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Abstract

This thesis analyzes the influence of a self-induced natural convection flow on the propaga-
tion of a high energy laser beam. The two configurations considered are of a vertical laser
beam (propagation direction opposite to gravity) and a horizontal laser beam (gravity acting
in a direction perpendicular to propagation) travelling through an infinite expanse of quies-

cent fluid. Hamiltonian optics is used to predict the evolution of rays at steady state. The
change in refractive index due to localized heating of the fluid by the laser is measured using
interferometry.

For the vertical laser beam, one model considers the beam to be a linear energy source.
Another model considers the spatial intensity distribution of the beam as a generation term
in the energy conservation equation. Simulation for both the models predict the formation of a
caustic, as the beam propagates through the medium. Due to radial symmetry, there is a dense
packing of rays along the periphery of a circle. Here, this formation is referred to as the thermal
ring. The horizontal laser beam is first modeled as a linear source of uniform strength along
the propagation path. The change in temperature is calculated using a similarity solution,
and the resulting refractive index change predicts the ray behaviour. Here again, formation
of a caustic is suggested, with a high density of the rays at two locations above the beam
centre. Modeling of the laser as a decaying line source also predicts the densing of rays.

The thermal lensing caused by a horizontal 120mW laser in a 1% acqueous Toluidine Blue
sample is visualized using a Mach-Zehnder interferometer. The interferograms are analyzed
using both the Fourier methods and phase shifting. Both predict the change in refractive
index near the beam to be of the same order of magnitude as the simulation results.

Thesis Supervisor: George Barbastathis
Title: Associate Professor
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Chapter 1

Introduction

The propagation of a high energy laser beam depends on its interaction with

the medium through which it travels. The region near the beam heats up,

and as the energy is dissipated through the medium, a refractive index profile

evolves. The redistribution of the beam intensity profile and the deviation

of the beam path due to this self-induced change in refractive index is called

Thermal Blooming. Depending on the response of the medium, there could

be a defocusing of the beam - reducing the peak intensity at a desired target,

or a focusing effect leading to formation of caustics. The nonlinear nature

of this phenomenon has aroused a lot of theoretical interest [1-11] and with

the advent of high energy lasers a lot of literature pertaining to propagation

in the atmosphere exists [12-141. The work however is limited to considering

conduction and forced convection for heat dissipation. If the medium is a

fluid, initially undisturbed, absorption of energy near the beam causes density



gradients to exist. If these overcome the gravitational body forces, the fluid

is set in motion and a natural convection field is setup. Depending on the

medium and resulting flow conditions, there could also be a possibility of

waveguiding. Due to the complexity and high nonlinearity of this coupling,

however, investigations have been limited to experimental verification and

approximating the physics. This thesis analyzes the influence of such a self-

induced natural convection flow on the propagation of a high power laser

beam.

1.1 Thesis Outline

As mentioned, the evolution of a laser beam through a quiescent fluid medium

depends on the mode of heat dissipation. For natural convection then, the

refractive index profile needs to be evaluated considering the heat transfer

and fluid dynamics involved. The behaviour of this light beam in such a

refractive index distribution can then be analyzed by the geometrical optics

formulation, and a possibility of beam defocusing or caustic formation can

be investigated. Under practical laser strengths, the temperature differences

caused in a fluid due to convection are of a small order of magnitude and

interferometry can be used for visualization. The rest of this chapter discusses

the principles of geometrical optics, natural convection and interferometry

that were used in this body of work.

Two configurations of beam propagation are considered in this thesis. Chap-



ter 2 considers the case of a vertical laser beam, propagating in an undis-

turbed medium in the direction opposite to gravity. The steady state refrac-

tive index profile is calculated based on two physical models of the scenario.

Ray path through such an index distribution is evaluated.

Chapter 3 pertains evolution of a horizontal laser beam propagating through

a fluid medium, with gravity in a direction perpendicular to beam axis. Sim-

ulation of ray paths is again carried out by formulating two different physical

models, where the beam is considered to be a linear energy source.

Chapter 4 presents the experimental results of using interferometry to visual-

ize phase changes caused by laser traveling horizontally in a fluid sample. The

results are compared with simulations using the uniform line source model.

The thesis concludes with Chapter 5 where a summary of the models used is

outlined along with directions for future work.

1.2 Geometrical Optics

The behaviour of light is characterized by rapid oscillations of the electric

and magnetic field. It is thus an electromagnetic wave and the propagation

of this disturbance is described by the Maxwell's equations. The wavelength

at optical frequencies however, is small (~ 4.7 x 10-7m) and in cases where

the length scales are several orders of magnitude larger than the wavelength,

the wave nature can be neglected. Light propagation under this approxi-



mation is explained by ray trajectories and this approach is therefore called

Geometrical optics. Physically speaking, ray paths are the directions along

which energy is transported. The Hamiltonian method is a tool to derive

ray trajectories under the geometrical optics approximation in non-uniform

media - i.e. media with a non-uniform refractive index.

1.2.1 Ray Hamiltonian

Analogous to the Hamiltonian formulation in dynamics, Hamiltonian equa-

tions for a ray describe propagation through a medium. A simple approach

of arriving at the ray Hamiltonians from Snell's law, which is a conservation

law for the ray momentum, is outlined in [15]. Another approach says that

the Hamiltonian equations follow directly based on two postulates for the ray

behaviour [16]. In what follows, it is shown that the postulates are a direct

consequence of the Eikonal equation.

In the limit of the wavelength being negligible, Maxwell's equations lead to

the Eikonal equation [17]. This equation states that the wavefront S - the

surface normal to a ray bundle, and also called the eikonal - satisfies

(S)2 + + =On (1.2.1)

Here, n (x, y, z) is the refractive index at a point, The eikonal S (x, y, z)

constant is interpreted as the geometrical wavefront (Figure 1.1). The main



Figure 1.1: The Eikonal.

result that follows is that energy transport occurs in a direction given by the

unit vector

V s(1.2.2)
n

Thus if a ray is defined as the curve orthogonal to the geometric wavefront,

the unit vector that is tangent to such a curve at a point q (s), here param-

eterized in terms of the arc length s, is s and so

dq
n d= VS (1.2.3)

ds

Now if a vector p is defined to be the ray momentum and directed along the



Figure 1.2: The ray momentum.

direction of s (Figure 1.2) we have

dq p (1.2.4)
ds p|

This is the first postulate - the geometrical postulate - which states that the

rays are continous and piecewise differentiable everywhere. Further, taking

the derivative of Equation 1.2.3 with respect to the arc length s we have

n = Vn (1.2.5)
ds | p)



Now defining a function H such as

H =1 p | -n(q) = 0 (1.2.6)

leads to the second 'dynamical postulate' which states that the momentum

changes along the arc length is equal (by the choice of the function H here)

to the local refractive index gradient; i.e.

dp= Vn (1.2.7)

The function H is called the ray hamiltonian as Equations 1.2.4, 1.2.6 and

1.2.7 lead to the following set of Hamiltonian equations:

dq
ds

dp
ds

OH

Op'
OH

iBq

(1.2.8)

(1.2.9)

1.2.2 The Screen Hamiltonian

The Hamiltonian equations are a 6 x 6 system and this can be reduced to a

4 x 4 system of equations by introducing the concept of a Screen Hamiltonian

[16]. The idea is to change the parametrization of the equations from the

arc length s to the Cartesian co-ordinate z, which is along the direction of

propagation of the ray. The Hamiltonian equations in the Cartesian system



Y
screen
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Figure 1.3: The Screen Hamiltonian.

are:
dq, OH dp, OH
ds Opx' ds Oqx'

dq, _ OH dpy OH

ds Opy ' ds Oq,'

dq, OH dp, OH
ds Opz ds Oqz'

where qx, qy, qz are components of q and Px, py, pz are components of p. Next,

parameterizing with z by setting qz = z and using the chain rule

dqx _ px dqy py (1.2.10)
dz pz dz Pz



dp x _ n On . y - (1.2.11)

dz pz Oqx' dz pz Oqy

Now defining a function h = -pz and using Equation 1.2.6 we have

h = 2 _ 2 _ p2 (1.2.12)

It then follows from Equation 1.2.10 and 1.2.11 that

dqx _ Oh dpx _ Oh (1.2.13)
dz Opx' dz oqx

dq~ _Oh dp~ _ hdz- O- d- = (1.2.14)
dz Opy ' dz Oqy

These are called the Screen Hamiltonian equations, the function h being the

Screen Hamiltonian. This is because these equations describe the evolution

of the intersection of rays with planes (called as "screens") perpendicular to

the optical axis Z.

