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Abstract

A myriad of uncontrollable factors in airline operations make delays and disruptions
unavoidable. Most conventional scheduling models, however, ignore the presence of
uncertainties in actual operations in order to limit the complexity of the problem.
This leads to schedules that are prone to delays and disruptions. As a result,
there has been wide interest recently in building robustness into airline schedules.
In this work, we investigate slack allocation approaches for robust airline schedule
planning. In particular, we propose three models: aircraft re-routing model, flight
schedule re-timing model, and block time adjustment model, together with their
variants. Using data from an international carrier, we evaluate the impacts of the
resulting schedules on various performance metrics, including passenger delays. The
results show that minor modifications to an original schedule can significantly improve
the overall performance of the schedule. Through empirical results, we provide a
comprehensive discussion of model behaviors and how an airline’s characteristics can
affect the strategy for robust scheduling.
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Chapter 1

Introduction

1.1 Airline Schedule Planning

The airline schedule planning process involves considerable complexities in airline

operations. A large number of interconnected elements in an airline schedule, such as

origin and destination airports, gates, airport slots, aircraft types, crew restrictions,

aircraft maintenance requirements and passenger demands, need to be taken into

account. As a result, the problem size becomes too large to be solved in a single

optimization model. Conventionally, the schedule planning process is decomposed

into four subproblems: (1) schedule design, (2) fleet assignment, (3) aircraft mainte-

nance routing, and (4) crew scheduling. We provide here a brief description of each

subproblem. For interested readers, comprehensive overviews of the airline schedule

planning process and detailed literature reviews are presented in Barnhart et al. [4]

and Belobaba et al. [6].

1. Schedule Design The goal of this subproblem is to select and schedule a set

of flight legs to be operated by an airline, given the desired markets to serve. Each

flight leg in an airline flight schedule is specified by an origin airport, a destination

airport, a scheduled departure time, and a scheduled arrival time. Because an airline’s

flight schedule is very critical to its competitive position and profitability, a schedule

development process requires collaboration between many business units to resolve

all tactical and operational issues that may arise from the resulting schedule, and
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therefore the use of optimization models to generate ”optimized” flight schedules is

still limited.

2. Fleet Assignment Given a flight schedule from the previous subproblem, the

fleet assignment problem is to assign a specific aircraft type to each flight leg such

that the cost of assignment is minimized. This cost includes the cost of operating

a flight leg with a specific aircraft type and the spill cost– the opportunity cost of

having insufficient seating capacity to satisfy passenger demands. Additionally, an

assignment is feasible only if it requires no more aircraft of each type than is available,

and only if the flow of each aircraft type is balanced across the airline network, and

thus allowing the schedule to be repeated periodically.

3. Aircraft Maintenance Routing Given a flight schedule and a fleet assign-

ment obtained in the previous steps, the aircraft maintenance routing problem is to

assign specific aircraft (i.e., tail number) to each flight leg such that each aircraft’s

routing–the sequence of flight legs it operates–allows periodic maintenance checks

after a certain number of flying hours. In general, the main purpose of this problem

is to obtain a feasible solution, rather than an optimal solution with respect to some

objective function.

4. Crew Scheduling Given the solutions to the three preceding steps, the crew

scheduling problem is to assign cockpit and cabin crews to each flight leg such that the

crew cost is minimized. A crew schedule must satisfy numerous work-rule restrictions

as well as collective bargaining agreements between the airline and its employees.

Because of the complexity of this problem, it is typically divided further into two

sequential subproblems, namely, the crew paring problem and the crew assignment

problem. In the crew paring problem, minimum cost multi-day sequences of flight

legs, called pairings, are created. These pairings must satisfy all the work-rule

restrictions. The crew assignment problem then combines the pairings into month-

long crew schedules, called bidlines or rosters and assigns them to each crew according

to their preferences and priorities.

Because of the dependency among the subproblems, sequentially solving these

subproblems typically yields a suboptimal solution. In the past few decades, nu-
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merous efforts have been made to integrate some of these subproblems in order to

improve the solution quality. Nonetheless, for large airlines, no single optimization

model capturing every element in the airline scheduling process has been deployed

successfully.

Additionally, these subproblems are in fact still so large and complex that op-

timization models are typically solved deterministically, i.e., assuming that every

flight will be operated as planned. Ignoring the presence of uncertainties in actual

operations results in schedules that are vulnerable to delays and disruptions, thereby

incurring higher operational costs.

1.2 Delays and Disruptions in Airline Operations

Delays and Disruptions are inevitable in airline operations due to many unforeseeable

factors such as congested airports, adverse weather conditions, crew sickness, and air-

craft mechanical problems. The impact of delays is exacerbated when they propagate

to subsequent flights through an airline’s interconnected network. Large delays can

also lead to flight cancellations and passenger misconnections, causing passengers to

wait for several hours for the next available flight. Fearing, Vaze, and Barnhart [17]

estimate passenger delays for U.S. domestic flights in 2007. The results show that just

over 50% of the passenger delays are caused by flight delays; a third of the passenger

delays are caused by flight cancellations; and nearly a sixth of the passenger delays

are caused by missed connections.

To emphasize the impact of delays in the U.S., we present here some statistics

from the report by the Joint Economic Committee (JEC) [32]. In 2007, 4.3 million

hours of flight delays cost as much as $41 billion to the U.S. economy. These delays

lead to $19 billion of direct operating costs to airlines. About 740 million extra gallons

of jet fuel were consumed by the delayed flights, resulting in an additional 7.1 million

metric tons of carbon dioxide emissions into the atmosphere. Assuming a value of

$37.60 per delay hour per passenger, the delay cost to passengers was valued at up

to $12 billion. Note that this calculation does not include the passenger delays due
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to misconnections and flight cancellations.

1.3 Robust Airline Schedule Planning

The significant impacts of delays and disruptions have motivated wide interests in

building robustness into airline schedules, i.e., proactively making them more resilient

to delays and disruptions, as opposed to the conventional deterministic scheduling

models which ignore the presence of uncertainties in actual operations.

The key challenge of robust airline schedule planning is to define robustness of

a schedule such that it well reflects desired characteristics and can be captured in

a tractable mathematical model. We provide a detailed review of robust airline

scheduling literature in Section 2.1.

In this thesis, we investigate slack allocation approaches for robust airline schedul-

ing. Slack is defined as additional time allocated beyond the minimum time required

for each aircraft connection, passenger connection, or expected flight duration. To

minimize operating costs, airlines have made numerous efforts to increase the uti-

lization of all resources in their operations, often resulting in the minimization of

schedule slack. Slack, however, is desirable in robust schedules as it can potentially

absorb delays in an airline network, reduce the likelihood of operational disruptions,

and provide flexibility to recover once the operation is disrupted. Therefore, we seek

to re-allocate, rather than simply increase, existing slack in schedules in order that

the resulting distribution of slack is more effective in absorbing delays and minimizing

disruptions.

For a more general discussion of irregular operations and control in air transporta-

tion, readers are referred to Ball et al. [3] and Kohl et al. [22].

1.4 Contributions

Our contributions in this thesis can be summarized as follows:

1) We propose a new visualization method that facilitates understanding of robust
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schedule behaviors.

2) We provide a modeling framework for robust slack allocation in airline schedule

planning. In particular, we propose three robust slack re-allocation models: the

robust aircraft re-routing model, the robust flight schedule re-timing model, and

the robust block time adjustment model, together with their variants. These

models have different sets of underlying assumptions and affect the distribution

of slack in the system in different manners. Additionally, we introduce a notion

of effective slack, which is proved to serve as a good robustness proxy in many

cases.

3) We present the proof-of-concept results obtained using data from an inter-

national carrier. The results show that minor modifications to an original

schedule can significantly improve the overall performance of the schedule.

Unlike many works in the literature that focus mainly on improving robustness

of a schedule with respect to a particular objective, we evaluate the impacts

of the resulting schedules on different performance metrics, including passenger

delays and delay propagation. The results exhibit the trade-offs among different

performance evaluation metrics. Along with the proof-of-concept results, we

thoroughly examine the behaviors of the robust routing and scheduling models

presented in this work; and we provide a comprehensive discussion of how

different characteristics of an airline can affect the strategy for robust schedule

planning.

1.5 Thesis Outline

The structure of the rest of the thesis is as follows. In Chapter 2, we provide back-

ground information on robust airline schedule planning, including a survey of related

literature and some performance evaluation metrics that we will use extensively in

this work. To facilitate understanding of a schedule’s performance, we introduce

the visualization that we develop and use in addition to data tables and aggregate
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statistics. At the end of the chapter, we define different types of slack and describe

how an airline can strategically re-allocate slack in its schedules to minimize delays

and disruptions.

In Chapter 3, we present the optimization models for different slack re-allocation

schemes, namely, the robust aircraft re-routing model, the robust flight schedule

re-timing model, and the robust block time adjustment model. For each slack re-

allocation model, we also provide alternative objective functions that can potentially

result in more robust solutions or different solutions that are robust with respect to

different performance evaluation metrics.

In Chapter 4, the proof-of-concept results, obtained using data from an inter-

national carrier, are presented. We analyze the performances of the solutions to

the robust slack re-allocation models proposed in this work. In parallel with the

performance analysis, we provide a discussion of model behaviors and how the strategy

for robust schedule planning depends on the characteristics of an airline’s flight

network.

In Chapter 5, we discuss possible future research topics that build upon the

research and results of this thesis.
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Chapter 2

Background

2.1 Robustness in Airline Scheduling: Literature

Review

Ehrgott and Ryan (2000) [16] develop a bicriteria optimization framework for solving

a crew scheduling problem. Two objective functions are cost and robustness. Ro-

bustness of a schedule is obtained by penalizing a pairing that has a connecting time

less than the expected delay and requires crews to change aircraft. A violation is

measured by the amount by which the expected delay of an incoming flight exceeds

the scheduled connecting time. The detail of an expected delay calculation, however,

is not provided. They use the ε-constraint methods to solve the bicriteria optimization

problem. In particular, one objective is incorporated as a constraint with an upper

bound of ε on its value in the optimization problem of the other objective. Although

only preliminary results are presented, they sufficiently demonstrate the trade-off

between cost and robustness in airline crew scheduling.

Ageeva (2000) [1] constructs robust schedules by maximizing the number of air-

craft swap opportunities. Two aircraft ”meet” if their routes contain a common

station within a specific period of time. If two aircraft meet twice along their routes,

then they can be swapped at the first meeting point and swapped back to their

original routes later. These overlapping routes provide flexibility to recover when the
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planned schedule is disrupted. The traditional string-based aircraft routing model is

used to obtain the optimal cost of the problem. Then, among the solutions with the

optimal cost, the most robust one is selected. The results show that the robustness of

the final solution can be improved as much as 35% compared to the original solution.

Nonetheless, the operational performance of the approach is not provided.

Rosenberger, Johnson, and Nemhauser (2004) [26] develop a robust fleet assign-

ment model that includes many short cancellation cycles and reduces hub connectiv-

ity. A cancellation cycle is a sequence of flight legs in an aircraft rotation that begins

and ends at the same airport. A rotation with short cancellation cycles can decrease

the number of flight legs that need to be cancelled when a rotation is disrupted. Hub

connectivity is defined as the number of flight legs in an aircraft rotation that begins

at one hub, ends at a different hub, and only stops at spokes. Having limited hub

connectivity in a rotation can mitigate the impact of propagated disruptions from one

hub to others. SimAir, a simulation of airline operations, together with a recovery

module, is used to evaluate the resulting assignments. Crews, however, are excluded

from the simulation. The results show that the performance of this approach is more

robust than that of the traditional fleet assignment model.

Kang (2004) [21] presents a new approach to obtain robust schedules by incor-

porating degradability into the existing schedule. She divides the existing schedule

into independent sub-schedules or layers, so that disruptions in one layer will not

propagate to other layers. Moreover, each layer is prioritized based on revenue.

When disruptions occur, airlines can take appropriate actions based on the priority

of each layer. Degradability can be incorporated into the existing schedule in three

stages: schedule design, fleet assignment, and maintenance routing. It is shown that

considering degradable scheduling earlier in a schedule planning process yields a better

objective function value. MEANS, the MIT Extensible Air Network Simulation, is

used to simulate the airline operations. Even though the average flight delay and

passenger delay of the degradable schedules are about the same as those of the

traditional schedule, the distributions of delays among different layers are as expected,

i.e., a higher priority layer suffers much less delay and fewer cancellations. The
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difference between each layer is even more significant under bad weather conditions.

In addition, the degradable airline schedules also lead to lower recovery cost in most

cases.

Schaefer et al. (2005) [28] solve a crew scheduling problem using a new approach

that takes uncertainty into account. They modify the cost coefficients in a traditional

crew scheduling model, which is modeled as a set partitioning problem, to reflect the

actual costs in operations with disruptions. Two methods are proposed: 1) using

the expected cost of a pairing, and 2) using a penalty parameter. In the former

method, they use SimAir, a Monte Carlo simulation of airline operations, to find the

expected cost of a pairing. The penalty method penalizes a pairing with particular

properties that may bring about poor performance when disruptions exist. Note that

this penalty is not limited to an additive penalty, as implemented in Ehrgott and Ryan

(2000). The results from simulations show that the performance of crew schedules

from both proposed methods are better than a traditional approach, which does not

take uncertainty into account.

Lan, Clarke, and Barnhart (2006) [24] solve a robust aircraft maintenance routing

problem (RAMR) by formulating a traditional string-based model with an objective

of minimizing total expected propagated delay. The key idea is that the impact

of propagated delay can be mitigated by cleverly routing aircraft and allocating

slack to absorb delay propagation. They solve a deterministic mixed-integer linear

program using a combination of column generation and branch-and-price technique.

The results show that this approach can improve on-time performance, and decrease

total propagated delay as well as the number of disrupted passengers– ones that

miss connections. In addition to the robust aircraft maintenance routing model,

they propose a robust flight schedule re-timing model (RFSR) that minimizes the

expected number of disrupted passengers. In this model, the departure time of

each flight is allowed to move within a small time window. Using the basic flight

network, the solution of this model contains exactly one of the flight arc copies placed

within the flight’s time window. They again solve the problem using a branch-and-

price technique. The results show that the optimal solution decreases the number of
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disrupted passengers by about 40% for a 30-minute time window.

Yen and Birge (2006) [33] model a crew scheduling problem as a two-stage stochas-

tic integer program minimizing the expected cost. Their work can be considered as

an extension of Schaefer et al. (2005). The major difference is that this model

also captures disruption interactions among crew pairings. In particular, the first

stage of the model solves the crew scheduling problem, minimizing expected costs,

and the recourse problem minimizes the expected costs owing to crews switching

planes. In order to solve this stochastic integer programming problem, they propose

the flight-pair branching algorithm, which produces smaller branching trees than the

traditional crew-pairing branching. The results exhibit the trade-off between planned

crew costs and recourse delay costs. Moreover, the algorithm leads to pairings with

smaller numbers of crew plane changes and larger connection times. These results

are consistent with the work by Ehrgott and Ryan (2000).

Shebalov and Klabjan (2006) [29] present a new approach to constructing robust

crew schedules that increases flexibility for recovery. They introduce the idea of move-

up crews– ones that can potentially be swapped in operations. The model maximizes

the number of move-up crews with a restriction on an increase in crew costs. They

solve this problem by using a combination of column generation and Lagrangian

relaxation. The results suggest that increasing the number of move-up crews brings

about a decrease in operational crew costs because robust solutions require fewer

deadheads, need fewer stand-by crews, and yield fewer uncovered legs. Nevertheless,

a saving in crew costs only materializes when irregular operations occur. Otherwise,

robust solutions result in higher crew costs.

Smith and Johnson (2006) [31] introduce a notion of station purity in the fleet

assignment problem. By imposing station purity, the number of fleet types serving

each station (or airport) in the schedule is limited to the station’s purity level. Station

purity is beneficial to airlines because it increases swap opportunities for both aircraft

and crews to recover from delays and disruptions. Moreover, it can potentially reduce

an airline’s maintenance costs because each station does not have to hold fleet-specific

equipment, stock additional spare parts, and maintain qualified maintenance crews
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for many fleet types. They develop a station decomposition approach and a fix-

and-price heuristic in order to solve this problem efficiently. The results show that

station purity can significantly reduce maintenance costs and crew costs, resulting in

an estimated increased profit of $129 million per year. This figure does not include

potential savings in actual operations.

The idea of station purity is extended to the crew planning in Gao, Johnson, and

Smith (2009) [18], where the number of crew bases serving each airport is limited.

AhmadBeygi, Cohn, and Lapp (2008) [2] propose a flight schedule re-timing

model that minimizes the propagation of root flight delays. In order to approximate

propagated delays in the objective function, they simulate propagation of delays

from multiple resources (aircraft, crews, passengers, etc.) using propagation trees.

Because of the interconnectivity among different resources, any given flight might

experience multiple flight delays from different sources simultaneously. In this case,

their algorithm does not accurately estimate propagated delays. In contrast to

the robust flight schedule re-timing model (RFSR) proposed by Lan, Clarke, and

Barnhart (2006) [24], their formulation does not make use of flight copies. Instead,

the changes in flight departure times are allowed to take any integral value within

the specified time windows. Additionally, they show that the formulation is integral,

given integral input data, and thus can be solved efficiently by relaxing the integrality

constraints. In the computational experiments, they consider only delay propagation

due to aircraft and cockpit crews, and the solutions are evaluated based on the

objective function. The propagated delay reductions achieved by their solutions range

from approximately 5% to 50%, depending on the time window sizes.

Eggenberg (2009) [15] proposes a general framework for solving an optimization

problem subjected to uncertainty, called the Uncertainty Feature Optimization (UFO)

framework. The underlying idea of this framework is to model the desired characteris-

tics of the solution as Uncertainty Features (UF) for which we want to maximize. He

shows that, with appropriate uncertainty features, the UFO framework is equivalent

to a general stochastic programming approach and the robust optimization formu-

lation proposed by Bertsimas and Sim (2004) [8]. To apply the UFO framework to
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the aircraft re-routing model and the flight re-timing model, the uncertainty feature

is defined as the total aircraft connection slack and the sum of minimum aircraft

connection slack in each aircraft route. He compares the performances of his models

to the early versions of our robust aircraft re-routing model and robust flight schedule

re-timing model. The computational results show that without an explicit use of

historical delay data, his models tend to generate solutions that perform adequately

well with respect to every performance metric; while our models that make extensive

use of historical delay data can significantly improve the performance metrics that

are positively correlated with the objective function but might perform worse with

respect to the other metrics.

Burke et al. (2009) [11] propose a multi-objective approach for robust airline

schedule planning. In particular, they consider two robust objective functions– sched-

ule reliability and schedule flexibility. The value of schedule reliability is defined by the

non-linear function of probabilities of on-time departures, and the value of schedule

flexibility is defined by the number of aircraft swap opportunities. Moreover, their

model allows aircraft re-routing and flight re-timing simultaneously. They approxi-

mate the Pareto optimal front using a multi-meme memetic algorithm– a hybrid of

genetic algorithms with multiple local search operators. The computational results,

obtained using KLM’s simulation model [20], demonstrate the trade-off between

reliability and flexibility in the schedules, and the increased reliability and flexibility

result in the better on-time performance.

Marla and Barnhart (2010) [25] apply general robust optimization approaches,

namely, the extreme-valued based approach of Bertsimas and Sim [7, 8] and the

chance-constrained programming approach of Charnes and Cooper [12, 13], to the

aircraft routing problem and compare to the problem-specific approach– the robust

aircraft maintenance routing model proposed by Lan, Clarke, and Barnhart (2006)

[24]. Through the empirical results, they investigate the behaviors of each model and

provide a comprehensive discussion of the trade-offs among the different models. In

essence, an appropriate choice of model depends on underlying delay distributions

and performance metrics of interest. They also present the extended formulations
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that are applicable to the general network-based resource allocation problem.

2.1.1 Robust Schedules by Objective Function

Objectives of robust schedules proposed in the literature can be classified into three

main categories:

1) Preventing delays and disruptions

This type of robust schedule is aimed at minimizing an occurrence of delays

and disruptions. To construct a robust schedule of this type, the optimization

models require historical data such as

• average arrival delays of each flight;

• expected propagated delays at each connection;

• distributions of delays at each airport;

• probabilities of passenger misconnection at each connection.

The objective of the model is to minimize expected delays and likelihood of

disruptions by means of proxies derived from the given historical data. An

alternative objective is to maximize slack on a day of operation by generating

plans with:

• aircraft routes with long aircraft connection times;

• crew pairings with long rest times between duties and long sit times be-

tween plane changes; or

• flight schedules with long scheduled flying times.

2) Minimizing the impact of delays and disruptions, once a schedule gets

disrupted

This type of robust schedule is constructed such that, once a schedule gets

disrupted, the impact of delays and disruptions is minimal. There are two

broad ways to achieve this goal.
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2.1) Maximizing recovery flexibility

Recovery flexibility embedded in this type of robust schedule provides

airline operations controllers many recovery options to alleviate delays

and disruptions. Hence, an airline is likely to obtain a recovery solution

that requires only a modest change and is more economical. For example,

aircraft swap opportunities and move-up crews can be used to prevent

further delay propagation, rather than delaying other flights awaiting the

originally assigned crews or aircraft.

2.2) Isolating delays and disruptions

A schedule of this kind partitions an airline network into isolated sub-

networks such that the delays and disruptions arising in one subnetwork

are contained within that subnetwork. Thus, the impact of delays and

disruptions is limited, and the other subnetworks can still be operated as

planned.

3) Minimizing the expected costs of a schedule

As opposed to the traditional schedule planning approach, which assumes the

schedule will be operated as planned, this type of schedule takes into account

uncertainty that may arise in a day of operation and potentially increase the

total operating cost. Note that in order to minimize the expected costs, the

optimization model may involve minimizing delays and disruptions or their im-

pact, so this objective is generally used in conjunction with the other objectives

discussed earlier. The key advantage of this objective is that it can capture the

trade-off between costs of robustness and savings in recovery costs.

Table 2.1 summarizes the preceding robust scheduling approaches in the literature

by objective functions.

2.1.2 Robust Schedules by Schedule Planning Phase

Robust airline scheduling approaches proposed in the literature also apply to different

phases of the traditional airline schedule planning process (Section 1.1) and are
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summarized in Table 2.2.

2.2 Performance Metrics for Airline Schedules

As in any complex system, there is no single best metric that captures every aspect

of an airline’s intricate operations. Different metrics cannot be used interchangeably.

Also, different stakeholders (airlines, passengers, government, etc.) may be interested

in different performance metrics. Passengers are concerned about an airline’s service

level, while some airlines may pay the most attention to the total operating cost

of a schedule. We discuss here three performance metrics on which we will focus

extensively throughout this work.

2.2.1 15-Minute On-Time Performance

15-minute On-Time Performance (15-OTP) measures a percentage of flights that

departed/ arrived at the gate no later than 15 minutes after the scheduled departure/

arrival time as indicated in the Computerized Reservations Systems (CRS). It is a

standard metric widely used in the airline industry because it is simple to compute

and easy to understand, not only for people in the industry but also the general

public. Additionally, the U.S. Department of Transportation (US DOT) also uses

15-OTP to evaluate airline performance and regularly publishes the rankings. As a

result, many airlines focus on 15-OTP.

Despite the wide use of 15-OTP, it is not a very good metric for evaluating overall

performance of an airline because:

1) It does not provide any information about the delay distribution. Several hours

of delay is treated the same as a 15-minute delay. Therefore, given two airlines

with the same 15-OTP, one can have a much larger average delay than the

other.

2) It does not capture delay propagation in an airline network. One of the most

important causes of delays in the U.S. is aircraft arriving late. Without sufficient
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slack in a schedule, the delays due to late-arriving aircraft can propagate to

subsequent flights in the same route.

3) It does not reflect passenger delays. Suppose a flight arrives 10 minutes late.

Even though it is on time based on 15-OTP, a connecting passenger on that

flight might miss his/her connection and have to wait for several hours for the

next available flight. As a result, given two airlines with the same 15-OTP, one

cannot tell which airline performs better with respect to passenger delays.

2.2.2 Delay Propagation1

The impact of delays in an airline network can be exacerbated when delays propagate.

Because of airline network interconnectivity, a small delay caused by one flight leg

can propagate and potentially lead to large delays on subsequent flight legs. It thus

suggests that delay propagation might be a good measure to indicate the robustness

of airline schedules.

A delay of each flight leg can be decomposed into two components.

1) Propagated delay This component of delay occurs when the aircraft to be

used for a flight leg is delayed on its prior flight legs, and there is insufficient

slack between the two flights to turn the aircraft. Note that propagated delay

is a function of an aircraft routing.

2) Nonpropagated delay This component of delay captures all delays caused

by reasons such as airborne delay or taxi delay. Because it is independent of an

aircraft routing, we call it an independent delay.

