units listed in Equation 2.2.

L
L (2.2)
T

Velocity is the rate of change of position of a moving object, and in the case of VIV

events, flow velocity is the rate of change of position of fluid in flow across a marine

riser. The SI unit of velocity is meters per second.

Configuration

Flow meters are usually placed at regular intervals along the span of a riser. Flow pro-

files are sampled less frequently than acceleration or strain signals. Often, there is only

one flow profile that is supposed to be valid over the course of an entire event.

Output

Over the course of an event, each flow meter produces a time series of velocity read-

ings. The readings are put through a digital-analog converter, scaled to the proper

units, and saved to disk on a computer. Often, this time series does not change signif-

icantly over the life of a VIV event, so one frequently computes the average velocity

of the in-line flow and treats it as a constant.

2-3 Information Content of Experimental VIV Data

The Norwegian Deepwater Program (NDP) conducted many experiments, known as

cases, on bare and straked risers in a tow tank, subject to uniform and sheared fluid

flow. Accelerometers and strain gauges generate approximately 8o time signals with

order 104 number of samples each; in general, the NDP cases contain on the order of

io6 107 floating point numbers. For example, NDP case 2430 contains 81 time sig-

nals of 30117 32-bit floating point samples each, plus iio floating point numbers about

the experimental setup, equaling 2.44 million 32-bit floating point numbers for that

case. Without compression, one would expect 2.44 million 32-bit floats to consume

9 53okB of disk space. Knowledge about the invariant sample frequency of the time

vector signal in NDP case 2430 data yields the following intuition: having a constant

sampling rate means that the time vector could be compressed from 30117 floats to

exactly one integer (the number of samples) and two floats (sample interval and start

time). Exploiting this knowledge allows the size of the data set to be reduced by ii8kB

to 9 4 12kB. Furthermore, if the starting time is always zero, then the time vector could

be represented as exactly one integer and one float.

This 'compression' trick assumes specific knowledge of the location of the time

signal vector in the data set, and also assumes that the sample rate is constant for

the duration of sampling. In other words, this compression technique depends on the

specific conditions of a VIV experiment, and is definitely not portable across different

sets of experiments, in which the data format is usually not the same.

Choosing compression methods that do not depend on meta-information concern-

ing the data set obviously serve the interests of code portability across different data

sets. For example, strain and acceleration data compose the overwhelming majority

of information content in the NDP cases. The sensors that measure this data have

physical limits concerning the precision, accuracy, and valid range of their measure-

ments. In particular, while the precision and range of strain and acceleration data are

parts of the physical limits of the instruments used for their measurement, the exper-

imentally demonstrated subset of the instrumentation's precision and range can also

be empirically obtained by statistical analysis of measured data.

28

Chapter 3

Design Description

In this chapter, I describe the overall design of VIV Suite, an optimized collection of

visualizations for VIV

3-1 System Overview

VIV Suite is largely a MATLAB application, with small C library and Fortran exe-

cutable dependencies. The output of the VIVA simulator, a VIV simulator imple-

mented in Fortran, according to Triantafyllou's model of VIV [io, 131, is at the heart

of many of the simulations listed below.

i. Scalograms - Scalograms are three-dimensional surface plots of the time evolu-

tion of the frequency content of a time series.

2. Reconstructions - VIV events that meet the spatial frequency Nyquist crite-

rion [81 postulated in Mukundan's doctoral thesis can be reconstructed at a very

high spatial resolution (500 virtual accelerometers and strain gauges distributed

equally along the span of a riser). VISCO is a visualization that generates and

visualizes this reconstruction.

3. Chaotic Analysis - The chaos visualization uses a gradient method among all CF

acceleration signals of a VIV event to create a contour plot showing where the

VIV response is chaotic, and where it is steady-state. This contour plot is a

function of time and span.

4. Natural Frequency Analysis - This visualization uses mean-squared spectra to

collect the frequency content of an acceleration or strain oscillation into discrete

frequency buckets, in an effort to understand the aggregate response around

specific natural frequencies. These natural frequencies are one of the outputs of

the VIVA simulator.

5. Simulation Visualization with VIVOS - VIVOS compares the spanwise displace-

ment RMS of real VIV events with the RMS generated by the VIVA simulator,

as well as the simulated and real dominant frequencies.

6. Simulation Visualization with Movies - The movie generator adds random uni-

form noise around each of the natural frequencies generated by VIVA, generates

sinusoids given these frequencies and their corresponding complex amplitudes,

and animates these sinusoids as a function of span.

These visualizations are discussed in detail in Section 5.2. All of the visualizations

use a common domain model to represent VIV events, which are described in Chap-

ter 4, and render their output plots with the programmatic plotting API, which is

described in Section 5.1.

3.2 Data Sources

Corporate sponsors such as oil companies provide data to us in a number of formats,

including text files and binary storage formats, such as Microsoft Excel. Sometimes

the dimensionality of the raw data is different depending on the experiment. For ex-

ample, at times the readings for each strain gauge on a riser is in a different file, while

other times, all the readings are in the same file.

3-3 Development and Deployment Platforms

The VIV Suite of applications runs on many platforms, and I used many different tools

to develop and deploy these applications.

3-3-1 Development Platform

To achieve cross-platform portability, the majority of programs in the VIV Suite are

currently written in MATLAB, with a few exceptions.

3.3.2 Back-End Tools

Critical sections of code are implemented in C++, linked with the MATLAB MEX Li-

brary, and dynamically loaded at runtime. Currently, the VIV Suite relies on a static

dependency to the IPP Signal Processing libraries. Dynamic libraries for critical sec-

tions of code need to be compiled and linked for each host architecture that MATLAB

runs on, namely 'MACI','GLNX', and 'PCWIN'. Finally, to maintain consistent exe-

cution results across multiple platforms, the VIVA programs should be compiled with

ifort, Intel's Fortran compiler. Likewise, Fortran executables need to be created for

each architecture that the VIVA simulator will be run on.

3-3.3 Front-End Tools

Currently, I use MATLAB to display all 2D graphs that constitute the output of the

programs in the VIV Suite and for the static display of 3D graphs. I then use Apple

QuickTime to encode, display, and store animations of 2D and 3D graphs.

3-3-4 Source Code Management

One of the large issues that I faced with the previous iteration of some of the pro-

grams in this suite was that instead of generalizing algorithms or customizing existing

interfaces to deal with new data structures, my predecessors would make a copy of

each program and custom-tailor it to the needs of each different data set. This ad-hoc

source code management style caused the following two impediments to improving

existing visualizations and adding new visualizations.

i. Multiple copies of the same program made it difficult to keep track of the most

current version of a program.

2. The extent of the domain model of a VIV event was never clear from a single

instance of a program; one had to examine the union of all VIV event properties

available in all instances of the same program.

3. The lack of a historical record of execution scripts made it difficult to reproduce

prior visualization results with complete confidence.

To alleviate the above issues caused by ad-hoc source code management, the first thing

I did was to set up an SVN repository to manage one 'true' current copy of the VIV

Suite. I then continued by adding a separate package for experiment-specific data

extraction and transformation code; I discuss this package in Section 3.4

3-4 Extraction, Transformation, and Load

Experimental VIV event data, usually provided by private corporations, does not ad-

here to any single storage standard. Thus, a large part of the experiment-specific code

maintained in the experiments package deals with extracting, transforming, and load-

ing (ETL) experimental VIV data.

3-4-1 Extraction and Transformation

The extraction and transformation stages for each experimental data set are imple-

mented in MATLAB, and vary on the format the experimental data is provided in. As

raw data is often provided in many tab-separated values (TSV) or comma-separated

values (CSV) plain text files, one can use the import wizard in MATLAB to generate

a program that will load one of these files, and then, to create one MATLAB data file

(.mat) per VIV event, one needs to iterate over all the CSV/TSV files, change the nor-

mal form (for example, merging n strain time series from n files into one strain data

matrix) of the data, rotate the data matrices, and finally, save the resulting vectors and

matrices as .mat files.

3-4-2 Loading with Iterators

Loading individual VIV events from data files is done by implementing an iterator.

Iterators abstract away the file operations necessary to load a VIV event.