1.3 Natural Convection

1.3.1 The Conservation Equations

The analysis of a convection problem starts with the conservation of physical

quantities of interest for the smallest fluid element. For the convection case,

these are essentially the mass, momentum and energy conservation. The

different variables involved are linked together by physical laws called the



constitutive relations. Based on these constitutive relations, the general con-

servation equations govern the phenomena under consideration. The general

approach then is to simplify these equations based on different assumptions.

1.3.1.1 Conservation of Mass

Considering a small control volume in space for which the net inflow rate of

fluid will be equal to the rate of mass generation within, in accordance with

mass conservation, the mass continuity equation is:

Dp -pV -v (1.3.1)
Dt

Here p is the fluid density and v the fluid veloctiy at a point and D/Dt is

the substantial derivative. For the case of an incompressible fluid, mass

conservation takes the form

V -v = 0 (1.3.2)

1.3.1.2 Conservation of Momentum

This essentially is equating the net force acting on a fluid element in space

to the rate of change of momentum. Under the assumptions of a Newtonian

viscous fluid (which gives the constitutive relation linking stress components

to velocity gradients) and that the only body force acting is gravity, the



governing equation takes the form:

Dv
pD = -VP + pg + V 2v (1.3.3)Dt

Here P is the static pressure, g the gravity vector and y is the dynamic vis-

cosity. The second coefficient of viscosity/ bulk viscosity has been neglected.

This is a vector equation and is also known as the Navier-Stokes equation.

1.3.1.3 Conservation of Energy

Energy conservation states that the net rate of heat inflow in a volumetric

fluid element must equal the rate of increase in thermal energy. Assuming a

Newtonian fluid and incompressibility, the governing energy equation is:

DT
pC, Dt=V-kVT+p(b+Q, (1.3.4)

where C, is the specific heat capacity, T is temperature, k is thermal con-

ductivity of the fluid, p 4 is the viscous dissipation and Q is the volumetric

heat generation within the fluid.

1.3.2 Boussinesq Approximation

Boussinesq approximation is a set of approximations which further simplify

the governing equations specified earlier. A formal discussion about the



validity of these assumptions can be found in most advanced fluid mechanics

texts like [18]. The main simplifications are:

e The fluid can be considered incompressible.

* The change in fluid density is significant only in the force term appear-

ing in the momentum conservation equation - Equation 1.3.3, and can

be assumed constant elsewhere.

o The viscous dissipation term p<D in Equation 1.3.4 can be neglected.

An order of magnitude comparison of various terms in these equations de-

termine the criteria under which the Boussinesq approximations hold true.

It is required that the velocities involved are well below Mach number and

there is no sudden change in the fluid density and pressure such as in the

case of wave shocks or fluid motion involving large vertical distances. It is

also required that the temperature variations be small.

The velocities and temperature changes involved in free convection are usu-

ally of a small magnitude. Hence, simplifying the governing equations with

Boussinesq approximation is reasonable.

1.3.3 Buoyancy Force and Thermal Coupling

Driving fluid motion in natural convection are the density gradients that

set in usually due to localized heating. This is evident with the appearance



of buoyancy force in the Navier-Stokes equation. The pressure term P in

Equation 1 3.3 is the static pressure; i.e., the pressure that would be measured

by an observer moving with the fluid element. This could be considered to be

a combination of two pressures - the hydrostatic pressure Ph and the motion

pressure Pm [19]. The hydrostatic pressure is equivalent to the static pressure

P when there is no fluid motion i.e. v = 0. If there is no fluid motion, the

medium is undisturbed and the density is equal to the ambient density po,.

So a definition for Ph from Equation 1.3.3 is:

-VPh - -P. (1.3.5)

The Navier-Stokes equation thus becomes

Dv
Dt VPm + (p - poo) g + pV 2 v. (1.3.6)

The term (p - poo) g is the buoyancy force per unit volume that acts on

a material element of density p placed in an ambient fluid at density po.

Usually in external flows, the motion pressure gradient VPm can be neglected.

In the absence of pressure gradients, the density of fluid will be a function of

temperature T and this signifies the coupling of the Navier-Stokes equation

with the energy equation. Under these circumstances, for an ideal gas, it can



be shown that the volumetric thermal expansion coefficient # is given as

1 Op
pOT (1.3.7)

This is found to be satisfied for most fluids as well if the temperature changes

are not large. Dividing Equation 1.3.6 throughout by p, with v = A/p as the

kinematic viscosity, the Navier-Stokes equation reduces to

Dv = (3AT) g + vV 2 v. (1.3.8)
Dt

1.3.4 Steady State Formulation

The heating effect due to a laser is instantaneous and the system reaches a

steady state fast. Experiments with a 120mW laser beam passing through a

2mm cell containing dyes like Toluidine Blue, Malachite Green etc. showed

that a steady state was reached in around 3 seconds. Hence, the steady state

configuration is considered here. The steady state momentum and energy

equation for a fluid element based on the assumptions stated in the earlier

sections are

v -Vv = g#AT + vV2 v, (1.3.9)

pC, (v - VT) = V - kVT + Q.. (1.3.10)

These coupled equations are used henceforth to describe the phenomenon of

induced natural convection due to localized heating by a laser beam.



1.3.5 Boundary Layer Approximations

The Navier-Stokes equation is a nonlinear differential equation of order two.

Analytical solutions can be found easily only for a few general cases. One

of these is the low Reynolds number flow where the nonlinear inertia terms

approach zero and there is a balance of the pressure and viscous forces.

The other case is of inviscid flows where viscous forces approach zero and

the system reduces to solving a linear Laplace equation. The Navier-Stokes

equation for a 2D fluid element under the Boussinesq approximation is:

Ou Ou 02U 02 u
uO +v g#3AT+v + (1.3.11)

X y Ox2  ay2

Inertia Buoyancy + Viscous

The boundary layer is a region that contains the disturbance caused by the

flow (velocity boundary layer) or heat source (thermal boundary layer). It

is usually found in the characteristic plume formation of natural convec-

tion that the spatial extent of the boundary layer in one direction is orders

of magnitude smaller than in the others. Consider the characteristic scale

values for variables u, v, x, y to be U, V, L, 6. Here then 6 < L. Introduce

u*, v*, x*, y* as the ratio of the variables and their corresponding scale values.

By this definition 0 (u*, v*, x*, y*) ~ 1. Now from the continuity equation

O(v) ~ (6/L) U. Using the new variables, the Navier-Stokes equation is:

U2 Ou* U2 au* U O 2U* U O 2u*

L (x* L Oy* = L 2 OX* 2 62 . (1.3.12)



Simplifying and rearranging the terms on the right hand side,

Ou* _u* g/ATL 3

ax* Oy* v2 (UL/v) 2

/v () ( 62 g2U*
U+ /) L2 aX* 2

Defining the nondimensional quantities GrL = (g#ATL 3/2) and Rex = (Ux/)

and since (6/L) ( 1, above equation becomes

Du* +OU* GrL
Ox* + y - e 2 +(Re6 )(L)

The terms on the left are 0 (1) and hence for the viscous and buoyancy terms

to be of same order, the two requirements are

Re 6 > 1, (1.3.15)

(1.3.16)

Under these conditions, the Navier-Stokes equation for the 2D element (re-

verting back to original variables) is

u u + v au= g#3AT +09 a V .

Similarly, the energy equation is

PC, U OT OT
+ y) (1.3.18)

(1.3.13)

(2U*
By *2 )

(1.3.14)

(1.3.17)

82T
-k +

Dy2

g 92 U*

+y *y2).

O(GrL) ~ 0 (Re .L

0.



1.4 Interferometry

When two light waves coincide over a region, the intensity at a location de-

pends on how the fields add together. This is the phenomenon of interference.

If two waves of same frequency are propagating in the same direction with

their field vectors in the same plane, the intensity I at a point where they

interfere is given by

I = 11 +12+2 I1I 2cosA# (1.4.1)

where 11,12 are the individual beam intensities and A# is the phase difference

between them. If the two beams start with the same phase, the phase differ-

ence between the two beams is due to the difference in their corresponding

optical paths. The optical path (and hence the refractive index) of an un-

known material can thus be evaluated by analyzing the interference pattern

produced. The optical instruments employed for such purposes are called

interferometers.

The simplest of interferometers would require two beams that interfere. Con-

sider that the nature of the two beams is known before they enter the setup.

If the behaviour of one beam - the reference beam - is known, the distortion

of the other wave can be inferred from the resulting interference pattern by

nulling out the (known) effect of the reference. As mentioned, this distortion

could have been generated by a change in the optical path by introduction of



an unknown sample, or a change in a physical parameter (say temperature,

pressure etc.) that affects the refractive index.