Note that this definition of propagated delay only takes into account the delays

due to aircraft arriving late. In reality, a flight may also experience propagated delays

caused by crews or passengers.

Figure 2-1 illustrates the relationship between departures, arrivals, and delays of

two flights i and j in the same routing. A solid arrow represents a planned departure

1The notion of delay propagation presented in this section is introduced in Lan, Clarke, and
Barnhart (2006) [24].
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Figure 2-1: Flight delay breakdown

time (PDT ) and a planned arrival time (PAT ) of each flight. A dashed arrow

represents an actual departure time (ADT ) and an actual arrival time (AAT ) of each

flight. A planned turn time between flights i and j (PTTij) is the time between PATi

and PDTj. PTTij must be larger than the minimum turn time (MTTij) required for

turning an aircraft. MTTij depends on the connection airport, fleet type, and other

requirements for flights i and j. The additional time in PTTij in excess of MTTij is

called slack (Slackij).

If the arrival delay of flight i is larger than Slackij, some portion of the delay

cannot be absorbed and consequently propagates to flight j. Thus, the total departure

delay (TDD) of flight j is composed of the propagated delay from flight i to flight

j (PDij) and the independent departure delay (IDD) of flight j itself. Similarly,

the total arrival delay (TAD) of flight j comprises PDij and the independent arrival

delay (IAD).

Note that IDD captures only the independent delay before a flight is airborne

(taxi-out delay, ground delay, etc.) whereas IAD includes both IDD and the ad-

ditional independent delay in the air or at the destination airport. Also, IDD and

IAD may take negative values if an airline expedites the ground process, flies a flight

faster, or pads the schedule by increasing the block time to account for potential

delays

Mathematically, we have the following relationships:

TDD = Max(ADT − PDT, 0) (2.1)

28



TAD = Max(AAT − PAT, 0) (2.2)

PTTij = PDTj − PATi (2.3)

Slackij = PTTij −MTTij (2.4)

PDij = Max(TADi − Slackij, 0) (2.5)

TDDj = Max(PDij + IDDj, 0) (2.6)

TADj = Max(PDij + IADj, 0) (2.7)

2.2.3 Passenger Delay

A passenger delay is measured by the difference between the planned arrival time

and the actual arrival time at a passenger’s final destination. A passenger’s itinerary

is called disrupted if one or more flights in his/her itinerary are canceled, or some

connecting time between consecutive flights becomes less than the minimum connect-

ing time (MCT) required for the passenger to proceed from the arrival gate to the

departure gate of his/her subsequent flight leg.

Typically, flight delays underestimate passenger delays because a small flight delay

may cause a passenger to miss his/her connection, and the passenger has to wait for

several hours for the next available flight. Additionally, flight delay statistic does

not reflect the extent of flight cancellations, which cause many disrupted passengers.

Although the number of disrupted passengers might be very small, these disrupted

passengers generally represent a large proportion of total passenger delay. For a

detailed discussion about flight delays and passenger delays, readers are referred to

Barnhart and Bratu (2005) [10].

According to the U.S. Airline Passenger Trip Delay Report 2008 by the Center for

Air Transportation Systems Research at George Mason University [30], passengers

on scheduled domestic U.S. airline flights were delayed a total of 299 million hours

(34 thousand years) in 2008. Despite the 10% decrease in passenger delays from
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2007, about one out of four passengers underwent a misconnection, cancelled flight,

diverted flight, or denied boarding due to overbooking. The report suggests that

it takes significantly longer with today’s operations to re-book disrupted passengers

because of the extensive use of smaller aircraft with high load factors. The average

delay for passengers on cancelled flights is as long as 15 hours.

Consequently, it is increasingly important for airlines to pay attention to passenger

delays and make the effort to cut down costs due to passenger re-accommodation,

including compensation for failing to re-accommodate passengers in a timely manner

and, importantly, strive to elevate passenger satisfaction.

2.3 Visualization

Performance metrics used to evaluate a schedule are typically in the form of aggregate

statistic– a total, an average, a maximum/minimum, etc. Although these numbers

can provide a good idea of a schedule’s performance, most of the time they obscure

many other useful details (distributions, patterns, etc.), and they are thus not very

helpful in understanding the causes and effects of delays in operations.

To facilitate understanding of a schedule’s performance, we develop and make

use of visualization in addition to data tables and aggregate statistics. Showing all

key pieces of information on the same page, the visualization allows us to easily see

interactions among all components and understand how delays and disruptions affect

aircraft and passenger connections. Additionally, the visualization is of great help in

characterizing and comparing the robust schedules obtained from various optimization

models with different formulations, objective functions, or other parameters.

Figure 2-2 illustrates the notations we use in the visualization. A blank outer

rectangle denotes a planned flight time of each flight; a filled inner rectangle denotes

an actual flight time of each flight; a line connecting two flights represents an aircraft

connection. As discussed in Section 2.2.2, each aircraft connection is composed of

a minimum turn time and slack. Later in this thesis, we will discuss robust flight

re-timing models. The notation for flight re-timing is illustrated in Figure 2-2b.
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1 hour

ZZ 001 MTY-MEX                                                                  ZZ 002 MEX-MTY

Planned

Departure Time

Planned

Arrival Time

Actual

Arrival Time

Actual

Departure Time

Aircraft Connection

Mininum Turn Time

Slack

(a) Flights and aircraft connections

New Flight Time

Old Flight Time

(b) Flight re-timing

Figure 2-2: Visualization notation

To demonstrate our use of visualization, we present a small example in Figure 2-3.

Visualization allows us to easily observe many attributes of a schedule at the same

time.

We can make the visualization more informative by introducing lines in different

styles to represent crew connections or passenger connections. This enables us to see

how flight delays affect crew and passenger connections in an airline network. To

further facilitate analysis, we allow users to view historical data of a flight (delay

distribution, planned block time distribution, etc.) or some key information such as

disrupted passenger connections by clicking or pressing some specific key.
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2.4 Slack Re-Allocation in Robust Airline Schedul-

ing

Slack in an airline schedule is additional time allocated beyond the minimum time

required for each aircraft connection, passenger connection, or expected flight dura-

tion. Slack is desirable in robust schedules as it can 1) potentially absorb delays in

an airline network; 2) reduce the likelihood of operational disruptions; and 3) provide

flexibility to recover once the operation is disrupted.

Slack in different components of an airline schedule serves different purposes.

1) Aircraft connection slack (ground time slack) is additional ground time

beyond the minimum turn time of each aircraft connection. The amount of

aircraft connection slack in a schedule is a function of an aircraft routing.

Aircraft connection slack can be used to absorb accumulated flight delays from

prior flights along the aircraft route and thus reduce a likelihood of delay

propagation to subsequent flights.

2) Passenger connection slack is additional time beyond the minimum connec-

tion time between two flight legs in a passenger’s itinerary. It is a function of

the arrival time of an inbound flight and the departure time of an outbound

flight. Hence, the amount of passenger connection slack in a schedule depends

on flight schedules and passenger itineraries allowed for booking. Passenger

connection slack plays an important role in decreasing the chance of passenger

misconnection.

3) Block time slack is additional time added to the expected block time of each

flight. It is a function of a flight’s departure and arrival times. Therefore, the

amount of block time slack in a schedule depends on flight schedules.

Although both block time slack and aircraft connection slack can be used to

absorb flight delays, they work differently. Block time slack provides greater flexibility

compared to aircraft connection slack. It can absorb propagated delay from the
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preceding flight, taxi delay (at both departure and arrival airports), and airborne

delay; while ground time slack can absorb only propagated delay from the preceding

flight.

To illustrate the difference, consider a flight leg departing from a busy airport, and

suppose we are allowed to change only the departure time of this flight. Moving the

departure time earlier is equivalent to increasing the block time and decreasing the

ground time preceding the flight. Thus, ground time slack is transformed into block

time slack. Conversely, moving the departure time later is equivalent to transforming

block time slack into ground time slack. Because in this particular case the aircraft is

expected to spend a reasonable amount of time on the runway awaiting the departure

queue, an airline is better off moving the arrival time earlier in order to queue up

for the departure slot as soon as possible and letting the block time slack absorb the

delay instead of using the ground time slack, waiting at the gate and then incurring

the delay in the departure queue. In this latter case, even though the ground slack

can absorb all the propagated delay from the prior flights, and the flight departs on

time, the aircraft still has to spend a long time in the queue and ends up arriving late

at the destination.

Despite the advantages of slack in a schedule, it is, on the other hand, consid-

ered a waste of resources from an airline perspective, which focuses mainly on cost

minimization. Airlines have made numerous efforts to increase the utilization of all

resources in airline operations and consequently reduce slack in a schedule.

The role of slack in the trade-off between aircraft and crew productivity and saving

on costs due to disruptions incurred during a day of operation is depicted in Figure

2-4. There is a cost associated with slack in an airline schedule. In an extreme case,

a schedule with an abundant amount of slack in a schedule may require more aircraft

and crews to operate the schedule. As the amount of slack in a schedule increases,

the planned costs associated with the schedule increase; the recovery costs, however,

decrease because a schedule with more slack is likely to be more robust and results

in fewer delays and disruptions. Finally, it is important to note that after a certain

amount of slack is added into a schedule, the saving gained from additional slack in
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Figure 2-4: Trade-off between amount of slack and recovery costs

a schedule may not make up for the increase in planned costs because most of the

time, slack does not get fully utilized.

Therefore, the recent trend in robust airline scheduling is to re-allocate, rather

than simply increase, the existing slack in the schedules such that the resulting

distribution of slack is more effective in absorbing delays and minimizing disruptions.

We summarize here three major schemes of slack re-allocation.

2.4.1 Aircraft Re-Routing

In an aircraft re-routing problem, a flight schedule and fleet assignment are fixed, i.e.,

arrival and departure times of every flight remain the same as the original schedule,

but the aircraft tail assignment of each flight can be changed. As a result, the modified

routing yields a different distribution of aircraft connection slack.

2.4.2 Flight Schedule Re-timing

In a flight schedule re-timing problem, an aircraft routing and fleet assignment are

fixed, but the departure time of each flight is allowed to change within a small time

window. An arrival time of each flight must change by the same amount as the

departure time, i.e., the block time of each flight is fixed. When a flight is moved

earlier, slack in the aircraft connection preceding the flight decreases; while slack in
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the aircraft connection succeeding the flight increases. Because a flight schedule is

allowed to change, it does not only affect aircraft connection slack, but also passenger

connection slack.

2.4.3 Block Time Adjustment

In a block time adjustment problem, an aircraft routing and fleet assignment are

again fixed, but both departure and arrival times of each flight are allowed to change

independently. Therefore, in addition to aircraft connection slack and passenger

connection slack, it also affects block time slack. In particular, ground time slack

can be transformed into block time slack.

2.4.4 Slack Re-Allocation Example

The following example illustrates how each slack reallocation scheme works. This

schedule contains seven flights operated by four aircraft (see Table 2.3). A minimum

aircraft turn time and a minimum passenger connection time are assumed to be 30

minutes. There are two passenger connections, ZZ 006-ZZ 004 and ZZ 004-ZZ 007,

indicated by thin red lines in Figure 2-5a. Suppose that the expected independent

delays of flight ZZ 003, ZZ 004, and ZZ 005 are 10, 20 and 5 minutes, respectively.

Figure 2-5b suggests that the slack in the aircraft connection between ZZ 004 and ZZ

005 is not sufficient to absorb the delay from ZZ 004, and ZZ 005 is thus expected to

experience the delay propagated from ZZ 004.

Aircraft re-routing

In Figure 2-5c, we modify the original aircraft routing such that the first aircraft

flies ZZ 001 and ZZ 005; and the second aircraft flies ZZ 003, ZZ 004, and ZZ 002.

Because ZZ 004 is now followed by ZZ 002, which departs 15 minutes later than

ZZ 005, the arrival delay of ZZ 004 does not propagate anymore. In particular, the

ground time slack in the schedule is re-allocated as follows:
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ROUTE1

ROUTE2

ZZ 001 MTY-MEX ZZ 002 MEX-MTY

ZZ 003 MEX-GDL ZZ 004 GDL-MEX ZZ 005 MEX-AGU

ZZ 006 TIJ-GDL

ZZ 007 MEX-PVR

(a) Original schedule

ROUTE1

ROUTE2

ZZ 001 MTY-MEX ZZ 002 MEX-MTY

ZZ 003 MEX-GDL ZZ 004 GDL-MEX ZZ 005 MEX-AGU

ZZ 006 TIJ-GDL

ZZ 007 MEX-PVR

(b) Original schedule with expected delays

ROUTE1

ROUTE2

ZZ 001 MTY-MEX ZZ 002 MEX-MTY

ZZ 003 MEX-GDL ZZ 004 GDL-MEX ZZ 005 MEX-AGU

ZZ 006 TIJ-GDL

ZZ 007 MEX-PVR

(c) Re-routing

ROUTE1

ROUTE2

ZZ 001 MTY-MEX ZZ 002 MEX-MTY

ZZ 003 MEX-GDL ZZ 004 GDL-MEX ZZ 005 MEX-AGU

ZZ 006 TIJ-GDL

ZZ 007 MEX-PVR

(d) Re-timing

ROUTE1

ROUTE2

ZZ 001 MTY-MEX ZZ 002 MEX-MTY

ZZ 003 MEX-GDL ZZ 004 GDL-MEX ZZ 005 MEX-AGU

ZZ 006 TIJ-GDL

ZZ 007 MEX-PVR

(e) Block time adjustment

Figure 2-5: Slack re-allocation example
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Route Flight
Departure
Airport

Arrival
Airport

Departure
Time

Arrival
Time

Block
Time

Connection
Time

1 ZZ 001 MTY MEX 09:00 10:30 90 -
1 ZZ 002 MEX MTY 12:05 13:25 80 95
2 ZZ 003 MEX GDL 08:00 09:10 70 -
2 ZZ 004 GDL MEX 10:00 11:10 70 50
2 ZZ 005 MEX AGU 11:50 12:55 65 40
3 ZZ 006 TIJ GDL 06:20 09:10 170 -
4 ZZ 007 MEX PVR 12:10 13:35 85 -

Table 2.3: Slack re-allocation example

Connections Connection times Ground time slack

Original
ZZ 001 - ZZ 002 95 65

ZZ 004 - ZZ 005 40 10

Modified
ZZ 001 - ZZ 005 80 50

ZZ 004 - ZZ 002 55 25

In the modified schedule, although the total amount of slack remains the same as

in the original schedule, more slack is allocated to the connection following flight ZZ

004, which is expected to have a long arrival delay. As a result, the ground time slack

can absorb the arrival delay from flight ZZ 004. Note that because the flight schedule

is fixed in the aircraft re-routing problem, passenger connection slack is unaffected.

Flight Re-timing

In Figure 2-5d, flight ZZ 004 is shifted 10 minutes earlier. The distribution of

ground slack changes as follows:

Connections Connection times Ground time slack

Original
ZZ 003 - ZZ 004 50 20

ZZ 004 - ZZ 005 40 10

Modified
ZZ 003 - ZZ 004 40 10

ZZ 004 - ZZ 005 50 20

This simply moves 10 minutes of ground time slack from the connection preceding

ZZ 004 to the connection succeeding ZZ 004. As a result, there is sufficient ground
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time slack to absorb the arrival delay from flight ZZ 004, and flight ZZ 005 can depart

on time. Note that if we moved the departure time of ZZ 004 back further, there would

not be adequate slack to absorb the arrival delay of ZZ 003, and the delay would start

propagating to ZZ 004.

Because the flight schedule is changed, the passenger connection times, and hence

passenger connection slack, are affected. In particular, the passenger connection time

for ZZ 006-ZZ 004 becomes shorter; while it becomes longer for ZZ 004-ZZ 007.

Block Time Adjustment

In Figure 2-5e, the departure time of flight ZZ 004 is moved 10 minutes earlier,

and the arrival time is moved 5 minutes later. Therefore, the block time increases by

15 minutes. The resulting distribution of slack can be summarized as follows:

Connections
Connection Ground time Block time slack

times slack (ZZ 004)

Original
ZZ 003 - ZZ 004 50 20

-
ZZ 004 - ZZ 005 40 10

Modified
ZZ 003 - ZZ 004 40 10

+15
ZZ 004 - ZZ 005 35 5

Moving the departure time of ZZ 004 10 minutes earlier yields the same effect

as in the flight re-timing case, and hence no delay propagates from ZZ 004 to ZZ

005. Moving the arrival time of ZZ 004 5 minutes later, however, converts 15 minutes

of ground time slack into block time slack. Consequently, the increased block time

slack absorbs most of the independent delay of ZZ 004, and only 5 minutes of ground

time slack in the ZZ 004-ZZ 005 connection is needed to absorb the rest of the delay.

Although flight ZZ 004 is expected to arrive at the same time as in the flight re-timing

case, the arrival delay of ZZ 004 is as small as 5 minutes. This illustrates how schedule

padding helps airlines improve their on-time performance.

Lastly, because flight ZZ 004 is scheduled to arrive later than the original schedule,

the scheduled passenger connection time for ZZ 004-ZZ 007 becomes smaller.
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In the next chapter, we will show how each slack re-allocation scheme can be

formulated as an optimization model to minimize expected delays.
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Chapter 3

Optimization Models for Slack

Re-allocation

3.1 Robust Aircraft Re-routing Model

The aircraft re-routing model presented in this section is a modification of the for-

mulation developed by Lan, Clarke, and Barnhart (2006) [24].

3.1.1 Underlying idea

As discussed in Section 2.2.2, delay propagation can exacerbate the impact of delays

in an airline network. Because propagated delay is a function of aircraft routes, we can

reduce delay propagation in the system by cleverly re-routing aircraft as demonstrated

in Section 2.4.4. In particular, we seek to re-route aircraft such that ground time slack

is optimally allocated to the connections that historically cause delay propagation,

and the resulting aircraft routes minimize the expected total propagated delay with

respect to a given set of historical data.

3.1.2 Formulation

We first introduce the notations used in this formulation:
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S : set of feasible strings

F : set of flight legs

M+ : set of starting airports

M− : set of ending airports

Sm+ : set of strings s ∈ S starting at airport m+ ∈M+

Sm− : set of strings s ∈ S ending at airport m− ∈M−

pdsij = propagated delay from flight leg i ∈ F to the succeeding flight leg

j ∈ F in string s ∈ S

Nm+ = number of aircraft starting at airport m+ ∈ M+ in the original

aircraft routes

Nm− = number of aircraft ending at airportm− ∈M− in the original aircraft

routes

ais =

 1 if flight leg i ∈ F is in string s ∈ S

0 otherwise

Note that the departure airport of the first flight in each original aircraft route

is called a starting airport, and the arrival airport of the last flight in each original

aircraft route is called an ending airport.

Because the flight schedules in our dataset do not repeat daily for most flights,

the airline treats the aircraft routing problem as a dated problem, as opposed to a

cyclic problem which can be repeated over a certain planning horizon. Therefore, the

original formulation by Lan, Clarke, and Barnhart (2006) is not applicable here.

Rather than formulating an aircraft maintenance routing problem, we focus on

re-routing aircraft on a given day of operation, assuming that the resulting aircraft

routes do not violate maintenance feasibility. In particular, we want to fly the same

set of flight legs using the aircraft that are ready at each starting airport. Note that

this will automatically ensure that the number of aircraft at each ending airport is the

same as in the original schedule, and hence there will be sufficient aircraft to operate
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the next day’s schedule at each ending airport. In addition, we assume further that

each aircraft that is scheduled to fly on that day is ready at the beginning of the day

and also available until the end of the day. Because the fleet assignment is fixed, we

can solve this problem separately for each fleet type.

Because delays propagate along aircraft routes, it is more convenient to model the

robust aircraft re-routing problem using a string-based formulation. In this case, a

string s is defined as a sequence of flight legs that begins at some starting airport

m+ ∈M+ and ends at some ending airport m− ∈M−. Each string s represents a set

of flight legs that are operated by a single aircraft on a given day of opeartion. Let

xs be a binary decision variable which takes value 1 if string s ∈ S is included in the

optimal solution, and 0 otherwise. The robust aircraft re-routing problem (AR) can

be formulated as follows:

Minimize E

∑
s∈S

xs × ∑
(i,j)∈S

pdsij

 (AR-1)

subject to
∑
s∈S

aisxs = 1 ∀i ∈ F (AR-2)

∑
s∈Sm+

xs = Nm+ ∀m+ ∈M+ (AR-3)

xs ∈ {0, 1} ∀s ∈ S (AR-4)

The objective function (AR-1) is to minimize the expected total propagated delay

of all strings in the solution. Constraints (AR-2) ensure that each flight leg in

the schedule is covered by exactly one string in the solution. Constraints (AR-3)

guarantee that the number of strings beginning at each starting airport in the solution

is equal to the number of aircraft available at that airport at the beginning of the

day.

Given the constraints (AR-2) and (AR-3), it is guaranteed that the number of

strings ending at each ending airport in the solution is equal to the number of aircraft
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required at that airport for the next day’s schedule, mathematically,
∑

s∈Sm−
xs =

Nm− ,∀m− ∈M−.

Because the random variable pdsij only appears in the objective function, we can

rewrite the objective function as:

E

∑
s∈S

xs × ∑
(i,j)∈S

pdsij

 =
∑
s∈S

xs × E

 ∑
(i,j)∈S

pdsij

 (AR-5)

In words, the expected total propagated delay can be simply computed as the total

expected propagated delay. The cost coefficient, E
[∑

(i,j)∈S pd
s
ij

]
, associated with

each string s can be calculated offline. Therefore, the AR model is a deterministic

mixed integer program.

3.1.3 Computing Objective Function Coefficients for Feasible

Strings

Although, for any feasible string that has been operated, the total arrival delay of each

flight leg and the propagated delay on each connection in the string can be computed

directly from historical data, this is not applicable to the feasible strings that have

never been operated before. We, however, can still compute the independent arrival

delay for each flight leg from historical data because it is not a function of aircraft

routing. This overcomes the difficulty in modeling total arrival delays and propagated

delays in a string-based formulation.

Algorithm 1 describes how we can determine, for any feasible string, the total

arrival delay of each flight leg and the propagated delay on each connection.

Let Ω be a set of possible delay scenarios. We assume Ω has finite cardinality,

and each ω ∈ Ω occurs with probability pω. Each objective function coefficient can

be rewritten as:

E

 ∑
(i,j)∈S

pdsij

 =
∑
ω∈Ω

pω
∑

(i,j)∈S

pdsij(ω) (AR-6)
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Algorithm 1 Compute total arrival delays and propagated delays for a feasible string

1) For each pair of consecutive flight legs i and j flown by the same aircraft in
historical data, the propagated delay from flight i to flight j is given by PDij =
Max(TADi − Slackij, 0).

2) For each flight leg j,

• if j is the first flight of a string, IADj = TADj;

• otherwise, IADj = TADj − PDij.

3) Using the independent arrival delays computed in the previous step, we can
determine the total arrival delay of each flight leg and the propagated delay on
each connection for any feasible string s′ as follows:

• For the first flight leg j in the string, we have TAD′j = Max(IADj, 0),
assuming that the first flight of each string has zero propagated delay.

• For each subsequent flight j following flight i in the string, we have PD′ij =
Max(TAD′i − Slackij, 0) and TAD′j = Max(IADj + PD′ij, 0).

where pdsij(ω) is the propagated delay from flight leg i to the succeeding flight leg

j in string s for a given delay scenario ω.

Note that this calculation of the objective function coefficients is different from

the original work by Lan, Clarke, and Barnhart. They first model total arrival delays

using a lognormal distribution whose parameters, for a given set of historical data,

can be estimated using Maximum Likelihood Estimation (MLE). Then, the expected

propagated delay for each pair of consecutive flights is given by (1 − Φ(
ln(−θ

m
)

σ
))(θ +

me
1
2
σ2

), where Φ(·) is the cumulation distribution function of the standard normal

distribution; and σ, θ, and m are the shape parameter, the location parameter, and

the scale parameter of the total arrival delay distribution of the first flight. The

detailed calculation is described in Lan (2003) [23].
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3.1.4 Alternative Objective Functions

Maximizing the total expected effective aircraft connection slack

Recall that the propagated delay from flight i to flight j is defined as PDij =

Max(TADi − Slackij, 0). It takes a positive value only when the total arrival delay

of flight i exceeds the planned slack in that connection as depicted in Figure 3-1.

As a result, the propagated delay PDij obscures the arrival delay of flight i when

TADi < Slackij. In particular, given two solutions with PDij = 0 but different TADi,

the model that minimizes the total propagated delay cannot distinguish between the

two, even though the one with smaller TADi is more desirable.

