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Abstract

Separation of biological molecules such as DNA and protein is of great importance for

the chemical and pharmaceutical industries. In recent years, several researchers fo-

cused on fabricating patterned regular sieving nanostructures instead of using porous

gel media to separate various types of biological molecules. Theoretical modeling of

the separation process is very desirable for gaining fundamental understanding, de-

vice optimization and parameter exploration.
Despite their small sizes, these devices contain a very large number of solvent

molecules making ab-initio molecular modeling intractable. In other words, for an

efficient model, some degree of coarse-graining is required. In this Thesis, we focus

on the development of Brownian Dynamics (BD) simulation tools for modeling the

performance of nanofluidic devices for the separation of short, Ogston-regime, dsDNA

molecules.
The first part of this Thesis focuses on the development of Brownian Dynamics

models to predict the electrophoretic velocity of dsDNA molecules in nanoscale sep-

aration devices. The most general model developed here is based on the Worm-Like-

Chain (WLC) model which includes the effects of bending and stretching stiffness

and provides the most accurate mechanical description of the DNA molecule. The

resulting Brownian Dynamics formulation includes hydrodynamic interactions within

the molecule, and closely models the experimental set up of Fu et al. whose data

are used for validation. For molecules that are sufficiently short (length on the order

of, or smaller than, the persistence length), we developed a BD model which treats

DNA molecules as rigid rods; this results in significantly reduced computational re-

quirements. Finally, we present a further simplified BD model which treats the DNA

molecules as point particles while accounting for their orientational degrees of freedom

through an entropic energy barrier. This model is the most efficient and simplest to

implement, but also is limited to short, essentially rigid molecules. Both the rigid-rod

and the point particle model agree well with the experimental data of Fu et al. for

appropriately short molecules.
In the second part of this Thesis we present a variance reduction methodology



for reducing the statistical uncertainty of Brownian Dynamics simulations. Our for-
mulation is based on the recent method of Al-Mohssen and Hadjiconstantinou which
uses importance weights within a control variate formulation. Variance reduction
is achieved by subtracting the results of an equilibrium simulation using the same
random numbers from the non-equilibrium results. Significant variance reduction is
achieved for small electric fields, while very little additional computational cost is
incurred.

Thesis Supervisor: Nicolas G. Hadjiconstantinou
Title: Associate Professor, Mechanical Engineering
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Chapter 1

Introduction and background

1.1 Separation of biological molecules using mi-

cro/nanofluidic devices

Separation of biological molecules such as DNA and proteins is of great importance

for the chemical and pharmaceutical industries [9, 10, 11]. For example, separation

of DNA is used for crime investigation [12, 13 and detection and identification of

biomarkers in urine [14], while separation of proteins is used for early detection,

treatment and prevention of cardiovascular disease [15], and can be similarly applied

to lung cancer studies [16].

In recent years, several researchers focused on fabricating regular nanopatterned

sieving structures instead of using porous gel media to separate various types of

biological molecules. Duong et al. [1] separated long DNA molecules using the one

dimensional microfluidic device with a well defined patterned structure shown in

Figure 1-1. Their polydimethylsiloxane (PDMS) microstructure allowed short A-DNA

molecules to migrate faster than long T2-DNA. In another study, Volkmuth et al. [2]

used microlithography to manufacture a two-dimensional nanostructured array to

study the motion of long DNA molecules in a well defined topology as shown in

Figure 1-2. Their experimental data shows that they were able to separate DNA

molecules up to a length of ~ 100 kbp.



A /**""''''"'""t~ PoMs

i) ii)-

il) PDMS iv) PDMS

Microscope glass slide

Fig. 1. (A) Process diagram of microchannel fabrication. (i) Convert shaped microchannel mould is fabricated with SU-8.
(ii) PDMS is poured and cured over the mould. (iii) PDMS is released from the mould. The microchannel is thus replicated
into PDMS. (iv) Reservoirs are punched through PDMS. The microchannel is closed with microscope glass slide. (B) The
drawing describes the variables of the periodical cavities (a-d) in the microchannels. The channel width d is used to define
the channel layouts. (C) SEM top view of moulded 1.5 im and (D) 3 s~m PDMS microchannel.

Figure 1-1: Schematic diagrams and SEM images of the microchannel manufactured
by Duong et al. [1]. Adapted from Duong et al. [1].

Figure 1-2: Volkmuth's figure shows an electron micrograph of a corner of an array.
"The micrograph shows the 0.15 tm-high posts, diameter 1.0 pm, and center to center
spacing of 2.0 pm". Adapted from Volkmuth et al. [2].

Fu et al. [3] developed a two-dimensional anisotropic nanofluidic array (see Figure

1-3 from Fu et al. (2007)) to separate short biological molecules. The main reason

for this two-dimensional anisotropic sieving structure was to achieve continuous-flow

separation. This feature is of great importance for biomarker detection and biosensing

with microfluidic systems, since the continuous harvesting of biomolecules of interest

would enhance the detection limit for the downstream analysis. The two-dimensional

physical landscape of the device can be thought of as a large number of rows of

nanofilters separated with deep channels. When biomolecules of different size are

injected into the deep channel, they can occasionally jump to the next deep channel

-.11 ........... . ..... 111111- 1111 x - - , - - _ ...........



through the passage of the nanofilter. The jumping passage rate depends on their

size. Hence, molecules will follow different trajectories depending on their size as

shown in Figure 1-4.

reservoir

wilcrokd" ~ N

IM

// /

1mm/ ///-i//
Figure 1-3: "Structure of the microfabricated device incorporating the anisotropic
nanofilter array (ANA). Scanning electron microscopy images show details of different
device regions (clockwise from top right: sample injection channels, sample collection
channels and ANA). The inset shows a photograph of the thumbnail-sized device.
The rectangular ANA is 5 mm x 5 mm. Shallow regions are 1 pm wide, 1 pm long,
55 nm deep and spaced by 1 pm x 1 pm square silicon pillars. Deep channels are
1 pm wide and 300 nm deep. Injection channels connected to the sample reservoir
(1 mm from the ANA top left corner) inject biomolecule samples as a 30-mm-wide
stream." Adapted from Fu et al. (2007) [3].