The easiest option to know the phase of the beams before they enter the

setup is to generate them from a single source. The two methods used to

do this are amplitude division and wavefront division. In amplitude division,

two beams are generated from the same region of a wavefront whereas in

wavefront division, two beams are produced from different regions of a wave-

front. The Mach-Zehnder interferometer is a two-beam amplitude division

interferometer usually employed in examining fluid flow, heat transfer and

temperature profile measurements [20-23].

1.4.1 The Mach-Zehnder Interferometer

The Mach-Zehnder Interferometer consists of two arms/paths created by the

setup shown in Figure 1.4. Usually a He-Ne laser source is used to produce a

collimated beam that enters the optical system through a beam splitter. The

incident beam is divided into two by the beam splitter BS1, and after travel-

ing through the two arms these recombine at beam splitter BS2. The fringe

pattern of the setup without any sample gives the reference phase difference

introduced due to the optical setup. Once a sample is introduced in the

arm BS1-M2-BS2, the interference pattern changes and this can be used to

calculate the unknown sample parameters (length, refractive index, temper-

ature profile etc.). The spacing between the fringes can be easily controlled
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Figure 1.4: The Mach-Zehnder Interferometer.

by rotating either mirror. The location of the fringes can also be altered,

to coincide with the sample for example, by changing the spacings between

the components. The probe beam passes through the sample only once and

this is useful when testing a highly distorting medium. The interferometer is

very sensitive and hence finds wide applications in small phase change mea-

surements - like convection flows, that are considered in this thesis. However

it may be tricky to setup the interferometer to produce fringes in the first

place and a good procedure to follow can be found in [25].

1.4.2 Interferogram Analysis

The fringe pattern (interferogram), from the interferometer is usually cap-

tured on a CCD camera. The phase information from the interferogram can



then be analyzed using various digital techniques. The two main methods

are explained below.

1.4.2.1 Fourier Transform Methods

If considering the Mach-Zehnder interferometer illuminated by a plane wave,

introducing a tilt in one of the mirrors produces background fringes. An

elegant technique to find the phase information was suggested by Takeda

[26]. The fringe pattern is considered to have a carrier frequency fo. If the

setup is in the XZ plane and the tilt is about the Y axis, the intensity at a

point on the interferogram is given by

I(x,y) = a(x,y) +b(x,y)cos(27rfox+A4 (x,y)) (1.4.2)

= a + (beA) 2+ be )* e- 22fox (1.4.3)

where AO (x, y) is the phase difference introduced by the sample and a (x, y)

and b (x, y) are slow varying when compared to A# (x, y). Taking the Fourier

transform with respect to x, the frequency domain representation of the

interferogram is

3 (u, y) = A (u, y) + C (u - fo, y) + C* (u + fo, y) (1.4.4)

with three distinct bright spots - provided the carrier frequency is high

enough to avoid aliasing. Shifting the pattern C to the origin (by means



of band-pass filtering) and taking an inverse Fourier transform gives the un-

known phase information as

A# (x, Y) = tan-1  . (1.4.5)
Re [c (x, y)]

The phase so determined is modulo 27r and an unwrapping algorithm needs

to be applied to extract the continuous phase [26, 27, 30]. The technique is

very accurate. Various improvements and precautions have been suggested

in the literature [27-321. The advantage of the Fourier method is that only a

single interferogram is required and thus a time dependent phenomenon can

be easily visualized in real time.

1.4.2.2 Phase Shifting Methods

Another technique to extract phase information is to use phase shifted in-

terferograms. A minimum of four phase shifted interferograms would be

required and the accuracy of the method can depend on the number of im-

ages used. The easiest way to introduce a phase shift in the Mach-Zehnder

interferometer is to translate or rotate any one mirror. Rotation however,

also changes the carrier frequency slightly. The technique using four inter-

ferograms [341 is outlined below. Consider a sequence of four interferograms

captured by introducing a phase shift of 900 every time, so that:

11 (x, y) = a (x, y) + b (x, y) cosA# (x, y)



12 (x, y) = a (x, y) + b (x, y) cos (A# (x, y) + 904)

13 (x, y) = a (x, y) + b (x, y) cos (AO (x, y) + 180")

14 (x, y) a (x, y) + b (x, y) cos (A# (x, y) + 270")

Then it can be seen that

tan AO (x, y) 12 - 14 (1.4.6)
11 - 13

The phase so determined is again modulo 27r and phase unwrapping is re-

quired. Some disturbances like the high-frequency noise cannot be removed

though [33]. Also, the phase shifting mechanism has to be fast to visualize a

fast transient process.



Chapter 2

Vertical Laser Beam

The evolution of a vertical laser beam heating a liquid is considered in this

chapter. The beam enters a quiescent medium in a direction opposite to the

direction of gravity. Thermal absorption of the beam energy by the fluid

medium causes localized heating. This sets in a buoyancy-driven convection

flow, and a temperature gradient exists around the beam path. The resulting

refractive index gradient causes a change in the beam path and intensity

distribution. This coupled phenomenon involving the intensity distribution,

fluid velocity and temperature describes the evolution of the beam.

The order-of-magnitude of the velocities in free convection is small and if the

beam energy is not very high, the flow can be assumed to be laminar. A very

powerful laser may ionize the medium and this case is not considered here. A

common intensity distribution for lasers is the Gaussian distribution. Here



a Gaussian beam with the beam diameter of the order of a few millimeters

is considered. The absorption coefficient of the fluid is usually small and the

intensity distribution will change slowly, a significant change occurring only

after a large propagation distance. The extent of thermal diffusion depends

on the Prandtl Number (Pr) and is assumed to be small compared to the

fluid expanse. A line source model is thus a good starting point to simulate

this physical phenomenon. The evolution of light rays around a vertical

line source is analyzed in Section 2.1. This is based on the integral method

solution suggested by Vest [35]. The case of spatial extent of beam intensity

is considered next and is based on the approximate solution as proposed by

Lehnigk [36]. Another approximate approach using paraxial wave optics for

the transient phenomenon is suggested by Kucherov [37].

2.1 Line Source Model

This is the limiting case where it is assumed that the cross section of the

beam is small and tends to zero. The beam is considered to be a line heat

source of equivalent power (Figure 2.1). The system reduces to a 2D case due

to radial symmetry with respect to the buoyancy force. Under the boundary

layer and Boussinesq approximations, the governing steady state equations

(in cylindrical co-ordinates) for a fluid element are:

8(ru) 8(rv) 0) = 0 , (2.1.1)eDz +Br

38
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Figure 2.1: The vertical uniform line source model.

u U+ vOU = g#38 + V0 r , (2.1.2)
&z Or rOr ) r2

OE+ v- = - r . (2.1.3)
Oz Or r Or k Or

Here u is the axial velocity along Z, v is the radial velocity and E is the

temperature increase. The continuity equation is satisfied using a stream

function @ defined as u = Pr/r and v = -Pz/r. Two boundary conditions

on velocity arise from symmetry considerations. These are V Ir=o= 0 and

(Ur)ro = 0. In terms of the stream function, these are equivalent to $2 = 0

and r@rr - @, = 0. Assuming the expanse of the fluid to be large, it then is

undisturbed far away from the source. This means, as r -* oc; u = 0, v =

0 , E = 0. Since the strength of the line source is constant along its length,



it is assumed that as we move near to a point on this source, all energy is

released in the horizontal plane. This equates to the boundary condition

lim,-o (r,) = -q'|2,rk.

Next, it is assumed that a similarity solution exists for this system. With

a similarity parameter rq = Czr the following function definitions are used:

8 = Az"O( 7) and @ = BzPf(rI). Using these and the boundary conditions,

the PDE reduces to the following system of ODEs.

* Navier-Stokes equation for X direction:

f'/ + (f - 1) - (f' (f')2 + 6 = 0 (2.1.4)
drj rq 2rq

" Energy Equation:

f' = 0(rO') (2.1.5)
Pr ar7

e Boundary Conditions:

f(0) = 0; f'(O) = 0;O(0) = 0; f'(oo) = 0; f'Od?7  1
0o Pr

Due to the asymptotic nature of boundary conditions, a numerical solution

is not possible. Instead, the integral method [35] is used to arrive at an

approximate solution for Pr = 1. Defining (= n/ , where 6 is the boundary
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Figure 2.2: Vertical ray evolution.

layer thickness, the non-dimensional temperature is given by

0 = 4.482 ((2 - ( - ln() (2.1.6)

Using the functional definition, from this non-dimensional temperature, the

spatial distribution of temperature and the resulting refractive index profile

is evaluated. The evolution of a light ray in this index distribution is given

by Hamiltonian equations described in Section 1.2.2. The evolution of two

semi-circular grid of rays can be seen in Figure 2.2. Due to radial symmetry,

Mutlple semi-circular grid evolition



(a) At z = 30mm

Figure 2.3: The

(b) At z = 90mm

ray pattern evolution for

(c) At z = 110mm

circular grids.

rays on the same grid deviate by same amounts. Also, since each grid sees a

different index profile the two grids approach each other. This can be seen in

Figure 2.3. Three circular grid of rays (of diameter 1 mm, 2 mm and 3 mm)

entering vertically are considered. The point of intersection of each ray with

a plane parallel to XY plane at different travel distances is shown. It can

be seen that as the rays travel further into the medium, they approach each

other signifying an increase in intensity and formation of a caustic; in this

case referred to as the thermal ring.