Slackij

TADi

PDij

Figure 3-1: Propagated delay from flight i to j versus total arrival delay of flight i

To overcome this difficulty, we introduce the notion of effective slack. Let i and

j be two consecutive flights in the same string. We define the effective slack in the

connection between flights i and j (Slackij) as:

Slackij = Slackij − TADi. (AR-7)

In other words, the effective slack in each connection represents the remaining

slack after accounting for the arrival delay of the inbound flight (see Figure 3-2a).

Note that effective slack may take a negative value. In this case, the arrival delay of

the inbound flight will propagate to the outbound flight.

The proposed objective function is to maximize the total expected effective slack.

To ensure that the model has no incentive to add more slack to the connections
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Slackij

TADi

Slackij 

(a) Effective slack

Slackij

TADi

Slackij (  ij)

ij

(b) Effective slack capped at Γij

Figure 3-2: Effective slack versus total arrival delay

that already have a reasonable amount of slack, we introduce another parameter– a

nonnegative cap Γij for each aircraft connection from flight i to flight j. We then

redefine the effective slack to the minimum of Γij and the difference of the planned

slack and the total arrival delay associated with the aircraft connection from flight i

to flight j. Specifically,

Slackij(Γij) = Min(Slackij − TADi,Γij). (AR-8)

Therefore, any aircraft connection from flight i to flight j with effective slack more

than the protection level Γij contributes only Γij minutes to the objective function.

This results in the allocation of more slack to connections for which the expected

effective slack is smaller than the corresponding cap. In addition, because caps are

specific to aircraft connections, we can set them to different levels for different fleet

types, connection airports, and so forth.

In summary, the proposed objective function is given by:

Maximize E

∑
s∈S

xs × ∑
(i,j)∈S

Slack
s

ij(Γij)


=
∑
s∈S

xs × E

 ∑
(i,j)∈S

Slack
s

ij(Γij)

 (AR-9)

where Slack
s

ij(Γij) is the effective slack capped at Γij in the connection between
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flights i and j in a string s.

Each objective function coefficient E
[∑

(i,j)∈S Slack
s

ij(Γij)
]

associated with xs can

be computed using the same approach outlined in Section 3.1.3.

In fact, the objective function of minimizing total expected propagated delay in

(AR-1) is a special case of the proposed objective function in (AR-9) with caps set

equal to zero for all aircraft connections. In particular, for any aircraft connection

from flight i to flight j, we have

Slackij(Γij = 0) = Min(Slackij − TADi, 0)

= −Max(TADi − Slackij, 0)

= −PDij

Minimizing the total expected arrival delay

Even though, at first glance, minimizing the total expected propagated delay may

seem equivalent to minimizing the total expected arrival delay, this is true only when

independent arrival delays (IAD) of every flight is nonnegative. Recall that we define

a propagated delay (PD) and a total arrival delay (TAD) of each flight such that they

only take nonnegative values (see (2.5) and (2.7)), but an IAD may take a negative

value if an airline expedites the ground process, flies a flight faster, or pads the

schedule by increasing the block time to account for potential delays. Consequently,

it is possible that a flight with a negative IAD experiences some propagated delay

and still arrives on-time or earlier. This leads to the discrepancy between the two

objectives. When delays in the system are unavoidable, it might be desirable to

propagate delay to those flights with negative IADs and let their block time slack

help absorb the delays.

Figure 3-3 illustrates the idea. In the figure, a number associated with each

flight indicates the independent arrival delay of that flight. The amount of slack and

corresponding propagated delay in each connection are as follows:

48



Feasible solution Connections Ground time slack Propagated delay

I
ZZ 004 - ZZ 005 5 15

ZZ 008 - ZZ 009 20 0

II
ZZ 004 - ZZ 009 9 11

ZZ 008 - ZZ 005 16 0

The feasible solution II minimizes total propagated delay in this case. However,

because the IAD of ZZ 005 is -10 minutes (equivalently, ZZ 005 has block time slack

of 10 minutes), the total arrival delay for the feasible solution I is only 5 minutes,

whereas in the feasible solution II, the total arrival delay is 11 minutes, which is the

propagated delay from ZZ 004 to ZZ 009. Therefore, the feasible solution I minimizes

the total arrival delay, although it has a higher total propagated delay.

ZZ 004 GDL-MEX

20

ZZ 005 MEX-AGU

-10

ZZ 008 ACA-MEX

0

ZZ 009 MEX-BJX

0

(a) Feasible solution I

ZZ 004 GDL-MEX

20

ZZ 005 MEX-AGU

-10

ZZ 008 ACA-MEX

0

ZZ 009 MEX-BJX

0

(b) Feasible solution II

Figure 3-3: Minimizing total arrival delay versus minimizing total propagated delay

In conclusion, if the airline under consideration extensively pads its schedule, it

might be more appropriate to minimize the total expected arrival delay instead of the

total expected propagated delay, as propagated delay is to a large extent absorbed

without impact to downstream flights.

The objective function of maximizing the total expected arrival delay is given by

E

[∑
i∈S

tadsi

]
=
∑
ω∈Ω

pω
∑
i∈S

tadsi (ω). (AR-10)

We replace pdsij(ω) in (AR-6) with tadsij(ω), the total arrival delay from flight i

to the succeeding flight j in string s for a given delay scenario ω, and the values of

tadsij(ω) can be obtained from Algorithm 1, presented in Section 3.1.3.

49



ZZ 001 MTY-MEX
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ZZ 002 MEX-MTY

0

ZZ 004 GDL-MEX
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ZZ 005 MEX-AGU

0

(a) Feasible solution I

ZZ 001 MTY-MEX

5

ZZ 002 MEX-MTY

0

ZZ 004 GDL-MEX

10

ZZ 005 MEX-AGU

0

(b) Feasible solution II

Figure 3-4: Multiple optimal solutions in the robust aircraft re-routing
problem

Each figure above shows the aircraft routes corresponding to a feasible solution. The
numbers indicate the expected independent delays of each flight. We can see that
both feasible solutions have zero total expected propagated delay and are thus optimal
with respect to the objective function (AR-1). The feasible solution II, however, may
be preferable to the feasible solution I in the sense that the latter contains a tight
connection from ZZ 004 to ZZ 005.

3.1.5 Multiple Optimal Solutions

Solving the AR problem with either the original objective function (AR-1) or the

proposed objective function (AR-9) typically yields multiple optimal solutions. The

number of optimal solutions depends mainly on 1) re-routing opportunities in the

airline schedule which are impacted by fleet homogeneity, connecting banks at hubs,

etc.; and 2) the extent of delays in the given set of historical data. Specifically, smaller

level of delay in the system leads to a larger number of optimal solutions. Figure 3-4

illustrates the idea for the original objective function (AR-1). If the delay, however,

in the system is extensive, some aircraft connections are required in the optimal

solution in order to minimize the total expected delay. Therefore, the number of

optimal solutions is decreased.

Although these optimal solutions give the same objection function value, they

might not be equally effective with respect to other performance metrics or objective

functions. Therefore, we desire to select, among the optimal solutions to the initial

objective function, the solution that is optimal with respect to another objective

function.

Suppose zf is the optimal objective function value of the AR problem with an

objective function of minimizing f(x), where x is a vector of binary decision variables

xs associated with each string s ∈ S. We add a constraint of the form f(x) ≤ zf to the

original AR formulation and replace the objective function f with another objective
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function. If there still exist multiple optimal solutions, we can repeat this process

sequentially for other objective functions that are of interest.

We emphasize that this sequential approach is aimed at finding the ”best” solution

among the optimal solutions to the initial objective function, rather than finding the

solution that performs best with respect to all objective functions overall. Otherwise,

multi-criteria optimization is more applicable.

Because the original aircraft routing is presumably optimized with respect to some

objectives that are of interest to the airline, given a set of optimal solutions to our

objective function, we may want to select the solution that is closest to the original

one to preserve the good features of the original aircraft routing. One possible way

to minimize the difference between the original and the optimal aircraft routing is to

maximize the number of aircraft connections in the original routing that are included

in the optimal solution.

Let C be the set of aircraft connections in the original routing and bcs take value

1 if a string s ∈ S contains an aircraft connection c ∈ C, and 0 otherwise. The

objective function of maximizing the number of aircraft connections in the original

routing that are included in the optimal solution is given by:

Maximize
∑
s∈S

(
xs ×

∑
c∈C

bcs

)
. (AR-11)

3.2 Robust Flight Schedule Re-timing Model

3.2.1 Underlying Idea

As discussed in Section 2.4, re-timing flight departure times can affect both aircraft

connection slack and passenger connection slack. Moving a flight departure time later

increases the amount of slack in the connection preceding the flight and simultaneously

decreases the amount of slack in the connection succeeding the flight. Therefore, given

a set of historical data, we want to re-time flight departure times optimally such that

the resulting schedule minimizes some proxy of expected delays or disruptions as
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demonstrated in Section 2.4.4. In particular, we want to re-allocate the existing slack

in the schedule to the connections that historically often cause delays.

In the next section, we present the robust flight schedule re-timing model that

minimizes the total expected propagated delay. Then, we propose alternative objec-

tive functions in subsequent sections.

3.2.2 Formulation

We first introduce the notations used in this formulation:

F : set of flight legs

F0 : set of first flight leg in each aircraft route, for all aircraft routes

A : set of aircraft connections

P : set of passenger connections

Ω : set of possible delay scenarios

pω : probability that a delay scenario ω ∈ Ω occurs

pdij : propagated delay from flight leg i ∈ F to the succeeding flight leg

j ∈ F

aSlackij : original planned aircraft connection slack in an aircraft connection

(i, j) ∈ A

pSlackij : original planned passenger connection slack in a passenger connec-

tion (i, j) ∈ P

IADω
i : independent arrival delay of flight i ∈ F for a given delay scenario

ω ∈ Ω

pdωij : propagated delay from flight leg i ∈ F to the succeeding flight leg

j ∈ F for a given delay scenario ω ∈ Ω

tadωi : total arrival delay of flight leg i ∈ F for a given delay scenario ω ∈ Ω
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aSlack′ij : resulting planned aircraft connection slack in an aircraft connection

(i, j) ∈ A after re-timing

pSlack′ij : resulting planned passenger connection slack in a passenger connec-

tion (i, j) ∈ P after re-timing

Let xi be the difference between the new and the original departure time of flight

i ∈ F . Hence, xi takes a negative value if the departure time is moved earlier and

takes a positive value if the departure time is moved later. We limit the change in the

departure time of each flight i within a small time window [li, ui], and assume that

the demand for flight i remains the same within this range.

Using the notions of delay propagation described in Section 2.2.2, the robust flight

re-timing problem (FR) is given by:

Minimize
∑

(i,j)∈A

E [pdij] =
∑

(i,j)∈A

(∑
ω∈Ω

pωpd
ω
ij

)
(FR-1)

subject to aSlack′ij = aSlackij − xi + xj ∀(i, j) ∈ A (FR-2)

aSlack′ij ≥ 0 ∀(i, j) ∈ A (FR-3)

pSlack′ij = pSlackij − xi + xj ∀(i, j) ∈ P (FR-4)

pSlack′ij ≥ 0 ∀(i, j) ∈ P (FR-5)

pdωij ≥ tadωi − aSlack′ij ∀(i, j) ∈ A,∀ω ∈ Ω (FR-6)

pdωij ≥ 0 ∀(i, j) ∈ A,∀ω ∈ Ω (FR-7)

tadωi ≥ IADω
i ∀i ∈ F0,∀ω ∈ Ω (FR-8)

tadωj ≥ pdωij + IADω
j ∀(i, j) ∈ A,∀ω ∈ Ω (FR-9)

tadωi ≥ 0 ∀i ∈ F, ∀ω ∈ Ω (FR-10)

li ≤ xi ≤ ui ∀i ∈ F (FR-11)

xi ∈ Zn ∀i ∈ F (FR-12)

The objective function (FR-1) is to minimize the total expected propagated delay
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over all aircraft connections. Again, we assume Ω has finite cardinality.

Constraint set (FR-2) is the resulting planned aircraft connection slack after re-

timing for each aircraft connection. Specifically, for an aircraft connection (i, j) ∈

A, the resulting planned aircraft connection slack (aSlack′ij) increases when the

departure time of flight i is moved earlier, i.e., when xi takes a negative value. Also,

it increases when the departure time of flight j is moved later, i.e., when xj takes

a positive value. The non-negativity constraints of the resulting planned aircraft

connection slack, (FR-3), ensure that every aircraft connection is longer than its

corresponding minimum aircraft turn time, and thus the current aircraft routing

remains feasible.

Similarly, constraint set (FR-4) is the resulting planned passenger connection slack

after re-timing for each passenger connection. The non-negativity constraints of the

resulting planned passenger connection slack, (FR-5), ensure that every passenger

connection is longer than its corresponding minimum passenger connection time, and

thus every itinerary remains feasible.

Given a re-timed flight schedule, constraints (FR-6) and (FR-7) are the propagated

delays for each aircraft connection under different delay scenarios; constraints (FR-8)-

(FR-10) determine the total arrival delays for each flight leg under different delay

scenarios, assuming that the first flight of each string has zero propagated delay.

We will shortly discuss the correctness of this calculation of total arrival delays and

propagated delays.

Lastly, constraints (FR-11) limit the change in the departure time of each flight i

within a specific time window [li, ui].

Remarks:

• Constraints (FR-2) and (FR-4) are indeed redundant, and we can replace aSlack′ij

and pSlack′ij everywhere with the right-hand sides of (FR-2) and (FR-4). We

intentionally write them this way to facilitate understanding of the model and

keep the formulation clean.
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• An independent arrival delay of flight i for a given delay scenario ω, IADω
i can

be computed using the first two steps of Algorithm 1 in Section 3.1.3.

• The calculation of total arrival delays and propagated delays in this formulation

is similar to the one presented in Section 2.2.2.

• Because passenger connections may involve two flights flown by aircraft in differ-

ent fleet types, the FR problem must be solved for all fleet types simultaneously.

(Recall that in the string-based formulation for the AR problem, we can solve

the problem separately for each fleet type.)

To show the correctness of the formulation, we prove the following claim.

Claim: In the optimal solution, every variable pdωij correctly models the prop-

agated delay of an aircraft connection (i, j) ∈ A under a delay scenario ω ∈ Ω (as

defined in Section 2.2.2), and each variable tadωi represents the total arrival delay

of flight i if pdωij is positive, i.e., the total arrival delay of flight i propagates to the

succeeding flight j.

Proof: Consider a delay scenario ω ∈ Ω and an aircraft route r = (i0, i1, ..., in)

where ik ∈ F for k = 0, ..., n and (ik−1, ik) ∈ A for k = 1, ..., n. We will prove the

claim by induction on the index k.

For the base case k = 0, we will show that the propagated delay of an aircraft

connection (i0, i1) is given by pdωi0,i1 , and tadωi0 represents the total arrival delay of

flight i0 if pdωi0,i1 > 0.

From (FR-8) and (FR-10), we have tadωi0 ≥ Max(IADω
i0
, 0). Note that in order

to minimize the objective function
∑

(i,j)∈A
(∑

ω∈Ω pωpd
ω
ij

)
, every pdωij must be min-

imized. In particular, increasing the value of some pdωij cannot decrease the values

of other pdωij, and hence the objective function. As a result, pdωi0,i1 must attain the

value of Max(tadωi0−aSlack
′
i0,i1

, 0) by (FR-6) and (FR-7). Consider the following two

cases:
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• If Max(IADω
i0
, 0) > aSlack′i0,i1 , then for given xi0 and xi1 , we have

0 < Max(IADω
i0
, 0)− aSlack′i0,i1

≤ tadωi0 − aSlack
′
i0,i1

= tadωi0 − aSlacki0,i1 + xi0 − xi1

= pdωi0,i1 .

In order to minimize pdωi0,i1 = Max(IADω
i0
, 0) − aSlack′i0,i1 = Max(tadωi0 −

aSlack′i0,i1 , 0), tadωi0 must be minimized, and thus we have tadωi0 = Max(IADω
i0
, 0),

which correctly represents the total arrival delay of flight i0.

• If Max(IADω
i0
, 0) ≤ aSlack′i0,i1 then for given xi0 and xi1 , we have that any

value of tadωi0 between Max(IADω
i0
, 0) and aSlack′i0,i1 = aSlacki0,i1 − xi0 + xi1 is

feasible and yields pdωi0,i1 = 0 = Max(tadωi0 − aSlack
′
i0,i1

, 0). In particular, tadωi0

does not necessarily represent the total arrival delay of flight i0.

We established the claim for k = 0. Now suppose the claim is true for all indices

less than or equal to k. To prove the claim for tadωik+1
and pdωik+1,ik+2

, we can use

a similar argument together with the induction hypothesis that pdωik,ik+1
correctly

models the propagated delay of an aircraft connection (ik, ik+1). �

Theorem 1: The polyhedron formed by constraints (FR-2)-(FR-11) is integral,

given that all data and parameters in those constraints are integral.

Proof: We first state some characterizations of totally unimodular matrices.

Let A be a matrix with -1, 0, or +1 entries, and Aj be the j-th column of A. The

following statements are equivalent:

i) A is totally unimodular.

ii) (Hoffman and Kruskal) The polyhedron {x | a ≤ Ax ≤ b, l ≤ x ≤ u} is integral

for all integral vectors a,b, l, and u.
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iii) (Ghouila-Houri) Each collection C of columns of A can be partitioned into two

sets, C1 and C2 such that
∑

j∈C1
Aj −

∑
j∈C2

Aj is a vector with -1, 0, or +1

entries.

From the equivalence of statements i) and ii), in order to prove the claim, it

is sufficient to show that the coefficient matrix A corresponding to the constraints

that are not bound constraints is totally unimodular. We start off by rewriting the

coefficient matrix A in terms of tadωi and xi.

Consider an aircraft route r = (i0, i1, ..., in) where ik ∈ F for k = 0, ..., n and

(ik−1, ik) ∈ A for k = 1, ..., n. For a given delay scenario ω ∈ Ω, the total arrival delay

of each flight ik in the aircraft route r is given by:

tadωik ≥ pdωik−1,ik
+ IADω

ik
from (FR-9)

≥ (tadωik−1
− aSlack′ik−1,ik

) + IADω
ik

from (FR-6)

= tadωik−1
− (aSlackik−1,ik − xik−1

+ xik) + IADω
ik

from (FR-2)

≥ (pdωik−2,ik−1
+ IADω

ik−1
)− aSlackik−1,ik + xik−1

− xik + IADω
ik

from (FR-9)

≥ (tadωik−2
− aSlack′ik−2,ik−1

) from (FR-6)

− aSlackik−1,ik + xik−1
− xik +

k∑
j=k−1

IADω
ij

= tadωik−2
− (aSlackik−2,ik−1

− xik−2
+ ���xik−1

) from (FR-2)

− aSlackik−1,ik + ���xik−1
− xik +

k∑
j=k−1

IADω
ij

= tadωik−2
+ xik−2

− xik −
k∑

j=k−1

aSlackij−1,ij +
k∑

j=k−1

IADω
ij

...

≥ tadωi0 + xi0 − xik −
k∑
j=1

aSlackij−1,ij +
k∑
j=1

IADω
ij

≥ xi0 − xik −
k∑
j=1

aSlackij−1,ij +
k∑
j=0

IADω
ij

from (FR-8)
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Thus, for each flight ik ∈ F and ω ∈ Ω, we have

tadωik − xi0 + xik ≥
k∑
j=0

IADω
ij
−

k∑
j=1

aSlackij−1,ij (FR-13)

where i0 is the first flight in the aircraft route containing flight ik.

In the derivation above, we have made use of all decision variables but pSlack′ij.

From (FR-4) and (FR-5), we have

xj − xi ≥ −pSlackij ∀(i, j) ∈ P (FR-14)

Now we will use Ghouila-Houri’s characterization to show that the coefficient

matrix A corresponding to the constraints (FR-13) and (FR-14) is totally unimodular.

For any collection C of columns of A, let C1 be a set of the columns in C associated

with the decision variables tadωi , and C2 be a set of columns in C associated with the

decision variables xi.

According to (FR-13) and (FR-14), all entries aij in the coefficient matrix A are

-1, 0, or +1. For each row i, the sum of the coefficients in C1 (
∑

j∈C1
aij) is either 0 or

+1, and the sum of the coefficients in C2 (
∑

j∈C2
aij) is -1, 0, or +1, depending on the

collection C. If there exists a row i such that
∑

j∈C1
aij = 1 and

∑
j∈C2

aij = −1, then∑
j∈C1

aij −
∑

j∈C2
aij = 2 /∈ {−1, 0,+1}. We, however, can modify the partitions

by moving the column j ∈ C1 contributing 1 in
∑

j∈C1
aij to set C2. The resulting

partitions C ′1 and C ′2 yield
∑

j∈C′1
aij −

∑
j∈C′2

aij = 0. Note that because the variable

tadωij appears in exactly one row, the modification only affects row i. We can repeat

this process and obtain partitions C∗1 and C∗2 such that |
∑

j∈C∗1
Aj −

∑
j∈C∗2

Aj |≤ 1.

Because this is true for any collection C of columns of A, the coefficient matrix A is

totally unimodular by Ghouila-Houri’s characterization.

Because the constraints (FR-13) and (FR-14) are equivalent to the constraints

(FR-2)-(FR-11), we established that, for all integral data (aSlackij, pSlackij, IAD
ω
i )

and parameters (li, ui), the polyhedron formed by the constraints (FR-2)-(FR-11) is

integral by Hoffman and Kruskal’s Theorem. �
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As a result, we can relax the integrality constraint (FR-12) and solve the FR

problem as a linear optimization problem, instead of an integer optimization problem.

This allows us to solve this problem more efficiently, especially when the size of the

network is very large.

This model can be considered a variation of the flight schedule re-timing model

proposed by AhmadBeygi, Cohn, and Lapp (2008) [2]. In particular, the decision

variables – the changes in the departure times – are modeled in a similar manner, but

the calculations of the total propagated delay are different.

Our model considers only the delay propagation due to aircraft arriving late,

whereas their model considers the delay propagation due to aircraft and cockpit crews.

As a result, our calculation of the total propagated delay can be accomplished simply

through aircraft routes, using the notion of propagated delay introduced in Section

2.2.2. AhmadBeygi, Cohn, and Lapp, on the other hand, propose the notion of a

propagation tree in order to capture delay propagation from multiple resources. As

mentioned in their paper, their model using propagation trees does not accurately

take into account simultaneous delays from different propagation trees. Our model,

however, can capture this correctly considering only delay propagation due to aircraft

arriving late.

Another difference is that we allow independent arrival delays to take negative

values to reflect overestimated block times of some flights or overestimated minimum

turn times of some aircraft connections according to the historical operating data.

Lastly, we also enforce the feasibility of every existing passenger itinerary.

3.2.3 Alternative Objective Functions

In Section 3.1.4, we introduce the objective function of maximizing the total expected

effective slack, which can potentially lead to more robust solutions. We can modify

the formulation in the previous section to incorporate this idea as well.
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Maximizing the total expected effective aircraft connection slack

Let aSlack
ω

ij be the effective aircraft connection slack associated with a connection

(i, j) ∈ A capped at a nonnegative level Γij for a given delay scenario ω ∈ Ω. Because

the resulting planned aircraft connection slack of the aircraft connection (i, j) after

re-timing is given by aSlack′ij, we have

aSlack
ω

ij = Min(aSlack′ij − tadωi ,Γij). (FR-15)

Therefore, the flight schedule re-timing model maximizing the total expected

effective aircraft connection slack is given by:

Maximize
∑

(i,j)∈A

(∑
ω∈Ω

pωaSlack
ω

ij

)
(FR-16)

subject to aSlack
ω

ij ≤ aSlack′ij − tadωi ∀(i, j) ∈ A (FR-17)

aSlack
ω

ij ≤ Γij ∀(i, j) ∈ A (FR-18)

(FR-2)− (FR-12)

Maximizing the total expected effective passenger connection slack

As discussed in Section 2.2.3, misconnecting passengers typically represent a signif-

icant portion of total passenger delay. One possible way to reduce the likelihood

of passenger misconnection is to provide sufficient slack in passenger connections.

Unlike the string-based formulation for the AR problem, the formulation for the FR

problem presented in the previous section can also capture the information regarding

passenger connections. Therefore, we can apply the notion of effective slack to

passenger connections as well.

In particular, pSlack
ω

ij, the effective passenger connection slack associated with

a connection (i, j) ∈ P capped at a nonnegative level Γij for a given delay scenario
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ω ∈ Ω, is defined as

pSlack
ω

ij = Min(pSlack′ij − tadωi ,Γij). (FR-19)

Thus, the flight schedule re-timing model maximizing the total expected effective

passenger connection slack is given by:

Maximize
∑

(i,j)∈P

(∑
ω∈Ω

pωpSlack
ω

ij

)
(FR-20)

subject to pSlack
ω

ij ≤ pSlack′ij − tadωi ∀(i, j) ∈ P (FR-21)

pSlack
ω

ij ≤ Γij ∀(i, j) ∈ P (FR-22)

(FR-2)− (FR-12)

3.2.4 Multiple Optimal Solutions

The issue of multiple optimal solutions also arises in the flight schedule re-timing

problem, regardless of the objective function. Similar to the robust aircraft re-

routing problem, the number of optimal solutions depends typically on 1) re-timing

opportunities in the airline schedule which are determined by allowable time windows

for re-timing, the number of passenger connections, planned aircraft connection times

in the given aircraft routes, etc.; and 2) the extent of delays in the given set of

historical data.