34

Chapter 4

Data Structures and Abstract Data

Types

In this chapter, I define the data structures (VivEvent, VIVA input file record types)

and abstract data types (Iterator) used in VIV Suite. As the implementations of all of

these data structures are MATLAB classes, null fields are represented by the empty

array []. Also, to avoid unnecessary data copying, all data structures and abstract data

types inherit from the MATLAB handle class, allowing for mutable objects derefer-

enceable by handles.

4-1 VivEvent

The VivEvent class stores experimental data from a VIV event. It provides a structure

for maintaining data about an experiment in the same place, and at the same time it

provides a consistent interface to data processing clients, as it mandates a uniform

nomenclature for all fields.

4-1-1 Base Fields and Their Representation Invariants

VIV event fields can be divided into categories such as riser properties, event records,

hydrodynamic properties, and event metadata. In the following sections, I will discuss

fields of each of these types.

Riser Properties

i. diameter -This is the diameter of the riser in aVIV event in meters.

2. r i se r Length - This is the length of the riser in a VIV event in meters.

3. CFaccelz / ILaccelz - These are vectors containing the positions of the ac-

celerometers along the span of a riser in meters, in the CF and IL directions.

Thus, the length of one of these vectors is equal to the number of accelerome-

ters in a VIV event in a particular direction.

4. C F s t r a i n z / I L s t r a i n z - These are vectors containing the positions of the strain

gauges along the span of a riser in meters, in the CF and IL directions. Thus, the

length of one of these vectors is equal to the number of strain gauges in a VIV

event in a particular direction.

5. CFdi splz / I Ldi splz - These are vectors containing the positions of the dis-

placement measurements along the span of a riser in meters, in the CF and IL

directions. Thus, the length of one of these vectors is equal to the number of

displacement measurements in a VIV event in a particular direction.

Event Records

. C F a c c l n / I L a c c l n - These matrices, with the number of rows equal to the num-

ber of accelerometers in each direction, and the number of columns equal to

the length of the time vector, are the acceleration signals as measured at each

accelerometer, in each direction.

2. C F s t r a i n / I L s t r a i n - These matrices, with the number of rows equal to the

number of strain gauges in each direction, and the number of columns equal to

the length of the time vector, are the strain signals as measured at each strain

gauge, in each direction.

3. CF d i s p1 / I L d i s p1 - These matrices, with the number of rows equal to the num-

ber of accelerometers in each direction, and the number of columns equal to the

length of the time vector, are the displacement signals as interpolated from the

accelerations measured at each accelerometer, in each direction.

4. t i me - This vector is the time signal of the VIV event.

Hydrodynamic Properties

i. vel z - This vector is a vector of the absolute positions of the flow meters along

the span of the riser.

2. veloci ty - This vector represents the flow profile of a VIV event, and is the

average velocity of flow in the IL direction for the duration of the event.

Event Metadata

i. expname -The expname field is a string representing the name of the experiment.

This string may not be empty. This string is used programmatically to generate

paths to experiment data, so it must be the name of an actual directory in the

ex per i men t s directory of the VIV Suite root directory.

2. eventno - The eventno field is an integer representing the event number in a

set of VIV events belonging to an experiment. This number is not padded with

zeros on the left, and is used to generate paths to event data and output files.

3. pa r tno - The pa r tno field is an integer representing the part number of a VIV

event instance. Using the PartsIterator, a VIV event can be split into multiple

parts, so that they can be visualized individually. The field p a r t no may vary from

1 to parts.

4. p a r t s - The pa r t s field is an integer representing the total number of parts of

a VIV event. These parts are VIV events themselves, and are generated from a

whole VIV event using the P a rts t e r a t o r class.

4-2 VIVA Input File Record Types

The VIVA simulator requires a number of files as input to define the parameters of

the riser and the flow profile used in a simulation [131. Previously, these files were

generated by scripts that wrote each configuration file line by line. Such scripts were

difficult to understand and error-prone because each was simply a list of numbers, with

no apparent structure. They were error-prone because, as a linear script, no constraints

were enforced on the contents of the script. Specifically, lines could be missing, or

alternatively, there could be extra lines in the configuration files, and no one would be

the wiser until the VIVA programs were run and crashed because of poorly-formed

configuration files.

The record types corresponding to the VIVA input files are the following (their

fields are defined in detail in the VIVA manual ['31).

i. Riser Dynamics - risdyn-n.in to specify the ocean current data.

2. Riser Fatigue - risfat.in to specify the fatigue curves.

3. Riser Preferences - rispre.in to specify the riser data.

4. VIVA Conditions - conditions.in to specify the boundary conditions.

4-3 Iterators

The I ter ator class follows the Iterator design pattern in that it presents a uniform

way to iterate over a number of VivEvents. The Iterator is not traditional as it does

not iterate over the contents of a concrete container of VivEvent objects; rather, it

iterates over an abstract collection of VivEvents that are stored on disk.

I t e r a t o r implementation maps an experiment's data files containing VIV events

to an abstract, lazy-loading container that instantiates VivEvent objects only when

they are iterated to. The cost of RAM makes maintaining a collection of all an ex-

periment's VivEvents in RAM infeasibile, thereby creating the need for lazy-loading

containers. In addition to optimizing system memory usage, the concrete I te r a to r

subclasses encapsulate code that extracts and transforms the VIV data contained in

the flat text files provided by the oil companies. In other words, the concrete Iter-

ator subclasses encapsulate the Extract-Transform-Load (ETL) logic specific to each

experiment. Thus, strategy objects that use an Iter ator to create a visualization of

the VIV contained within each event no longer need be aware of how VIV data gets

loaded and transformed from files.

4-3-1 Iterator Interface

Each concrete I ter ator subclass needs to implement the following instance methods.

i. y = next (obj) - The next method of a concrete Iterator implementation must

return a handle to the next VIVEvent object. The prerequisite of this method is

that the h a sNex t method of the iterator must return true. If h asNex t does not

return true, then the call to next will fail with an error.

2. pathStr = generatePathToEvent(obj eventNo) -The generatePathToEvent

method is given an event number and generates a file path string to the MATLAB

data file that contains the data necessary to construct a VIVEvent object for the

VIV event indicated by even t No.

3. n = get Length (obj) - The getLength method takes no arguments and returns

the number of VIV events able to be iterated to by using a particular instance

of a concrete Iterator implementation.

4-3-2 Implementing Subclasses

There are two kinds of Iterator implementations. The first kind are the concrete

iterators that have a one-to-one relationship with the data format of each VIV data set.

The second kind is called the P a r t s I t e r a t o r, which can divide one V i v E v e n t instance

into multiple Vi v E ven ts, given an array of times at which to divide the VivEvent. The

Pa rts I terator can handle Vi vEvents generated by any concrete I te rator subclass.

Chapter 5

Algorithms

This chapter describes the rendering methodology and specific visualizations imple-

mented in VIV Suite.

5-1 Plotting API

The plotting application programming interface (API) is used by all visualizations in

VIV Suite to render the plots they output. The API enables the batch rendering of

output plots by enabling their intermediate representation as strategy object instances

that describe how exactly to draw plots. The API also allows visualizations to consis-

tently reproduce identical visualization results because plot composition is defined in

a declarative fashion at compile time, rather than in a descriptive fashion (as a quick-

and-dirty script) at run time. Finally, as the API abstracts the view layer of VIV Suite

away from the rest of the application code, migrating VIV Suite to another language

such as C++ becomes easier because the MATLAB-specific subroutine dependencies

are walled off in one place.

5-1-1 Plotters

Each plot type that is supported by MATLAB is implemented as a subclass of the Plot-

ter abstract class. Plotters implement UI elements common to all plots: x-axis labels,

y-axis labels, z-axis labels, titles, x-axis limits, y-axis limits, and z-axis limits. How-

ever, all of these elements are optional; for example, if one does not want to have an

x-axis label, one can simply put the empty string in the x-axis label string. The Plotter

superclass intentionally leaves representation details unspecified, such as the method

of storing plottable data to give maximum abstraction flexibility to the implementing

subclasses.

The Plotter subclasses currently implemented are the following:

i. ImageScalePlotter - The ImageScalePlotter plotter is based on the MAT-

LAB imagesc plot and draws bitmaps to the screen. An example of the Im-

ageScalePlotter can be seen in the reconstruction visualization output de-

scribed in Section 5.2.3.