2.2 Intensity as Generation Term

This model considers the intensity of the beam as a generation term in the

energy equation. The solution for the temperature profile is based on the

similarity solution approach suggested by Lehnigk [36] and is described below.

The setup is shown in Figure 2.4.

EM
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Figure 2.4: The decaying intensity model setup for vertical beam

2.2.1 Governing Equations

Because of radial symmetry, cylindrical co-ordinates are useful. Radial sym-

metry reduces the system to two dimensions. Using boundary layer argu-

ments, the derivatives in the radial direction are of a greater order of mag-

nitude than the axial gradients. Boussinesq approximation states that the

density change due to localized heating is significant only in the body force

term of Navier-Stokes equation. The beam when entering the fluid medium

is assumed to have a Gaussian distribution, and the assumption of a slow

change in intensity with propagation holds. However, there is instant dissipa-

tion of energy into the fluid, so that the beam intensity can be considered as

a generation term in the energy equation. With these assumptions, the con-



tinuity, momentum and energy equations at steady state for a fluid element

are

18(rv) Ow_
- + - = 0 (2.2.1)r Or Oz

Ow Ow (02W 1 OW
v + w- = g + v + - (2.2.2)Or Oz 0r2 r or

oe 0E) (02E) 10082..)
PC, V + W = k -+ + a#I1 ( 2.2.3)p Or + z = 9r 2  r or

Here, the symbols used have the following interpretation: w is Z direction

velocity (vertical), v is the radial direction velocity, g is acceleration due to

gravity, E (= #AT) is related to excess temperature above ambient, To is

ambient fluid temperature, v is kinematic viscosity, # is thermal expansion

coefficient, k is thermal conductivity of fluid, r is thermal diffusivity of the

fluid, a is absorption coefficient of the fluid for the laser beam, I is local

intensity of the laser beam [W/m 2] and Pr is the Prandtl number.

A stream function # is used that satisfies the continuity equation by defini-

tion. Two boundary conditions arise from symmetry of the situation. They

are v 1,=o= 0, (w,),_o = 0 and (),),_0 = 0. Another boundary condition

used is that energy being convected from a plane perpendicular to the path

direction is equal to the total beam power below this plane.



2.2.2 Similarity Solution

Next, a similarity solution is assumed to exist. Using a similarity parameter

( = r/a(z) the following function definitions are assumed: < = Vh(z)f( )

and 0 = H(z)F((). It can be shown [36] that the function definition for

a, h, H, X (in terms of constant ai) are a = ao exp(az/4), h = ho, H =

(aiho/a4) exp (-az) and X = Xo exp (az/2). Substituting into Equation 2.2.2

and 2.2.3 gives the following ODEs

11 1.1 1,2 ai
-f/' - f"+ -f' + -aho (f)2 + F = 0, (2.2.4)

F"+ F'- ahoPr I f'F + ak aOXoY 0 . (2.2.5)
( k alho

Further simplification occurs with a choice of functions q (() ahof ( ) and

Q (() (agaiho/2) F (() and defining o= (a 2 g/v2k) a'Xo , so that the ODEs

are

1,, 1, 1, 1
-q"-q"+ 3 q ± 2 2 (q') 2+Q=0, (2.2.6)

1 1
Q" + Q' - Pr q'Q + oY = 0. (2.2.7)

The boundary conditions in terms of these functions are q (0) = 0, q' (0) =

0, Q' (0) = 0. A numerical solution is avoided in this case again, due to

the asymptotic boundary conditions. Similar to the integral method, two

functions that satisfy the boundary condition: q* = ( (1 - exp (-(2)) and



Q* = -y exp (- 2) are assumed. These would satisfy the above ODEs for

some ( and -y* which can be evaluated from the third order equation in -Y -

Equation 2.2.8. This is under the assumption ( < 1. It can be proven that

the value of -y to consider is the root closer to the origin [36].

2Pr2 Y3 - 16 (2Pr - 1)Y2 - 8 (1 - Pr) o-y + o.2 = 0 (2.2.8)

A further assumption of 0 < o < 1 leads to the reduction of the order

of equation for -y (= Ao) and the following relation for the dimensionless

temperature holds
v 2 .

E = 4 exp (-az - (2) (2.2.9)
4agao

2.2.3 Refractive Index Profile

With the above nondimensional temperature, a simulation for water at 300K

with the following properties a = 5 * 10- 2 [m-1], 0 = 0.003317[K-1], v =

8.3334 * 10- 7 [m2 S-1], k = 0.61519[Wm 1K 1 ], ao = 0.002[m] and Xo =

0.52/(ra2)[Wm-2] was carried out. Using the functional definitions, the

spatial temperature distribution was evaluated. This is shown in Figure 2.5.

Once the temperature profile is available, assuming that the refractive index

is a function of temperature, the refractive index profile is evaluated using

the nonlinear equation for the refractive index of liquid water as a function

of wavelength, temperature and pressure [381. This is shown in Figure 2.6.
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2.2.4 Ray Evolutions

The Screen Hamiltonian method can now be used to evaluate the path of a

ray through this index profile. Three circular grids of rays of diameter 1 mm,

2 mm and 3 mm at the entry plane are considered. They are assumed to enter

the medium at z = 0 and with ray momentum components p, = 0, py = 0.

As the refractive index goes on decreasing with increasing radius, the rays

bend outwards. The points where these rays intersect a plane along the

propagation direction (and parallel to XY plane) are evaluated. The ray

positions at such planes are shown in Figure 2.7 for increasing z distance.

Due to the radial symmetry the deviation for rays initially on the same grid

should be same. This is verified by the simulated results. Again, a thermal

ring is seen to emerge as in Figure 2.3.
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Chapter 3

Horizontal Laser Beam

A laser beam entering the fluid medium in a direction perpendicular to the

gravity force is considered in this chapter. The fluid is locally heated due

to energy dissipation from the laser by absorption. The convection field in

combination with gravity in this case causes a radially non-symmetric tem-

perature profile which creates a refractive index gradient. The path and

intensity distribution of the beam is thus expected to change with propa-

gation. The steady state evolution of a horizontally traveling laser beam is

evaluated.

As in the case of a vertical laser beam, a line source model would be a good

starting point since the characteristic radius of a laser is usually small and

a significant change in intensity distribution is expected to occur only over

a large distance. However, the horizontal case is more involved than the



vertical one as there is no radial symmetry that could simplify the attempt

of an analytic solution. Section 3.2 discusses this case where the laser beam

is replaced by an equivalent linear source whose strength is constant through

the propagation distance. The case of a decaying line source is considered in

Section 3.3.

3.1 Laser Propagation in a Cross-flow

The introduction of high power lasers has brought forth a focus on the cou-

pling effect between the electric fields present and the medium through which

the laser propagates [1-4]. The distortion created by the travel through a

medium is usually compensated by assuming the existence of an equivalent

focusing/defocusing lens [6, 39]. Hence the term - thermal lens. The thermal

lensing has been experimentally observed and there have been attempts of

theoretical explanation of the phenomena. An elaborate mathematical treat-

ment is given by Livingston [11 for the case of a high intensity Gaussian beam

traveling through air.

Under the approximations of geometrical optics, the coupling of heat dissipa-

tion in the medium for a cross-wind perpendicular to the beam propagation

is considered by Livingston. Starting from the Eikonal equation [17] and

the conservation of photon flux along the propagation direction, a first order

perturbation analysis is applied. The initial distribution of the laser is as-

sumed Gaussian and there is a constant flow of the medium in the positive
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Figure 3.1: The Livingston model for natural convection.

Y direction.