In this Thesis we focus on a specific one-dimenstional device design based on the work

of Fu et al. [4] shown in Figure 1-5. This device consists of a large number (N, ~

50, 000) of alternating shallow and deep regions etched in a silicon wafer. Biological

molecules (DNA, protein) of contour length L, persistence length L, and radius of

gyration Rg, driven by an electric field through this periodic array of constrictions are

.. ............. .... ... .......



>KE,

Figure 1-4: Molecules follow different trajectories based on their size. Adapted from
Fu et al. (2007) [3].

size-separated because their size-dependent mobilities result in size-dependent travel

times. Typical [4] dimensions for the shallow and deep region depths and period are

d, ~ 55 nm, dd - 300 nm and p ; 1 pm, respectively.

d, =55 nm

d= 300 nm

p=l1 upm

Figure 1-5: Schematic of the nanofilter array.

1.2 Ogston sieving versus entropic trapping

Molecule mobility in these devices is not a monotonic function of molecule length.

As Figure 1-6 shows, molecule mobility initially decreases and then increases with

molecule length. This leads to two distinct separation regimes: Ogston sieving, where

short molecules travel faster than longer molecules and entropic trapping, in which

longer molecules travel faster than shorter molecules. Ogston sieving takes place when

the molecule radius of gyration is on the order of, or smaller than, the narrow region



depth (d,). In this case, entering the narrow region is a matter of reorientation: short

molecules have a larger number of allowable conformations in which they can enter

the shallow region in comparison to longer molecules; as a result they spend less time

trying to enter the deep region and consequently travel faster in the device (i.e. they

will have a higher mobility compared to longer molecules).

entropic trapping

6

5

CD ~45.31 V/cmn
E 4
U

0 35.56V/cm

25.81 V/cm

1

DNA Length (kbp)

FIG. 3 (color online). Mobility y- as a function of DNA length.
DNA fragments were extracted after agarose gel separation. The
nanofilter array has d, = 73 nm, dd = 325 nm, p = 1 ym. The

relative large statistical error bars (drawn if larger than the
symbol) are likely due to the low DNA concentrations. The
left and right shaded (gray and yellow online) areas indicate
Ogston sieving and entropic trapping, respectively. The transi-
tion points are marked with the vertical dashed line drawn for
DNA length = 1.5 kbp.

Figure 1-6: Ogston entropic transition, adapted from Fu et al. (2006) [4].

Transition to the entropic trapping regime occurs when the molecule radius of

gyration is larger than the shallow region depth. In the experimental results of Fu et

al. [4] in Figure 1-6, the shallow region depth was d, = 73 nm. The transition occurs

at a DNA length of 540 nm (1500 bp), which has a radius of gyration of - 80 nm, as

expected.
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In the entropic trapping regime, due to their size, the molecules are not freely moving

in the device but rather spend most of their time attempting to enter the deep region.

While attempting to enter, longer molecules will have longer segments in contact with

the shallow region (in the transverse (z) direction), and thus higher probability that

some segment of the molecule will enter and pull the remaining part of the molecule.

In other words, longer molecules have a higher probability of entering the shallow re-

gion and hence have a faster travel velocity in the nanofilter (i.e. they have a higher

mobility compared to shorter molecules) [17].

The focus of this Thesis is on Ogston-regime sieving. In particular, we are interested

in the separation of short, L < 950 bp (340 nm), dsDNA molecules using nanofilter

arrays [4, 18] as described previously in Section 1.1. The radius of gyration of the

longest DNA molecule (340 nm) is 63 nm which is close to the shallow region depth

d, ~ 55 nm.

1.3 Modeling of biological molecule separation

In this Thesis, we focus on the development of a Brownian Dynamics (BD) simula-

tion framework for modeling the performance of nanofluidic separation devices. The

ultimate goal of this research is the development of robust simulation methods which

can replace costly experimental setups for device design and optimization.

Theoretical modeling of this process is very desirable for gaining fundamental

understanding, device optimization and parameter exploration [19, 20, 21]. Despite

their small sizes, these devices contain a very large number of solvent molecules

making classical molecular dynamics simulations intractable. In other words, for an

efficient model, some degree of coarse-graining is required. In this work we show

that for the short molecules studied here, a Brownian Dynamics (BD) formulation

strikes a good balance between fidelity-e.g. agreement with experimental data-and

computational efficiency (compared to more expensive coarse-grained techniques such

as Dissipative Particle Dynamics [22]). A more complete presentation of our rationale



for choosing the Brownian Dynamics method can be found in Section 2.2.

Although BD simulations of biological molecule separation have appeared in the

literature before [20, 23], those studies have focused on molecules that are sufficiently

longer than Lp, which put the separation mechanism in the entropic trapping regime

[4]; moreover, as a result of the significantly larger molecule length, the Brownian

Dynamics models were of the freely-jointed bead-spring type. A Brownian Dynamics

study of short rod-like molecules in the geometry studied here has appeared recently

[19]; however, the focus of that paper was to demonstrate the feasibility of high-field

electrophoresis and to highlight the importance of "torque assisted escape" in the

latter limit.

The objective of this Thesis is to construct sufficiently realistic and efficient models

that can quantitatively describe experimental data that are relevant to current engi-

neering practice (low-field). Our models will be guided/validated by the experimental

data of Fu et al. [4].

1.4 Brownian Dynamics

Brownian Dynamics [24, 25, 26] is a method for coarse-graining a molecular descrip-

tion of Brownian particles to the mesoscopic level [27). It corresponds to the sim-

plified version of Langevin Dynamics [28] in the limit where acceleration effects are

negligible (overdamped Langevin dynamics). BD formulations achieve considerable

computational efficiency gains by treating "explicitly" only the particles of interest;

the remaining particles are treated "implicitly" [29] by ignoring the details of their

motion and only accounting for their collective effect on the explicit particles, namely,

viscous resistance to the latter's motion and random "kicks" modeling the net effect

of collisions of the latter with the implicit particles.