2. LandscapePlot ter - The LandscapePlotter plotter is based on MATLAB's call

to set the orientation of a plot to landscape mode. This plotter must be run

in sequence with other plotters, or alternatively, requires that a figure be open

and active. The Land sc apePl ot te r plotter can be seen in action in the VIVOS

simulation visualization output described in Section 5.2.4.

3. L i nePlotter - The L i nePlot ter plotter is based on MATLAB's plot3 plot and

draws a line in three-dimensional space, given a sequence of three-dimensional

coordinate pairs. An example of the L i n e Plot t e r can be seen in the scalogram

visualization output at the front-most edge of the three-dimensional figure de-

scribed in Section 5.2.2.

4. MSSPlotter - The MSSPlotter plotter is based on MATLAB's MSSpectrum plot

and draws the mean-squared spectrum of a time series. An example of the MS S -

P l ot t e r can be seen in the natural frequency visualization output described in

Section 5.2.1.

5. RegularPlotter - The RegularPlotter plotter is based on MATLAB's plot

plot and draws the plot of a two-dimensional signal, given a vector of x-coordinates

and a vector of y-coordinates. An example of the RegularPlot ter can be seen

in the simulation visualization output; the flow profiles in VIVOS described in

Section 5.2.4 are drawn with this plotter.

6. StemPlotter - The StemPlotter plotter is based on MATLAB's stem plot and

draws the plot of a two-dimensional signal as line bars, given a vector of x-

coordinates and a vector of y-coordinates. An example of the StemPlotter can

be seen in the natural frequency analysis output; the mean-squared spectra of ac-

celeration and displacement described in Section 5.2.1 are drawn with this plot-

ter.

7. SurfacePlotter - The SurfacePlotter plotter is based on MATLAB's surf

plot and draws a three-dimensional surface, given a z matrix and x and y axis

values (each in a vector). An example of the Sur f acePlotter can be seen in

the scalogram visualization output as the scalogram surface itself described in

Section 5.2.2.

8. TwoDF F T P l o t t e r - This plotter takes a matrix of time series, in row major order,

and generates the two-dimensional Fourier transform of the matrix. This plotter

is used to display the frequency-based and wave number-based spectral content

of the reconstructed signals in the reconstruction visualization output described

in Section 5.2.3.

9. VerticalLinePlotter - The VerticalLinePlotter draws a vertical line on an

existing plot. It requires that a figure already be open and active. This plotter is

used to demarcate the frequency band used in the reconstruction visualization

output described in Section 5.2-3.

5-1-2 Composite Plotters

The plotting API also includes some composite plotters that allow other plotters to

be stitched together in various ways.

The CompositePlotter Class

The constructor of the Composi tePlotter class takes as input a cell array of other

Plotter subclass instances and runs each Plotter instance in succession on the same

figure. The CompositePlotter class uses MATLAB's hold on and hold off func-

tions to make multiple plots stick to the same figure. It can be seen in action in the

VIVOS simulation visualization output (Section 5.2.4), where it allows the flow profile,

simulated RMS, and experimental RMS to all be displayed on the same plot.

Page Spanner

The constructor of the PageSpanner class takes as input a cell array of other Plotter

subclass instances along with the overarching x-axis label, left y-axis label, right y-axis

label, and title for an array of plots. The PageS p anne r class makes use of MATLAB's

subplot function, as well as the external supla bel function. A PageSpanner automat-

ically paginates and moves plots over to the next page if there are more Plotters in the

cell array than can be displayed on one page. The PageSp anne r can be seen in action

in the VIVOS simulation visualization output (Section 5.2.4), where it allows the flow

profile, simulated RMS, and experimental RMS for each VIV event to be displayed in

a different coordinate system in the plot grid.

5.2 Visualizations

In this section, I discuss the numerous visualizations that VIV Suite implements.

These include natural frequency analysis, scalograms, reconstructions, simulation vi-

sualization with VIVOS, simulation visualization with movies, and chaotic response

analysis.

5-2.1 Natural Frequency Buckets

The natu ralF requenc i es function separates the frequency content of displacement

in a VIV event, computed from acceleration, into groups centered on a number of

natural frequencies.

Interface

Usage

The string expRoot refers to the directory for a given experiment. This directory will

be the parent directory of the files that are written by the naturalFrequencies function.

The object i te r is an Iterator that can access at least one VivEvent (in other words,

the length of the iterator is at least 1). sen so r Numbe r s is a vector of integers that enu-

merates the sensor identifiers the client wishes to process using the naturalFrequencies

-.. - :: . :-:-: X:::::::::'_ "_'

function. The two-element vector band indicates the low and high frequency bounds

that will be displayed on all the plots that are written by this function. n a t u r a l F r eq s

is also a cell array of vectors of real numbers that enumerate the natural frequencies

around which the function should cluster frequency content for each VIV event indi-

cated by the iterator. The se le c t ed N a t u r al F r eqs parameter is a cell array containing

vectors of the important natural frequencies of each VIV event indicated in the it-

erator i t e r, and the parameter ou t pu t F o r m a t s is a cell array of file extension strings

corresponding to the file formats that the natural frequency output should be written

to. This function requires the summi .out and f req. out files generated by the VIVA

simulator ['31 to be available for each VIV event iterated to by i te r. This function

returns no value.

Output Directory Structure

The default output directory is (expRoot)/OUTPUT/FREQ. Both the OUTPUT directory

and the F R E Q directory contained within will be generated by n a t u r a I F r eque n c i e s if

they do not exist. The graphs for VIV events iterated through na tur aI F requenc i es

will be written to the FREQ directory.

Output File Structure

The function naturalFrequencies writes five plots to files for each VIV event iteration.

In the following file names, (event number) stands for digits that correspond to a

particular VIV event in an experiment, N is the page number of a particular collection

of plots, and M is the total number of pages associated with a particular plot.

i. (event number)accel_N_of_M. pdf -This file contains plots of the mean-squared

spectrum of the acceleration signals measured at each of the accelerometers

along the span of the riser in the VIV event. In case there are more than 16 ac-

celerometers, the maximum number of signals that can be displayed on a page,

there will be multiple files, with N ranging from i to M. An example figure is

listed in Figure B-6.

2. (event number)accelNatural_N_ofM. pdf -This file contains plots of the nat-

ural frequency content of an acceleration signal, as computed from its mean

squared spectrum. In case there are more than 16 accelerometers, the maxi-

mum number of signals that can be displayed on a page, there will be multiple

files, with N ranging from i to M. An example figure is listed in Figure B- 7.

3. (event number)di spl_N_ofM. pdf -This file contains plots of the natural fre-

quency content of the displacement corresponding to each accelerometer in a

VIV event. This displacement spectrum is obtained by scaling each power value

by (1/27rw) 4 , where omega is the frequency local to the power in question. This

is the equivalent of integrating twice in the frequency domain. In case there are

more than 16 accelerometers, the maximum number of signals that can be dis-

played on a page, there will be multiple files, with N ranging from i to M. An

example figure is listed in Figure B-8.

4. (event number)di splAmp_N_of_M. pdf -This file contains plots of the natural

frequency content of the displacement amplitude, corresponding to each ac-

celerometer in a VIV event. An example figure is listed in Figure B- 9. The

displacement amplitude is related to the displacement listed in item 3 by the

following equation:

amplitude = 2* (displacement RMS) (5.1)

5-2.2 Scalograms

The plotScalosIterant function creates scalograms (3D time-frequency plots) at

fixed points along the span of a riser, in a set of VIV events indexed by an Itera-

tor. Scalograms are created by convolving Morlet wavelets, of varying length, with

the Hilbert transform of a time series. Strain, stress, acceleration, or displacement

are good representative examples of time series convolved with wavelets. Each Morlet

wavelet corresponds to a particular frequency, and the successive frequencies decrease

exponentially. The convolution product is called a frequency bucket and is a function

of time, and if these frequency buckets are laid side by side in a 3D plot, it is referred

to as a scalogram.

Interface

Usage

The parameter nf rames indicates the number of time slices the scalogram should be

divided into. When n f r ames is greater than 1, a movie showing the scalogram growing

to the maximum record length is generated instead of individual still frame images.