Extension to free convection for water

The theory is developed for air as the propagation medium, and it is easily

extended to water (AppendixA). It is suggested in 111 that considering the

case of natural convection to be a 900 rotation of the cross-flow case is rea-

sonable. On these lines, for the setup shown in Figure 3.1, the intensity at

any co-ordinate z along the optical axis is given by:

exp {pi - Ke-(/do)2  2y e_(do )2 _2x 1 1 + erf( }
Io d, di 2 do j)

- MIMM - - - - -



Here, do - characteristic beam radius, a - absorption coefficient for the fluid,

Pi =-az - 2 , Io - the maximum beam intensity at entry and K =

-Q70 (Z - 1-e-' ) where 3 - dO (L) with p - density, Ca - specific heat/ed pCpV \dT

capacity and dn/dT - temperature coefficient of refractive index. The intensity

propagation for a laser beam moving through water is shown in Figure 3.2.

It can be seen that as the beam moves into the fluid, there is a shift in the

location of the highest intensity spot. Initially, with a Gaussian distribution,

the highest intensity is at the origin; and with increasing distance, two bright

intensity spots shifted in the direction of fluid flow emerge.

Equivalently, the propagation of a ray can be calculated as follows. In the

perturbation procedure, the dimensionless refractive index change Qo is given

by equation (25) [1] as

U

Qo exp (--v2 - dooq). exp(-t 2 )dt
-00

= 2 exp(-v 2 - doaq). (1 + erf (u)) (3.1.1)

where u, v, q are the reduced spatial co-ordinates. These being equal to

x/do, Y/do and z/do respectively. The XY projection of the propagation di-

rection, as per the definitions used, is given by w and

w = wo + /3w (3.1.2)

where wo is the initial direction of a ray entry, 3 is the parameter defined
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above and wi is given by

_wi 8Q0.. &Qo..
= -V LO=- X- -y (3.1.3)89 au 80

Here k and y are the unit vectors in x and y direction. Using Equation 3.1.1

gives

wwo + (--e") e^ 0 /i o1+ erf - yado do do
(3.1.4)

Using Equation 3.1.4 the ray path is calculated for rays along circular grids. A

sample evaluation for rays on circular grids of radii r = 0.25cm, 0.30cm, 0.35cm,

0.40cm and 0.45cm is shown in Figure 3.3. It can be seen that as the beam

propagates into the medium, the rays initially on a circular grid do not prop-

agate in the same manner. Also, there is a densing of rays at two locations

above the origin which is in the same direction as the cross flow and signifies

redistribution of the intensity distribution.

The above treatment is consistent with the assumption that the free convec-

tion case is the same as a rotated forced convection case. In [1], in order

to describe the accuracy of the phenomena observed, the forced convection

solution was matched to the closed form solution for a line source. This

was assuming that for air Pr is close to 5/9 for which the closed form solu-

tion is available [41]. However, the next sections approach ray evolution for

a generic fluid by evaluating the spatial refractive index profile for natural
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convection. Here too, the laser beam is considered to be a linear heat source

with equivalent heat flux input into the fluid.

3.2 Uniform Line Source

The model consists of a line source of energy positioned horizontally in an

undisturbed fluid medium of large expanse. The gravity force is in a direction

perpendicular to the plane containing the line source. This is similar to the

case of a constant heat flux from a thin horizontal wire in a quiescent medium.

The strength of the source is assumed to be such that the convection flow

that sets in is in the laminar regime. The natural convection plume arising

from a linear heat source has been explored in an approximate manner [40-

54]. The similarity solution approach is used to determine the velocity and

temperature profile. The numerical treatment by Fujii [43] suggests one such

method of analysis that is found to match well with the experimental results

[46, 47] and will be the.basis of the analysis here.

3.2.1 Governing Equations

As mentioned above, the line source strength creates a laminar natural con-

vection field. Since the strength of the source is constant along its length,

the flow is assumed planar (XY plane), as shown in Figure 3.4-b, and hence

the temperature profile is identical in planes perpendicular along the length.
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Figure 3.4: The uniform horizontal line source model

The fluid that comes in contact with the heat source expands and the density

gradients cause it to move upwards forming a plume which is similar to a

boundary layer. Using the Boussinesq approximation as before, we assume

that the density change is significant only in the force term. Under these ap-

proximations; the continuity, momentum and energy conservation equations

for a fluid element are:
&u ov

+u - = 0 ,(3.2.1)
Dx Dy

Ou B9U a2U
U +v =go v , (3.2.2)

U- + v = a . (3.2.3)

Here, the x and y direction velocities are u and v respectively. The other

symbols used are g - acceleration due to gravity, v - kinematic viscosity, a -



thermal diffusivity, T - temperature at a point, T, - the ambient tempera-

ture, / - thermal expansion coefficient, Pr - Prandtl number, and the excess

temperature is defined as 0 =/3AT =,3(T - T,).

The boundary conditions by symmetry are v ly=o= 0, Uy ly=o= 0, Oy |y=O= 0.

By assuming that the fluid is undisturbed from its initial state far away from

the source the boundary conditions become, u lY=0= 0 ly=m= 0.

3.2.2 Similarity Solution

It can be seen that the system of governing equations is coupled. The ap-

proach to simplify this is to assume a similarity solution and convert the

PDEs to ODEs which can be solved subject to the boundary conditions. On

these lines, the following function definitions are assumed: Similarity param-

eter ( = Y/a(x), stream function 4 = vh(x)f( ) and 0 = H(x)F(). The

continuity equation is satisfied by this definition of stream function. Using

these, the momentum and energy equations reduce to:

f' + (ha' - h'a) (f') 2 + h'a(f f") + ga 3 H F = 0 (3.2.4)

F" - Pr ahH7  f'F + Pr (ah') f F' = 0 (3.2.5)
(H)

Here a, h, H are functions of x only and the prime (') notation for these are

derivatives with respect to x, whereas for F and 0 the derivatives are with

respect to ( (Appendix B). For these to be ODEs in (, the coefficients should



be independent of x. The choice of a, h, H may not thus be unique. Two such

definition pairs are suggested by Gebhart [47] and Fujii [43]. The relations

suggested in the latter are used as these match with the experimental results

better [461. The exponent of x in these definitions comes about by dimen-

sional analysis and the requirement that the coefficients in the equations be

constants [451. The correct choice is:

a(x) 12)"'X5

h (x) V23~l5/

H(x) - 3 V(2~)153

Here, 6 is a constant dependent on the rate of heat transfer from the source.

With these definitions, (ha' - h'a) - -1/5, h'a = 3/, gah 1, aH' 3/5

and the governing equations form the following coupled ODEs

3 1
f"' + -f f" - --f' 2 + F = 0, (3.2.6)

5 5

3
F" + -Pr (f F)' = 0. (3.2.7)

5

The boundary conditions for these functions are

=0; f 0, f 0, f" = 0, F' = 0,

(=oo; f'=0, F =0. (3.2.8)



This boundary value problem is converted to an initial value problem (by

assuming values for F(O) and f'(0)) and solved by the Runge-Kutta method

to give the dimensionless temperature. This is then converted to the spa-

tial temperature profile by the function definition. Figure 3.5 shows the

temperature excess in the XY plane.

3.2.3 Ray Evolution

Once the temperature profile is available, the corresponding refractive index

profile is easily obtained. This is shown in Figure 3.6. With the assumption

of a uniform line source, this is the refractive index profile in any plane

perpendicular to the source along the propagation direction.

The Hamiltonian equations are now evaluated for a ray propagation in such

an index distribution. A circular grid of rays is considered to see the effect

of such an index field. These are rays at 1' separation and a radius of 1mm.

A finer separation of 0.05' is considered in the range 89' < 0 < 91' to better

understand the phenomena. The pattern of point of intersection of these

rays with XY planes along the propagation is shown in Figure 3.7. With

increasing travel distance, the circular distribution of rays is changed with the

rays initially within the 70' - 1100 region moving outward. A characteristic

flattened top shape is seen to form. Although this is not true flattening as

the enclosed area is clearly greater than at the start.
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Refractive Index profile in XY plane
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Figure 3.6: Refractive Index in the XY plane for a uniform horizontal line
source.
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The outward movement of the rays is more pronounced for rays on a circular

grid closer to the source (located at origin and into the plane of the paper

in the figures). This can be seen in Figure 3.8 where seven circular grids of

different radii are considered. Circular grids with same sampling of rays at

radii of 0.6mm, 0.7mm, 0.8mm, 0.9mm, 1.0mm, 1.2mm and 1.4mm enter the

medium with their momentum vector along the z axis. The ray pattern at

different planes is calculated as earlier. The distribution of rays changes with

propagation and there is noticeable densing of rays and caustic formation at

two locations (Figure 3.8-d). This is equivalent to saying that an intensity

redistribution takes place for a beam propagating in the fluid medium with

the formation of two high intensity spots. The behavior is similar to the in-

tensity evolution (solved analytically) for a laser beam in a cross flow (Section

3.1).