As can be expected, such formulations lend themselves naturally to modeling

dilute systems of solute particles (e.g. macromolecules) in the presence of a solvent;

by focusing only on the solute particles of interest and not solving the equations of

motion of the large number of solvent particles, BD formulations enable calculations



that would have been out of reach of more traditional ab-initio methods. One of

the disadvantages associated with this coarse-graining process is the loss of long-

range particle-particle interactions [29]; hydrodynamic interactions may be included

in the model [25] at the expense of some algorithmic complexity and computational

cost. Using the Chebychev polynomial approximation [30] as originally suggested by

Fixman [31], as well as novel schemes for truncating the range of electrostatic and

hydrodynamic interactions [32], has resulted in efficient methods that have enabled

the practical simulation of long-chain-molecule hydrodynamics in microdevices [33,

32].

1.5 Thesis outline

In Chapter 2, we present a brief discussion of the important dimensional and non-

dimensional numbers relevant to the physics of the problem which will help us ana-

lyzing the motion of the DNA molecules in the nanofilter. Based on this analysis, we

discuss the different numerical approaches that one can choose to tackle the problem

of interest.

In Chapter 3, we present the Worm-Like-Chain (WLC) BD model [34, 35, 36]. This

model includes the effects of bending and stretching stiffness and provides the most

accurate description for the DNA molecule. Our implementation of the Worm-Like-

Chain model is in line with the work of Allison et al., Hagerman et al., Lewis et

al, Klenin et al. [34, 35, 36, 37] and is thus different from Bead-Spring models that

are usually used for long molecules [38, 39]. The resulting Brownian Dynamics for-

mulation includes hydrodynamic interactions between beads, and closely models the

experimental set up of Fu et al. [4], whose data are used for validation.

In Chapter 4, we present a simpler BD model which treats the DNA molecule as

a rigid-rod [40]; this results in significantly reduced computational requirements com-

pared to the WLC model of Chapter 3. On the other hand the model is limited to



short rigid rod-like DNA molecules of length L < LP.

In Chapter 5, we present a further simplified BD model which treats the DNA

molecules as non-interacting point particles and accounts for their orientational de-

grees of freedom through an entropic barrier. The point particle-coefficient-based

model we present is based upon the work of [41]. This model is the most efficient and

simplest to implement but again is limited to very short, essentially rigid (L < Lp)

molecules. The simplicity of this model makes it ideal for applying variance reduction

ideas for reducing the statistical uncertainty associated with its predictions.

In Chapter 6, we present a variance reduction methodology for the BD model of Chap-

ter 5. This work extends the original ideas of Baker and Hadjiconstantinou [42, 43]

and Al-Mohssen and Hadjiconstantinou [44, 45] who presented variance reduction

techniques for solving the Boltzmann equation for low-speed gas flow. Specifically we

develop variance reduced BD models based on both formulations used in the above

work and show that the formulation of Al-Mohssen and Hadjiconstantinou is more

suitable for the applications considered here.

In Chapter 7, we conclude with a summary and an outlook for future research.
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Chapter 2

Computational model, dimensional

and non-dimensional analysis

2.1 Dimensional and non-dimensional analysis

In this section we review some characteristic physical magnitudes and develop relevant

non-dimensional numbers that affect the separation process.

2.1.1 Dimensional analysis

1. Stokes drag on a bead

The drag coefficient on a bead of radius a is given by the Stokes formula

<bead = 67rr,,a (2.1)

where r, is the viscosity of the solvent (water), which is taken to be 1.18 x

10- Pa -s following the recent experimental results of Hsieh et al. [46] for the

buffer (Tris-Borate-EDTA 5x) used in the experimental setup of Fu et al. [4].

2. DNA relaxation time



Polymer relaxation time T, can be estimated using Rouse's [47, 48] model:

_ (beadL2
TrRouse 3r 2 kBT

or using Zimm's model [48, 49]:

n (= (2.3)
Trzim v/-7kBT 

(

where kB is the Boltzmann constant, T is the temperature and Lk = 2L,

108 nm is 1 Kuhn length for a dsDNA molecule. Using Equation 2.3 we find

that the relaxation time for DNA molecules ranging between 20 - 340 nm ranges

from 9.6 x 10-6 to 6.5 x 10-4 seconds.

3. Brownian relaxation time

Brownian relaxation time is defined by the ratio of the Brownian molecule mass

divided by the average drag on the molecule:

TB = Mass _ pDNA7rDNAL (2.4)
Drag CZimm

where PDNA = 930 kg/r 3 [50] is the DNA density, rDNA ~ 1 nm is the DNA

geometric radius and CZimm is the drag on the DNA molecule as predicted by

Zimm's model [49, 48] given by:

CZimm = ns y/LLk (2.5)
8

The Brownian relaxation time ranges from 10-13 to 10-12 seconds for DNA of

length 20 to 340 nm. The smallest timescale we are interested in simulating is

on the order of:

. ~ ~ dS (Zimm(onm) 10-4 seconds (2.6)
D kBT

where d, is the smallest geometric dimension in the device of interest and D is



the largest diffusion coefficient which corresponds to the smallest DNA molecule

of interest (20 nm). We estimate the largest diffusion coefficient using the Zimm

model [49] which agrees very well with the experimental measurements [51].

Since the smallest timescale we are interested in simulating is much larger than

TB, this means that our system is highly damped and we can neglect inertia in

our simulations.

4. Radius of gyration

The mean square radius of gyration of the Worm-Like-Chain Kratky-Porod

model was first calculated by Benoit and Doty [52] and is given by:

(R9 ) LL - LP + 2-= - 2- 12 - exp (2.7)(J?2) =- LLL2±L2 L4 _ )3 L 2.L7

For the experimental data of Fu et al. [4] the radius of gyration of the longest

DNA molecule (270 nm) is 53.6 nm which is almost equal to the shallow re-

gion depth. This places the separation process in the Ogston regime (where

the primary sieving mechanism derives from the steric hindrance due to the re-

striction) or the early transition region between the Ogston regime and entropic

trapping [4].

5. Root mean square end-to-end distance

The mean square end-to-end distance of a flexible molecule as predicted by the

Kratky-Porod model [5, 6] is given by:

(L e) = 2LL, 1 L- 1 - exp (2.8)

In our study the dsDNA persistence length was about 54 nm. For a 54 nm

DNA molecule, the Kratky-Porod model (Equation 2.8) predicts about 17%

difference between the contour length and the root mean square end-to-end

distance of the molecule (see Figure 2-1). In other words a rigid-rod-like model

is expected to be a reasonable model for molecules up to 54 nm (150 bp) in

length. Since in this Thesis we study molecules with length up to 340 nm
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Figure 2-1: Root mean square end-to-end distance versus contour length using
Kratky-Porod model [5, 6].