The example in Figure 3-5 illustrates multiple optimal solutions in the robust

flight schedule re-timing problem. The number associated with each flight indicates

the independent delay. The first feasible solution represents the original schedule.

The departure time of flight ZZ 004 is moved later in the second feasible solution

and moved earlier in the third feasible solution. Suppose the objective function is to

minimize the total expected propagated delay, then all three feasible solutions result

in the same objective function value of zero, i.e., no delay propagation. These feasible
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solutions, however, may not be equal with respect to other performance metrics or

objective functions. For example,

• The feasible solution I might be preferable because flight schedule consistency

is maintained from one planning period to the next.

• The feasible solution II might be preferable because more ground slack is allo-

cated to the aircraft connection between ZZ 003 and ZZ 004 for which delay

propagation is more likely to occur.

• The feasible solution III might be preferable because most of the passengers on

flight ZZ 004 might have to make connections to other flights, and moving the

departure time of flight ZZ 004 earlier could potentially reduce the likelihood

of passenger misconnections. Note that this is usually the case for a flight

operating from a spoke into a hub.

ZZ 003 MEX-GDL

10

ZZ 004 GDL-MEX

0

ZZ 005 MEX-AGU

0

(a) Feasible solution I

ZZ 003 MEX-GDL

10

ZZ 004 GDL-MEX

0

ZZ 005 MEX-AGU

0

(b) Feasible solution II

ZZ 003 MEX-GDL

10

ZZ 004 GDL-MEX

0

ZZ 005 MEX-AGU

0

(c) Feasible solution III

Figure 3-5: Multiple optimal solutions in the robust flight schedule re-timing problem

As discussed in Section 3.1.5, we can solve the flight schedule re-timing problem

sequentially using different objective functions in order to select, among the optimal

solutions to the initial objective, a solution that is optimal with respect to other

objectives.

One advantage of the FR formulation over the AR formulation is its ability to

capture information regarding passenger connections. Thus, one possible sequence

of objective functions is to maximize the total expected effective aircraft connection
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slack followed by maximizing the total expected effective passenger connection slack,

or the opposite order, if our primary goal is to improve passenger delays.

Another possible objective is to minimize the difference between the original and

the optimal flight schedule because an airline typically prefers a degree of consistency

across planning periods. One way to achieve this objective is to simply minimize

the total change in the departure times, which is given by
∑

i∈F |xi|. Some flights,

however, might be affected more by re-timing, e.g., short-haul high-frequency flights,

flights in business market, and flights during peak hours. We can specify different

weights wi for each flight i ∈ F to reflect its importance, and minimize
∑

i∈F wi|xi|

instead. Additionally, we can introduce a piecewise linear convex function wi(xi)

that gives a larger penalty to a larger change. This enables the model to distinguish

between two flights that are moved by 0 and 15 minutes and two flights that are

moved by 7 and 8 minutes.

3.3 Robust Block Time Adjustment Model

3.3.1 Underlying Idea

Among the three slack re-allocation schemes introduced in Section 2.4, block time

adjustment provides the greatest flexibility as it affects not only aircraft connection

slack and passenger connection slack but also block time slack. Block time slack can

absorb independent delay such as taxi delay and airborne delay, which increases with

increased air traffic. To improve on-time performance, many airlines pad their sched-

ules by increasing their block times to account for potential delays. The usefulness

of block time slack, however, comes at a cost. Longer block times can lead to longer

crew duties and less productivity of aircraft.

Given a set of historical data, we want to adjust flight block times optimally such

that the resulting schedule minimizes some proxy of expected delays or disruptions,

as demonstrated in Section 2.4.4. In particular, we want to re-allocate the existing

slack in the schedule to where it is most needed historically.
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In the next section, we present the robust block time adjustment model to mini-

mize the total expected arrival delay. Then, we propose alternative objective functions

in subsequent sections.

3.3.2 Formulation

The formulation we present in this section is an extension of the robust flight schedule

re-timing model introduced in Section 3.2.2. In particular, we add another decision

variable to capture the change in the arrival time of each flight, rather than assuming

it equals the change in the departure time as in the FR formulation. This enables us

to move the departure and arrival times of each flight independently. As discussed

earlier, an increase in block times can help absorb independent delays; while a decrease

in block times can result in larger arrival delays. Therefore, the total arrival delay of

each flight changes with changes in block time.

For each flight i ∈ F , let xi be the difference between the new and the original

departure time, and yi be the difference between the new and the original arrival

time. The variable xi(yi) takes a negative value if the departure(arrival) time is

moved earlier and takes a positive value if the departure(arrival) time is moved later.

We limit the change in the departure time of each flight i to a small time window

[lxi , uxi ], and the arrival time to [lyi , uyi ]. Note that in our block time adjustment

model, we allow for block time reduction of some flights as well.

Using the notations from Section 3.2.2, the robust block time adjustment problem

(BA) is given by:

Minimize
∑
i∈F

E [tadi] =
∑
i∈F

(∑
ω∈Ω

pωtad
ω
i

)
(BA-1)

subject to aSlack′ij = aSlackij − yi + xj ∀(i, j) ∈ A (BA-2)

aSlack′ij ≥ 0 ∀(i, j) ∈ A (BA-3)

pSlack′ij = pSlackij − yi + xj ∀(i, j) ∈ P (BA-4)
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pSlack′ij ≥ 0 ∀(i, j) ∈ P (BA-5)

pdωij ≥ tadωi − aSlack′ij ∀(i, j) ∈ A,∀ω ∈ Ω (BA-6)

pdωij ≥ 0 ∀(i, j) ∈ A,∀ω ∈ Ω (BA-7)

tadωi ≥ IADω
i + xi − yi ∀i ∈ F0,∀ω ∈ Ω (BA-8)

tadωj ≥ pdωij + IADω
j + xj − yj ∀(i, j) ∈ A,∀ω ∈ Ω (BA-9)

tadωi ≥ 0 ∀i ∈ F, ∀ω ∈ Ω (BA-10)

li ≤ yi − xi ≤ ui ∀i ∈ F (BA-11)

lxi ≤ xi ≤ uxi ∀i ∈ F (BA-12)

lyi ≤ yi ≤ uyi ∀i ∈ F (BA-13)

xi, yi ∈ Zn ∀i ∈ F (BA-14)

The objective function (BA-1) is to minimize the total expected arrival delay over

all flights. Again, we assume Ω has finite cardinality.

Constraint set (BA-2) is the resulting planned slack of each aircraft connection

(i, j) ∈ A after moving the departure and arrival times of flights i and j. The resulting

planned slack (aSlack′ij) increases when the arrival time of flight i is moved earlier,

i.e., when yi takes a negative value. Also, it increases when the departure time of flight

j is moved later, i.e., when xj takes a positive value. The non-negativity constraints

of the resulting planned aircraft connection slack, (BA-3), ensure that every aircraft

connection is longer than its corresponding minimum aircraft turn time, and thus the

current aircraft routing remains feasible.

Similarly, constraint set (BA-4) is the resulting planned passenger connection slack

after re-timing for each passenger connection. The non-negativity constraints of the

resulting planned passenger connection slack, (BA-5), ensure that every passenger

connection is longer than its corresponding minimum passenger connection time, and

thus every itinerary remains feasible.

Given a re-timed flight schedule, constraints (BA-6) and (BA-7) are the propa-

gated delays for each aircraft connection under different delay scenarios; constraints

(BA-8)-(BA-10) determine the total arrival delays for each flight leg under different
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delay scenarios, assuming that the first flight of each string has zero propagated delay.

Note that one can think of the term IADω
j + xj − yj in (BA-8) and (BA-9) as the

resulting independent arrival delay of flight j after changing the block time.

Constraints (BA-11) restrict the total change in a block time of each flight within

the range [li, ui]. Lastly, constraints (BA-12) and (BA-13) limit the change in the

departure and arrival times of each flight i within specific time windows [lxi , uxi ] and

[lyi , uyi ].

This formulation is an extension of the robust flight schedule re-timing formulation

introduced in Section 3.2.2, and it inherits the property that the polyhedron formed

by the constraints in the formulation is integral, given integral data and parameters.

Theorem 2: The polyhedron formed by constraints (BA-2)-(BA-13) is integral,

given that all data and parameters in those constraints are integral.

Proof: This proof is similar to the one presented in Section 3.2.2, except that

we have an additional set of decision variables yi and constraints (BA-11).

In order to prove the claim, it is sufficient to show that the coefficient matrix A

corresponding to the constraints that are not bound constraints is totally unimodular.

We start off by rewriting the coefficient matrix A in terms of tadωi ,xi, and yi.

Consider an aircraft route r = (i0, i1, ..., in) where ik ∈ F for k = 0, ..., n and

(ik−1, ik) ∈ A for k = 1, ..., n. For a given delay scenario ω ∈ Ω, the total arrival delay

of each flight ik in the aircraft route r is given by:

tadωik ≥ pdωik−1,ik
+ IADω

ik
+ xik − yik from (BA-9)

≥ (tadωik−1
− aSlack′ik−1,ik

) + IADω
ik

+ xik − yik from (BA-6)

= tadωik−1
− (aSlackik−1,ik − yik−1

+ ��xik) + IADω
ik

+ ��xik − yik from (BA-2)

≥ (pdωik−2,ik−1
+ IADω

ik−1
+ xik−1

−���yik−1
) from (BA-9)

− aSlackik−1,ik + ���yik−1
− yik + IADω

ik
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≥ (tadωik−2
− aSlack′ik−2,ik−1

) from (BA-6)

− aSlackik−1,ik + xik−1
− yik +

k∑
j=k−1

IADω
ij

= tadωik−2
− (aSlackik−2,ik−1

− yik−2
+ ���xik−1

) from (BA-2)

− aSlackik−1,ik + ���xik−1
− yik +

k∑
j=k−1

IADω
ij

= tadωik−2
+ yik−2

− yik −
k∑

j=k−1

aSlackij−1,ij +
k∑

j=k−1

IADω
ij

...

≥ tadωi0 + yi0 − yik −
k∑
j=1

aSlackij−1,ij +
k∑
j=1

IADω
ij

≥ (IADω
i0

+ xi0 −��yi0) + ��yi0 − yik −
k∑
j=1

aSlackij−1,ij +
k∑
j=1

IADω
ij

from (BA-8)

= xi0 − yik −
k∑
j=1

aSlackij−1,ij +
k∑
j=0

IADω
ij

Thus, for all flight ik ∈ F and ω ∈ Ω, we have

tadωik − xi0 + yik ≥
k∑
j=0

IADω
ij
−

k∑
j=1

aSlackij−1,ij (BA-15)

where i0 is the first flight in the aircraft route containing flight ik.

Analogously to the inequalities (FR-14) in the proof for FR formulation, we have

xj − xi ≥ −pSlackij ∀(i, j) ∈ P (BA-16)

from (BA-4) and (BA-5).

We also have additional constraints that have not been considered:

li ≤ yi − xi ≤ ui ∀i ∈ F (BA-17)

For any collection C of columns of A, let C1 be a set of the columns in C associated

67



with the decision variables tadωi , and C2 be a set of columns in C associated with the

decision variables xi and yi.

According to (BA-15)-(BA-17), all entries aij in the coefficient matrix A are -1,

0, or +1. For each row i, the sum of the coefficients in C1 (
∑

j∈C1
aij) is either 0 or

+1, and the sum of the coefficients in C2 (
∑

j∈C2
aij) is -1, 0, or +1, depending on the

collection C. If there exists a row i such that
∑

j∈C1
aij = 1 and

∑
j∈C2

aij = −1, then∑
j∈C1

aij −
∑

j∈C2
aij = 2 /∈ {−1, 0,+1}. We, however, can modify the partitions

by moving the column j ∈ C1 contributing 1 in
∑

j∈C1
aij to set C2. The resulting

partitions C ′1 and C ′2 yield
∑

j∈C′1
aij −

∑
j∈C′2

aij = 0. Note that because the variable

tadωij appears in exactly one row, the modification only affects row i. We can repeat

this process and obtain partitions C∗1 and C∗2 such that |
∑

j∈C∗1
Aj −

∑
j∈C∗2

Aj |≤ 1.

Because this is true for any collection C of columns of A, the coefficient matrix A is

totally unimodular by Ghouila-Houri’s characterization.

Because the constraints (BA-15)-(BA-17) are equivalent to the constraints (BA-2)-

(BA-13), by Hoffman and Kruskal’s Theorem, we establish that, for all integral data

(aSlackij, pSlackij, IAD
ω
i ) and parameters (lxi , uxi , lyi , uyi), the polyhedron formed

by the constraints (BA-2)-(BA-13) is integral. �

Therefore, we can relax the integrality constraint (BA-14) and solve the BA prob-

lem as a linear optimization problem, instead of an integer optimization problem.

3.3.3 Alternative Objective Functions

Minimizing the total expected propagated delay

At this point, one question that may arise is why the objective function of the BA

model presented in the previous section is to minimize the total expected arrival delay,

rather than minimizing the total expected propagated delay. Unlike in the AR or FR

models, minimizing the total expected propagated delay in the BA formulation is in

fact not a good proxy for minimizing the total expected arrival delay.

More specifically, recall that a total arrival delay for flight j is given by tadj =
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Max(pdij +IADj, 0) (see (2.7)), where flight i is immediately preceding flight j in the

aircraft route. In the AR and FR models, because independent arrival delays are fixed,

decreasing a propagated delay from flight i to flight j, pdij will result in a smaller

total arrival delay for flight j as long as the term pdij + IADj remains positive.

This, however, is not the case for the BA model. In particular, an independent

arrival delay of flight j is now a function of decision variables xj and yj and equal to

IADj +xj−yj, instead of a constant IADj. Thus, one can possibly decrease pdij and

simultaneously increase the resulting independent arrival delay, IADj + xj − yj as

well as the total arrival delay tadj. For instance, consider a flight j that experiences a

nonzero propagated delay from flight i. We can simply avoid this delay propagation

by moving the departure time of flight j to when the aircraft is ready. Without

changing the arrival time of flight j, the total arrival delay will remain the same, in

spite of the reduction in propagated delay. In fact, if we also move the arrival time

of flight j earlier, the total arrival delay will increase.

Moreover, when there exist multiple optimal solutions, the objective function of

minimizing the total expected propagated delay will be indifferent to the optimal

solution that also minimizes the total expected arrival delay. From (BA-6) and

(BA-2), we have that pdij ≥ tadi− aSlackij + yi− xj. Suppose i /∈ F0. If tadi > 0, it

follows from (BA-9) that

pdij ≥ (pdi−1,i + IADi + xi −��yi)− aSlackij + ��yi − xj,

where flight i− 1 is immediately preceding flight i in the aircraft route. In other

words, the scheduled arrival time of flight i, yi, does not affect the propagated delay

from flight i to j, and thus we can set it to any allowable value, as long as the

total arrival delay of flight i remains positive (see Figure 3-6). As a result, given xi

and xj that minimize pdij, the objective function of minimizing the total expected

propagated delay has no incentive to set yi such that it minimizes tadi.
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x i y i x j

Figure 3-6: Minimizing propagated delay in the robust block time adjustment model

Maximizing the total expected effective aircraft connection slack

We can argue similarly that maximizing the total expected effective aircraft connec-

tion slack is also not a good proxy for minimizing the total expected arrival delay.

In particular, it is possible that the total arrival delay remains the same, in spite of

the increase in effective slack. Additionally, the scheduled arrival time of flight i, yi

does not affect the effective slack of the aircraft connection from flight i to j, and we

can set it to any allowable value, as long as the total arrival delay of flight i remains

positive. Therefore, given xi and xj that maximize the effective slack in the aircraft

connection from flight i to j, the objective function of maximizing the total expected

effective aircraft connection slack has no incentive to set yi such that it minimizes

tadi.

Maximizing the total expected effective passenger connection slack

Because the BA formulation is capable of modifying passenger connection slack, we

can apply the notion of effective passenger connection slack to the BA model as well.

This can be done in the exact same way as we did for the robust flight schedule

re-timing model.

3.3.4 Multiple Optimal Solutions

The issue of multiple optimal solutions, again, arises in the robust block time adjust-

ment formulation, introduced in Section 3.3.2. Consider two consecutive flights i and

j in the same aircraft route. Suppose i, j /∈ F0 and tadj > 0. Then, from (BA-9), we

have that tadj ≥ pdij + IADj + xj − yj. If pdij > 0, it follows that tadi > 0 as well,
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and thus we have

tadj ≥ pdij + IADj + xj − yj

≥ (tadi − aSlackij + yi −��xj) + IADj + ��xj − yj (From (BA-6))

≥ (pdi−1,i + IADi + xi −��yi)− aSlackij + ��yi + IADj − yj (From (BA-9))

where flight i− 1 is immediately preceding flight i in the aircraft route. In other

words, the scheduled departure time of flight j, xj does not affect the total arrival

delay of flight j, and hence we can set it to any allowable value, as long as tadj > 0

and pdij > 0 (see Figure 3-7). Therefore, given xi and yj that minimizes tadj, the

objective function of minimizing the total expected arrival delay has no incentive to

set xj such that the departure delay of flight j is minimized, or the slack in passenger

connections to flight j is maximized.

x i x j y j

Figure 3-7: Multiple optimal solutions in the robust block time adjustment problem

As we did in the previous models, we can solve the robust block time adjustment

sequentially using different objective functions in order to select, among the optimal

solutions to the initial objective, a solution that is optimal with respect to other

objectives. Some possible secondary objectives are

• minimizing the total expected propagated delay;

• maximizing the total expected effective aircraft connection slack;

• maximizing the total expected effective passenger connection slack; and

• minimizing the difference between the original and the optimal flight schedule.

For the first three objectives, this can be done in a way similar to that which we

used in the FR models. In order to measure the difference between the original and
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the optimal flight schedule, we calculate the total absolute block time change, defined

as
∑

i∈F |yi − xi|. Note that this metric is intended to measure the difference and

does not distinguish block time reduction from block time increase.
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Chapter 4

Proof of Concepts

4.1 Data and Evaluation process

We obtained three months of historical operations data (from January 1st to March

25th 2008) from an international carrier (denoted as ”Airline A” in this thesis). The

dataset contains

• flight information: origin, destination, planned departure and arrival times,

actual departure and arrival times, flight status (diverted, canceled, arrived),

and aircraft type. (Note that we do not have information about taxi-out and

taxi-in times.);

• planned and actual aircraft routings;

• minimum turn times currently used by Airline A; and

• number of passengers booked on each itinerary (for March data only).

Because airlines use historical data to build schedules for future operations, we

divide our dataset into two disjoint subsets representing historical data and future

operations.

January and February data are used as historical data. In particular, we consider

each day of operation in January and February as one instance of delay scenario ω.

Hence, the set of delay scenarios Ω has cardinality 31 + 29 = 60. We also assume that
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each disruption scenario is equally likely. To obtain our planned schedule for March,

we solve the proposed robust slack re-allocation models over each day of operation.

The size of a problem on each day of operation is summarized in Table 4.1. Note that

for the robust aircraft re-routing problem, we can decompose the problem further into

subproblems for different aircraft types.

Next, we use the actual delay information from March data to evaluate perfor-

mance of the robust schedules. Specifically, we apply the formulas given in Section

2.2.2 to compute the actual independent delay of each flight for each day of operation

in March. Given the actual independent delay of each flight, we simulate the actual

departure and arrival times of each flight with respect to the new schedules, assuming

no flight cancellations and aircraft swaps during the day of operation. Finally, we

compute the performance evaluation statistics, presented in Section 2.2. The data

flow and evaluation process are depicted in Figure 4-1.

Routing/Scheduling
Models

Simulation

Jan.-Feb. Data March Data

Performance
Evaluation
Statistics

Planned Schedule
(for March)

Figure 4-1: Data Flow and Evaluation Process

4.1.1 Passenger Delay Calculation

As discussed in Section 2.2, understanding the extent of passenger delays is crucial in

evaluating schedule performance. In contrast to other flight delay metrics, passenger

delays cannot be obtained directly from actual flight operation data because we

need to consider re-accommodation of disrupted passengers– those who missed their
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Day of Operation Number of Number of Number of Passenger Number of
(March 2008) Flights Aircraft Connectionsa Passengers

1 231 59 469 12840
2 243 61 544 16027
3 250 58 520 13889
4 236 57 449 12455
5 240 59 514 14187
6 260 59 560 15288
7 263 61 595 17416
8 242 61 506 14620
9 243 60 566 16485
10 246 59 464 14634
11 226 55 299 8725
12 232 57 461 16258
13 268 61 561 19891
14 260 62 606 22906
15 242 61 470 19871
16 246 61 523 18040
17 247 61 511 15192
18 229 57 409 12918
19 230 59 496 14718
20 231 60 500 13993
21 211 58 447 11409
22 249 62 430 16192
23 244 61 557 20648
24 252 61 583 19226
25 229 56 453 15201

Table 4.1: Problem sizes

aThe number of passenger connections indicates the number of distinct passenger connections in
the passenger booking data. Note, this is different from the number of distinct itineraries.
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connections or whose flights were canceled. In this work, we calculate passenger delays

using the Passenger Delay Calculator algorithm (PDC) developed by Barnhart and

Bratu (2005) [10].

The inputs to PDC consist of a flight schedule, actual flight operation data

(i.e., actual departure/arrival times and flight cancellations), and passenger booking

data. The algorithm first determines itineraries that are disrupted according to the

actual flight operation data. Recall that an itinerary is disrupted if one or more

flights in the itinerary are canceled, or some connecting time between consecutive

flights becomes less than the minimum connecting time required. Non-disrupted

passengers are assigned to their original itinerary, whereas disrupted passengers are

inserted into the recovery queue, which is processed in some specific order. Next, the

PDC algorithm finds each disrupted passenger the best available recovery itinerary–

the one that arrives earliest at his or her final destination. Note that a recovery

itinerary is available only if it is feasible, that is, every connection satisfies the

minimum connection time requirement, and every flight in the itinerary has at least

one unassigned seat.

The passenger delay of a non-disrupted passenger is simply given by the arrival

delay of the last flight in his or her itinerary. For each disrupted passenger, the

passenger delay is the difference between the planned arrival time of the last flight in

his or her original itinerary and the actual arrival time of the last flight in his or her

recovery itinerary. Finally, if the passenger delay associated with a disrupted passen-

ger exceeds the maximum passenger delay threshold, it is assumed that the passenger

is re-accommodated on another airline. Because flight schedules of other airlines as

well as seat availability information are not available to PDC, we cannot accurately

compute passenger delays for disrupted passengers that are re-accommodated on other

airlines. Instead, we assign delay equal to the maximum passenger delay threshold

for each disrupted passenger.

In this work, we re-accommodate disrupted passengers on a first-disrupted-first-

recovered basis. In particular, the recovery queue is sorted in increasing order of

disruption times. The disruption time associated with each itinerary is determined as
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follows: 1) If an itinerary is disrupted due to flight cancellation, its disruption time is

given by the planned departure time of the flight; 2) If an itinerary is disrupted due to

misconnection, its disruption time is given by the actual arrival time of the last flight

before the missed connection. Moreover, we assume that the minimum connection

time for every connection is 30 minutes, and the maximum passenger delay is 12

hours. For simplicity, we also consider only itineraries with at most two flight legs,

that is, at most one connection. According to the dataset, such itineraries represent

an average of almost 99 percent of the passenger itineraries.

Note that the PDC algorithm only provides approximations of passenger delays.

We summarize here the assumptions of the PDC algorithm that may limit the accu-

racy of these approximations:

• Because the actual flight information of every flight is known to PDC, disrupted

passengers are re-accommodated as if perfect information on future operations

is known. In reality, a disrupted passenger might be re-booked on a flight that

is later canceled, and thus additional re-booking is necessary. As a result, actual

passenger delay might be much larger than the passenger delay obtained from

PDC.

• PDC always gives priority to non-disrupted passengers. Specifically, if a flight

is already full, it cannot be used in a recover itinerary. However, it might be

preferable to ask a volunteer to give up his or her seat to a disrupted passenger

who is severely delayed and/or needs to connect to another flight.