3.3 Decaying Line Source

The previous section considered the laser beam to be replaced by an equiv-

alent linear source whose strength is constant along the beam travel. This

is reasonable to assume provided that the absorptivity of the fluid medium

is small and the intensity is slow varying. In a medium with appreciable

absorption, to first order approximation, the intensity variation along beam

travel is exponential. Here, as the power pumped into the fluid decreases

along propagation, the fluid motion is expected to be a 3D phenomenon.



Figure 3.9: The decaying line source model.

This has been visualized in thermal lensing experiments. In accordance, a

simplified model is to consider the laser beam to be a decaying line source

with the source strength decreasing along the direction of propagation.

A similarity solution for a decaying line source was proposed by Boyd [55].

The natural convection field was assumed to be in the laminar regime and

the region of interest is located far away from the source at origin. The

governing equations are simplified under boundary layer formulation and

assuming that the Boussinesq approximation applies. The assumptions made

are incompressibility of the fluid, negligible motion pressure gradient and no

viscous dissipation [56, 57]. A qualitative estimation of ray behavior in the

region where this similarity solution is valid is explored in what follows.



The governing boundary layer equations for a horizontally propagating laser

beam (gravity forces perpendicular to the plane containing the beam) in an

initially undisturbed medium under the set of assumptions stated are:

Ou Dv ow
+ + = 0, (3.3.1)Ox B9y Bz

Dv Dv Dv 82v
u +v-+w-- +g3T, (3.3.2)

89x By Bz az2
aw Dm aw D2w

U + V + W- = v , (3.3.3)
ax Dy Dz 5x

2

DT 8T DT D2T
u + v + w = , - (3.3.4)

ax (9y 9z 19z2

Here u, v, w are the velocities in x, y, z directions respectively, T is the tem-

perature increase above ambient, v is kinematic viscosity, g is acceleration

due to gravity, # is thermal expansivity of the fluid and K is the fluid ther-

mal diffusivity. Equation 3.3.1 is the mass continuity equation, Equations

3.3.2, 3.3.3 are the Navier-Stokes equations for y and z directions respec-

tively, and Equation 3.3.4 is the energy conservation equation for a fluid

element at steady state. Boundary conditions follow from symmetry and the

consideration that the fluid is undisturbed far away from the source.

As in earlier cases, to convert these partial differential equations to a system

of ordinary differential equations a set of similarity definitions are used [55].

The boundary value problem is then converted to an initial value problem

and a numerical computation of the ODEs can be attempted. This is dif-



2 x 10 Refactive index profile at z=1m

1.5

1.33
1

0.51.2

>-0

-0.5 g1.32

1.315

-2
-2 -1 0 1 2

X x 10
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ficult due to additional unknown parameters (treated as eigenvalues for the

problem) introduced by the similarity definitions. Hence, the integral formu-

lation is used to approximate the temperature profile. Polynomial functions

that satisfy the boundary conditions are assumed and the unknowns in their

definitions are evaluated subject to minimization of a chosen residual func-

tion. This gives the spatial temperature profile and the resulting refractive

index profile. Figure 3.10 shows the steady state refractive index profile in a

plane parallel to XY and located at a distance of 1m along the propagation

distance for a laser beam of maximum power P = 0.12W travelling through

undisturbed water at 27'C.

The Screen Hamiltonian method can now be used to determine the behaviour

............ ....
. ......... MMM



of rays through this index distribution. A circular grid of rays entering

horizontally into the fluid is considered and the ray paths for a few rays

are shown in Figure 3.11. The condition for the validity of the similarity

solution requires Gry > 1, which is satisfied by only the rays on the circular

grid of radius > 8mm; and hence only rays on a grid of radius greater than

this value of 8mm are considered. The pattern of the intersection of rays

with planes parallel to XY at different distances along propagation gives

an idea of the redistribution of the rays and hence the intensity. This is

evaluated for three circular grids of radii r = 8mm, 9mm and 10mm entering

horizontally into the fluid and shown in Figure 3.12. The initially circular

grid again deforms into a flat top shape structure similar to the earlier cases.

The inner grid deformation is more pronounced than the outer ones and

this causes a densing of rays at two locations above the origin (again in the

direction of fluid motion) signifying that the intensity at these spots is higher.

However, these are peripheral rays and provide only a qualitative indication

of ray behavior in a convective field generated by the horizontal decaying line

source.



Ray evolution for a r=0.008 circular grid
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Chapter 4

Interferometric Visualization

As the analysis shows, the change in temperature and refractive index due

to the convection induced by laser energy is not high. Interferometry is thus

a good candidate for visualizing the heating effect due to its sensitivity at

measuring small phase changes. The effect of a refractive index gradient build

up in the medium through which a laser beam propagates due to its energy is

called Thermal Lensing. There have been different models that approximate

the behaviour of the medium to be a thin lens [6, 58]. An experimental

technique that is used to measure the nonlinear property of a thermal lens is

the Z-scan technique. Here the change in intensity of a probe laser due to the

heating by a pump laser is measured at an aperture placed in the far-field

[59, 60]. This however requires the propagation model for the beam (which

is being analyzed in the first place). Another technique that has been used

to accurately visualize refractive index gradients is Interferometry [62-651.



In this thesis, the spatial temperature distribution in a steady state convec-

tion field has been experimentally estimated by measuring the phase changes

with a Mach-Zehnder interferometer. The interferograms are analyzed using

both, the Fourier techniques and the Phase Shifting Method (PSM).

4.1 Experimental Setup

The optical setup for visualizing thermal lensing consists of the Mach-Zehnder

interferometer at its core and is shown in Figure 4.1. A He-Ne laser source

(2mW ©543nm, Newport TM) is used as the probe beam to visualize the re-

fractive index change. A collimated beam is produced using a spatial filter

(SF) and a lens (L) combination. A NewportT Three-axis Spatial Filter fit-

ted with a M60X microscope objective and a 5pm diameter pinhole is used

with a plano-convex lens of focal length 125mm. Using a spatial filter enables

obtaining a larger beam size to visualize the area of interest. The collimated

beam enters the Mach-Zehnder interferometer at beam splitter BS1 and is

divided into two. One beam follows the reference path along BS1-M1-BS2

and the other follows the test path BS1-M2-BS2. Here M1 and M2 are plane

mirrors supported on kinematic mounts that can rotate the mirrors along all

the 3 co-ordinate axes. The mirror M1 is connected to a piezo stage (single

axis 20pum piezo NanoFlex Stage, ThorLabSTM) operated by a controller (single

channel benchtop piezo controller, ThorLabSTM). This enables changing the

position of M1 along BS1-M1. A sample containing the fluid is introduced



Legend:
L - Focusing Lens
D - Dichroic

P2 P1 - Probe Laser
P2 - Pump Laser
SF - Spatial Filter
CCD - Camera
M1, M2 - Mirrors
BS1, BS2 - Beam Splitters

P1 SF L BSI M1

M2BS2 D CCD

Sample

Figure 4.1: The Experimental Setup.

in the test path. A high power laser beam - the pump beam - from a diode

laser (120mW @660nm, Power Technology IncorporatedTM) passes through

the sample in the same direction as the probe beam generating a thermal

lens and creating a refractive index profile. The two probe beams recombine

at beam splitter BS2 to produce the interference pattern which is captured

by the CCD (Model A504K, BaslerTM). A dichroic (D) helps blocking out the

high intensity pump beam and thus avoiding saturation of the camera pixels.

For a strong thermal lensing the liquid sample should have a high dn/dT and

a low specific heat and thermal conductivity [66]. Hence pure water and

alcohols may not be the best solvents to visualize. Therefore the samples

chosen are aqueous solution of dyes that are absorbing at the pump beam



wavelength. With the red pump beam, two ideal choices are Malachite Green

(maximum absorption at 616.5nm) [67] and Toluidine Blue (absorption band

560 + nm) [68]. Experimental observation and analysis are shown for Tolui-

dine Blue in the following sections.

4.2 Observations

The aqueous solution of Toluidine Blue dye was held in a cell made from stan-

dard clear microscope slides. The cell had a path length 1samgpe = 22.38mm

and a liquid cross section of 25.15mm x 63.18mm. The liquid free surface was

open to ambient air and the setup was isolated from environmental vibrations

by floating the optical table. The distance that the pump beam travels within

the sample was chosen such that there is not much attenuation of the beam

intensity. This was done to closely resemble the case of a uniform source

along the path length. The transient phenomenon was captured on the CCD

camera at 400 frames per second. A few frames of the entire interferogram

and the area near the pump beam is shown in Figure 4.2.