(950 bp) a Worm-Like-Chain model, which takes DNA backbone flexibility into

account, is used.

2.1.2 Non-dimensional analysis

1. Translational Peclet number

The translational Peclet number Pet compares the importance of advection

relative to diffusion. In this nanofluidic device, the translational Peclet number

can be defined as

Pet = =EP _ q'LEavp (2.9)
D kBT

where y ~ 6.3 x 10- cm2/Vs is the free solution mobility, Ev is the applied

electric field, p ~ 1000 nm is the device pitch length which is the character-

istic distance over which advection and diffusion rates are compared, D is the

molecule diffusion coefficient and q' is the DNA effective charge per unit length

,:: -, _"_ ----_- -----__ - ... ................. I- ~ I - I - ........ .......................................... .... .. ..... ....... ...... ...... ........ .. .. ..................... ........ ...... .............. .... ..... ................... .................................. _'_ _ - _ _ _ _ .... .......



discussed in detail in section 3.7.1. In the experimental setup of Eu et al. [4]

the minimum and maximum translational P6eclet numbers are as follows:

" Minimum translational Peclet number Pet,, 0.25

corresponds for the case where E, = 10 V/cm and LDNA = 18 nm (short-

est DNA molecule used in the experiments). Such molecule has a diffusion

coefficient D1 nm ~25 1 pm2 /

e Maximum translational Peclet number Pet,. ~ 11.5

corresponds for the case where E, = 64 V/cm and LDNA = 270 nm

(longest DNA molecule used in the experiments). Such molecule has a

diffusion coefficient D270 nm ~ 3.5 pm 2 s.

2. Rotational Peclet number

The relative effects of rotation due to the electric field gradient and rotational

diffusion are quantified by the rotational Peclet number Per [19] given by:

Pe, = (t 6 ) ( (2.10)
v + E 12kBT

where c = d,/dd is the ratio of the shallow region depth d, - 55 nm to the

deep region depth dd ~ 300 nm, v is the length ratio between the shallow and

deep region. The maximum rotational Peclet number - 0.04 corresponds to the

longest DNA molecule (L = 108 nm) for which we assume a rigid-rod-like model

- see Chapter 4 for details - along with the highest electric field E, = 64 V/cm.

3. Reynolds number

Reynolds number measures the ratio of inertial forces to viscous forces. Reynolds

number based on the molecule contour length ReLDNA is given by

ReLDNA - VDNAL ppELDNA (2.11)

where v, = qs/p = 1.18 x 10- 6 m 2/s is the fluid (water in our case) kinematic

viscosity, p is the free-solution mobility. The maximum Reynolds number in



the experimental setup is 10-5

2.1.3 Summary

We summarize all these dimensional and non-dimensional numbers in Table 2.1 and

Table 2.2, respectively. Note that the minimum and maximum values do not neces-

sarily correspond to the shortest and longest DNA molecule.

Table 2.1: Summary of dimensional values of key physical

Minimum

parameters.

Maximum

Translational P6eclet number Pet 0.25

Rotational P~elet number Pe, 3.7 X 104

Reynolds number ReL 10-7

Table 2.2: Summary of the dimensionless numbers.

From these values we can draw the following conclusions which will be used

throughout our modeling efforts:

1. The separation process falls into the Ogston sieving regime

2. Particle inertia can be neglected since we are in a highly damped system.

3. The translational diffusion and advection effects are both equally important

since the translational Peclet number is - 0(1).

4. The rotational diffusion is dominant in comparison to rotational torque due to

electric field gradient since the rotational Peclet number is very small (Per <

DNA Length L 18 nm (50 bp) 340 nm (950 bp)

DNA relaxation time Tr 9.6 x 10-6 (s) 6.5 x 10-4 (s)
Brownian relaxation time TB 10-13 (s) 10-12 (s)
Radius of gyration Rg - 63.1 (nm)

Root mean square end-to-end i 17.1 (rm) 175.8 (m)
distance

Minimum Maximum



0.05 < 1). This will help us develop a simple partition-coefficient-based model

in Chapter 5.

5. Inertial forces are negligible compared to viscous forces and drag forces will be

estimated using Stokes law [53].

2.2 Why Brownian Dynamics?

Efficient simulations of DNA separation are difficult to achieve due to the multi-scale

and multi-physics nature of the problem. Specifically, although microscopic in nature,

the device dimensions are sufficiently large, and the separation timescale sufficiently

long (seconds), to make Molecular Dynamics (MD) [24] simulations intractable. On

the other hand, a continuum approach, e.g. through computational fluid dynamics

(CFD) [54], places insufficient emphasis on the dominant physics of interest. Specif-

ically, a CFD approach focuses exclusively on a detailed hydrodynamic description

while neglecting Brownian (entropic) effects. Although addition of Brownian fluctua-

tions to continuum (Navier-Stokes) formulations has been investigated [55], previous

work has been limited to simple systems and does not extend easily to the macro-

molecules of interest here. Moreover, the computational complexity associated with

CFD approaches including rigid (rod) or semi-rigid (Worm-Like-Chain) moving ob-

jects in the computational domain makes these methods not preferable in view of the

above limitations.

For the above reasons, mesoscopic approaches have attracted some interest. Dis-

sipative Particle Dynamics (DPD) [56] has attracted interest due to its ability to nat-

urally capture thermal fluctuations and the DNA particulate nature. DPD reduces

computational cost (compared to MD) by coarse-graining length and timescales by

"lumping" many actual molecules into computational particles that obey appropri-

ately modified equations of motion. Unfortunately, this technique is too computa-

tionally expensive for our application since the coarse-graining is limited by the need

to capture details at the level of the shallow region depth d, ~ 55 nm. In other words,

the computational cost of DPD will be very close to that of MD for the systems of



interest to this Thesis. We also mention the Lattice Boltzmann method [57] which

may be useful as a qualitative simulation tool.