• The disruption time of each disrupted passenger can be different from our

definition. For example, a misconnecting passenger might be aware of his

itinerary disruption before his first flight departed, and he could have been

re-accommodated with a better itinerary before he began his trip. As a result,

PDC may overestimate passenger delays. Also, a passenger might be aware of

his flight cancellation after the planned departure time of the flight, for example,

after waiting an hour for an aircraft repair attempt. In this case, PDC can

underestimate passenger delays.
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Original AR minPD AR maxEffACSlack15

Schedule Statistics
Total A/C Connection Slack (mins) 6676.76 7459.16 +11.72% 7494.36 +12.25%
% of Original A/C Connections Included - 67.92% 68.60%

Flight Delay Statistics
Total Propagated Delay (mins) 1009.60 818.60 -18.92% 781.40 -22.60%
% of Flights with PD > 0 17.74% 14.86% 14.41%
Total Arrival Delay (mins) 3141.16 2965.56 -5.59% 2929.16 -6.75%
15-min On-Time Performance 76.53% 77.82% 78.02%
60-min On-Time Performance 96.89% 97.26% 97.36%

Passenger Delay Statistics
Total Pax Delay (mins) 260565 250325 -3.93% 246903 -5.24%
Total Disrupted Pax (pax) 47.56 45.16 -5.05% 44.72 -5.97%

Table 4.2: Average performance evaluation statistics over 25 days (March 1-25, 2008)
for the AR models

For details of the PDC algorithm and discussion on the validity of the assumptions

underlying it, readers are referred to Bratu (2003) [9] and Bratu and Barnhart (2005)

[10].

4.2 Robust Aircraft Re-routing Model

In this section, we present the results obtained from the robust aircraft re-routing

models introduced in Section 3.1, with different objective functions and parameters.

Let Original denote the airline’s original schedule, and define the solutions as follows.

AR minPD the solution to the AR model that minimizes the

total expected propagated delay (see (AR-6))

AR maxEffACSlack<Γ> the solution to the AR model that maximizes the

total expected effective aircraft connection slack

with caps set equal to Γ minutes for every aircraft

connection (see (AR-9))

4.2.1 Computational Results

Table 4.2 summarizes average statistics of Original, AR minPD, and AR maxEff-

ACSlack15 solutions over the period of March 1-25, 2008. To obtain these statistics,
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we evaluate the performance of the solutions over each day of operation in March

using the approach discussed in Section 4.1, and compute the average statistics over

25 days. We divide the statistics into three categories: 1) schedule statistics, 2) flight

delay statistics, and 3) passenger delay statistics.

Schedule Statistics

According to Table 4.2, both AR minPD and AR maxEffACSlack15 solutions have more

total slack than the original schedule. There are two factors contributing to the

increase:

1) In the AR model, we assume that every aircraft is ready at the beginning of

the day of operation and also available until the end of the day. Therefore, it

is possible that some aircraft have longer elapsed times between the start and

end of flying in a given day, as compared to the original schedule. Figure 4-2

exemplifies the situation. Flights in the original schedule that are operated by

a single aircraft are drawn along a horizontal line.
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ZZ 000904 MEX-MTY ZZ 000923 MTY-MEX ZZ 000918 MEX-MTY ZZ 000927 MTY-MEX ZZ 000930 MEX-MTY ZZ 000937 MTY-MEX ZZ 000226 MEX-CJS

ZZ 000155 BJX-MEX ZZ 000180 MEX-HMO ZZ 000180 HMO-TIJ ZZ 000181 TIJ-HMO ZZ 000181 HMO-MEX ZZ 000583 MEX-CUN

ZZ 000907 MTY-MEX ZZ 000914 MEX-MTY ZZ 000921 MTY-MEX ZZ 000445 MEX-CUN ZZ 000944 CUN-MEX

ZZ 000577 MEX-CUN ZZ 000576 CUN-MEX ZZ 000682 MEX-ORD

ZZ 000164 MEX-BJX ZZ 000062 BJX-TIJ ZZ 000063 TIJ-BJX

ZZ 000686 MEX-ORD ZZ 000687 ORD-MEX ZZ 000136 MEX-AGU ZZ 000496 AGU-LAX ZZ 000497 LAX-AGU

ZZ 000212 MEX-CUU ZZ 000213 CUU-MEX ZZ 000142 MEX-PVR ZZ 000145 PVR-MEX ZZ 000936 MEX-MTY ZZ 000943 MTY-MEX

ZZ 000239 GDL-MEX ZZ 000184 MEX-TIJ ZZ 000185 TIJ-MEX ZZ 000934 MEX-MTY ZZ 000947 MTY-MEX

ZZ 000909 MTY-MEX ZZ 000531 MEX-MID ZZ 000532 MID-MEX ZZ 000696 MEX-PHX

ZZ 000460 GDL-LAX ZZ 000471 LAX-GDL ZZ 000668 GDL-ORD

ZZ 000019 MEX-LAX ZZ 000647 LAX-MEX ZZ 000468 MEX-LAX

ZZ 000227 CJS-MEX ZZ 000258 MEX-CJS ZZ 000279 CJS-MEX ZZ 000932 MEX-MTY ZZ 000941 MTY-MEX

ZZ 000697 PHX-MEX ZZ 000419 MEX-VSA ZZ 000510 VSA-MEX ZZ 000190 MEX-TIJ ZZ 000193 TIJ-MEX

ZZ 000133 BJX-MEX ZZ 000138 MEX-AGU ZZ 000129 AGU-MEX ZZ 000422 MEX-MIA ZZ 000413 MIA-MEX

ZZ 000906 MEX-MTY ZZ 000913 MTY-MEX ZZ 001429 MEX-CUN ZZ 006702 CUN-CVG

ZZ 000489 SAN-SJD ZZ 000489 SJD-MEX ZZ 000670 MEX-SEA

ZZ 000018 LAX-MEX ZZ 000176 MEX-TIJ ZZ 000113 TIJ-GDL

ZZ 000112 GDL-TIJ ZZ 000111 TIJ-GDL ZZ 000110 GDL-TIJ ZZ 000177 TIJ-MEX

ZZ 006571 MEX-CUN ZZ 006572 CUN-MEX ZZ 000581 MEX-CUN ZZ 000582 CUN-MEX

ZZ 000100 MEX-GDL ZZ 000116 GDL-TIJ ZZ 000175 TIJ-LAP ZZ 000175 LAP-MZT ZZ 000175 MZT-MEX ZZ 000292 MEX-CUU

ZZ 000669 ORD-GDL ZZ 000127 GDL-MEX ZZ 000488 MEX-SJD ZZ 000488 SJD-SAN

ZZ 000580 CUN-MEX ZZ 000907 MEX-CUN ZZ 000444 CUN-MEX ZZ 000154 MEX-BJX ZZ 000165 BJX-MEX ZZ 000944 MEX-MTY

ZZ 000459 GDL-MEX ZZ 000315 MEX-ACA ZZ 000304 ACA-MEX ZZ 000924 MEX-MTY ZZ 000933 MTY-MEX ZZ 000114 MEX-GDL ZZ 000458 GDL-ONT ZZ 000459 ONT-GDL

ZZ 000174 MEX-MZT ZZ 000174 MZT-LAP ZZ 000174 LAP-TIJ ZZ 000147 TIJ-MEX ZZ 000409 MEX-PVR

ZZ 000701 HMO-MEX ZZ 000134 MEX-BJX ZZ 000135 BJX-MEX ZZ 000928 MEX-MTY ZZ 000935 MTY-MEX ZZ 000938 MEX-MTY

ZZ 000519 MEX-VSA ZZ 000508 VSA-MEX ZZ 000286 MEX-GDL ZZ 000287 GDL-MEX ZZ 000644 MEX-LAX ZZ 000469 LAX-MEX

ZZ 000683 ORD-MEX ZZ 000922 MEX-MTY ZZ 000957 MTY-MEX

ZZ 000408 MEX-JFK ZZ 000409 JFK-MEX

ZZ 000402 MEX-JFK ZZ 000403 JFK-MEX

ZZ 000702 MEX-HMO ZZ 000705 HMO-MEX ZZ 000404 MEX-JFK

ZZ 000170 MEX-TIJ ZZ 000173 TIJ-MEX ZZ 000018 MEX-LIM ZZ 000019 LIM-MEX

ZZ 000902 MEX-MTY ZZ 000911 MTY-MEX

ZZ 000405 JFK-MEX ZZ 000706 MEX-HMO ZZ 000711 HMO-MEX

ZZ 000014 MEX-GRU

ZZ 000005 MEX-CDG ZZ 000006 CDG-MEX

ZZ 000028 MEX-EZE

ZZ 000022 MTY-MEX ZZ 000010 MEX-SCL ZZ 000011 SCL-MEX

ZZ 000015 GRU-MEX

ZZ 000057 TIJ-MEX ZZ 000001 MEX-MAD

ZZ 000002 MAD-MEX

ZZ 000220 MEX-CJS ZZ 000259 CJS-MEX ZZ 000926 MEX-MTY ZZ 000951 MTY-MEX

ZZ 000276 MEX-GDL ZZ 000107 GDL-MEX ZZ 000671 MEX-GDL ZZ 000209 GDL-MEX

ZZ 000120 MEX-GDL ZZ 000121 GDL-MEX ZZ 000228 MEX-GDL ZZ 000109 GDL-MEX ZZ 000940 MEX-MTY

ZZ 000942 MEX-MTY ZZ 000953 MTY-MEX

ZZ 000272 MEX-SJD ZZ 000273 SJD-MEX ZZ 000252 MEX-GDL ZZ 000281 GDL-MEX ZZ 000248 MEX-GDL

ZZ 000169 CUL-MEX ZZ 000108 MEX-GDL ZZ 000229 GDL-MEX ZZ 000244 MEX-MZT

ZZ 000903 MTY-MEX ZZ 000351 MEX-ZIH ZZ 000352 ZIH-MEX ZZ 000222 MEX-CUU ZZ 000217 CUU-MEX ZZ 000208 MEX-TRC

ZZ 000225 GDL-MEX ZZ 000156 MEX-GDL ZZ 000670 GDL-MEX ZZ 000130 MEX-GDL

ZZ 000954 MEX-MTY ZZ 000919 MTY-MEX ZZ 000916 MEX-MTY ZZ 000925 MTY-MEX ZZ 000128 MEX-AGU ZZ 000139 AGU-MEX ZZ 000168 MEX-CUL

ZZ 000200 MEX-TRC ZZ 000201 TRC-MEX ZZ 000202 MEX-TRC ZZ 000203 TRC-MEX ZZ 000307 MEX-ACA

ZZ 000308 ACA-MEX ZZ 000144 MEX-PVR ZZ 000143 PVR-MEX ZZ 000266 MEX-REX ZZ 000267 REX-MEX ZZ 000946 MEX-MTY

ZZ 000162 MEX-CUL ZZ 000162 CUL-TIJ ZZ 000163 TIJ-CUL ZZ 000163 CUL-MEX

ZZ 000205 TRC-MEX ZZ 000678 MEX-MGA ZZ 000679 MGA-MEX ZZ 000210 MEX-CUU ZZ 000211 CUU-MEX

ZZ 000910 MEX-MTY ZZ 000917 MTY-MEX ZZ 000274 MEX-SJD ZZ 000275 SJD-MEX ZZ 000710 MEX-HMO

ZZ 000278 MEX-CJS ZZ 000221 CJS-MEX

Figure 4-2: Slack increase in the AR model

In this example, we can see that the new aircraft connection (ZZ 917 - ZZ 278)

adds almost three hours of slack into the schedule. It decreases the elapsed

time for the aircraft flying the sequence of flights in the top horizontal line and

increases that for the aircraft operating the flights in the lower horizontal line.

2) For this airline, a minimum turn time required for each aircraft connection is

determined not only by the aircraft type and the connection airport, but also by

the departure airport of the inbound flight and arrival airport of the outbound

flight. As a result, it is possible that the set of included connections requires less

turn time and hence increases slack in the resulting schedule. The contribution

of this factor to the slack increase is, however, not as significant as the former.
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The percentage of original aircraft connections (e.g., aircraft connections in the

original schedule) included in each solution reflects the degree of difference between

the resulting schedule and the original schedule. We report this statistic because air-

lines may prefer schedules that require minimal modifications to the original schedule.

In addition, the assumptions that we make regarding maintenance opportunities and

crew feasibility, are more likely to hold with fewer schedule changes.

In both solutions, to the robust AR models, approximately 30% of the original

aircraft connections are modified. Figure 4-3 depicts the AR maxEffACSlack15 sched-

ule for March 1, 2008. Again, flights in the original schedule that are operated by

the same aircraft are drawn along the same horizontal line. Therefore, any aircraft

connections in the figure that are not horizontal indicate changes to the original

aircraft routes.

Flight Delay Analysis

On average, both AR minPD and AR maxEffACSlack15 solutions improve all flight

delays statistics under consideration. Moreover, the AR maxEffACSlack15 solution

shows larger expected improvements relative to the AR minPD solution.

In Figures 4-4, we show evaluated propagated delays on March 1-25, 2008. We

can see that both AR minPD and AR maxEffACSlack15 schedules perform better than

the Original schedule in all but one case (AR minPD on March 16). The decreases in

delay propagation are very significant on bad days– those with high level of delays,

such as March 8 (23%), 9 (24%), and 14 (31%); while only small improvements are

achieved on typical days.

In 10 out of 25 days, the AR minPD and AR maxEffACSlack15 solutions have exactly

the same evaluated propagated delays. (Note that the solutions are not necessarily the

same.) There are also some cases where AR maxEffACSlack15 performs a little worse

than AR minPD. However, on bad days, the performance of AR maxEffACSlack15 is

much better. For example, on March 23, the propagated delay reduction achieved

by AR maxEffACSlack15 is about 8% more than AR minPD. Indeed, on March 16, the

AR minPD solution has even higher propagated delay than the original solution. This
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Figure 4-4: Evaluated total propagated delays on March 1-25, 2008 for the AR models

result suggests that the objective function of maximizing the total expected effective

slack (with an appropriate limit) is more robust than minimizing the total expected

propagated delay.

Tables 4.3 and 4.4 summarize the distributions of propagated delays and total

arrival delays over 25 days. In AR minPD and AR maxEffACSlack15 solutions, propa-

gated delays are reduced every positive range. Consequently, the percentage of flights

with positive propagated delays is reduced as shown in Table 4.2. In addition, the

distribution of total arrival delays is shifted towards smaller delays. This results in

reductions in total arrival delay and improvements in 15-minute and 60-minute on-

time performance values. More importantly, the reduction of flights with long delays

can potentially reduce the number of misconnecting passengers.

One observation we want to mention is that minimizing total propagated delay

does not necessarily maximize 15-minute on-time performance. This is because a long

delay propagated along one aircraft route may be split into smaller delays in several

routes after re-routing. Figure 4-5 exemplifies the situation. The number associated
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Propagated Delay (mins) 0 (0,30] (30,60] (60,90] (90,120] >120

Original (%) 82.26 14.89 1.65 0.55 0.26 0.38
AR minPD (%) 85.14 12.61 1.34 0.40 0.18 0.33

AR maxEffACSlack15 (%) 85.60 12.31 1.26 0.33 0.18 0.31

Table 4.3: Distributions of propagated delays for the AR models

Total Arrival Delay (mins) 0 (0,15] (15,60] (60,120] >120

Original (%) 44.33 32.20 20.36 2.17 0.94
AR minPD (%) 45.27 32.55 19.44 1.85 0.89

AR maxEffACSlack15 (%) 45.47 32.56 19.32 1.75 0.89

Table 4.4: Distributions of total arrival delays for the AR models

with each flight indicates the independent delay. In feasible solution I, there is a

large delay propagation on the connection from ZZ 8 to ZZ 9, and only flights ZZ

8 and ZZ 9 are delayed longer than 15 minutes. Alternatively, in feasible solution

II, both aircraft connections experience some propagated delay. Although the total

propagated delay is smaller than feasible solution I, flight ZZ 5 is also delayed longer

than 15 minutes in addition to ZZ 8 and ZZ 9.

This situation, however, does not happen frequently. Suppose, in the example,

there is a sequence of flights following flight ZZ 9, and the propagated delay is

sufficiently large. It is very likely that the delay will propagate to the subsequent

flights after ZZ 9, and many more flights will be delayed longer than 15 minutes.

Consequently, on average, 15-minute on-time performance is improved when propa-

gated delay is minimized, as presented in Table 4.2.

ZZ 004 GDL-MEX

7

ZZ 005 MEX-AGU

9

ZZ 008 ACA-MEX

18

ZZ 009 MEX-BJX

10

(a) Feasible solution I

ZZ 004 GDL-MEX

7

ZZ 005 MEX-AGU

9

ZZ 008 ACA-MEX

18

ZZ 009 MEX-BJX

10

(b) Feasible solution II

Figure 4-5: An example illustrates inconsistency in minimizing the total propagated
delay and maximizing 15-minute on-time performance.
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Passenger Delay Analysis

In order to keep the model tractable, we do not explicitly take into account passenger

delays in the objective functions. We, however, anticipate that minimizing a proxy

of flight delay should also result in decreasing passenger delay. The results in Table

4.2 confirm our expectation. In both AR minPD and AR maxEffACSlack15 solutions,

total passenger delay, as well as the number of disrupted passengers, are decreased.

Note that although the solutions to the AR models reduce the number of disrupted

passengers by two or three passengers on average, the total passenger delay decreases

by more than 10,000 minutes. This suggests that the decrease in total passenger

delay is mainly achieved through smaller flight delays for the majority of passengers.

Figure 4-6 shows the evaluated total passenger delays on March 1-25, 2008. We can

see that these results exhibit similar trends as those for propagated delays, shown

in Figure 4-4. In particular, the decreases in passenger delay are significant on bad

days, while only small improvements are achieved on typical days.
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Figure 4-6: Evaluated total passenger delays on March 1-25, 2008 for the AR models

Nonetheless, it is important to point out that improvement in all the passenger-
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centric metrics is not assured. In fact, re-routing aircraft may result in more disrupted

passengers. The evaluated number of disrupted passengers, shown in Figure 4-7,

demonstrates the point. We can see that there are many cases where our generated

schedules cause more disrupted passengers than for the original case. The large

reduction in the number of disrupted passengers on March 2 and 22, however, result

in fewer disrupted passengers on average for the AR model solutions.
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Figure 4-7: Evaluated number of disrupted passengers on March 1-25, 2008 for the
AR models

To see how re-routing aircraft can result in disrupted passengers, consider the

example in Figure 4-8. Again, the numbers indicate the independent delays of each

flight. Suppose there are connecting passengers from ZZ 4 to ZZ 5. In the original

schedule, the connecting passengers will always make their connections because flights

ZZ 4 and ZZ 5 are flown by the same aircraft. In contrast, assume that minimizing the

total expected propagated delay or maximizing the total expected effective slack yields

a solution allowing ZZ 5 to depart on time. In this case, the connecting passengers

from ZZ 4 to ZZ 5 miss their connections.
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20

ZZ 005 MEX-AGU
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(a) Original

ZZ 001 MTY-MEX
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ZZ 005 MEX-AGU
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(b) Robust Solution

Figure 4-8: Passenger disruption due to aircraft re-routing

Generally speaking, for each passenger connection, although the inbound flight

is delayed, a passenger can still make his or her connection if the outbound flight

is delayed as well. In terms of passenger misconnections, relative flight delays for

each connection are more important than absolute flight delays. Therefore, it is

possible that the original schedule may have more delayed flights, but fewer disrupted

passengers. Readers are referred to [10] and [9] for the detailed discussion about the

discrepancy between flight and passenger delays.

If, however, there are connecting passengers from ZZ 5 to other flights, ZZ 5

departing on time can decrease the likelihood of misconnection for those passengers.

Consequently, the improvement in passenger delay statistics depends on the number

passengers connecting to and from flight ZZ 5.

Moreover, total passenger delay is affected by the number of disrupted passengers

and by which itineraries are disrupted. Some disrupted itineraries include a flight

that operates only daily, and the disrupted passengers might have to wait for a full

twenty four hours before they are re-accommodated. Others might involve flights

that are operated hourly, and the disrupted passengers are then re-accommodated

within an hour or so. Therefore, given two different solutions that yield exactly the

same number of misconnecting passengers, the corresponding total passenger delays

can be very different.

In summary, minimizing the total expected propagated delay or maximizing the

total expected effective slack do seem, however, to reduce passenger delays, even

though neither passenger delays nor disruptions are explicitly modeled.
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AR minPD
AR minPD

AR maxEffACSlack15
AR maxEffACSlack15

maxOrgConn maxOrgConn

Schedule Statistics
Total A/C Connection Slack (mins) 7459.16 7454.16 7494.36 7504.96
% of Original A/C Connections Included 67.92% 69.74% 68.60% 69.96%

Flight Delay Statistics
Total Propagated Delay (mins) 818.60 818.60 781.40 781.80
% of Flights with PD > 0 14.86% 14.83% 14.41% 14.40%
Total Arrival Delay (mins) 2965.56 2965.56 2929.16 2929.56
15-min On-Time Performance 77.82% 77.83% 78.02% 78.03%
60-min On-Time Performance 97.26% 97.27% 97.36% 97.37%

Passenger Delay Statistics
Total Pax Delay (mins) 250325 250249 246903 246820
Total Disrupted Pax (pax) 45.16 45.00 44.72 44.56

Table 4.5: Average performance evaluation statistics over 25 days of alternative
optimal solutions to AR minPD and AR maxEffACSlack15

4.2.2 Discussion on Models

The discussion in the previous section focuses mainly on the performance of the two

solutions, AR minPD and AR maxEffACSlack15, compared to the Original schedule.

In this section, we will address some attributes of the robust aircraft re-routing model

including the objective functions, model parameters, and solution quality.

Multiple Optimal Solutions

As discussed in section 3.1.5, the AR model typically yields multiple optimal solutions,

which might not be equally effective with respect to other performance metrics or ob-

jective functions. We select, among the optimal AR minPD and AR maxEffACSlack15

solutions, the solutions that maximize the number of aircraft connections in the

original routing included in the solutions. In particular, we solve the AR models

again using (AR-11) as an objective function with an additional constraint ensuring

optimality of the solution with respect to the initial objectives. We denote the

AR minPD and AR maxEffACSlack15 solutions that maximize the number of original

aircraft connections as AR minPD maxOrgConn and AR maxEffACSlack15 maxOrgConn,

respectively. The average performance evaluation statistics are summarized in Table

4.5.

The underlying idea of this selection is to potentially preserve good features of
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the original aircraft routing. With about 1 to 2 percent increase in the number of

original aircraft connections, the AR minPD maxOrgConn and AR maxEffACSlack15-

maxOrgConn solutions show slight improvements over the AR minPD and AR maxEff-

ACSlack15 solutions in almost all performance metrics. Even though the results

here show limited improvements, we still expect significant improvements when we

solve the AR models for a longer planning period or a larger airline with more re-

routing opportunities. Note that most re-routing opportunities exist at hubs, and

this particular airline, Airline A, has only one major hub.

Lastly, because solving the AR models can be computationally expensive, a deci-

sion to optimize a secondary objective depends largely on the potential improvement,

and hence the airline’s underlying network. For Airline A, it might not be worth

solving the second-stage optimization problem.

Increasing Slack versus Performance Improvement

Recall that the AR models assume that every aircraft that is scheduled to operate

on a particular day is ready at the beginning of the day and also available until

the end of the day. This results in a solution with a significant increase of total

aircraft connection slack as discussed in the previous section. It is questionable that

the improvements shown earlier are mainly attributed to the increasing slack in the

solutions.

We noticed that a large increase in slack occurs when the first flight of some

aircraft route in the original routing is preceded by some other flights in the solution

to the AR models, as illustrated in Figure 4-2, or similarly when the last flight of some

aircraft route in the original routing is followed by some other flights in the solution

to the AR models. Therefore, to forbid solutions with this property, we re-define a

string as a sequence of flights such that (i) the first flight of the string must originally

be the first flight of some aircraft route; and (ii) the last flight of the string must

originally be the last flight of some aircraft route. Note that this does not completely

rule out the possibility that some aircraft have longer elapsed times between the start

and end of flying in a given day.
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Original AR minPD’ AR maxEffACSlack15’

Schedule Statistics
Total A/C Connection Slack (mins) 6676.76 6683.36 +0.10% 6690.76 +0.21%
% of Original A/C Connections Included - 72.39% 72.70%

Flight Delay Statistics
Total Propagated Delay (mins) 1009.60 854.80 -15.33% 839.00 -16.90%
% of Flights with PD > 0 17.74% 15.36% 15.12%
Total Arrival Delay (mins) 3141.16 2999.56 -4.51% 2983.96 -5.00%
15-min On-Time Performance 76.53% 77.70% 77.80%
60-min On-Time Performance 96.89% 97.17% 97.26%

Passenger Delay Statistics
Total Pax Delay (mins) 260565 249277 -4.33% 248111 -4.78%
Total Disrupted Pax (pax) 47.56 42.76 -10.09% 41.84 -12.03%

Table 4.6: Average performance evaluation statistics over 25 days of solutions to the
AR models with the new definition of a flight string

Given this definition of a flight string, the count constraints (AR-3) are automat-

ically satisfied, and thus can be removed from the formulation. Let AR minPD’ and

AR maxEffACSlack15’ be the corresponding solutions with this new definition of a

flight string. The performance of the solutions is summarized in Table 4.6.