In order to use the Fourier method for interferogram analysis, a carrier (spa-

tial) frequency is introduced by tilting one of the mirrors. This is evident in

the fringe pattern visible in frame 0. It can be seen that due to the change

in refractive index profile, there is a gradual shift of the fringe pattern near

the beam. Also, frame 700 onwards, there isn't much change in the fringe

pattern indicating that a steady state is reached.



(a) Frame 0

(b) Frame 75

(c) Frame 700

Figure 4.2: Interferograms (entire pixel area on the left and area near the
beam on the right) for a Toluidine Blue sample heated by a 120mW beam.



Next, for the PSM, interferograms with phase shifts were recorded. As in-

dicated in Section 1.4.2.2 four interferograms with a gradual phase shift of

r/4are needed. This is achieved by moving the mirror M1 along BS1-M1 in

increments of AP/ 4 with the piezo controller, A, being the wavelength of the

probe beam. To ensure the alignment of the reference arm, it is necessary

to calibrate the piezo movement. The idea behind the process is that a path

change of A, should leave the interferogram unchanged as the phase would

then change by 27r. Hence interferograms were captured by moving the mir-

ror by distances around the probe wavelength and comparing it with the

initial interferogram (Io). Given the errors due to wind disturbances, exter-

nal vibrations (if any, after floating the table) etc., the distance at which the

interferogram was most similar to Io is taken to be A,. The piezo movement

and camera capture were synchronized with LabVIEWTM and MATLABTM.

4.3 Interferogram Analysis

The Fourier method as stated in Section 1.4.2.1 is used to isolate the phase

information from the interferogram. Due to the carrier frequency introduced

by tilting one of the mirrors, the frequency domain will have three distinct

bright spots including the central bright spot as shown in Figure 4.3. The

two off-axis spots contain the phase information. The spot in the +ve half

plane is shifted to the origin and an inverse Fourier transform gives the phase.

The image before the pump beam is turned on gives the phase difference #o



Figure 4.3: The interferogram in Fourier domain with one side spot high-
lighted.

between the two arms of the interferometer. Once, the pump beam enters

the sample and creates the thermal lens, the steady state interferogram gives

the phase difference #1. The inverse Fourier transform gives a wrapped phase

due to the arctangent function used. The unwrapping procedure suggested

by Takeda [261 is used to get the correct phase. This is shown in Figure 4.4.

The difference A# = #1 - #o gives the phase difference caused just due to

heating.

This method gives the phase change along the entire path length of the

sample. The assumption of uniform beam strength throughout the sample

means the index profile has no gradient along the beam direction. Thus the
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change in refractive index is given by

An = n (x, y, t) - no ( 2A ) AP (4.3.1)
2lsample

where no is the initial refractive index (at ambient conditions). The transient

phenomenon showing the change in refractive index after the pump beam

enters the Toluidine Blue sample is shown in Figure 4.5. As can be seen

in subfigure a, the disturbance is more or less symmetric around the beam.

This signifies that the mode of heat dissipation at this point is conduction.

With time, the disturbance spreads asymmetrically and the formation of a

convection plume is evident. The system reaches a steady state quickly and

there is no significant change in refractive index thereafter.

A beam centre is defined to be the location of highest temperature (and

hence lowest refractive index) at steady state, and the vertical line through

this centre is defined the centre-line. The evolution of the change in refractive

index along this centre-line gives a better idea about the transient process.

Noting that the camera pixel size is 12pm and converting it to spatial co-

ordinates (in), this evolution with time is shown in Figure 4.6. As can be seen

here, the change in refractive index at time t = 0.25s is symmetric around the

beam centre. Hence the primary mode of heat dissipation is conduction at

this point. The hotter fluid then moves upwards due to density gradients and

the colder fluid located far away from the beam moves in towards the hotter

area, and heat dissipation through convection is setup. Due to the hot fluid
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movement upwards, the index profile on the centre-line becomes asymmetric.

The system then reaches a steady state with the surroundings. Figure 4.7

shows the centre-line change in refractive index when the pump beam has

just entered the sample (subfigure a) in comparison to the change at steady

state (subfigure b). Note that the change is refractive index immediately

after the beam entry (t = 0.1225s) is higher than at steady state (t = 1.75s).

A possible reason for this is that just as the pump beam enters the sample,

there is instant absorption of the beam energy by the fluid and this raises

the temperature (decreases refractive index). As the beam intensity profile

is symmetric, the change in refractive index around the beam centre is also

symmetric. The mechanism of heat dissipation starts thereafter, first by

conduction and then by convection. While the mode of heat dissipation is

primarily conduction, the change in refractive index around the beam centre

is still symmetric. As convection starts to dominate, the profile becomes

asymmetric as explained above.

The discontinuity at the edges of the interferogram may give rise to ripples

in the Fourier space causing errors in the phase recovery. This is usually

corrected either by extrapolating the fringe data [31] or weighting the image

data with an intensity window [26, 30, 331. The Hanning and Blackmann-

Harris windows are applied to the interferograms here. Phase retrieval by

Fourier method using these windows is shown in comparison to the original

image in Figure 4.8. Here, the sub-images b, c, d show the region near the

pump beam (as indicated by the red box in sub-image a).
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Figure 4.6: Evolution of centre-line change in refractive index with time
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To compare the phase predicted using this method, a centre-line for the

beam is defined as earlier. Here it corresponds to column 557 of the image

matrix and the beam centre is pixel (557, 626). The change in refractive index

on this centre-line is then estimated. Since the camera pixel size is 12pm,

converting it to spatial co-ordinates (m), the change in centre-line refractive

index is shown in Figure 4.9. It can be seen that for the area near the pump

beam, the original data gives results comparable to the windowed images.

The change in refractive index around the beam using the Fourier method is

shown in Figure 4. 10-a.

Next, the phase is determined by PSM. As stated earlier, four interferograms

with a successive phase shift of '/4 are recorded both for the initial stage

(before pump beam is incident) and the steady state. The initial stage image

set gives the phase introduced by the experimental setup - the spurious phase;

which on subtraction form the final stage phase, gives the phase difference

due to heating. The phase again is modulo 2-r and an unwrapping algorithm

is applied. The change in refractive index using Equation 4.3.1 for the region

around the beam is shown in Figure 4.10-b.

4.4 Comparison with Simulations

For the 120mW pump laser passing through the Toluidine Blue sample, the

change in refractive index using the uniform line source model of Section

3.2 is evaluated. This is shown in Figure 4.11. The centre-line change in
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Figure 4.9: Comparing the centre-line refractive index change from Fourier
Method analysis of original image with Hann and BlackmanHarris windowed
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Figure 4.11: Simulation result for change in refractive index (uniform line
source model).

refractive index is then compared with the experimental results and is shown

in Figure 4.12. The pump beam has a spot size of about 0.8mm and it can

be seen that the change in refractive index for simulation and experiments

(Fourier method) are of the same order of magnitude around the upper rim

of the beam spot and away from it. Due to the finite size of the beam

spot, there is a change in refractive index below the beam centre as well.

This too is approximately of the same order of magnitude as that above

the origin. This would suggest a flattened top deformation, as predicted in

Section 3.2, of a circular ray grid traveling through such an index distribution;

not just above the beam centre but also below it. Also, the faster approach

to ambient refractive index below the beam suggests that the primary mode
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Figure 4.12: Comparing the centre-line refractive index change estimated by
simulations with the experimental results (spatial distance units in m).
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of heat transfer here is conduction, and a conduction model could be used

to determine the index profile in this region. The phase evaluated through

PSM is similar to the phase calculated by Fourier method with most deviation

being at the beam location. This appears to be due to the fringes being not

well defined in this region - as can be seen in the closeup images in Figure

4.2. The intensity at this location is smudged and possibly leads to the error

in phase calculation.

The phase map in Figure 4.8-a shows the formation of an upward plume,

characteristic of free convection flows. It is seen here that the extent of

disturbance in the horizontal direction is smaller than in the vertical direction

(gravity). This supports the assumption of a boundary layer formation and

the approximations made thereof.

4.5 Dye Alternatives

Similar to the case of Toluidine Blue sample, the thermal lensing of an aque-

ous solution of Malachite Green was visualized with the setup. Defining the

centre-line as earlier, the steady state change in refractive index along this

centre-line is shown for both the samples in Figure 4.13. The change in re-

fractive index is of the same order of magnitude for both the samples, but

the profile is flattened out for Malachite Green. Also, the refractive index

change at the beam centre is lower for Malachite Green than for Toluidine

Blue. This is because the wavelength of pump beam is towards the lower
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Figure 4.13: Comparing the centre-line change in refractive index for Tolui-
dine Blue and Malachite Green at steady state.

extreme of the absorption band for Malachite Green.