Given the above considerations we have decided to use a Brownian Dynamics (BD)

[38, 26, 40, 34, 25] approach. As explained in Section 1.4, in BD only the equations

of motion of the molecules of interest (here, DNA) are solved, while the solvent is

modeled as a continuum medium interacting with the molecule of interest through

random (Brownian) and deterministic (drag) forces.

In this Thesis we explore BD models of varying degrees of coarse-graining in search of

computational efficiency while retaining satisfactory agreement with the experimental

data of Fu et al. [4]. Specifically, we present three Brownian Dynamics models:

1. Flexible Worm-Like-Chain (WLC) model discussed in detail in Chapter 3.

2. Rigid rod-like model discussed in detail in Chapter 4.

3. Point-particle partition-coefficient-based model discussed in detail in Chapter

5.



Chapter 3

Flexible Worm-Like-Chain (WLC)

model

3.1 Introduction

In this Chapter we focus on the development of a Brownian Dynamics [26, 38, 34]

simulation framework for modeling the performance of the nanofluidic separation

devices discussed in Chapter 1. This work utilizes the Worm-Like-Chain (WLC)

model [34, 35, 36] which includes the effects of bending and stretching stiffness. Our

implementation of the Worm-Like-Chain model is in line with the work of Allison et

al., Hagerman et al., Lewis et al, Klenin et al. [34, 35, 36, 37] and is thus different

from Bead-Spring models that are usually used for long molecules [38, 39].

The resulting Brownian Dynamics formulation includes hydrodynamic interac-

tions between beads, and closely models the experimental set up of Fu et al. [4],

whose data are used for validation. The material presented here has appeared in a

more condensed form in [58].

3.2 The WLC model

In typical WLC treatments [34], the molecule is modeled as an elastic chain consisting

of N beads of radius a connected by N - 1 elastic links of average length Lo as shown



in Figure 3-1. In the present work we use a slightly modified discretization which

(a) DNA molecule divided into N segments.

(b) Beads located at the ends of each segment.

(c) DNA molecule discritized into N - 1 links and N beads.

Figure 3-1: DNA descretization into N - 1 links and N beads.

features N beads and N segments, as shown in Figure 3-2. In this discretization, each

bead represents the same fraction of chain length and hence makes the application

of a common bead size and effective charge more justified. The beads are connected

by N - 1 elastic links (shown in green in Figure 3-2). The half segments on each

end of the molecule are assumed to be an extension of their nearest link, and are

used in defining the molecule shape, e.g. during boundary condition imposition. Our

numerical formulation otherwise follows the work of Klenin et al. [34]; the chain

elasticity includes stretching and bending contributions.

Our chain conformation is specified by the locations ri, i = 1,... , N of the N

beads comprising the chain and which are located at the vertices of the N -I straight

links. The links are represented by the vectors si = ri+1 - ri, i = 1,... , N - 1; we

define si = Isi| as the magnitude of the vector si ; in addition the unit vector along

each link is defined by ei = si/si (see Figure 3-3).

. .... ...... . ............ ....... ... ............



(a) DNA molecule divided into N segments.

(b) Beads located at the middle of each segment.

LC

(c) Beads are connected by N - 1 elastic links.

Figure 3-2: DNA molecule divided into N segments, N beads and N - 1 connecting
links.

3.3 Equations of motion

The governing equations for the system of these N beads are Langevin-type equations

of motion:

j=N

m;ir = -Z (3 F3 + F systematic) + F random) , = 1,... , N (3.1)
j=1

where the change in momenta mji5 is balanced by the sum of all the external forces

applied on bead i. The drag force exerted by the surrounding fluid is accounted for by

-Zj=N (igjj , while F systematic) is a systematic force due to the interaction between

the beads due to the stretching and bending forces between the beads as well as the

external electric field force. Finally, F rand) represents randomly fluctuating forces

exerted on each bead by the surrounding fluid. The systematic forces are discussed

in more detail below.

.. ... ................... tt" .... ... ........ . . ..... .....
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Figure 3-3: WLC beads positions.

3.3.1 Systematic forces

The systematic forces mentioned above can be divided into the stretching and bending

forces between beads, in addition to the external electric field force. In order to

calculate the stretching and bending forces we start by calculating their respective

stretching and bending energies.

3.3.1.1 Stretching force

Following Klenin et al. [34], we define the stretching energy for each segment i as

E stretchin _ Lo -si

kBT (LO6) 2  (3.2)kBT 2 ( LoS

where kB is the Boltzmann constant, T is the temperature, LO is the link equilibrium

length and J is the stiffness parameter chosen such that (Loo) 2 is approximately equal

to the variance of the link length distribution.

Hence the stretching force on the ith vertex from the (i + 1)th one is parallel to

the ith link and is given by:

Fstretching) - L)
isext (i -L) 

(3.3)
kBT (Loo)2

........... - -- . ........ ... .... ......... ... . ..............



Finally, the total stretching force on the ith vertex is

F'stretchin") - -F(stretching) + F(stretching) (3.4)i-1,next i,next

3.3.1.2 Bending force

Similarly, we start by defining the bending energy for the ith joint as:

E(bending) i - -a n2(3.5)
kBT bendingi 

35

where #i is the angle between si-1 and si; aebending is the bending rigidity parameter

chosen in such a way that the mean-square end-to-end distance of the dsDNA molecule

equals that predicted by the Kratky-Porod [5, 6] model

(L e) = 2LL I - (1 - e-L/)

Here the dsDNA persistence length was taken to be L, = 54 nm [4, 59].

The bending force is calculated from the bending energy. The bending force acting

on the ith vertex from the (i + 1)th one is perpendicular to the ith segment and lies

in the bend plane. It is given by

F(bending) 2 CbendingIi
i,next 2a e bi x ei (3.7)
kBT Si

where fpi = (ei_1 x ei) / sin i. Similarly, the contribution of the bending force acting

on the ith vertex from the (i - 1)th vertex is perpendicular to the (i - 1)th segment

and also lies in the bend plane. It is given by

F(bending) 2bnig3i,prev p_ 2 axending/3 i x ei-1 (3.8)
kBT Si-1

Finally, the total bending force for the ith vertex is

F*bending) -- """ + FL ***bending) + Fb-F"ing) (3.9)F-1,next i,prev +(,next n i+1,prev



3.3.1.3 Electric field force

The electric field force assigned to each bead is calculated using the following equation:

FI Electric) = qbeadE I ri (3.10)

where qbead is the effective charge on each bead. The latter is equal to the effective

charge of the DNA molecule (see Section 3.7.1) divided by the total number of beads.