As we expected, both AR minPD’ and AR maxEffACSlack15’ solutions now have

almost the same amount of slack as the Original schedule. They still, however,

improve every performance evaluation metric. In particular, except for total number

of disrupted passengers, the improvements are only slightly inferior to the AR minPD

and AR maxEffACSlack15 solutions, as shown in Table 4.2. For example, the re-

duction in total propagated delay drops by only 4 and 6 percent for AR minPD’ and

AR maxEffACSlack15’ solutions, respectively.

More importantly, the reduction in disrupted passengers achieved by the AR minPD’

and AR maxEffACSlack15’ solutions is more significant, compared to the AR minPD

and AR maxEffACSlack15 solutions. Because, in this case, more original aircraft

connections are included in the solutions, the results support our earlier discussion

that re-routing aircraft can result in disrupted passengers.

Solution Quality

In order to exhibit the quality of a solution to the AR model, we compare its perfor-

mance with the other two solutions, denoted by the suffixes expected and perfect-
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Info. The only difference among these solutions is the approach of using historical

data. Recall that so far we consider each day of operation in January and February as

one instance of delay scenario ω, and thus the set of delay scenarios Ω has cardinality

60. We also assume that each disruption scenario is equally likely.

For an expected solution, the set of delay scenarios Ω has a single element

representing the average independent delays of every flight, obtained from January

and February data. This simple approach of using historical data can be useful when

1) daily flight operations data are not accessible or not very complete, but estimates

of average flight delays are available; or 2) it is computationally too expensive to solve

the model with many delay scenarios.

The drawback of this solution is that it ignores the stochastic nature of delays and

the correlations of delays among different flights, which can partially be captured by

using many different delay scenarios. Furthermore, it can be shown that the function

of total propagated delay and the function of total effective slack are convex and

concave, respectively. By Jensen’s inequality, for a convex(concave) function, the

expected value of functions is no smaller(larger) than the function of the expected

value. Therefore, it follows that an expected solution underestimates the total

expected propagated delay and overestimates the total expected effective slack, as

compared to the base solutions, AR minPD and AR maxEffACSlack15. Intuitively, for

total propagated delay, it is possible that an average independent arrival delay of

a flight is so small that it does not propagate in the expected solution, although

for some instances of delay scenarios, the delay could be very large and potentially

propagate to subsequent flights.

For a perfectInfo solution, the set of delay scenarios Ω has a single element

representing the actual independent delays of every flight. Note that this is the

same set of independent delays we use to evaluate the performance of schedules. In

other words, we solve the AR models as if we have perfect information of the future

operations. This solution provides a bound on an improvement we can possibly

achieve through a particular model.

Table 4.7 summarizes the performance of each solution. The results show that even
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the expected solutions, which are computationally less expensive, are reasonably

better than the Original schedule. Moreover, the superior performance of AR minPD

and AR maxEffACSlack15 solutions, compared to the corresponding expected solu-

tions, indicates that it is beneficial to use many different delay scenarios from historical

data to capture the stochasticity of delays. For instance, the average total propagated

delay of the AR minPD solution is more than 6% smaller than the AR minPD expected

solution.

Remarkably, the performance of the AR maxEffACSlack15 expected solution is

somewhat comparable to the AR minPD solution, which is more difficult to obtain.

This again emphasizes the strength of the objective of maximizing the total expected

effective aircraft connection slack.

The performance of the perfectInfo solutions indicate that the AR models, with

the objective of minimizing total expected propagated delay or maximizing total

expected effective slack, can reduce propagated delay by at most 30% and passenger

delay by at most 8%, on average. We will again compare these bounds with the flight

schedule re-timing models and the block time adjustment models.

Figure 4-9 shows the evaluated propagated delays on March 1-25, 2008 for different

approaches of using historical data. The performance gaps between each solution are

clearly illustrated here. We can see that all solutions actually perform relatively the

same on typical days, and hence the difference in average performance of each solution

is mainly driven by their performance on bad days.

Cap Values

In the AR model that maximizes the total expected effective slack, we need to specify

a cap Γij for each aircraft connection from flight i to flight j. So far, we only show the

results for the AR maxEffACSlack15 solution for which the caps are set to 15 minutes

for every aircraft connection.

It is not clear a priori how we should set the values of caps. On one extreme, we

can set all the caps to zero, which is equivalent to minimizing propagated delay, as

proved in Section 3.1.4. In this case, the model focuses mainly on the connections
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Figure 4-9: Evaluated total propagated delays on March 1-25, 2008 for different
approaches of using historical data
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that have negative effective slack (or, equivalently, positive propagated delay) and

ignores other connections for which effective slack might be close to zero. On the

other extreme, we can set all the caps to infinity. In this case, any amount of slack in

an aircraft connection fully contributes to the objective value, and more slack might

be unnecessarily added to the connections that already have a reasonable amount of

slack. Ideally, we wish to find the cap values that balance trade-offs between the two

cases and yield the best result.

Figure 4-10 depicts some key performance statistics of the solutions with different

cap values. The results confirm that the performance of a solution is maximized

when the caps are not too large or too small. In this case, setting all the caps

to 20 minutes yields the best result. Interestingly, the plots in Figure 4-10 are

relatively flat around the minimum points, that is, if we pick other values of caps

around 20 minutes, the improvements will drop only modestly. More importantly,

setting caps to anything between 5 and 30 minutes, rather than zero, results in the

better performance evaluation statistics. This again emphasizes the advantage of

maximizing total expected effective slack over minimizing total expected propagated

delay.
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Figure 4-10: Average performance of solutions with different cap values

The evaluated total propagated delays on March 1-25, 2008 for different values

of caps are shown in Figure 4-11. Although the performance of each solution does

not differ significantly on typical days, on March 16, the AR maxEffACSlack0 and

AR maxEffACSlack∞ solutions perform much worse than the other solutions, includ-
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ing the Original schedule.
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Figure 4-11: Evaluated total propagated delays on March 1-25, 2008 of solutions with
different cap values

Recall that the caps need not be the same for every aircraft connection. An airline

can use additional information to set values of caps to different levels for different fleet

types, connection airports, and so forth.

Minimizing the Expected Total Arrival Delay

As discussed in Section 3.1.4, when an airline extensively pads its schedule to account

for potential delays, it might be more appropriate to minimize the total expected

arrival delay, rather than minimize the total expected propagated delay. This is,

however, not the case for this particular airline. Only about 6% of flights have negative

average independent arrival delays. Comparing the total propagated delay and the

total arrival delay of the Original schedule in Table 4.2, we can see that propagated

delay contributes only about one third of total arrival delay, that is, another two

thirds of total arrival delay is due to independent arrival delays of each flight.
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AR minPD AR minTAD

Schedule Statistics
Total A/C Connection Slack (mins) 7459.16 7464.56
% of Original A/C Connections Included 67.92% 68.43%

Flight Delay Statistics
Total Propagated Delay (mins) 818.60 818.00
% of Flights with PD > 0 14.86% 14.93%
Total Arrival Delay (mins) 2965.56 2964.76
15-min On-Time Performance 77.82% 77.80%
60-min On-Time Performance 97.26% 97.27%

Passenger Delay Statistics
Total Pax Delay (mins) 250325 250589
Total Disrupted Pax (pax) 45.16 45.12

Table 4.8: Average performance evaluation statistics over 25 days (March 1-25, 2008)
for the AR minPD and AR minTAD solutions

Let AR minTAD denote the solution to the AR model that minimizes the total

expected arrival delay (see (AR-10)). Table 4.8 compares the performance of the

AR minPD and AR minTAD solutions. The results show that there is almost no difference

between the two solutions. This is consistent with our earlier observation that only a

small number of flights have negative average independent arrival delays, and hence

minimizing the total expected propagated delay is almost equivalent to minimizing

the total expected arrival delay.

Finally, according to Table 4.2, the AR maxEffACSlack15 solution also outper-

forms the AR minTAD solution in every performance evaluation metric.

4.3 Robust Flight Schedule Re-timing Model

In this section, we present the computational results obtained from the robust flight

schedule re-timing models introduced in Section 3.2, with different objective functions

and parameters. Again, let Original denote the airline’s original schedule, and define

the other solutions as follows.
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FR minPD the solution to the FR model that minimizes the

total expected propagated delay (see (FR-1))

FR maxEffACSlack<Γ> the solution to the FR model that maximizes the

total expected effective aircraft connection slack

with caps set equal to Γ minutes for every aircraft

connection (see (FR-16))

FR maxEffPaxSlack<Γ> the solution to the FR model that maximizes the

total expected effective passenger connection slack

with caps set equal to Γ minutes for every passenger

connection (see (FR-20))

Recall that, in the FR models, we need to specify a time window [li, ui] for which

the departure time of flight i is allowed to change. Throughout this section, we assume

the following, unless stated otherwise. For a flight leg i,

• if i is the first flight of some flight string, then li = 0 and ui = 15;

• if i is the last flight of some flight string, then li = −15 and ui = 0;

• otherwise, li = −15 and ui = 15.

In other words, each flight is allowed to move at most 15 minutes earlier or later.

Additionally, the first and last flights of each string are not allowed to move earlier

and later, respectively. Consequently, the elapsed time between the start and end of

flying for each aircraft remains the same.

4.3.1 Computational Results

Table 4.9 summarizes average statistics of Original, FR minPD, FR maxEffACSlack15,

and FR maxEffPaxSlack15 solutions over the period of March 1-25, 2008.

Schedule Statistics

First of all, we note that every solution has the same amount of total aircraft con-

nection slack, because an aircraft routing is fixed in the FR models, and we assume
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Original FR minPD FR maxEffACSlack15 FR maxEffPaxSlack15

Schedule Statistics
Total A/C Connection Slack (mins) 6676.76 6676.76 6676.76 6676.76
Total Re-timing - 1258.80 1223.32 1230.80

Flight Delay Statistics
Total Propagated Delay (mins) 1009.60 756.24 -25.10% 741.48 -26.56% 1076.40 +6.62%
% of Flights with PD > 0 17.74% 11.97% 11.34% 20.12%
Total Arrival Delay (mins) 3141.16 2967.40 -5.53% 2952.52 -6.01% 3219.36 +2.49%
15-min On-Time Performance 76.53% 78.26% 78.48% 76.08%
60-min On-Time Performance 96.89% 97.01% 97.04% 96.86%

Passenger Delay Statistics
Total Pax Delay (mins) 260565 256540 -1.54% 256211 -1.67% 260854 +0.11%
Total Disrupted Pax (pax) 47.56 64.52 +35.66% 67.16 +41.21% 36.80 -22.62%

Table 4.9: Average performance evaluation statistics over 25 days (March 1-25, 2008)
for the FR models

that the first and last flights of each string are not allowed to move earlier and later,

respectively.

Recall that for the AR models, we report the number of original aircraft con-

nections included as a measure of difference between the resulting schedule and the

original schedule. Analogously, for the FR models, we compute the total change in

the departure times, denoted as ”Total Re-timing” in Table 4.9. In particular, a total

re-timing statistic is given by
∑

i∈F |xi|, where xi is the difference between the new

and the original departure time of flight i in the set F of all flight legs. According

to Table 4.9, all solutions to the FR model are different from the Original schedule

by approximately 1200 minutes of re-timing. To illustrate the extent of difference,

the FR maxEffACSlack15 solution for March 1, 2008 is depicted in Figure 4-12. The

visualization notation for flight re-timing is given in Figure 2-2.

Flight Delay Analysis

The results show that, on average, the FR minPD and FR maxEffACSlack15 solutions

perform better than the Original schedule with respect to every flight delay statistic.

Also, the FR maxEffACSlack15 solution shows slightly larger improvements relative

to the FR minPD solution. In contrast, the FR maxEffPaxSlack15 solution performs

worse than the Original schedule in every flight delay statistic. This is simply

because the objective function of maximizing the total expected effective passenger
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connection slack has no direct link to flight delay improvements.

Comparing the performance of the FR minPD and FR maxEffACSlack15 to the

AR minPD and AR maxEffACSlack15 solutions, we can see that even though the FR min-

PD and FR maxEffACSlack15 solutions yield larger reductions in propagated delay and

percentage of flights with positive propagated delay, the reduction in total arrival

delay is slightly smaller than in the AR minPD and AR maxEffACSlack15 solutions.

This happens because some proportion of the decreases in propagated delay goes

to the flights with negative independent arrival delays. Mathematically, because

TADj = Max(PDij + IADj, 0), a decrease in the propagated delay from flight i to

flight j only affects the total arrival delay of flight j when PDij+IADj is nonpositive.

The distributions of propagated delays and total arrival delays over 25 days for the

FR minPD and FR maxEffACSlack15 solutions are summarized in Table 4.10 and 4.11.

In both solutions, total arrival delays are reduced in every positive range. Propagated

delays, however, slightly increase in the (90,120] range. The results show that this

slight increase is due to the mismatch between the expected delays in historical data

and the actual delays in the day of operation. An example in Figure 4-13 illustrates

the situation.

ZZ 006513 CMH-CUN ZZ 000444 CUN-MEX ZZ 000278 MEX-CJS ZZ 000221 CJS-MEX

(a) Original

ZZ 006513 CMH-CUN ZZ 000444 CUN-MEX ZZ 000278 MEX-CJS ZZ 000221 CJS-MEX

(b) FR maxEffACSlack15

Figure 4-13: The mismatch between the expected delays in historical data and the
actual delays in the day of operation

Figure 4-13 shows the expected actual operations of the Original schedule and

the FR maxEffACSlack15 solution. According to the historical data, the average

independent arrival delay (IAD) of flight ZZ 6513 is about 32 minutes, and the largest

IAD is as long as 1 hour. On the other hand, the average IAD of flight ZZ 444 is

only 12 minutes, and 60% of the historical IADs are zeroes. As a result, in the
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FR maxEffACSlack15 solution, ZZ 444 is scheduled to depart later in anticipation of

delay propagation from ZZ 6513. However, the actual IADs of ZZ 6513 and ZZ 444

are 5 and 25 minutes, respectively. Consequently, flight ZZ 444 departs earlier in

the Original schedule, and a smaller delay propagates from ZZ 444 to ZZ 278 and

subsequently to ZZ 221.

This situation, however, does not occur frequently, and the FR minPD and FR max-

EffACSlack15 solutions still, on average, improve the total propagated delay statistic.

Because in the AR minPD and AR maxEffACSlack15 solutions, propagated delays are

reduced in every positive range, this suggests that the robust flight schedule re-timing

models are more sensitive to the discrepancy between historical delays and actual

delays than the robust aircraft re-routing models.

Because in the FR models, we assume that the aircraft routing is fixed, and each

flight is allowed to move at most 15 minutes, their solutions are not capable of reducing

large delay propagation. In particular, we can increase an aircraft connection slack

by at most 30 minutes by moving the inbound flight 15 minutes earlier and the

outbound flight 15 minutes later, given that the corresponding aircraft and passenger

connections are feasible. In contrast, it is possible for the AR models to increase an

aircraft connection slack by more than 30 minutes, given that there exists such a

re-routing opportunity. As a result, the percentage of flights with propagated delays

in the ranges larger than 30 minutes is reduced more in the AR minPD and AR maxEff-

ACSlack15 solutions than in the FR minPD and FR maxEffACSlack15 solutions.

On the other hand, the FR models are more flexible than the AR models in the

sense that they allow finer re-allocation of slack. In particular, in the FR models,

slack can be increased or decreased by any amounts from 0 to 30 minutes, given that

the corresponding aircraft and passenger connections are feasible. On the contrary,

in the AR models, an amount of increase or decrease in slack hinges on the available

re-routing opportunities. Furthermore, some connections, especially those departing

from spokes, may have no re-routing opportunities. Therefore, the AR models are not

capable of reducing delay propagation in those connections. This flexibility advantage

of the FR models results in larger reductions of propagated delays in the (0,30] range
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in the FR minPD and FR maxEffACSlack15 solutions, as compared to the AR minPD

and AR maxEffACSlack15 solutions.

Propagated Delay (mins) 0 (0,30] (30,60] (60,90] (90,120] >120

Original (%) 82.26% 14.89% 1.65% 0.55% 0.26% 0.38%
FR minPD (%) 88.03% 9.55% 1.36% 0.40% 0.30% 0.36%

FR maxEffACSlack15 (%) 88.66% 8.93% 1.39% 0.36% 0.33% 0.33%

Table 4.10: Distributions of propagated delays for the FR models

Total Arrival Delay (mins) 0 (0,15] (15,60] (60,120] >120

Original (%) 44.33% 32.20% 20.36% 2.17% 0.94%
FR minPD (%) 46.69% 31.57% 18.74% 2.07% 0.93%

FR maxEffACSlack15 (%) 46.55% 31.93% 18.56% 2.10% 0.86%

Table 4.11: Distributions of total arrival delays for the FR models

Figure 4-14 shows evaluated propagated delays on March 1-25, 2008. Comparing

this figure with the similar plot for the AR models (Figure 4-4), we can see that,

on good days (e.g., March 3-6), the solutions to the FR models can achieve larger

reduction in total propagated delay because of the flexibility advantage of the FR

models; while on bad days (e.g. 8, 9, and 14 March), the solutions to the AR models

can do better because of its capability to mitigate impacts of large delays.

Passenger Delay Analysis

Although the feasibility of passenger connections are imposed in the FR formulation,

the FR minPD and FR maxEffACSlack15 solutions, which focus only on minimizing

flight delay metrics, result in the increases in average number of disrupted passengers

from the Original schedule by 36% and 41%, respectively. However, the average

total passenger delay still slightly decreases in both solutions.

Figure 4-15 illustrates how the FR models that minimize flight delay metrics cause

passenger disruption. The figure shows the expected actual operation of the FR max-

EffACSlack15 solution on March 6, 2008. The departure times of flights ZZ 108

and ZZ 105 are pushed back in anticipation of delay propagation from flight ZZ 225.
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Figure 4-14: Evaluated total propagated delays on March 1-25, 2008 for the FR

models

Also, the departure time of flight ZZ 222 is shifted earlier in anticipation of delay

propagation to flight ZZ 217. Even though the passenger connection from ZZ 105 to

ZZ 222 is feasible, it becomes much tighter. In particular, the passenger connection

slack is decreased from 25 minutes to 5 minutes. Because the average IAD of flight

ZZ 105 is 4.85 minutes, and almost 60% of the historical IADs are zeroes, there seems

sufficient slack in the resulting schedule. However, the actual IAD of ZZ 105 turns

out to be 10 minutes, and therefore the passengers do not have sufficient connection

time, and they miss the connection.

ZZ 000577 MEX-CUN ZZ 000576 CUN-MEX ZZ 000222 MEX-CUU ZZ 000217 CUU-MEX

ZZ 000225 GDL-MEX ZZ 000108 MEX-GDL ZZ 000105 GDL-MEX ZZ 000202 MEX-TRC ZZ 000203 TRC-MEX

Figure 4-15: Flight delay versus passenger disruption

In contrast, the number of disrupted passengers is significantly reduced in the

FR maxEffPaxSlack15 solution. This indicates that our objective function of maxi-
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mizing the total expected effective passenger connection slack serves as a good proxy

for minimizing passenger misconnections. Despite the large reduction of disrupted

passengers, the FR maxEffPaxSlack15 solution yields higher total passenger delay

than the Original schedule.

Figure 4-16, 4-17, and 4-18 depicts the expected actual operations of the Original,

FR maxEffACSlack15, and FR maxEffPaxSlack15 schedules, respectively. A red line

denotes a disrupted passenger connection. By comparing the three figures, we can

easily see how each solution leads to fewer or more disrupted passengers.

At this point, two questions that may arise are

1) Why does total passenger delay decrease in the FR minPD and FR maxEffAC-

Slack15 solutions, in spite of the significant increase in disrupted passengers?;

and

2) Why does total passenger delay increase in the FR maxEffPaxSlack15 solution,

in spite of the significant reduction in disrupted passengers?

These happen because total passenger delay of this particular airline is mainly

driven by flight delays, not passenger misconnections. According to the passenger

booking data, almost 90% of passengers are local passengers– those that travel on a

single flight leg. The passenger delay associated with these local passengers depends

only on flight delays, given that their flights are not canceled. Moreover, we find

that, on average, total disrupted passenger delay contributes less than 10% of total

passenger delay. Total disrupted passenger delay depends not only on the number of

disrupted passengers, but also on how fast an airline can re-accommodate disrupted

passengers.

These findings suggest that for this particular airline, it might be more ap-

propriate to focus on minimizing flight delays, rather than minimizing passenger

misconnections. For other airlines with larger proportions of connecting passengers,

however, the objective functions that minimize passenger misconnections might be

more appropriate as the contribution of disrupted passenger delay to total passenger

delay would be more significant.
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To summarize, airline characteristics, such as a proportion of connecting passen-

gers and contribution of disrupted passenger delay in total passenger delay, are crucial

in determining which objective function is more appropriate for an airline to minimize

the total passenger delay. The objective function that works well for one airline might

lead to a bad solution for other airlines.

4.3.2 Discussion on Models

The Hybrid Objective Function

The FR maxEffACSlack15 and FR maxEffPaxSlack15 solutions, discussed in the pre-

vious section, represent two extreme solutions– one that focuses only on minimizing

flight delays and one that focuses only on minimizing passenger misconnections. As

a result, the number of disrupted passenger increases in the FR maxEffACSlack15 so-

lution, and every flight delay statistic worsens in the FR maxEffPaxSlack15 solution.

An airline might be interested in a solution that performs somewhere in between the

two, i.e., a solution that results in small flight delays and at the same time does not

cause too many passenger disruptions.

Instead of maximizing the total expected effective slack for only aircraft connec-

tions or only passenger connections, we now consider a convex combination of the

two objective functions, (FR-16) and (FR-20), with a weight λ ∈ [0, 1] for aircraft

connections. The weight λ should be set according to the sensitivity of total passenger

delay to flight delays. For instance, if total passenger delay is mainly driven by flight

delays, the λ should be set close to 1. Using the notation introduced in Section 3.2.2,

the resulting formulation is given by:

Minimize
∑
ω∈Ω

pω

λ ∑
(i,j)∈A

aSlack
ω

ij + (1− λ)
∑

(i,j)∈P

pSlack
ω

ij



subject to aSlack
ω

ij ≤ aSlack′ij − tadωi ∀(i, j) ∈ A

aSlack
ω

ij ≤ Γij ∀(i, j) ∈ A
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pSlack
ω

ij ≤ pSlack′ij − tadωi ∀(i, j) ∈ P

pSlack
ω

ij ≤ Γij ∀(i, j) ∈ P

(FR-2)− (FR-12)

We solve this hybrid model with caps Γij set equal to 15 minutes for every

aircraft and passenger connection for different values of λ. We denote each solution

with a weight λ as FR hybrid15 <λ>. The average total propagated delay and the

average total disrupted passengers for solutions with different values of λ are plotted

in Figure 4-19. The figure clearly illustrates the trade-off between maximizing the

total expected effective slack for aircraft connections and passenger connections. As

λ increases, i.e., more priority is given to effective aircraft connection slack, average

total disrupted passengers increases, and average total propagated delay decreases.

Figure 4-20 shows the averages total passenger delay for solutions with different values

of λ. In this case, the FR hybrid15 0.7 solution minimizes the total passenger delay.

When the value of λ increases from 0.0 to 0.1, the reduction in total propagated

delay is very large; while the increase in disrupted passenger is relatively small.

Similarly, when the value of λ decreases from 1.0 to 0.9 and 0.8, the reduction in

the disrupted passengers metric is very large; while the increase in total propagated

delay is relatively small. This suggests that, even when a modest weight is put on

one part of the objective function, the hybrid model is of great help in balancing the

benefits of the two extreme solutions.

Finally, we note that the FR hybrid15 0.7 solution is still inferior to the AR maxEff-

ACSlack15 solution, presented in the previous section, with respect to most of the

performance evaluation metrics, especially for the number of disrupted passengers.

Multiple Optimal Solutions

As discussed in Section 3.2.4, there are typically multiple optimal solutions to the FR

models. In this section, we explore the following solutions:

1) the optimal FR minPD, FR maxEffACSlack15, and FR maxEffPaxSlack15 solu-
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Figure 4-19: Average total propagated delays and average total disrupted passengers
for solutions with different values of λ

tions that minimize the total change in the departure times. We denote these

solutions with the suffix minRetime.

2) the optimal FR maxEffACSlack15 solution that maximizes the total expected

effective passenger connection slack, denoted as FR maxEffAC+PaxSlack15. In

particular, the primary objective function is to maximize the total expected

effective aircraft connection slack.