The parameter wi ndow indicates the length of the sliding average window used to si-

lence high frequency noise in the time domain of the time-frequency-response (TFR)

matrix. Having a window of length 30 generally produces scalograms that are smooth.

f req indicates the frequency band for which the scalogram should be computed. The

cumulative power ratio, or cumPowerRati o, is a real scalar from 0 to 1 indicating the

percent of mass of the TFR matrix that needs to be present to generate frequency

bounds within f req automatically. For example, the figure 0.95 in place of the cu-

.. I

mulative power ratio means that plot Sc a o s I t e r an t will display the frequency range

that contains 95 percent of the volume of the TFR matrix. The parameter po in t s

indicates either an array of points if the boolean e qu i d i s t a n t Po i n t s is false, or the

number of equidistant points along the span of the riser at which to calculate scalo-

grams, if e qu i d i s t a n t P o i n t s is true. The iterator i t e r is an iterator object pointing

to a collection of VIVEvents. ou t p u t F o r ma t s is a cell array of file extension strings,

the formats in which scalograms will be written to disk. expRoot is the root directory

of the experiment whose scalograms are being computed. vo i c e s represents the num-

ber of wavelets to be calculated when generating the scalogram. The larger vo i c es is,

the longer a scalogram takes to compute.

Output Directory Structure

The default output directory is (expRoot)/OUTPUT/SCALO. Both the OUTPUT directory

and the SCALO directory contained within will be generated by plotSc alos I te r an t

if they do not exist. The graphs for VIV events iterated through in the function

plotScalos I terant will be written to the SCALO directory.

Output File Structure

plotScalos I terant generates files with each of the file extensions in the outputFor -

mat s cell array using the following naming convention. An example figure is listed in

Figure B-io.

(expname)(confi g)(eventNum) C(sensorNum)S(si gnal)(window)W(f rameNum)F. (ext)

5-2.3 Reconstructions

The runVTSCO function reconstructs a set of VIV events indexed by an Iterator. Here,

reconstruction means the process of interpolating displacement and strain time series

at many points along the length of the riser in a VIV event, provided that the sensor

positions satisfy the spatial frequency criterion [81. Harish Mukundan discusses the

interpolation algorithm, and the spatial frequency criterion in his doctoral thesis.

Interface

Usage

The Iterator i t e r I n is an iterator that can access at least one Vi v Event (the length

of the iterator is at least 1). sensex is a list of failed sensor numbers that need to

be excluded from the interpolation algorithm. The vector cutof f f req is a pair of

frequencies, measured in Hz, representing the frequency band to be used in a band-

pass filter applied to strain and acceleration signals in VIV events. When the boolean

summa ryonly is false, summary (four plots in one page) and detailed plots for each

of these four visualizations are written to disk; however, when summa ryOn ly is true,

only the summary plots are written to disk. The cell array graph Formats contains

a list of strings, corresponding to the desired file extensions for the output files. The

boolean savi ngRecon determines whether the actual reconstructed signal will be saved

to disk, and the boolean s av i n g PS D determines whether the spectrum data of the span-

averaged PSD will be saved to disk.

- -................

Output Directory Structure

The default output directory is (expRoot)/OUTPUT/VISCO.

Output File Structure

The output of the runVISCO function consists of:

i. CFFourierrecon-dispsumm_N_ofM. pdf, a summary plot of reconstructed

displacement RMS with experimental displacement RMS values superimposed

for each VIV event in the input iterator, An example figure is listed in Figure B-

11;

2. CFFourierreconstrain_summ_N-ofM.pdf,asummaryplotofreconstructed

strain RMS with experimental strain RMS values superimposed for each VIV

event in the input iterator. An example figure is listed in Figure B-12;

3. a summary plot of the Fourier coefficients used in the reconstruction of each

VIV event in the input iterator;

4. summary_N_of _M. pdf, a two-by-two summary plot of four visualizations of the

reconstructed VIV event (nodal plot, 2D FFT, span-averaged PSD, and a sample

displacement signal). An example figure is listed in Figure B-13; and

5. optionally, detailed plots of each of the visualizations of the previous item.

5.2.4 Simulation Visualization with VIVOS

The runVIVOS function compares VIVA prediction of VIV amplitude, strain, and

dominant frequency with experimental data from marine risers.

Interface

Usage

The numbers diameter and riser Length are the values of riser diameter and length,

respectively. The number datacase refers to the datacase number, and the dataca-

seIndex refers to the index of the datacase inside the experiment. The number num-

Da t ac a ses indicates the total number of datacases in certain experiments. The string

con f i g refers to the the configuration of the datacase, such as whether it is with or

without strakes and whether the flow is uniform or sheared. expname is the name

of the experiment, and outputFormats is a cell array of file extension strings, the

formats in which run-vivos will be written to disk. v i vosOut put Loc alDi r is the di-

rectory where run_VIVoS will output the results. vivosSummaryoutputDi r is inside

v i vosOut pu t L oc a l D i r, and is the directory where a output summary is generated for

quick review. The string v i v aOu t pu t L oc a l D i r is the directory containing the VIVA

prediction output, and the v i v a I n p u t L oc a l D i r is the directory where basic-bare file

is stored. The string rmsSumma ry contains the experimental results, and the boolean

variable i s S t r a i n determines whether there is strain for amplitude analysis.

Output Directory Structure

The default output directory is (expRoot)/OUTPUT/VIVOS, and the summary graphs

will be written to the VIVOS/ALL_SUMMARIES directory

Output File Structure

The function runVIVOS writes three summary plots to files, namely the amplitude/s-

train comparison (An example figure is listed in Figure B-i 5), frequency comparison

(An example figure is listed in Figure B-16), and basic-bare used by viva (An example

figure is listed in Figure B-14). The (bas i c_ ba re). pdf file visualizes the hydrodynamic

database used to govern VIV in the VIVA simulator {10, 31. A hydrodynamic database

is represented by the following plots (in order from left to right and top to bottom):

i. lift - the lift coefficient in phase with velocity at A/D = 0;

2. added-mass - the corresponding added mass coefficient;

3. first-slope - the first slope of the lift curve;

4. second-slope - the second slope of the lift curve; and

5. nondimensional amplitude - is the value of A/D where the slope changes.

For the comparison figures, in the file names (con f i g) stands for a particular VIV

experiment configuration, N is the page number of a particular collection of plots, and

M is the total number of pages associated with a particular plot.

i. (conf i g)_di sp rmsnom_NofM. pdf indicates displacement comparison

2. (config)_strainrmsnom_N_of_M.pdf indicates strain comparison

3. (conf i g)_ f req1_nom. pdf indicates frequency comparison.

The function runVIVOS also writes three data files for each VIV event iterated

through. di gi dataEXP-di sp_(event number). pdf is the digital output of the ex-

perimental displacement/strain and di gi data_VIVAd isp_(event number). pd f is the

digital output of the viva displacement/strain predication. The file ve loci ty. OUT con-

tains the velocity profiles.

5-2-5 Simulation Visualization with Movies

The makeVIVMovi e function generates a movie of nominal VIV-based CF displace-

ment in risers, given the frequencies and complex amplitudes of vibrations predicted

by the VIVA simulator.

Interface

Usage

The vector even t Numbe r s shows the datacases in the experiment, pe r i ods is the num-

ber of cycles shown in the movie, pos i t i on indicates the position on the riser where

the movie is made, and f reqBounds limits the frequencies included in the movie. The

boolean variable useDomi nantHa rmoni cOnly determines whether only dominant har-

monic is used. The string con f i g refers to the configuration of VIV event, such as

whether it is with or without strakes and whether the flow is uniform or sheared. ex -

pname is the name of the experiment.

Output Directory Structure

The default output directory is (expRoot)/OUTPUT/MOVI E.

....

Output File Structure

The function makeVlVMovie writes one movie file and one summary file containing

spectrum analysis of natural frequency for each VIV event iterated through. N is the

page number of a particular collection of plots, and M is the total number of pages

associated with a particular plot. An example figure is listed in Figure B-17

i. (casenumber .avi)is the movie displaying the VIVA amplitude as a function of

time;

2. (summarycasenumber) shows the complex amplitude qI from VIVA, the dis-

placement time series, the reconstructed event spectrum with uniform random

phase, and the probability of harmonics.