Elri is the value of the electric field at the position (ri) of the bead.

The electrostatic force is calculated based on the bead effective charge and the

electric field due to the externally applied voltage difference across the device (AV).

The electric field is pre-computed on a triangular grid with maximum edge size of

approximately 2 nm assuming insulating boundary conditions at the walls using the

MATLAB Partial Differential Equation Toolbox. An approximation to this solution

is stored on a square grid for quick access; each square has a side of 5 nm. The piece-

wise constant electric field value associated with every square is the average value over

all triangle centroids within the square. Note that due to the extremely fine initial

triangular grid (more than 10' elements) and the very fine square "interpolation" grid

(more than 10000 squares) the error associated with this approximation is negligible

compared to the modeling approximations and experimental uncertainties involved.

3.4 Numerical integration algorithm

The equation of motion [34, 25] of each bead is integrated using the two-step algorithm

of Klenin et al. [34]. In the first step we calculate a "predicted" displacement using

r (t + At) = rj(t) + Dj(t) At + Ri , i = 1, ... IN (3.11)
j=1 kBT

where At is the time step and F,(t) denotes the force on bead j; this force includes

contributions from the externally applied electric field (Section 3.3.1.3), as well as

intra-bead forces discussed in Section 3.3.1. Here Dij(t) denotes the diffusion inter-



action tensor between beads i and j, which accounts for hydrodynamic interactions

between these two beads; this is further discussed in Section 3.5. Finally, kB is Boltz-

mann's constant and T is the simulation temperature. As implied by the notation,

Dij(t) and F3 (t) are calculated from the conformation {ri(t), i = 1, ... , N} corre-

sponding to time t.

The random displacements R, are defined by

(Ri) = 0 (3.12)

(Rt ® Rj) = 2DjjAt (3.13)

and can be calculated from a weighted sum of normal random deviates [34, 25]. Fol-

lowing the recommendation of Klenin et al., the diffusion tensor is updated every 10

time steps thus reducing the number of times the expensive factorization needs to be

performed.

Finally, the second integration step is

N F'.(t + At) -- Fj(t)
ri(t + At) = r'(t + At) + Di (t) k T ' i = 1, ... , N (3.14)

j=1

where F'(t + At) are the forces calculated from the conformation {r' (t + At), i =

1, ...,I N}.



3.5 Hydrodynamic interactions

Hydrodynamic interactions between the beads are accounted for using the Rotne-

Prager tensor [60]:

D, = DoI if i=j

Di = Do aI+ 2 + 2 1- 3 2if rj > 2a, i j
Arij a + r r

(3.15)

Dij= Do I 1 - I + irr f ri 3 < 2a, i r j

where Do = kBT/67rla, q, is the solvent viscosity, r = rj - ri, ri = |ri|, I is the

unity tensor, and r 9 r denotes the dyadic product.

The bead radius is chosen such that a reference DNA chain-a chain of contour length

equal to one persistence length-has the desired diffusion coefficient. This is further

discussed in Section 3.7.

3.6 Boundary conditions

Interactions with the walls are steric; in other words, if during a move, part of the

molecule extends beyond one of the system boundaries, the move is rejected. In

such a case, the molecule is assigned its original position, and a new step is taken

which is again checked for boundary crossing. We have considered both including

and neglecting the time increment during rejected moves; the difference to our results

is negligible due to the small time step used which results in a number of rejected

steps that is less than 1% of the total number of steps. Several researchers [23, 19]

have used similar boundary conditions. Reflecting boundary conditions, whereby a

molecule (or parts of a molecule) is returned to the domain by taking the mirror

image of the "offending" move, have also been used in some studies [21].



3.7 Simulation parameters

In accordance with the experiments of Fu et al. [4], we consider dsDNA molecules of

lengths 18 nm < L < 324 nm in a Tris-Borate-EDTA 5 x buffer which diminishes the

effect of electro-osmotic flow [61). We consider average electric fields E, = AV/(pN,)

in the range 20 - 400 V/cm. The viscosity of the solvent (water) is taken to be

1.18 x 10-3 Pa -s following the recent experimental results of Hsieh et al. [46] for the

buffer considered here.

The timestep was 10-1 s. This value was chosen such that all guidelines set by

Klenin et al. [34] are satisfied. The total simulated time modeling the experiments

of Fu et al. varied between 15 and 60 minutes (depending on the molecule length

and electric field), and was such that the molecule traverses at least 10, 000 periods.

We have also verified that the initial position and configuration of the DNA molecule

does not affect our results. In fact, to make sure that no "initial condition" effects

are present, we start collecting data on the distance traveled by the molecule after

108 timesteps of relaxation (no field) and 10' timesteps of motion under the action

of the electric field. The statistical uncertainty in the majority of our calculations is

less than 1%, leading to error bars that are smaller than the symbols on the graph.

Error bars are given when the statistical uncertainty is sufficiently large for the error

bars to be visible.

Although it would have been desirable to use the same discretization (e.g. same

discretization length Lo) for all molecules studied here, the range of lengths stud-

ied makes this impractical. In the interest of computational efficiency, the degree of

coarse-graining increases in three steps: for 20.25 nm < L < 54 nm we use Lo =

6.75 nm; for 54 nm < L < 108 nm we use Lo = 13.5 nm; for 108 nm < L < 324 nm

we use Lo = 27 nm. Our simulation method becomes inefficient for significantly

longer molecules, primarily due to the hydrodynamic interactions.



In view of the above steps in discretization, special attention was paid to ensure

that the molecule drag (and diffusion coefficient) remains a smooth and continuous

function of the molecule length. This was achieved (see Figure 3-4) by using a dif-

ferent bead diameter for different discretizations. Given that the bead size remains

constant for the same discretization, fixing the bead size for one "reference" molecule

uniquely determines the bead size of all molecules. Here, the bead size of the reference

dsDNA molecule (L = 54 nm, Lo = 13.5 nm) was chosen such that the simulated

diffusion coefficient b(L = 54 nm) of this molecule in water (viscosity 1 x 10-3 Pa -s)

matches the corresponding experimental result of Lukacs et al. [7] who performed

experiments for short dsDNA (7 nm < L < 2040 nm) diffusing in water.