3) the optimal FR maxEffPaxSlack15 solution that maximizes the total expected

effective aircraft connection slack, denoted as FR maxEffPax+ACSlack15. In

particular, the primary objective function is to maximize the total expected

effective passenger connection slack.

Table 4.12 summarizes the performance of the alternative optimal solutions to the

FR models. The reductions in the total amount of re-timing range from 10 to more
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Figure 4-20: Average total passenger delay for solutions with different values of λ

than 200 minutes. In the FR minPD minRetime, FR maxEffACSlack15 minRetime,

and FR maxEffAC+PaxSlack15 solutions, the improvements in flight delay statistics

drop modestly, while the number of disrupted passengers as well as total passenger

delay are decreased. On the other hand, in the FR maxEffPaxSlack15 minRetime

and FR maxEffPax+ACSlack15 solutions, every performance evaluation metric is im-

proved.

We also observe that the FR maxEffAC+PaxSlack15 solution performs somewhere

between those of the FR hybrid15 0.9 and FR hybrid15 1.0 solutions, and similarly,

the FR maxEffPax+ACSlack15 solution performs somewhere between those of the FR -

hybrid15 0.0 and FR hybrid15 0.1 solutions. Therefore, the FR maxEffAC+Pax-

Slack15 and FR maxEffPax+ACSlack15 solutions might not be as desirable as those

solutions to the hybrid model with a weight λ between 0.1 and 0.9. In fact, it is

also computationally less expensive to only solve the hybrid model once. Note that
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FR minPD minRetime
FR maxEffACSlack15 FR maxEffPaxSlack15

minRetime minRetime

Schedule Statistics
Total A/C Connection Slack (mins) 6676.76 6676.76 6676.76
Total Re-timing 1166.36 1179.36 1004.72

Flight Delay Statistics
Total Propagated Delay (mins) 758.24 741.80 1042.20
% of Flights with PD > 0 12.03% 11.27% 19.17%
Total Arrival Delay (mins) 2969.28 2952.84 3184.24
15-min On-Time Performance 78.25% 78.50% 76.35%
60-min On-Time Performance 97.02% 97.04% 96.89%

Passenger Delay Statistics
Total Pax Delay (mins) 256085 255740 258853
Total Disrupted Pax (pax) 63.12 66.00 36.76

FR maxEffACSlack15 FR maxEffPaxSlack15

maxEffPaxSlack15 maxEffACSlack15

Schedule Statistics
Total A/C Connection Slack (mins) 6676.76 6676.76
Total Re-timing 1212.40 1200.84

Flight Delay Statistics
Total Propagated Delay (mins) 742.16 1000.52
% of Flights with PD > 0 11.37% 17.97%
Total Arrival Delay (mins) 2952.96 3153.68
15-min On-Time Performance 78.48% 76.55%
60-min On-Time Performance 97.06% 96.93%

Passenger Delay Statistics
Total Pax Delay (mins) 255635 257229
Total Disrupted Pax (pax) 66.12 36.64

Table 4.12: Average performance evaluation statistics over 25 days (March 1-25, 2008)
of the alternative optimal solutions to the FR models

the sets of constraints in the hybrid formulation and the formulation of the second-

stage problem are exactly the same. In particular, they include the constraints that

determine effective slack for both aircraft and passenger connections.

Given the limited improvements in the alternative optimal solutions, we conclude

that solving a second-stage problem to obtain a ”better” optimal solution with respect

to another performance evaluation metric might not be worthwhile for this particular

airline.

Solution Quality

Similarly to the analysis for the AR models, we compare the solutions to the FR mod-

els to their corresponding expected and perfectInfo solutions. The performance
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of these solutions is summarized in Table 4.13

First, we compare the base solutions with their corresponding expected solutions.

We can see that using many delay scenarios from historical data to capture the

stochasticity of delays is helpful in improving the performance evaluation metrics that

are positively correlated to the objective function. In particular, in the FR minPD and

FR maxEffACSlack15 solutions, every flight delay statistic is better than in the corre-

sponding expected solutions, whereas in the FR maxEffPaxSlack15 solution, there

are fewer disrupted passenger, as compared to the FR maxEffPaxSlack15 expected

solution.

However, as we discussed earlier, a solution that minimizes flight delays tends to

cause more disrupted passengers, and vice versa. As a result, the expected solutions

perform better than their base solutions with respect to other performance metrics

that are not considered in the objective functions. Loosely speaking, the expected

solutions serve as ”compromise” solutions. For instance, in the FR minPD expected

solution, the number of disrupted passengers as well as the total passenger delay is

smaller than in the FR minPD solution, in spite of the increases in the total propagated

delay and the total arrival delay. Therefore, it is not clear whether the expected

solutions are inferior to the base solutions.

In all perfectInfo solutions, every performance evaluation metric is improved.

More importantly, the improvements are more significant than in the perfectInfo

solutions to the AR models. This indicates that the FR models can potentially achieve

larger improvements. However, such significant improvements can be obtained only

when the historical data used as input to the model well reflect the actual delays

in the day of operation. As we discussed earlier, despite the flexibility of the FR

models in reducing small propagated delays, these FR models are very sensitive to

the difference between historical delays and actual delays.

We note that the FR minPD perfectInfo solution performs better than the FR max-

EffACSlack15 perfectInfo solution. This is because the model that maximizes the

total expected effective aircraft connection slack still tries to increase effective slack

in those connections with delays close to propagating, which is not necessary, given
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the perfect information of the future operation.

Lastly, in the FR maxEffPaxSlack15 perfectInfo solution, although the number

of disrupted passengers is very low, the total propagated delay as well as the total

passenger delay is still relatively large. This confirms that the objective function of

maximizing the total expected effective passenger connection slack is not be appro-

priate for this particular airline.

Allowable changes in flight departure times

In the robust flight schedule re-timing models, an allowable change in the flight

departure time of each flight is limited to ensure that demand for the flight remains

the same. Clearly, increasing the time window width for allowable departure times of

each flight will increase the flexibility of the FR model, and allow larger improvements

in the resulting schedule.

So far we assume a time window width of 30 minutes (± 15 minutes) for every

flight, except for the first and last flights of each flight string that are not allowed

to moved earlier or later, respectively. To understand the effects of a time window

width on the performance of solutions to the FR models, we solve for the FR minPD,

FR maxEffACSlack15, and FR maxEffPaxSlack15 solutions again with time window

widths of 20 and 10 minutes. Table 4.14 summarizes the performance of the solutions.

We first look at the performance of the FR minPD and FR maxEffACSlack15 so-

lutions. Even for the case of 10-minute time windows, the FR minPD and FR max-

EffACSlack15 solutions improve, compared to the Original schedule, all but the

number of disrupted passengers metric. As the time window width decreases, the total

propagated delay in both solutions increases due to the limited flexibility. Limiting

the changes to the flight schedule, however, also results in fewer disrupted passengers.

It turns out that, despite having the largest total propagated delay, the FR minPD and

FR maxEffACSlack15 solutions for the 10-minute, compared to the 30- and 20-minute,

time window case yield the smallest total passenger delay

In contrast, for the FR maxEffPaxSlack15 solutions, as the time window width

decreases, the number of disrupted passenger increases; while flight delay statistics
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FR minPD
FR minPD FR minPD

expected perfectInfo

Schedule Statistics
Total A/C Connection Slack (mins) 6676.76 6676.76 6676.76
Total Re-timing 1258.80 1327.84 1420.48

Flight Delay Statistics
Total Propagated Delay (mins) 756.24 850.04 563.76
% of Flights with PD > 0 11.97% 16.21% 6.86%
Total Arrival Delay (mins) 2967.40 3040.76 2793.76
15-min On-Time Performance 78.26% 77.49% 79.85%
60-min On-Time Performance 97.01% 96.98% 97.39%

Passenger Delay Statistics
Total Pax Delay (mins) 256540 256338 240652
Total Disrupted Pax (pax) 64.52 55.20 51.40

(a) FR minPD

FR maxEffACSlack15
FR maxEffACSlack15 FR maxEffACSlack15

expected perfectInfo

Schedule Statistics
Total A/C Connection Slack (mins) 6676.76 6676.76 6676.76
Total Re-timing 1223.32 1327.24 1355.84

Flight Delay Statistics
Total Propagated Delay (mins) 741.48 767.88 602.72
% of Flights with PD > 0 11.34% 12.56% 8.08%
Total Arrival Delay (mins) 2952.52 2978.08 2814.52
15-min On-Time Performance 78.48% 78.00% 79.62%
60-min On-Time Performance 97.04% 97.01% 97.36%

Passenger Delay Statistics
Total Pax Delay (mins) 256211 257583 243619
Total Disrupted Pax (pax) 67.16 66.40 58.16

(b) FR maxEffACSlack15

FR maxEffPaxSlack15
FR maxEffPaxSlack15 FR maxEffPaxSlack15

expected perfectInfo

Schedule Statistics
Total A/C Connection Slack (mins) 6676.76 6676.76 6676.76
Total Re-timing 1230.80 1250.76 1314.28

Flight Delay Statistics
Total Propagated Delay (mins) 1076.40 1016.76 904.72
% of Flights with PD > 0 20.12% 19.22% 16.64%
Total Arrival Delay (mins) 3219.36 3171.68 3046.68
15-min On-Time Performance 76.08% 76.28% 77.74%
60-min On-Time Performance 96.86% 96.88% 97.14%

Passenger Delay Statistics
Total Pax Delay (mins) 260854 261073 249827
Total Disrupted Pax (pax) 36.80 43.72 36.00

(c) FR maxEffPaxSlack15

Table 4.13: Average performance evaluation statistics over 25 days (March 1-25, 2008)
of solutions to the FR models with different approaches of using historical data
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FR minPD FR maxEffACSlack15 FR maxEffPaxSlack15

Schedule Statistics
Total A/C Connection Slack (mins) 6676.76 6676.76 6676.76
Total Re-timing 965.32 942.12 936.52

Flight Delay Statistics
Total Propagated Delay (mins) 782.60 782.00 1047.84
% of Flights with PD > 0 12.36% 12.08% 19.19%
Total Arrival Delay (mins) 2984.28 2981.88 3189.60
15-min On-Time Performance 78.33% 78.35% 76.31%
60-min On-Time Performance 96.98% 97.01% 96.98%

Passenger Delay Statistics
Total Pax Delay (mins) 256845 257242 259476
Total Disrupted Pax (pax) 60.28 61.84 38.20

(a) Time Window = 20 minutes (± 10 minutes)

FR minPD FR maxEffACSlack15 FR maxEffPaxSlack15

Schedule Statistics
Total A/C Connection Slack (mins) 6676.76 6676.76 6676.76
Total Re-timing 557.16 555.68 532.44

Flight Delay Statistics
Total Propagated Delay (mins) 854.08 854.76 1020.52
% of Flights with PD > 0 14.03% 13.93% 18.21%
Total Arrival Delay (mins) 3030.84 3029.60 3158.44
15-min On-Time Performance 77.82% 77.74% 76.63%
60-min On-Time Performance 96.91% 96.98% 96.88%

Passenger Delay Statistics
Total Pax Delay (mins) 255965 255348 259003
Total Disrupted Pax (pax) 53.00 52.52 40.64

(b) Time Window = 10 minutes (± 5 minutes)

Table 4.14: Average performance evaluation statistics over 25 days (March 1-25, 2008)
for the FR models with different time window widths

are improved. Again, it turns out that the FR maxEffPaxSlack15 solution for the

10-minute time window case yields the smallest total passenger delay, in spite of the

largest number of disrupted passengers.

In summary, similar to the conclusion for the performance of expected solutions

discussed earlier, a solution for the case where a time window is small serves as a

”compromise” solution. In particular, the improvements of performance evaluation

metrics that are positively correlated with the objective function are limited, while

the adverse effects of the solution on other metrics are moderated.

Alternatively, we fix the time window width at 30 minutes as before, but we allow

to move the departure times of the first and last flight of each string at most 5 minutes
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Original FR minPD FR maxEffACSlack15 FR maxEffPaxSlack15

Schedule Statistics
Total A/C Connection Slack (mins) 6676.76 7193.40 7.74% 7184.92 7.61% 6877.76 3.01%
Total Re-timing 0.00 1867.68 1819.36 2018.08

Flight Delay Statistics
Total Propagated Delay (mins) 1009.60 642.84 -36.33% 636.28 -36.98% 1042.84 3.29%
% of Flights with PD > 0 17.74% 9.65% 9.04% 19.72%
Total Arrival Delay (mins) 3141.16 2871.40 -8.59% 2862.04 -8.89% 3187.72 1.48%
15-min On-Time Performance 76.53% 78.84% 79.16% 76.20%
60-min On-Time Performance 96.89% 97.26% 97.26% 96.99%

Passenger Delay Statistics
Total Pax Delay (mins) 260565 247537 -5.00% 247828 -4.89% 256195 -1.68%
Total Disrupted Pax (pax) 47.56 57.64 21.19% 59.80 25.74% 33.24 -30.11%

Table 4.15: Average performance evaluation statistics over 25 days (March 1-25, 2008)
for the FR models for which the first and last flights of each string are allowed to move
earlier and later, respectively

earlier or later, respectively. Consequently, the elapsed time between the start and

end of flying for each aircraft will increase at most 10 minutes. Table 4.15 summarizes

the results.

The results, to begin with, show that the total aircraft connection slack increases

almost 8% in the FR minPD and FR maxEffACSlack15 solutions and about 3% in

the FR maxEffPaxSlack15 solution. Also, the total amount of re-timing significantly

increases in all solutions.

In the FR minPD and FR maxEffACSlack15 solutions, the reductions in total prop-

agated delay are as large as 36% percent. These smaller delays also cause fewer

disrupted passengers. As a result, the total passenger delays are considerably reduced

in both FR minPD and FR maxEffACSlack15 solutions. In the FR maxEffPaxSlack15

solution, the number of disrupted passengers is further decreased, and flight delay

statistics are slightly improved, as compared to the case where the first and last

flights of each string are not allowed to move earlier and later, respectively.

These resulting improvements suggest that by allowing each aircraft to operate a

little longer on each day of operation, an airline can significantly improve its schedule

performance.
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4.4 Robust Block Time Adjusting Model

In this section, we present the computational results obtained from the robust block-

time adjustment model introduced in Section 3.3, with different objective functions

and parameters. Again, let Original denote the airline’s original schedule, and

define the other solutions as follows.

BA minTAD the solution to the BA model that minimizes the

total expected arrival delay (see (BA-1))

BA minPD the solution to the BA model that minimizes the

total expected propagated delay

BA maxEffACSlack<Γ> the solution to the BA model that maximizes the

total expected effective aircraft connection slack

with caps set equal to Γ minutes for every aircraft

connection

BA maxEffPaxSlack<Γ> the solution to the BA model that maximizes the

total expected effective passenger connection slack

with caps set equal to Γ minutes for every passenger

connection

Recall that, in the BA models, we need to specify time windows [lxi , uxi ] and

[lyi , uyi ] within which the departure and arrival times of flight i are allowed to change,

and a time window [li, ui] within which the total block time change of flight i, yi− xi
is allowed. Throughout this section, we assume the following, unless stated otherwise.

For a flight leg i,

• if i is the first flight of some flight string, then [lxi , uxi ] = [0, 15] and [lyi , uyi ] =

[−15, 15];

• if i is the last flight of some flight string, then [lxi , uxi ] = [−15, 15] and [lyi , uyi ] =

[−15, 0];

• otherwise, [lxi , uxi ] = [lyi , uyi ] = [−15, 15] .
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Original BA minTAD BA maxEffPaxSlack15

Schedule Statistics
Total A/C Connection Slack (mins) 6676.76 4122.60 -38.25% 6654.80 -0.33%

Total Absolute Block Time Change (mins) - 2627.12 2929.56
Average Block Time Change (mins) 10.55 0.09

Flight Delay Statistics
Total Propagated Delay (mins) 1009.60 827.76 -18.01% 1174.84 +16.37%

% of Flights with PD > 0 17.74% 14.18% 20.79%
Total Arrival Delay (mins) 3141.16 1873.48 -40.36% 4068.60 +29.53%

15-min On-Time Performance 76.53% 87.49% 67.07%
60-min On-Time Performance 96.89% 97.69% 96.35%

Passenger Delay Statistics
Total Pax Delay (mins) 260565 178004 -31.69% 313990 +20.50%

Total Disrupted Pax (pax) 47.56 62.12 +30.61% 28.52 -40.03%

Table 4.16: Average performance evaluation statistics over 25 days (March 1-25, 2008)
for the BA models

Also, we set [li, ui] = [−15, 15] for every flight. In other words, each flight’s

departure and arrival times are allowed to move at most 15 minutes earlier or later,

and the maximum total change in block time is 15 minutes. For each flight string,

the departure time of the first flight and the arrival time of the last flight are not

allowed to move earlier and later, respectively.

4.4.1 Computational Results

The performances of the BA minTAD and BA maxEffPaxSlack15 solutions over the

period of March 1-25, 2008 are summarized in Table 4.16.

Schedule Statistics

As discussed in Section 2.4, the block time adjustment problem allows ground time

slack to be transformed into block time slack. In the BA minTAD solution, the total

aircraft connection slack is decreased from the Original schedule by almost 40%.

To quantify the difference between the Original schedule and solutions to the

BA models, we report ”Total Absolute Block Time Change”, as defined in Section

3.3.4. Because this metric does not distinguish block time reduction from block time

increase, we also report ”Average Block Time Change” to indicate overall direction

of change in block times. Consistently with the decrease in aircraft connection slack,
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flight block times in the BA minTAD solution increase about 10 minutes, on average. As

we will discuss shortly, this is, in fact, the key to significant reduction in total arrival

delay. To illustrate the extent of the difference, Figure 4-21 depicts the BA minTAD

solution for March 1, 2008.

In the BA maxEffPaxSlack15 solution, although the total block time change is

larger than in the BA minTAD solution, the total amount of aircraft connection slack

remains almost the same as in the Original schedule, and the average block time

change suggests that the changes in block times occur equally in both directions.

Flight Delay Analysis

Similarly to the FR maxEffPaxSlack15 solution, the BA maxEffPaxSlack15 solution

performs worse than the Original schedule in every flight delay statistic because the

objective of maximizing the total expected effective passenger connection slack has

no direct link to flight delay improvements.

Remarkably, the total arrival delay is reduced by more than 40 % in the BA minTAD

solution. Recall that even in the perfectInfo solutions to AR and FR models, the

total arrival delay is about 1,000 minutes larger than in the BA minTAD solution.

Additionally, other flight delay statistics are improved significantly, especially the 15-

minute on-time performance metric. In fact, Figure 4-21, illustrating the expected

actual operations of the BA minTAD solution on March 1, 2008, shows that many

flights now arrive earlier than the scheduled arrival times. Table 4.17 summarizes the

total arrival delay distribution for the BA minTAD solution. Total arrival delays are

significantly reduced in every positive range, compared to distributions of the AR and

FR solutions.

Total Arrival Delay (mins) 0 (0,15] (15,60] (60,120] >120

Original (%) 44.33% 32.20% 20.36% 2.17% 0.94%
BA minTAD (%) 69.90% 17.59% 10.20% 1.59% 0.73%

Table 4.17: Distributions of total arrival delays for the BA models

Why are solutions to the AR and FR models unable to reduce effectively flight
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arrival delays, relatively to the BA minTAD solution? To begin with, recall that a

total arrival delay is a function of the propagated delay from a preceding flight and

the independent arrival delay of that flight (see Section 2.2.2). Because independent

arrival delays are fixed in the AR and FR models, the total arrival delay minimization

can only be achieved by minimizing the total propagated delay. On the other hand,

the block time adjustment model allows aircraft connection slack to be converted

into block time slack, and thus can potentially reduce independent arrival delays in

addition to propagated delays.

If the contribution of independent arrival delays to the total arrival delay were to

be small for this particular airline, the additional reduction of total arrival delay in

the BA minTAD solution would not be this significant. According to the performance

of the Original schedule, propagated delays contribute only about one third of total

arrival delay, and another two thirds is due to independent arrival delays of each flight.

Moreover, the historical data indicate that planned block times are underestimated,

on average, by almost 10 minutes. Over 50% of the flights flew longer than their

planned block times more than 70% of the time. Figure 4-22 depicts the actual block

time distributions of some problematic flights. A vertical bar in each plot denotes the

planned block time for that flight. We can see that some flights always flew longer

than their planned block times. Consequently, even though these flights experience

no propagated delays, arrival delays are inevitable.

160 170 180

[737] ZZ 000152 PVR

130 140 150 160

[737] ZZ 000292 MEX

85 95 105 115

[737] ZZ 000510 VSA

80 90 100 120

[737] ZZ 000936 MEX

780 800 820 840

[762] ZZ 000006 CDG

150 160 170 180

[737] ZZ 000153 TIJ

Figure 4-22: Actual block time distributions

To summarize, because the major contribution to the total arrival delay, for this

particular airline, is due to independent arrival delays, the BA minTAD solution can
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effectively use additional block time slack, converted from original ground time slack,

to absorb independent arrival delays and achieve the very small total arrival delay.

Passenger Delay Analysis

As a result of the significant total arrival delay reduction, the total passenger delay

is considerably decreased in the BA minTAD solution. The number of disrupted pas-

sengers, however, increases by about 30%. Intuitively, because block times for each

flight in the BA minTAD solution are increased by 10 minutes on average, most of the

passenger connection times become shorter. Consequently, connecting passengers are

more likely to miss their connections.

In the BA maxEffPaxSlack15 solution, the number of disrupted passengers is

reduced by 40%. Note that this reduction is larger than that achieved by the FR max-

EffPaxSlack15 perfectInfo solution. Similarly to the FR maxEffPaxSlack15 solu-

tion, the disrupted passenger delay reduction in BA maxEffPaxSlack15 still cannot

make up for the increase in flight delays, and the total passenger delay is much larger

than in the Original schedule.

4.4.2 Discussion on Models

Alternative Objectives

As discussed in Section 3.3.3, minimizing the total expected propagated delay or

maximizing the total expected effective aircraft connection slack in the BA formulation

is, in fact, not a good proxy for minimizing the total expected arrival delay. To

illustrate the issue, Table 4.18 summarizes the performance of the BA minPD and

BA maxEffACSlack15 solutions.

The results show that the total propagated delay is significantly reduced in both

solutions, compared to the corresponding AR and FR solutions. Again, the larger

improvement in the BA maxEffACSlack15 solution confirms that maximizing the total

expected effective aircraft slack is a better proxy for minimizing total propagated

delay. Both solutions, however, result in considerably higher total arrival delay, which
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BA minPD BA maxEffACSlack15

Schedule Statistics
Total A/C Connection Slack (mins) 8303.40 7025.64

Total Absolute Block Time Change (mins) 2774.88 1876.00
Average Block Time Change (mins) -6.72 -1.44

Flight Delay Statistics
Total Propagated Delay (mins) 606.40 588.80

% of Flights with PD > 0 8.89% 8.17%
Total Arrival Delay (mins) 4705.08 3530.04

15-min On-Time Performance 63.31% 74.68%
60-min On-Time Performance 96.31% 96.73%

Passenger Delay Statistics
Total Pax Delay (mins) 365306 294151

Total Disrupted Pax (pax) 71.20 73.96

Table 4.18: Average performance evaluation statistics over 25 days (March 1-25, 2008)
for the BA models with alternative objectives

consequently leads to much larger total passenger delay. Additionally, having large

total arrival delays while most flights can depart on time also causes more disrupted

passengers. These results are consistent with our discussion in Section 3.3.3.

The schedule statistics indicate that block time of each flight is decreased, on

average, by 6.7 and 1.4 minutes in the BA minPD and BA maxEffACSlack15 solutions,

respectively, and the total aircraft connection slack increases in both solutions. These

results are opposite to the BA minTAD solution for which most of aircraft connection

slack is transformed into block time slack. This difference reflects two common

approaches to building robustness into airline schedules: 1) schedule padding (i.e.,

increasing block time slack); and 2) having large turn around time (i.e., increasing

aircraft connection slack).