5-2.6 Response Analysis

The Ch aos_i n_vIv function categorizes the span-time plane of VIV response into two

categories: steady-state response and chaotic response.

Interface

function Chaos inVI aiterva toleranpieepototuras

Usage

The string intervals is the number of time-axis subdivisions, while tolerance is a

measure of how big a peak in the PSD plot should be to be considered comparable

with the largest peak. Having a tolerance (tol) of 0.5 means that peaks of a height

that is 50% of that of the main peak are considered comparable. The variable i te r is

an iterator to VIV events. The variable expRoot is the experiment root directory, and

....

out put Fo rma t s is a cell array of output graph extensions. The string i n te r v als is the

number of time-axis subdivisions, while toe r an c e is a measure of how big a peak in

the PSD plot should be to be considered comparable with the largest peak. Having

a tolerance (tol) of 0.5 means that peaks of a height that is 50% of that of the main

peak are considered comparable. The variable i t e r is an iterator to VIV events. The

variable expRoot is the experiment root directory, and outputFormats is a cell array of

output graph extensions.

Output Directory Structure

The default output directory is (expRoot)/OUTPUT/CHAOS.

Output File Structure

The function makeVlVMovi e writes one summary file Chapli nloChaos for each VIV

event that is iterated to; an example figure is shown in Figure B-i8.

Chapter 6

Design Analysis

In this section, I will discuss the system, program, and statement-level optimization

strategies employed by VIV Suite to improve visualization performance for VIV.

6.1 Optimization Strategies

There are a number of optimization strategies that I employed in the renewal of VIV

Suite. System-level strategies optimize the performance of groups of programs or ma-

chines as a whole. Program-level optimization strategies deal with the performance

of individual programs. Finally, statement-level strategies deal with optimizing the

performance of programs at the statement level.

The specifications of the system I used to perform the experiments described in

this chapter are listed in Table A.i.

6.1.1 System-level Strategies

System-level strategies orchestrate groups of machines, either connected by a network

or by the bus on the same computer, with the goal of achieving high parallelization

ratios. Some approaches do this by encapsulating entire programs in virtual machines,

and others do this by hiding parallel computing facilities behind loop constructs.

Virtualization

Virtualization is one system-level optimization strategy: It consists of virtualizing

an application, such as MATLAB, in a virtual machine, and subsequently deploying

many copies of this virtual machine on host computers. Running multiple copies of a

computer that does the same computation on different inputs increases the effective

throughput of the computation; ideally, the increase is linear to the number of vir-

tual machines. Virtualization does not reduce the latency of a particular computation,

since one computation, with the same inputs and on the same computer, will always

take the same amount of time, barring all other changes.

I used virtualization to increase the effective throughput of scalogram computa-

tion for NDP 38 VIV events. I virtualized MATLAB in an Ubuntu 9.04 32-bit virtual

machine, and had the scalogram code installed in the virtual machine. I made multiple

copies of this machine and ran 10 of them on a total of 10 execution threads (cores)

spread through 3 computers.

MATLAB Paralleization

MATLAB has parallel execution paradigms, such as a parallel for loop, that allow it to

automatically parallelize programs for multiple cores. However, utilizing these parallel

constructs requires purchasing the Parallel Computation Toolbox, and thus I opted

not to try this route.

6.1.2 Program-level Strategies

Program level optimization strategies seek to optimize performance in time and space

at the level of individual programs and modules in these programs. File IO and ren-

dering are examples of program aspects that can be optimized.

Render Time Amortization

Sometimes legacy programs will compute data to be plotted and subsequently plot

the data in parts, since the available system memory limits the amount of data that

can be plotted simultaneously. Thus, these programs would divide the computation

into equal parts and iterate through each part, computing and plotting each result in

sequence. With the advent of 64 -bit machines, these memory considerations are no

longer an issue, so it is conceivable that computing and then plotting in batch may be

more efficient in time.

To validate my claim, I performed an experiment in which I generated and plotted

1, 4, 9, 16, 25, 36, and 49 plots of distinct sequences of 10000 uniformly distributed

random numbers. First, I generated data and plotted graphs interactively, intertwining

data generation and plot rendering. Second, I batched the computation and plotting

stages. In both cases, I measured the time taken to process as a function of the number

of subplots.

I found that when the number of subplots is on the order of 10 subplots or less,

computing and plotting in batch performs significantly better over time than inter-

active plotting does, and that for larger numbers of subplots, computing and plotting

in batch performs marginally better than interactive plotting does. The results of this

experiment are shown in Figure B-i.

As many visualizations in VIV Suite generate plots that have 0(10) or less subplots,

I was able to improve the time performance of many visualizations with this technique.

File I/O Amortization

Again, past legacy applications had to deal with memory limitations that sometimes

did not allow them to keep all their intermediate variables and plots in memory for a

particular computation. 64 -bit computers now allow process images to consume more

memory resources, so reducing the time cost of file I/O by rendering and writing all

plots in batch is possible.

I tested the following two approaches to amortize or eliminate the cost of file I/O

in VIV Suite.

1. Batch output figure writes - To validate my claim that batch disk writes are

more efficient than staged writes, I performed an experiment in which I gen-

erated, plotted, and saved 1, 4, 9, 16, 25, 36, and 49 plots of distinct sequences

of 10000 uniformly distributed random numbers. First, I interactively gener

ated, plotted, saved, and closed the figure with each successive subplot that was

added, loading the intermediately saved figure before each new subplot. Second,

I generated all the data to be plotted, plotted it in batch, and finally saved the

resulting plot to disk once. In both cases, I measured the time taken to process

the plots and save them to disk as a function of the number of subplots.

I found that for any number subplots, plotting in batch and saving once results

in time performance increases of 1 to 2 orders of magnitude as compared to

plotting and saving figures in stages. The results of this experiment are shown

in Figure B-2.

The VISCO visualization, which generates Mukundan's signal reconstruction

{81, and the VIVOS visualization, which compares experimental vibration RMS

data to simulated vibration RMS data, both deal with large numbers of subplots

as they generate their outputs. Both of these visualizations benefitted from the

amortization of file I/O, and became 10 to 100 times faster, as demonstrated by

my simple experiment.

2. Eliminating the use of temporary files - Legacy systems that have small

amounts of physical memory sometimes would not be able to hold the entire

state of an application in memory. Sometimes, instead of letting the VMM pag-

inate the portion of application state that does not fit in real memory, the appli-

cation intentionally persists all variables that are part of a frame to disk before a

frame switch, performs the frame switch, and then loads the variables necessary

for the new frame from disk. In this case, a frame switch means a function, or

instance method, call in MATLAB.

I performed an experiment in which I passed an array of floating point numbers

of increasing length to another function. I compared the time it took to pass

this array by value as a function parameter to the time it took to pass this array

through a temporary file on disk, as I increased the length of this array from 10

numbers to 10, 000 numbers.

I found that passing arrays (and by extension, matrices) of any size by value is

consistently one order of magnitude faster than writing the array to a temporary

file on disk, and subsequently reading it in the client function. The results of

this experiment are shown in Figure B- 3.

All of the previous visualizations used temporary variables to store their inter-

mediate application state and to communicate data between functions, as the

computers they were run on did not have enough memory to store all appli-

cation state in the MATLAB process image at the same time. By eliminating

the use of temporary files to pass data between functions, I have made frame

switches in VIV Suite one order of magnitude faster.

3. Passing variables between methods by handles, not by value - MATLAB

handle objects are like references in Java and pointers in C/C++. They represent

a non-decreasing integer sequence that is unique for each class, and each value in

this sequence addresses a specific instance of the class, as they are created. Pass-

ing object handles between functions and not between plain arrays and matrices

reduces the time needed to switch into a new function frame from an amount

that is proportional to the size of the parameters to an amount that is propor-

tional to the number of parameters, which is effectively constant.

I performed an experiment in which I pass an array of floating point numbers of

increasing length to another function. I compare the time it takes to pass this

array by value as a function parameter, to the time it takes to pass this array as

member state of a handle class instance, as I increase the length of this array

from 100 numbers to 10, 000, 000 floating point numbers (the equivalent of 40

MB of data, roughly the size of a large VIV event on disk).