Using this procedure, our simulations yield a diffusion coefficient D(L) which is in

excellent agreement with the experimental data as can be seen in Figure 3-4. In fact,

for molecules longer than 80 nm the resulting diffusion coefficient varies as L 0 ,in

excellent agreement with the exponent of Lukacs et al. [7] (-0.72).

30 1_ _ _ _

0 WLC model
25 . - Lukacs et al. experimental data fit

E
= 20 - 0

S15-
0

C 10-
0
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L (nm)

Figure 3-4: Comparison between our simulation results and the experimental data of
Lukacs et al. [7] for the diffusion coefficient of dsDNA molecules in water.
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3.7.1 Modeling the free-draining mobility

Assuming a constant charge per unit length, q', the Nerst-Einstein relation

D _kBT

bNE - k T (3.16)
pNE qL

predicts that the Nerst-Einstein mobility scales with the molecule length according

to pNE oc Lo29

However, as discussed extensively in the literature [62, 63, 64, 51], in the presence of

electric forces, hydrodynamic screening results in a free-solution mobility that is, to a

very good approximation, independent of the dsDNA length (and different from the

theoretically predicted pNE). This free-solution mobility will be denoted here by pfs.

Of particular interest are the careful experiments of Nkodo et al. [51] which clearly

show that while pf, is independent of the molecule length, the molecule diffusivity is

unaffected by the electric field, exhibiting Zimm scaling for sufficiently long molecules

(Nkodo et al. report an exponent ranging between -0.68 and -0.86 for short ssDNA

molecules; this compares well with the value of -0.72 of Lukacs et al. and -0.71

found here for dsDNA molecules).

Developing a Brownian Dynamics model which captures these phenomena from first

principles is very difficult. On the other hand, neglecting hydrodynamic interactions

as in previous studies will result in a molecule diffusivity that scales as L- 1, which

differs significantly from the expected behavior. This is particularly important in the

present work where the experimental translational P6clet number Pet = q'LEavp/kBT

ranges between 0.25 and 11.5, requiring accurate representation of the balance be-

tween diffusion and advection. As we show below, a nonlinear response to the electric

field appears for Pet > 3.6 for the device designed and tested by Fu et al. [4].

To circumvent these difficulties we implemented a method which allows the free-



draining behavior to be reproduced with minimal modification to the BD algorithm,

and virtually no effect on the diffusion coefficient. The method amounts to allowing

the molecule effective charge per unit length to vary with L such that the observed

(free-draining) mobility is independent of the molecule length. In other words we let

q'(L) = (L/Lp) -o.29q1 (3.17)

such that
q'LD

p kBT (3.18)
kBT

is independent of L. Note that because the variation of q' with L is dictated by the

experimental data [51, 65] the only adjustable parameter in the model is the value of

q're which, due to the choice q'(L = 54 nm) = q'i, can be thought of as the effective

charge of the reference molecule; the value used for q ef in this work will be given in

the next section. Moreover, due to its relatively weak dependence on L, q' varies by

less than a factor of 3 over the range 20.25 nrm < L < 324 nm studied here.

3.8 Simulation results

Our simulations suggest that the device geometry affects molecule transport signifi-

cantly. For this reason, we have modeled the following two geometries:

1. Square-well geometry (Figure 1-5) with dimensions d, = 55 nm, dd = 300 nm, p =

1 im as given in [4].

2. Tapered geometry shown in Figure 3-5. The shape of the transition from deep

to shallow regions was transcribed from the SEM image of a similar device

(p = 2 tm) shown in [4]. The resulting model geometry is characterized by

ds = 55 nm, dd = 300 nm, p = 1 pm, and a taper angle of 620; the transition

from the deep to the narrow region occurs in 2 steps as shown in Figure 3-5.

These two geometries result in substantially different mobility levels (about 40%).

For this reason, for each geometry the value of q'ef was chosen such that the resulting



p = 1000 nm

L/2= 250 nm Ld = 500 nm L/2= 250 nm

Figure 3-5: SEM image and more realistic geometry.

mobility is in agreement with one reference experimental result (L = 20.25 nm, E =

64.3 V/cm). The resulting values of q',f are 5.9 x 10" for case 1 and 4.3 x 10-n

for case 2. The value of effective charge, especially for the more realistic case 2,

compares very favorably with the value given by Smith et al. [66] (4.45 x 10-")

Figure 3-6 shows a comparison between our simulation results for the two geometries

shown in Figure 1-5 and 3-5 and the experimental results of Fu et al. In addition to a

significantly different mobility level, our model shows that the two geometries result

in different molecule selectivity. Although the tapered geometry results in inferior

selectivity, not surprisingly, it is in better overall agreement with the experimental

results of Fu et al., compared to the idealized geometry. Our results also show that for

the realistic geometry of Figure 3-6(b) , the molecule mobility increases non-linearly

with increasing electric field for Pet > 3.6.

3.8.1 Molecular Probability Distribution

Although the Brownian Dynamics method is inherently stochastic and yields noisy

results, characterization of the complete molecule probability distribution is feasible
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and not very computationally intensive. The plots shown here are obtained by dis-

cretizing the simulation domain into small cells and recording the relative frequency

of occupation by the mid-point of the molecule. These results are plotted in the figure

as two-dimensional contour plots as well as one-dimensional density plots as a func-

tion of the device length; the latter are obtained by integrating the two-dimensional

density in the direction normal to the direction of travel. These plots can be very
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(a) Idealized geometry. (b) Realistic geometry.

Figure 3-7: Probability density distribution for L = 108 nm, E, = 63.4 V/cm.

useful for obtaining a qualitative understanding of the device operation. For example,

the comparison of Figures 3-7 and 3-8 can be used to investigate the origin of the

effects of geometry on molecule mobility observed in Figure 3-6. Figures 3-7 and 3-8

show that more time is spent in the deep region (and in particular, trying to enter the

shallow region) of the idealized geometry compared to the more realistic geometry,

suggesting that the effect of the geometry on the effective energy barrier contributes

to the mobility difference significantly. Note that these plots were generated with

the same qef (namely q e = 4.3 x 10-" ) to ensure that the increased qe in the

idealized geometry is not the reason for the observed discrepancy.
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Figure 3-8: Probability density distribution for L = 216 nm, Ev = 63.4 V/cm.