As discussed in Section 2.4, block time slack provides greater flexibility than

aircraft connection slack because it can absorb not only propagated delay from prior

flights, but also independent departure and arrival delay (such as delays due to

Ground Delay Programs, taxi delays, and airborne delays); while aircraft connection

slack can absorb only propagated delay from the preceding flight. However, it is

generally more costly to add slack into block times (in particular because crew

productivity is reduced and hence, crew costs are increased), and schedule padding

may not be an appropriate approach for every airline. Interested readers are referred

to Zhu (2009) [34]. In her work, she provides a comprehensive comparison of the
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BA minTAD
BA minTAD BA minTAD

expected perfectInfo

Schedule Statistics
Total A/C Connection Slack (mins) 4122.60 4756.52 5175.28
Total Absolute Block Time Change (mins) 2627.12 2039.52 1753.72
Average Block Time Change (mins) 10.55 7.93 6.20

Flight Delay Statistics
Total Propagated Delay (mins) 827.76 911.84 629.00
% of Flights with PD > 0 14.18% 17.90% 9.14%
Total Arrival Delay (mins) 1873.48 2112.56 1631.12
15-min On-Time Performance 87.49% 85.12% 89.83%
60-min On-Time Performance 97.69% 97.42% 97.97%

Passenger Delay Statistics
Total Pax Delay (mins) 178004 196815 159013
Total Disrupted Pax (pax) 62.12 70.12 52.64

Table 4.19: Average performance evaluation statistics over 25 days (March 1-25, 2008)
of BA minTAD solutions with different approaches of using historical data

performances of two airlines adopting these two different slack allocation approaches.

Solution Quality

As before, we exhibit the quality of the BA minTAD solution by comparing with its

corresponding expected and perfectInfo solutions. The performance of these

solutions is summarized in Table 4.19.

According to Table 4.19, the BA minTAD solution performs reasonably better than

the BA minTAD expected solution with respect to every performance evaluation met-

ric. This again demonstrates the benefits of using many different delay scenarios from

historical data to capture the stochasticity of delays. Nevertheless, the BA minTAD -

expected solution, obtained by simply using average independent arrival delays of

each flight, still results in a 32% reduction in the total arrival delay and a 24%

reduction in the total passenger delay.

The performance of the BA minTAD perfectInfo solution indicates that, given

perfect information, total arrival delay can be reduced by almost 50%, and total

passenger delay can be reduced by almost 40%. The performance gap between the

BA minTAD and BA minTAD perfectInfo solutions with respect to total arrival delay

and total passenger delay is about 10%.
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Multiple Optimal Solutions

Typically, there are multiple optimal BA minTAD solutions, as discussed in Section

3.3.4. In this section, we solve the robust block time adjustment problem again to

select, among the optimal BA minTAD solutions, the solution that

• minimizes the total expected propagated delay (BA minTAD minPD);

• maximizes the total expected effective aircraft connection slack with caps set

equal to 15 minutes for every aircraft connection (BA minTAD maxEffACSlack15);

• maximizes the total expected effective passenger connection slack with caps

set equal to 15 minutes for every passenger connection (BA minTAD maxEff-

PaxSlack15); and

• minimizes the difference between the original and the optimal flight schedule

(BA minTAD minBTChange).

The performances of these solutions are summarized in Table 4.20. Although

all solutions minimize the expected total arrival delay, their evaluated performances

are slightly different, depending on the secondary objectives. In particular, the

total arrival delay modestly increases in every solution. The BA minTAD minPD and

BA minTAD maxEffACSlack15 solutions have slightly less total propagated delay. The

BA minTAD maxEffPaxSlack15 solution results in fewer disrupted passengers. Lastly,

the BA minTAD minBTChange solution requires 1,000 minutes of total block time change

less than the BA minTAD solution. Additionally, as a result of the increases in total

arrival delay, the total passenger delay is larger in every solution.

Given the limited improvements in the alternative optimal solutions, we conclude

that, for this particular airline, solving a second-stage problem to obtain a ”better”

optimal solution with respect to another performance evaluation metric might not be

worthwhile.
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BA minTAD BA minTAD BA minTAD BA minTAD

minPD maxEffACSlack15 maxEffPaxSlack MinBTChange

Schedule Statistics
Total A/C Connection Slack (mins) 4203.64 4188.64 4152.28 4221.00
Total Absolute Block Time Change (mins) 2553.12 2567.96 2597.04 2526.32
Average Block Time Change (mins) 10.22 10.28 10.43 10.15

Flight Delay Statistics
Total Propagated Delay (mins) 817.40 815.40 828.60 820.08
% of Flights with PD > 0 14.15% 14.10% 14.30% 14.20%
Total Arrival Delay (mins) 1902.84 1894.12 1884.76 1905.44
15-min On-Time Performance 87.19% 87.26% 87.44% 87.14%
60-min On-Time Performance 97.67% 97.69% 97.67% 97.67%

Passenger Delay Statistics
Total Pax Delay (mins) 179667 179198 178425 179249
Total Disrupted Pax (pax) 62.44 62.60 60.88 61.28

Table 4.20: Average performance evaluation statistics over 25 days (March 1-25, 2008)
of the alternative optimal solutions to the BA models

Allowable changes in flight schedules

In the BA formulation presented in Section 3.3.2, there are six parameters– lxi , uxi ,

lyi , uyi , li, and ui that limit the allowable changes in the departure time, arrival time,

and block time of a given flight i. So far we assume a time window width of 30

minutes (± 15 minutes). In particular, for every flight, we set lxi = lyi = li = −15

and uxi = uyi = ui = 15, except for the first and last flights of each string where we

set lxi = 0 and uyi = 0, respectively.

To demonstrate the effect of a time window width on the performance of solutions,

we solve for the BA minTAD solutions again with time window widths of 20 and 10

minutes. Table 4.21 summarizes the performance of the solutions.

As the time window decreases, the flexibility of the model is limited, and thus the

total arrival delay reduction decreases from 40% in the 30-minute time window case

to 33% and 22% in the 20- and 10-minute cases, respectively. Despite the smaller

reduction in the total arrival delay, the BA minTAD solution for the 10-minute time

window case still performs better, with respect to total arrival delay and passenger

delay, than any AR and FR solutions presented in the previous sections. In summary,

these remarkable improvements suggests that by increasing the block times less than

5 minutes on average, an airline can significantly improve its schedule performance.
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Time Window = ± 15 Time Window = ± 10 Time Window = ± 5

Schedule Statistics
Total A/C Connection Slack (mins) 4122.60 4747.64 5616.48
Total Absolute Block Time Change (mins) 2627.12 1972.08 1079.72
Average Block Time Change (mins) 10.55 7.97 4.38

Flight Delay Statistics
Total Propagated Delay (mins) 827.76 874.48 939.24
% of Flights with PD > 0 14.18% 14.78% 16.07%
Total Arrival Delay (mins) 1873.48 2100.88 2513.08
15-min On-Time Performance 87.49% 85.69% 82.51%
60-min On-Time Performance 97.69% 97.52% 97.27%

Passenger Delay Statistics
Total Pax Delay (mins) 178004 192788 219148
Total Disrupted Pax (pax) 62.12 55.24 49.88

Table 4.21: Average performance evaluation statistics over 25 days (March 1-25, 2008)
for the BA models with different time window widths
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Chapter 5

Summary and Future Work

5.1 Summary

A myriad of uncontrollable factors in airline operations make delays and disruptions

unavoidable. The impact of delays is exacerbated when they propagate to subsequent

flights through an airline’s interconnected network. In the past years, airlines have

spent billions of dollars of operating costs incurred due to delays and disruptions.

Most conventional scheduling models ignore the presence of uncertainties in actual

operations in order to limit the complexity of the problem. This results in schedules

that are vulnerable to disruptions. To overcome this shortcoming, there has been

wide interest recently in building robustness into airline schedules, i.e., proactively

making them more resilient to delays and disruptions.

The key challenge of robust schedule planning is to define robustness of a schedule

such that it well reflects desired characteristics and can be captured in a tractable

mathematical model. In Chapter 2, we review robust airline schedule planning

approaches proposed in the literature. Apparently, there is no single consensus

definition of robustness in the context of airline schedule planning. Additionally, one

definition of robustness may lead to various mathematical models, often using different

proxies to capture the robustness objectives and ensure model tractability. One of the

most critical shortcomings in many works in the literature is that the performance of

the resulting schedule is evaluated based primarily on the objective function values,
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rather than various performance evaluation metrics. Ignoring the trade-offs among

different evaluation metrics makes the benefits of these robust schedule unclear.

In this thesis, we investigate slack allocation approaches for robust airline schedul-

ing. Airlines have made numerous efforts to increase the utilization of all resources

in their operations, often resulting in the minimization of schedule slack. Slack,

however, is desirable in robust schedules as it can potentially absorb delays in an

airline network. Therefore, we seek to re-allocate, rather than simply increase, the

existing slack in the schedules such that the resulting distribution of slack is more

effective in absorbing delays and minimizing disruptions. An example illustrating how

we can strategically re-allocate slack in a schedule is provided at the end of Chapter

2.

In Chapter 3, we present a modeling framework for robust slack allocation in

airline schedule planning. In particular, we propose three models : the robust aircraft

re-routing model (AR), the robust fight schedule re-timing model (FR), and the robust

block time adjustment model (BA), together with their variants. Different proxies are

used as objective functions for each model. Importantly, we introduce a novel notion

of effective slack, which is proved to serve as a good robustness proxy in many cases.

Using the data from an international carrier, we present proof-of-concept results in

Chapter 4. We evaluate the impacts of the resulting schedules on various performance

metrics, including passenger delays and delay propagation. The results show that

minor modifications to an original schedule can significantly improve the overall

performance of the schedule. Through empirical results, we demonstrate trade-offs

between different performance metrics and provide a comprehensive discussion of

model behaviors and how different characteristics of an airline can affect the strategy

for robust scheduling. Our results are summarized in the next section.

5.1.1 Airline Strategy for Robust Schedule Planning

In the robust slack allocation framework presented in this work, there are different

models and objective functions that an airline can mix and match to construct

a robust schedule. As we discussed throughout this work, an airline’s goals and
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characteristics are critical in determining which model and objective function are

more appropriate and beneficial to the airline.

Models

In this framework, we propose three models, namely, the robust aircraft re-routing

model (AR), the robust flight schedule re-timing model (FR), and the robust block time

adjustment model (BA). The following are some criteria that may affect an airline’s

decision regarding which model is most appropriate.

Flexibility

The flexibility of the AR model is limited in the sense that it can affect only

aircraft connection slack. Additionally, the extent of improvements in the resulting

schedule hinges on the available re-routing opportunities, which depend largely on

the airline’s network structure. For example, an airline with a strong hub-and-spoke

structure might find no re-routing opportunities for flights departing from spokes.

Nevertheless, given the aircraft re-routing opportunities, an AR model is capable of

removing large delays, which cannot be done in FR or BA models.

An FR model is more flexible than an AR model because it allows finer slack re-

allocations. In particular, slack can be increased or decreased by any amount within

the allowable time window. Moreover, it can also affect passenger connection slack.

Therefore, it can be used together with a passenger-centric objective function to

reduce passenger delays and misconnections.

Lastly, a BA model provides the greatest flexibility. Like an FR model, it allows

finer re-allocation of slack, compared to an AR model. More importantly, ground

time slack can be converted into block time slack in this model. Block time slack can

absorb not only propagated delay from prior flights, but also independent departure

and arrival delays (such as delays due to Ground Delay Programs, taxi delays, and

airborne delays); while aircraft connection slack can absorb only propagated delays

from the preceding flights. Therefore, this model is very useful for airlines that are

facing large independent delays in their systems. One indicator of a need for this
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model is the contribution of independent arrival delays to total arrival delay. If it is

large, then a BA model is the only model in this framework that is capable of reducing

these independent delays.

Cost

Robustness in an airline schedule typically is achieved at a cost. Even in an AR

model for which the flight schedule is fixed, changing aircraft routing can possibly

affect crew duties. For instance, more crews might need to transfer between aircraft

and require larger connection times. Consequently, crew costs might be slightly

increased.

With the multi-faceted work rules such as minimum rest time, maximum flying

time, and maximum duty period, crew duties are more affected when a flight schedule

is changed in the FR or BA solutions. As a result, crew costs in FR and BA solutions

may increase more than in an AR solution. Additionally, the schedule changes might

also result in uneven utilization of airline resources and personnel such as gate agents,

and ground and maintenance crews. These increasing planned costs, however, are

limited by the restrictions imposed in our model allowing flight schedule changes

within only a small time window.

Because crews are paid at least for the scheduled block time, block time slack is

generally considered more costly than ground time slack. Additionally, longer block

times can result in reductions in the number of flights that one crew can operate, or

reductions in the number of possible crew connections, all resulting in reduced crew

productivity.

Implementation

The AR formulation presented in this work focuses mainly on re-routing aircraft

on a given day of operation, assuming that the resulting aircraft routes do not

affect maintenance feasibility. Therefore, it is more applicable to use for short-term

planning– before a day of operation, or use as part of a recovery tool where historical

data are replaced by actual delays or expected delays that reflect the current delay
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situation. Nevertheless, the insights gained from this work can be extended to a

general robust aircraft maintenance routing problem.

Unlike an AR model, the FR and BA models result in flight schedule changes.

An airline’s schedule is very critical to its competitive position and profitability. A

schedule development process requires collaboration between many business units to

resolve all tactical and operational issues that may arise from the resulting schedule.

Therefore, the solutions to the FR and BA models can serve as guidelines for schedule

changes, and an airline can use its decision support tools to analyze the impact of

the changes and fine tune accordingly. Additionally, FR and BA models can be used

as a part of recovery tool to provide airline operations controllers a ”good” option to

adjust scheduled operations. Also, an airline can specify allowable block time changes

in a BA model according to possible aircraft speeds to identify some potential savings

from reduced fuel burn.

Objective Functions

In Chapter 3 and 4, we introduce many objective functions that can be used with

the slack re-allocation models provided in this framework. Ultimately, the decision

of which objective function to use depends on the airline’s goal. Some performance

metrics that an airline might want to improve are total arrival delay minutes; 15-

minute on-time performance rate; total propagated delay minutes; total passenger

delay minutes; and total number of disrupted passengers. The following are some

criteria that might affect an airline’s objective function selection.

Passenger Delay

Total passenger delay is comprised of delays associated with non-disrupted and

disrupted passengers. Although non-disrupted passengers contribute only their last

flight’s delays to the total passenger delay, almost all passengers are typically non-

disrupted. On the other hand, a small number of disrupted passengers can possibly

account for a large proportion of total passenger delay, because each of disrupted

passenger likely has to wait for several hours, if not a full 24 hours, for the next
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available flights.

Because disrupted passenger delay calculation is complicated, we cannot directly

minimize total passenger delay in our objective functions. Two possible proxies for

minimizing total passenger delay are 1) to minimize some flight delay metric; or 2) to

minimize passenger disruptions. However, the proof-of-concept results for the FR and

BA models show that the solution that minimizes flight delay tends to result in more

disrupted passengers, and vice versa. Therefore, in order to minimize total passenger

delay, an airline needs to understand its characteristics and select an appropriate

objective function. The percentage of connecting passengers and the percentage of

total passenger delay due to disrupted passengers are two key statistics that are

significant in this regard. For the airline we consider in this work, its total passenger

delay is mainly driven by flight delays, rather than passenger misconnections, and

thus minimizing flight delay is a more effective strategy in minimizing total passenger

delay.

In the discussion of the FR models, we also propose the hybrid objective functions

balancing total expected effective slack in aircraft connections and passenger connec-

tions. This objective can be use to balance the focus on minimizing flight delays and

passenger disruptions by adjusting a weight to reflect an airline’s characteristics.

Propagated Delays versus Arrival Delays

Recently, much work on robust schedule planning have focused primarily on

reducing propagated delays, rather than arrival delays, and the total propagated delay

metric has been used as a measure of the degree of ”disruptions” in airline operations.

Propagated delays and arrival delays are closely related. Small propagated delays

generally lead to small arrival delays, and vice versa. However, there are subtle

differences between propagated delays and arrival delays, as we discussed throughout

this thesis.

In the AR and FR models where independent arrival delays are fixed, minimizing

propagated delay is typically a good proxy for minimizing total arrival delay. In

particular, decreasing a propagated delay from flight i to flight j, pdij, will result in
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less total arrival delay for flight j, as long as the term pdij + IADj remains positive.

The term pdij +IADj becomes negative only when IADj takes a negative value, that

is, when an airline pads its schedule to account for potential delays or can potentially

fly the flight faster. In this case, further decreasing a propagated delay only makes

the flight arrive before the scheduled arrival time and does not affect the total arrival

delay. In fact, it might be desirable to propagate delays to those flights with negative

IADs and let their block time slack help absorb the delays.

On the contrary, in a BA model where independent arrival delays can be altered,

minimizing total arrival delay and minimizing total propagated delay lead to two

different approaches to building robustness into airline schedules: 1) schedule padding

(i.e., increasing block time slack); and 2) having large turn around time (i.e., in-

creasing aircraft connection slack). In the first approach, block time slack is used

extensively to absorb all kinds of delay, including propagated delay; while in the

second approach, ground time slack is used extensively to absorb arrival delays to

ensure that follow-on flights can depart on time.

In general, the objective of minimizing total arrival delay is more preferable

because passengers are not bothered by late departures if arrivals at their destinations

are on time. Additionally, on-time arrivals are beneficial to passengers and crews that

need to make connections.

Effective Slack

In Chapter 3, we introduce a notion of effective slack and purpose an objective

of maximizing the total expected effective slack to overcome the shortcomings of

the objective of minimizing the total expected propagated delay. For each aircraft

connection, we can specify a cap, for which effective slack in that connection can

contribute to the objective value, to ensure that the model has no incentive to add

more slack to connections that already have a reasonable amount of slack. This

provides airlines flexibility to set cap values to reflect how much they are willing to

protect against unexpected delay.

For example, when caps are set equal to zero for all aircraft connections, the
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model will focus mainly on the connections that have negative effective slack (or,

equivalently, positive propagated delay), as indicated by the historical data, and

ignore other connections for which effective slack is close to zero, that is, the delays

from preceding flights are close to propagating.

The proof-of-concept results suggest that the objective of maximizing the total

expected effective slack with appropriate caps is, regardless of the model used, more

robust and yields smaller total propagated delay than minimizing the total expected

propagated delay directly.

Moreover, we extend the notion of effective slack to passenger connections, as we

did in the FR and BA models. The proof-of-concept results indicate that maximizing

the total expected effective passenger connection slack is an effective proxy for mini-

mizing the number of passenger misconnections.

Multiple Optimal Solutions

Typically, there are multiple optimal solutions to our robust slack re-allocation

models. Although these optimal solutions give the same objection function value,

they might not be equally effective with respect to other performance metrics. One

possible approach to obtain an alternative optimal solution is to solve the model

sequentially using different objective functions in order to select, among the optimal

solutions to the initial objective, a solution that is optimal with respect to other

objectives.

However, for a given airline, the number of optimal solutions increases with

• the extent of delays in the given set of historical data, which is partly impacted

by the set of airports serviced by the airline;

• re-routing opportunities in the airline schedule, which are impacted by fleet

homogeneity, network structure, connecting banks at hubs, etc.; and

• re-timing or block time adjustment opportunities in the airline schedule, which

are impacted by allowable time windows for re-scheduling, the number of passen-

ger connections, planned aircraft connection times in the given aircraft routes,
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etc.

Therefore, given the same model and objective function, different airlines may

obtain different numbers of optimal solutions. A decision to solve for an alternative

optimal solution depends largely on the potential improvement, and hence the airline’s

underlying characteristics.

5.2 Future Work

The following are some possible avenues for future research extending the work

presented in this thesis:

1. Enforcing maintenance feasibility in the robust aircraft re-routing model

In the AR model, we focus on re-routing aircraft on a given day of operation, as-

suming that the resulting aircraft routes do not violate maintenance feasibility. Fixing

the number of aircraft departing from each airport at the beginning of the day and

arriving at each airport at the end of the day can be quite restrictive, and the potential

delay reduction is limited. Additionally, the assumption on maintenance feasibility

might not be valid if we solve the AR model over a longer horizon. Therefore, it is of

interest to extend the insights gained from this work to a general aircraft maintenance

routing problem that explicitly considers aircraft maintenance requirements.

For instance, for a cyclic schedule, one can use the classical flight string model for

aircraft maintenance routing proposed by Barnhart et al. (1998) [5] in conjunction

with the objective function of maximizing total expected effective aircraft connection

slack. For a dated schedule, Gronkvist (2005) [19] provides a formulation for a

dated version of the aircraft maintenance routing problem, called the tail assignment

problem, for which we can incorporate the robust objective functions presented in this

work as well.

Alternatively, one can develop a simple heuristic based on the AR model that

avoids violation of maintenance requirements. For example, we could just fix those

aircraft that must be maintained that day to arrive where planned but allow the
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others to deviate. This will likely work well in a hub and spoke network.

2. Incorporating additional passenger information

We can further improve the FR and BA models that maximize the total expected

effective passenger connection slack by incorporating additional passenger informa-

tion. In our models, every minute of effective slack is equally weighted in every

passenger connection, but differential weightings could be applied easily.

We could put different weights in the objective function according to the number of

connecting passengers on each connection. Because different types of passengers (e.g.,

business and economy passengers) might cost an airline differently when they miss

their connections, we can also put different weights based on the mix of connecting

passengers on each connection. Moreover, some passenger connections connect to

flights that operate only daily (e.g., most of the international flights), and these

disrupted passengers might have to wait for a full twenty-four hours before they are

re-accommodated. Others might connect to flights that are operated hourly, and

the disrupted passengers are then re-accommodated within an hour or so. That

being said, it might be preferable to explicitly incorporate estimated passenger re-

accommodation times into the coefficients in the objective function.

3. Comparing different data utilization approaches

Through the empirical results, we have shown that by simply using average

independent arrival delays as input to the model, an airline can still significantly

improve its schedule performance. Further improvements can be obtained by using

many different delay scenarios from historical data to capture the stochasticity of

delays. These further improvements, however, come with a larger computational

cost. Nonetheless, there are several other aspects of data utilization approaches that

might be of interest.

In this work, we focus primarily on the sample average approximation approach,

i.e., each day of operation in the historical data represents an instance of delay

scenario, and we assume that each delay scenario is equally likely. One drawback
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of this approach is that it might be computationally expensive to include a large

number of data points. In contrast, many works proposed in the literature model

delays by fitting historical delay data to some standard distributions. For example,

Lan (2003) [23] models total arrival delays using a lognormal distribution; Schaefer

et al. (2005) [28] model flight delays and ground delays using gamma, Erlang, and

beta distributions, depending on flight durations. This approach requires additional

data pre-processing to identify and fit historical data to appropriate distributions. In

addition, this approach typically ignores the correlation of flight delays on the same

day of operation. Some interesting questions regarding these two approaches include,

but are not limited to:

• How many data points are required to obtain a reasonably good solution?

Apparently, in order to capture rare delay scenarios, a longer period of historical

data is needed.

• Should all data points be weighted equally? The rare events might already be

captured in the data set, but they are given equal probability to those events

that are more common.

• Can standard distributions well capture the actual delay distributions? For

example, what if a delay distribution is bimodal?

• Because eventually only expected values or sample averages are used in the

objective function, do these two approaches result in significantly different

schedules?

The answers to the questions above will partly depend on the sensitivity of the

model to the input data. Additionally, they might be different for different airlines,

depending on the variability of delays in their networks.

4. Investigating behaviors of the robust schedules when recovery is considered

In the evaluation process that we used to obtain the proof-of-concept results,

interventions from airline operations controllers are not allowed. In particular, we
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assume no flight cancellations, aircraft swaps, early departures, or delaying flights for

connecting passengers. To get a more realistic picture of our schedules’ performances,

it is necessary to simulate the schedules with a recovery module in place because it

might be possible that the resulting schedules somehow limit the flexibility to recover

in actual operations. This can be done using an advanced simulation tool for airline

operations such as MEANS [14] or SimAir [27].

5. Quantifying the cost of schedule changes

Modifications of flight schedules might result in reduced crew productivity or

uneven utilization of airline resources and personnel such as gate agents, and ground

and maintenance crews. Although crew cost is one of the largest cost components

in airline operations, we ignore the potential effects of our models on crew schedules

because of lack of information. To make the robust schedules more appealing to

airlines, it is crucial to quantify the cost of schedule changes and compare to the

savings gained from delay reduction.

As discussed earlier, different robust slack re-allocation models provide different

levels of flexibility at different costs. Thus, an ability to quantify the cost of schedule

changes is also of great help in justifying which slack re-allocation scheme is the most

cost-effective for a particular airline.

6. Repeating a similar analysis to the airlines with different characteristics

Throughout this work, we point out how an airline’s characteristics can affect

the strategy for robust schedule planning. It would be interesting to see how the

proof-of-concept results change when we apply a similar analysis to airlines with dif-

ferent characteristics such as network structure, proportion of connecting passenger,

percentage of total passenger delay due to disrupted passengers, and contribution of

independent arrival delays to total arrival delay.

7. Multi-criteria optimization

Because of the multi-faceted nature of robustness, there are many trade-offs to be
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balanced, such as costs of schedule changes versus savings from delay reduction; and

passenger delays versus flight delays. It would be very interesting to consider using

multi-criteria optimization together with the robust objectives proposed in this work

to obtain a schedule that performs relatively well with respect to different metrics.
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