Depending on the wavelength of the pump beam, different dyes could be used

to visualize the thermal lensing effect. As stated earlier, the reason for using

an aqueous solution is to enable increased absorption of the laser energy.

The concentration of the samples however is low and hence the properties of

water are taken for calculations of change in refractive index. For a pump

beam in the green wavelength, Toluidine Blue or Malachite Green are good

options. The response of Toluidine Blue was seen to be better at the 543nm

x 10-5
6-1. I-1

Centre-line change in refractive index



pump beam. With a pump beam in the green wavelength domain, aque-

ous solutions of Methyl Red, Safranin or Cobalt Sulphate are good options.

Similar experiments showed Methyl Red to be the most responsive.
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Chapter 5

Conclusion

The interaction of a high energy laser beam traveling through a medium may

cause changes in the intensity distribution and path direction due to the ac-

companying refractive index variation. With increasing prevalence of high

energy light beams, in applications where it is desired to know the peak in-

tensity on target (for example in solar power plants) - it is important to know

the beam evolution. Due to the high nonlinearity of this phenomenon, the

subject matter is also of theoretical importance. The influence of self-induced

convection on the propagation of a laser beam through a fluid medium was

investigated in this thesis.

For the case of a beam traveling in a direction opposite to gravity (vertical

beam configuration) in quiescent water at ambient conditions, two models

were examined. First, the laser beam was approximated to be a line source



of equivalent power and a similarity solution for the convection field was em-

ployed. The integral method gave the temperature profile and the resulting

spatial refractive index distribution. Ray evolution through such a distribu-

tion was evaluated under the Hamiltonian formulation of geometrical optics.

The second model considered the finite spatial extent of the beam intensity

profile to determine the refractive index distribution. Ray paths were then

predicted based on the Hamiltonian formulation. Both models suggest the

formation of a caustic with the densing of rays along a circle, as the rays

propagate; in this case referred to as the thermal ring.

The propagation of a horizontal laser beam, with gravity acting in a direc-

tion perpendicular to the plane of propagation, was modelled considering

the beam to be a linear energy source suspended in water. This case is more

complex than the vertical beam propagation due to asymmetry of the con-

vection flow; and forms the main part of this thesis. First, the linear source

was considered to be of uniform strength along its length and a similarity

solution gave the temperature profile. The resulting refractive index distri-

bution gives the behaviour of light rays. It was seen that if at entry, the

distribution of rays was along a circle; with propagation in the medium, the

rays redistribute to form a flattened top (Figure 3.7). The extent of defor-

mation of a circular grid changes with grid radius, and this leads to a densing

of rays at two locations and suggests the formation of a caustic (Figure 3.8).

This is similar to the crescent shape formation for the forced convection case

(Figure 3.3) which concerns a Gaussian beam traveling in a medium with a
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cross-flow, in the sense that the deformation is in a direction opposite to the

fluid flow. The next model considers the laser beam to be a linear source

of decreasing intensity. Here too, the circular grids of rays evolve leading to

densing of rays at two locations above the beam centre. However, this gives

only a qualitative estimation as the similarity solution employed to calculate

the refractive index profile is valid only for grids located far from the beam

centre.

The validity of uniform line source model for a horizontal laser beam was

confirmed by interferometric visualization of the thermal lensing effect pro-

duced by a 120mW laser beam passing through a liquid sample. The change

in refractive index due to laser heating was found to be of the same order

of magnitude as that predicted by simulation with equivalent parameters.

The phase map around the laser beam distinctly showed the formation of

a boundary layer strengthening the approximations. Thus, if dissipation of

energy due to absorption by the fluid is not high - so as to consider the

beam to be of constant strength along the beam propagation, the uniform

line source model is a reasonable approximation to determine the evolution

of such a laser beam.

Future Directions

The similarity solution approach to solving the Navier-Stokes equation help

reduce the PDEs to ODEs and thus simplifies arriving at a solution. The case
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of a horizontal laser beam propagating through a medium was approximated

with the line source model, where the spatial extent of intensity generation

is ignored. If the intensity term is considered, similarity function definitions

need to be defined as per the requirements outlined in Appendix B. The

similarity solution however is valid at distances away from the beam centre.

Hence, to have an accurate behaviour of the beam evolution, a full solution

to the Navier-Stokes needs to be attempted. One approach is to employ a

finite element/ finite volume method solution to find the temperature profile.

Another approach is to solve the coupled nonlinear PDEs using techniques

like perturbation theory or homotopy analysis. Homotopy analysis is a rel-

atively new analytic method for nonlinear problems, with the solution valid

even in presence of strong nonlinearity [69, 70]. This has been applied to

solving convection problems with increased accuracy [711. Instabilities like

turbulence of the flow would also need to be considered with increasing laser

powers. The problem of influence of self-induced convection on propagation

of a high energy laser thus presents immense theoretical significance in the

nonlinear interactions between the beam and medium.

The geometrical treatment of beam propagation is limited to predicting the

behaviour up to formation of caustics. A wave theory approach can explain

beam propagation beyond caustic formation and also consider the scattering

phenomenon. For experimental visualization of thermal lensing, techniques

like tomography [72] can be used for better results - especially in the case

where high absorption of beam energy by the fluid causes a 3D flow and
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temperature field. The accurate visualization of such a fast transient phe-

nomenon will support the theoretical explanation and the assumptions made

thereof.

103



104



Appendix A

Livingston Parameter 3

The theory developed by Livingston [11] is for a high energy beam traveling

through air. To extend it to a fluid medium, the heat balance equation (Equa-

tion 6 [1]) is examined. If the local temperature difference is 6T, then

-Vi - aVT= a IpC, (A.1)

where the symbols are as used in the reference. To a first order approximation,

6n (dn/dT) 6T so that

(V . V 1 - aVi) on a(dn/dT)

pPC, 2
(A.2)

where - determines the parameter 3 used to evaluate intensity. Thus, for a

fluid medium the parameter of interest (called the Livingston parameter here)

is

Iodo
#= -2V

105

(A.3)
azlodo dn
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Appendix B

Convection ODEs and

Approximation Validity

The approach of assuming a similarity solution to reduce the complexity of

the PDEs by converting to a system of ODEs is standard. Starting with the

three equations of mass continuity, momentum balance and heat balance for

a fluid under the boundary layer formulation and Boussinesq approximation,

for a 2D flow, we have from Section 1.3

+ =9 0, (B.1)
Ox Oy

&u Bu &2U
U +v go+ , (B.2)

Ox By By2)

&O DO0820 aa/3U +v I (B.3)
Ox ay 0y2 pC,

where 0 = OAT = #(T - Too) is the excess temperature and I is the intensity

of the laser beam which acts as the heat generation term. Assume that a sim-

ilarity solution exists. Define a similarity parameter (= Y/a(x), and a function

definition for the stream function as 4 = vh(x)f( ) and 0 = H(x)F((). Take
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derivatives and, dropping variables1 the derivatives are:

(y ='1/a; (x = -a' a

u=$by=' f'; V = -Ox= -_V (h'f

-= [v f'+ (-"ah) f /IH'F V a'H/ 0a2 F'0 F

- hIf)

- (hl) f] ; uy = v f"; , =vyf'

Ox = H'F - F'; 0= IF'; 0, = F"1a Ya YY a2

Using these, the continuity equation B. 1 is satisfied by definition and the

momentum equation equation B.2 and energy equation B.3 are, respectively

f" + (ha' - h'a) (f/)2 + h'a(f f") + vh30] = 0, (B.4)

- Pr ahH)
(H )

f'F + Pr (ah') f F' +

Thus for converting the PDEs to ODEs, the coefficients of the following equa-

tions should be independent of x and the equations to be satisfied are:

f"'+ (ha' - h'a) (f')2 + h'a(f f") + (a 3 H F = 0
(v2h)

F" - Pr ahH)
(H )

f'F + Pr (ah') f F! ( aa/3 a2

apC, H

Using the function definitions from [43] and as mentioned in Section 3.2.2, the

last term in Equation B. 7 is

aa# a 2

apC, H )

Ja
pCP~e~i

( 2)
9001

-1/5

x7/5I. (B.8)

For the simulation parameters used, the value of this term with respect to max-

imum intensity 10 for a Gaussian distribution with spot size of 2mm is shown

'Henceforth functions a, h, H and their derivatives are understood to be functions of x
only, whereas derivatives of 0, 0 etc. are with respect to (
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Figure B.1: The error term

in Figure B. 1. This gives an idea of the error distribution when neglecting the

intensity term in the uniform horizontal line source model.
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