I found that passing arrays (and by extension, matrices) up to 20, 000 floating

point numbers in size by value is consistently one order of magnitude faster than

passing the array by using handles. However, for arrays that are greater than

20, 000 floating point numbers in size, the frame switch time using handle classes

is bounded by 100 ps, whereas frame switch time when passing variables by

value is linearly proportional to the size of the array, and thus unbounded. The

results of this experiment are shown in Figure B- 4 .

Passing OOP class instances between methods enables frame switches in MAT-

LAB in constant time. I introduced object orientation to all parts of VIV Suite,

and thereby reduced the time spent in frame switches within VIV Suite func-

tions to 0(1).

6.1-3 Statement-level Strategies

Finally, I will discuss statement level optimization strategies including static array al-

location and the delegation of critical code sections to external programs. Sometimes

these programs are independent applications that are implemented in C or Fortran;

other times, they are dynamically loaded libraries that get run from within the MAT-

LAB process image.

Static Array Allocation

MATLAB allows programmers to define variables on the fly. Not only can undeclared

variables be referred to (and thus implicitly declared), they can also be resized, by

means of recursive assignment, on the fly Listing 6.1 shows an example of how to

statically preallocate all variable storage space needed before- entering a for loop.

Listing 6.1: Static Array Allocation

In contrast, Listing 6.2 shows how one can dynamically allocate an array in MAT-

LAB. This example appends a row of zeros to the extant my ze ros variable.

.....

Listing 6.2: Dynamic Array Allocation

Dynamic allocation of arrays, as shown in Listing 6.2 is inefficient because the

my zeros array has to be copied to a temporary store before being overwritten, so ap-

pending data incurs the same time cost as passing this array by value- (see Section 6.1.2)

to a function that does the appending. Therefore, by preallocating the necessary stor-

age space up front, as is done in Listing 6.1, one can make the time it takes to populate

(assign values to) an array or a matrix 0(n) relative to the size n of the array.

I performed an experiment in which I allocate arrays statically and dynamically. I

compare the time it takes to preallocate an array and use a for loop to set each of its

values to 1 to the time it takes to dynamically allocate and append the number 1 just

as many times. I increase the length of this array from 10 numbers to 10, 000 floating

point numbers.

I found that statically allocating and initializing arrays is consistently two to three

orders of magnitude faster than dynamically allocating and initializing them. In both

cases, allocation time is an increasing function of array size. The results of this exper-

iment are shown in Figure B-5.

Executing Critical Sections in Other Runtimes

Finally, the most subtle yet powerful way to optimize performance in time at the state-

ment level is to externalize individual statements into other execution runtimes. First,

one uses the profiler (in MATLAB) to find statements that require a large percentage

.......

of the total run time, and at the same time appear to have a time performance that

scales with the size of the input data. Such computationally intensive statements are

known as critical sections. Next, one analyzes whether the computation is paralleliz-

able, and whether changing the basis of the input data enables the computation to be

done faster. Finally, one must choose the interface for externalization. One could use

files as an interface to local programs, or the network as an interface to a collection of

networked computers, or direct memory access as the interface to dynamically loaded

binaries.

I used the MATLAB profiler to find a statement in the scalogram visualization

listed in Section 5.2.2 that was making scalogram computation take on the order of

one hour for a time record with 100, 000 samples. Convolution of complex signals

was being done in the time domain (O(n 2)) in this statement. Convolution is faster

in the frequency domain (O(n lg n)), and convolution is easily parallelizable when the

inputs are in the frequency domain, as convolution becomes elementwise multiplica-

tion. So, I decided to externalize this convolution to a C library that took advantage of

Intel processor-specific optimizations in the IPP (Intel Processing Primitives) signal

processing library. By externalizing this convolution, I was able to reduce the compu-

tation time for the scalogram visualization from one hour to around thirty seconds,

given a time series 100, 000 samples long.

6.2 Preparation to Migrate to Free Development Plat-

forms

Introduction of ETL processes, object orientation with classes, and separation of the

view (plotting API), model (VIV event domain), and distinct service / controller layers

(MVC) made VIV Suite a modern application that takes advantage of large amounts

of physical RAM. In particular, I demonstrated that the addition of OOP with classes

and the separation of application function into MVC layers enabled the visualizations

to be rendered many orders of magnitude faster than was previously possible.

Introducing OOP and the MVC design paradigm not only made the application

modern from an architectural point of view, it also completed the first step of porting

VIV Suite in its entirety to another platform. Currently, VIV Suite runs in proprietary

(MATLAB) and obsolete (Fortran) runtimes. The cost of maintaining VIV Suite in

the current platform is high, will rise as the number of MATLAB licenses required

increases, and is expected to rise even more as support for Fortran programs becomes

harder to find. Therefore, it is important that cost and deprecation risk be mitigated

by planning for migration to another platform.

Walling off the view layer into one group of classes (the Plotting API in Section 5-1)

makes it apparent exactly what plotting code needs to be implemented or adapted to

in another language. Again, using object-oriented classes throughout the application

makes porting VIV Suite to another language, such as C++ or Java, straightforward.

Chapter 7

Conclusion

To conclude, I will summarize my contributions to optimizing VIV visualization using

VIV Suite, and suggest routes for future work.

7.1 Contributions

In this thesis, I composed a detailed description of the data domain of VIV events

(Chapter 2). After analyzing the domain model, I gave an overview of the design of

VIV Suite, a collection of VIV visualizations (Chapter 3). Next, I described the do-

main model of VIV events and VIV event collections in the context of VIV Suite

(Chapter 4). I contributed efficient implementations of five time-domain, space-domain,

and frequency domain visualizations of VIV, described in detail in Chapter 5. Sub-

sequently, I demonstrated with empirical evidence (Chapter 6) that the modern ap-

plication paradigms I integrated in VIV Suite, such as object-oriented programming

(OOP), model-view-controller (MVC), and dynamic binary loading, contributed to an

implementation many orders of magnitude more efficient than its legacy implemen-

tation.

7.2 Future Work

In the future, I can see a number of extensions to VIV Suite that range broadly from

architectural changes to domain model changes to localized optimizations.

The largest and most important architectural change to VIV Suite is migration

from MATLAB/Fortran to C++. The first step in this migration would be to mitigate

execution risk by making sure all visualizations are exactly reproducible using a graph-

ics API that has handles in C or C++. For example, one keeps the interface of the

Plotting API but reimplement its back end to use another graphics library, such as

GNU plot or OpenGL. Finally, automating VIVA simulation runs to evaluate large

numbers of hydrodynamic databases is another step necessary to improve the current

VIV model. Automating VIVA simulation runs would require more domain state to

be represented in Vi v E ven t s.

VIV Suite's domain model is by no means complete; many hydrodynamic and

structural properties of VIV events, which are particular to each experiment, are de-

fined in scripts that generate VIVA simulator input files. As these properties are con-

stant for each experimental configuration, they may as well be defined in the ETL

I t e r at or for each configuration, and abstracted and represented as VIV event states

in the Vi vEvent class. Examples of VIV events' structural properties not yet repre-

sented in the Vi v Event abstraction, but required by the VIVA simulator include the

following: tension, segment length, inner and outer riser radii, and segment strake con-

figuration. Examples of hydrodynamic properties not yet represented in the Vi v E ven t

abstraction include Reynolds number, fluid density, and a time-variant representation

of the event's flow profile.

Experimental strain and displacement RMS are the guidelines against which VIVA

simulation results are evaluated in the VIVOS visualization. Thus, finding hydrody-

namic databases that minimize the difference between experimental and simulated

RMS is the goal of automating VIVA simulator and VIVOS runs. Currently, experi-

mental RMS data are generated and stored as a low-fidelity, intermediate representa-

tion of a VIV event alongside the raw event data. Since generating RMS data from

a VIV event is a computationally intensive process, one could write a C library and

use dynamic binary loading to make RMS generation a real-time procedure, just as

scalogram computation has become. Thus, RMS data can be generated on the fly, en-

abling the VIVOS visualization to depend solely on VIVA output and experimental

configuration-specific iterators.

70

Appendix A

Tables

Table A.i: Execution environment for optimization strategy tests

Item Specification
Processor Make Intel
Processor Model Xeon
Processor Die 2

Cores per die 4
Total cores 8
L2 Cache (per core) 256 KB
L3 Cache (per die) 8 MB
Memory 16 GB
Physical Store Hardware RAID 5 3+1 1.67 TB

Table A.2: Classification of Currently Available Data Sets

Name Experiment Type Diameter(m) Length(m) Max Flow(mls)
Chaplin Controlled 0.028 13-1208 0.9512

DEN Field 1.3081 1738.9 1.51

DENNEW Field 1.3081 1738.9 1-37

Miami Field 0.0363 152.5 2.6992

NDPio Controlled 0.02 9.63 2.38
NDP 38 Controlled 0.028 38 2.4

Schiehallion Field 1.207 378.8 1.24

74

Appendix B

Figures

Batch and Interactive Plot Times vs Data Set Size

x Interactive
0 Batch

x
0

6

x

0

x

x 0

0

)0
101

Data set size (number of subplots)

Figure B-i: A comparison of computation and render time for MATLAB subplots
generated interactively and in batch.

-0.210

1003

10
10

C

0
0

E

10-0 7

10 0.8

Batch and Interactive Plot and Save Times vs Data Set Size

x Interactive
0 Batch

x

0

x

x

x

0

00

00

0O

0O

100 101
Data set size (number of subplots)

Figure B-2: A comparison of computation, render, and save time for MATLAB sub-

plots generated and saved interactively and in batch.

101

0
0
a)

E

CO

10

.....

Performance of variables passed by value and passed by writing temp files vs Data Set Size

x Temp Files x
0 Value x

x

x
x 0

0
0

0
0

0

0 0 000
00

- O ~
0

103
Variable size (number of floating point numbers)

Figure B- 3 : A comparison of frame switch times when passing variables by value, and
when passing by using temporary files.

0 1

10-2

10 -3

10 4

105

10 2

Value and Handle Frame Switch Times vs Variable Size

x Value
o Handle

x10
x x

C xx x

10%
E XE

x xEa)

E- x

xx

10 OQO

102 103 4 105 106 10

Variable size (number of floating point numbers)

Figure B- 4 : A comparison of frame switch times when passing variables by value, and
when passing by using handle class instances.

..............

10~1

10-2

103

104

Performance of static and dynamic array allocation vs array size

x Dynamic
0 Static

xx

10 102 103
Array size (number of floating point numbers)

Figure B- 5: A comparison of static and dynamic array allocation times versus array size

Chaplin 10 CF Accel MSS

Om 1m 1m 1m

1.5 10 15 6

1 10 4
5

0.5 5 2

01 0^ 0 0
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

2m 2m 3m 3m

1 3 10 10

2
4 0.5 5 5

E 1
E

0 - 0 - - - - 0 0 -
a 0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6
C,

3m 4m 4m 5m

10 3 1 3

t 2 2
5 0.5

1 1

0 0 - 0 0 -
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

5m 6m 6m 6m

6 6 2 1

4 4
1 0.5

2 2

0 IV 1 0 0 - - 0
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

Frequency (Hz)

Figure B-6: The mean-squared spectrum of the acceleration signals measured at each
of the accelerometers along the span of the riser in Chaplin event number 10. The
length of the riser is 13.12m, tension at the top of the riser is 800N, and the flow
velocity is 0.54m/s.

Chaplin 10 CF Accel Natural Frequency Buckets

Om 1m 1m 1m

3 6 10 6

2 4 4
5

1 2 2

0 - - 0 - - - 0 0 -
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

2m 2m 3m 3m

2 4 6 10

4
1 2 5

2

0F 0 0 -0
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

E
3m 4m 4m Sm

6 4 2 4

4
2 1 2

0. 0 0 - 0
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

5m 6m 6m 6m

6 6 4 2

4 4
2 1

2 2

0 0 0 - - 1 0
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

Frequency (Hz)

Figure B- 7: The natural frequency content of the acceleration signals along the span
of the riser in Chaplin event numer 10, as computed from its mean squared spectrum.
The length of the riser is 13.12m, tension at the top of the riser is 800N, and the flow
velocity is 0.54m/s.

Chaplin 10 CF Displacement MSS

Om 1m 1m 1m
x10o5 x 10 5 X10-5 X10-5

1 6 6 3

4 4 2
0.5

2 2 1

0 0 0 0
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

2m 2m 3m 3m
x 10, x10 x 10 x 10-

4 1.5 4 6

1 4
E 2 2
E 0.5 2

as 01 0 _ - jJ-01 - R - 1 01
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

3m 4m 4m 5m
X10 -5X10 5 x 10, x 10,

4 1.5 3 1.5
C

1 2 1
2

0.5 1 0.5

0 0 - 0 - -- 0 -
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

5m 6m 6m 6m
x 105 x10 x 10- x 10

3 3 1 3

2 2 2
0.5

1 1 1

0 0 ' 0 0
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

Frequency (Hz)

Figure B-8: The natural frequency content of the displacement corresponding to each
accelerometer in Chaplin event number 10. The length of the riser is 13.12m, tension
at the top of the riser is 800N, and the flow velocity is 0. 54m/s.

.............

Chaplin 10 CF Displacement Amplitude Buckets

Om Im 1m 1m

0.01 0.02 0.02 0.015 W

0.01
0.005 0.01 0.01

0.005

0 0 0 0
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

2m 2m 3m 3m
x 10~

6 0.01 0.02 0.02

4
0.005 0.01 0.01

E 2

SI0 0 0 - T001

(0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6
-a

3m 4m 4m 5m

Cr 0.02 0.015 0.01 0.015

0.01 0.01
0.01 0.005

0 - 0.000 0 0.005
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

5m 6m 6m 6m
x 10-

0.015 0.015 0.01 6

0.01 0.01 4
0.005

0.005 0.005 2

0 - 0 - 0 0
0 2 4 6 0 2 4 6 0 2 4 6 0 2 4 6

Frequency (Hz)

Figure B-9: The natural frequency content of the displacement amplitude, corre-
sponding to each accelerometer in Chaplin event number 10. The length of the riser
is 13.12m, tension at the top of the riser is 800N, and the flow velocity is 0.54m/s.

Chaplin case 10 ChaplinBare gauge 8 spectrum CFAccel
at norm. span 0.234 at Strouhal 3.297 Hz at 39.99 seconds

A

CFAccel Power 20

Figure B-io: A scalogram of the CF acceleration measured at the eighth accelerometer
in Chaplin event 10. The length of the riser is 13.12m, tension at the top of the riser
is 800N, and the flow velocity is 0.54m/s.

85

Chaplin ChaplinBare Nondimensional CF Displacement RMS vs Nondimensional Span

Case 101/1 Case 111/1

Case 121/1 Case 181/1

0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

Nondimensional span

Figure B-u: Summary plots of reconstructed displacement RMS with experimental
displacement RMS values superimposed thereupon for Chaplin events numbers 10,
11, 12, and 18. The length of the riser is 13.12m, tension at the top of the riser is
800N, and the flow velocity is 0.54, 0.60, 0.65, and 0.95m/s, respectively.

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

............

Chaplin ChaplinBare CF Microstrain RMS vs Nondimensional Span

Case 10 1/1 Case 11 1/1

Case 12 1/1

0 0.2 0.4 0.6 0.8 1

Case 18 1/1

Nondimensional span

Figure B-12: Summary plots of reconstructed strain RMS with experimental strain
RMS values superimposed thereupon for Chaplin event numbers 10, 11, 12, and 18.
The length of the riser is 13.12m, tension at the top of the riser is 800N, and the flow
velocity is 0.54, 0.60, 0.65, 0.95m/s, respectively.

...

Case 10 1/1 CF Nodal Evolution Curves

I ila o mumm umm eo m m!il

2
0 4

M,/ O , fl),

0.8

1
0 5 10 15 20 25 30 35

Time [s]

Case 10 1/1 Abs[Y(k,f)]

.

-5 0 5
f [Hz]

Case 10 1/1 Power Spectral Density

0 5 10
f [Hz]

15 20

0.03

0.02

0.01

CO

0

-0.01

9 -0.026

-0.03
0

Case 10 1/1 ChaplinBare Gauge 24 Time Series CFdisp
at Norm. Span 0.734

5 10 15 20 25
Time (s)

30 35

Figure B-13: Visualization of the reconstruction of Chaplin event number 10. The
top-left plot is the nodal crests plot that differentiates between standing and traveling
waves in a VIV event. The top-right plot is the 2-D Fourier transform of the 500
reconstructed acceleration signals uniformly distributed along the span of the riser.
The bottom-left plot is the span-averaged PSD of CF acceleration. The bottom-right
plot shows the CF displacement time series at the 75% span point along the riser.
The length of the riser is 13.12m, tension at the top of the riser is 800N, and the flow
velocity is 0.54m/s.

88

C
0

0
a-

cc

0.25

0.2

0.15

0.1

0.05

U
LL

CM

L

C

50

00-

50-

1 1

WMMMMk._ - MIIIIIIM

menaisilmminilwommitir a e ollimiurommodommm

-

I F IRNYM k0f. 11 1 , I I . I

Civ at A*=0 as a function of 1Nr

0 0.2 0.4 0.6 0.8

2nd CIV slope as a function of 1Nr A* whe

Basic bare hydrodynamic database

C at A*=0 as a function of 1Nr

0.2 0.4 0.6 0.8

1st CIV slope as a function of 1Nr

0.5 -

0.2 0.4 0.6 0.8

re CIv slope changes as a function of Nr

0.4

0.3

0.2

0.1

1 '0-
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8

Figure B-14 : The bas i c_ba re hydrodynamic database. These five plots, from left to
right and top to bottom, are all functions of reduced (nondimensional) frequency. The
first plot displays the lift coefficient in phase with velocity. The second plot shows the
added-mass coefficient. The third plot represents the first slope of the lift coefficient
in phase with velocity. The fourth plot is the second slop of the lift coefficient in phase
with velocity. Finally, the fifth plot displays nondimensional amplitude A* = A/D,
where the slope changes from the first to the second slope.

2.

Chaplin Non-dimensional amplitude rms versus non-dimensional span page 1 of 1

10 11

U.

10 0 "
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 10

EE

0 oL
0~3:

12 18
E 0.7 1 -

Z 0.6 071

0.6 0.8- -

0.5 0.8
0 .0.5 0.6

0.40
0 0 .0 -0.4 0 -0.6

0.3 03 04 - * * *

1 01 0.2

0 0.2 0.4 0.6 0.8 1 0 02 0.4 0.6 0.8 1

Nondimensional span

Figure B-15: Summary plots of simulated displacement amplitude RMS with exper-
imental displacement amplitude RMS values superimposed thereupon for Chaplin
event numbers 10, 11, 12, and 18. The length of the riser is 13.12m, tension at the
top of the riser is 800N, and the flow velocities are 0.54, 0.60, 0.65, and 0.95m/s re-
spectively.

Chaplin Theoretical Vs Experimental frequency comparison

E
S1.5-

0.5-

01
10 11 12 13 14 15 16 17 18

Datacase number

Figure B-16: Plot of the ratios of simulated harmonic frequency to experimental har-
monic frequency for the Chaplin event numbers 10, 11, 12, and 18. The length of the
riser is 13.12m, tension at the top of the riser is 800N, and the flow velocities are 0.54,
0.60, 0.65, and 0.95m/s respectively.

ndp38 Event 5170 Summary

x 10-3 Complex Amplitude IP from VIVA

3

2 4
Frequency (Hz)

6 8

x 10-3 Displacement Time Series at 300 th pt
5 1 1 1 1

E

-5

.5

3-

.5 -

2-

.5-

.5-

0 0 O'. O) '
0 2 4 6 8

Frequency (Hz)

X 10-3 Amplitude with Uniform Random Phase

5-

4-

3-

2

1

n Q'

2 4 6
Time (s)

Harmonic Probability from VIVA

4
Frequency (Hz)

Figure B-17 : NDP Sheared Straked 50% event number 5170 harmonic frequency and
amplitude summary plot. From left to right and top to bottom, the first plot is a
plot of the VIVA prediction of complex amplitude of CF displacement harmonics
at a particular point along the span of the riser. The next plot is the time-domain
representation of CF displacement at the same point on the riser. The third plot is
shows the VIVA harmonics and their complex amplitudes in the frequency domain
with random phase # added. The random phase has a uniform distribution over the
interval [0, 27r]. Finally, the last plot shows the VIVA prediction of the probability
that each harmonic will exhibit itself in a marine riser, given the same experimental
conditions. The length of the riser is 38m, tension at the top of the riser is 5000N,
and the flow velocity is 0.9m/s.

0.7-

0.6-

0.5-

0.4-

0.3-

0.2-

0.1 -

0-
0

...

Chaplin ChaplinBare Case 12

12

C
0

(D,
N

4

2

0 5 10 15 20 25 30 35
Time (s)

Figure B-18: The response analysis visualization for Chaplin event number 12. The
blue regions indicate steady-state response, while the red regions indicate chaotic re-
sponse. The length of the riser is 13.12m, tension at the top of the riser is 800N, and
the flow velocity is 0.65m/s.

94

Bibliography

[i Halvor Braaten, Henning; Lie. NDP riser high mode VIV tests main report.
Technical report, Norwegian Marine Technology Research Institute., 2004.

[21 J.R. Chaplin, PW Bearman, Y Cheng, E. Fontaine, J.M.R. Graham, K. Herfjord,
F.J. Huera Huarte, M. Isherwood, K. Lambrakos, C.M. Larsen, J.R. Meneghini,
G. Moe, Rj. Pattenden, M.S. Triantafyllou, and R.HJ. Willden. Blind predictions
of laboratory measurements of vortex-induced vibrations of a tension riser. Jour-
nal of Fluids and Structures, 21(1):25 - 40, 2005. Fluid-Structure and Flow-Acoustic
Interactions involving Bluff Bodies.

[31 Filippos Chasparis. Vortex-induced motions of marine risers: Straked force
database extraction and transient response analysis. Master's thesis, Mas-
sachusetts Institute of Technology, Department of Mechanical Engineering, June
2009.

[41 Richard Harris. BP's Own Numbers Prove Spill Greater Than Estimate. National
Public Radio, May 2010.

[5} Clifford Krauss and Elisabeth Rosenthal. The Price and Who Pays: Updates
From the Gulf. New Tork Times, page Ai8, May 13 2010.

[61 2H Offshore Engineering Ltd. Riser VIV response parameter review and visual-
ization. Technical report, 2H Offshore Engineering Ltd, 2003.

[71 James C. McKinley Jr. and Campbell Robertson. Oil Is Fouling Wetlands, Official
Says. New York Times, page A20, May 20 2010.

[81 H. Mukundan. Vortex-induced vibrations of marine risers: motion and force recon-
struction from field and experimental data. PhD thesis, Massachusetts Institute of
Technology, Department of Mechanical Engineering, June 2008.

[91 T Sarpkaya. A critical review of the intrinsic nature of vortex-induced vibrations.

Journal of Fluids and Structures, 19(4):389 - 447, 2004.

{i0 G. Triantafyllou. Vortex induced vibrations of long cylindrical structures. In
Proceedings of the ASME Summer Meeting, volume 50, pages 1-8, Washington, DC,
1998. American Society of Mechanical Engineers.

{i1 M. Triantafyllou, G. Triantafyllou, Y Tein, and B. Ambrose. Pragmatic riser VIV
analysis. In Offshore Technology Conferenc&, Houston, TX, May 1999.

[121 Michael S. Triantafyllou. The dynamics of taut inclined cables. Journal of Me-
chanics andApplied Mathematics, 37:421-440, 1984.

{131 Michael S. Triantafyllou. VIVA: Programs for Calculating Riser Vortex Induced Os-
cillations and Fatigue Life. Massachusetts Institute of Technology, Testing Tank
Facility, Cambridge, MA, 2006.

[141 J. K. Vandiver, H. Marcollo, S. Fantone, V. Jaiswal, V. Jhingran, and S. Swithen-
bank. DeepStar 7402 Miami 2004 Riser Report. Technical report, Massachusetts
Institute of Technology, Department of Ocean Engineering, 2004.