3.9 Separation using asymmetric devices

In this section we discuss simulations of electrophoretic motion in asymmetric devices.

This study is motivated by recent theoretical results [67] suggesting that compara-

ble separation using a significantly shorter device can be achieved using asymmetric

devices (see Figure 3-9) in conjunction with an electric field of alternating polarity.

This proposal is based on the observation that the asymmetry in the device geometry

will result in different mobilities in the two directions of travel which can be explored

using an alternating electric field, to yield a macroscopic drift. In particular, the de-

vice shown in Figure 3-9 uses the observation that a slanted wall reduces the entropic

barrier for travel in one direction significantly while leaving the entropic barrier for

travel in the other direction essentially unchanged.

The model of Li et al. [67] treats DNA molecules as rigid rods and models them

as point particles by accounting for their orientational configurations and resulting

steric hindrance using a local partition coefficient. Assuming absence of torques due

........ ........ --------- --



to electrostatic effects, and dominant diffusion, a one-dimensional advection-diffusion

equation is formulated and numerically solved. The assumption of dominant diffusion

also requires [67] that the characteristic time associated with the voltage oscillation

period is long compared to the time taken for traversing one geometrical period. To

E

d,

dd

A B

Figure 3-9: Schematic of one period of the asymmetric nanofilter array.

validate the main theoretical prediction of Li et al. but also investigate how a more

realistic representation (e.g. finite chain stiffness, three-dimensional geometry, sig-

nificantly longer molecules) modifies their results, we performed Brownian Dynamics

simulations using the model described above. We focus on the case 0 = 7r/4 with

d, = 60 nm, dd = 240 nm, L, = Ld = 500 nm. Results for the net molecule velocity

for three electric field strengths (100 V/cm, 200 V/cm, 400 V/cm) are shown in Fig-

ure 3-10. For the results shown here, the electric field is of the form of a square wave

of frequency f = 0.1 Hz. Other simulations, not shown here, have established that,

as expected, the net molecule velocity is independent of the oscillation frequency,

provided that 1/f is long compared to the time taken by the molecule to traverse one

geometric period (p). The results support the main conclusion of Li et al., namely

that asymmetry can be exploited to achieve separation. Our model also shows that

the molecule mobility appears to increase monotonically with molecule length well be-

yond the rigid-rod regime. Saturation is visible for long molecules/high electric fields;

in fact, it appears that the controlling variable is the product of E and L, or in other

words Pet. Our results suggest that saturation occurs for Pet > 27.3. Figure 3-11

.. ..... . ... ..... ........ .... .. .. .... ..
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Figure 3-10: Net velocity of dsDNA molecules of different lengths in asymmetric
device under AC fields of varied strength.

shows the probability density of the DNA molecule (L = 270 nim, Eav = 100 V/cm,

Pet = 17.8) as it is traveling through the asymmetric channel under the action of an

AC field. As expected, the figure shows that molecules spend a longer time trying to

enter the narrow region when traveling to the left than when traveling to the right.

3.10 Discussion

We have presented an efficient BD model of electrophoretic short-dsDNA-molecule

separation in nanofluidic devices. Our results show that both the separation efficiency

and molecule mobility are sensitive to the device geometry, with the latter exhibiting

a difference on the order of 40% between the idealized and a more realistic geometry.

The model achieves good agreement with the experimental results of Fu et al. using

only one adjustable parameter. A more accurate comparison with experimental data

requires a more precise characterization of the actual system geometry as well as the

associated variability between different periods, as well as more accurate character-

.... .... ..... .. .................. -- - ------- -----
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Figure 3-11: Probability density distribution in asymmetric channel with AC field for
L = 270 nm, E, = 100 V/cm (Pet = 17.8).

ization of other system parameters (e.g. electric field strength, electroosmotic flow

magnitude).

The mobility differences between the two geometries studied here are in line with

the conclusions of previous theoretical treatment of rigid rod molecules [67] which

shows that wall tapering increases molecule mobility, both in an absolute sense but

also as a function of molecule length, with longer molecules experiencing a larger

increase in mobility. For the conditions studied in [67] (short molecules and low to

medium electric field) this behavior was primarily attributed to the reduction of the

effective energy barrier as a result of the tapered geometry.

Simulations in asymmetric devices in the presence of an electric field of alternat-

ing polarity show a monotonic increase of molecule mobility with molecule length,

essentially verifying the prediction by Li et al. [67] for short molecules. Saturation

and thus loss of selectivity is observed for Pet > 27.3.

............................. . ........ . ............. ........... ....... .........



The model presented here is sufficiently accurate to be useful for the design of new

separation devices as well as evaluation and optimization of newly proposed devices,

such as the two-dimensional device shown in Figure 1-3 which achieves continuous

separation [3].



Chapter 4

Rigid-rod model

4.1 Introduction

In the previous Chapter we showed that a Worm-Like-Chain model can achieve rea-

sonable agreement with experimental data. In this section we show how one can take

advantage of the fact that molecules with lengths on the order of, or smaller than, one

persistence length can be treated as rigid to develop an even more efficient simulation

tool based on the rigid-rod model. Moreover, by comparing our results with those of

WLC model (Chapter 3) we obtain useful information on the validity of the rigid-rod

approximation.

4.2 The rigid-rod model

In the rigid-rod model, the DNA molecules are modeled as non-interacting rigid rods

(length L, hydrodynamic diameter Dh = 2.6 nm [68]) moving under the action of

electric field in the geometry of Figure 1-5 with the typical dimensions given. The

rod conformation at time t is specified by the position vector r of its center of mass

and the unit vector nt along the axis of the rod (see Figure 4-1). The rod translational

velocity v and angular velocity f are defined by



U

y V

Figure 4-1: Rigid rod-like model.

_dr

v dt (4.1)

O = x 9(4.2)
dt

The Langevin equations of motion for translation and rotation of thin rods can

be written as

= - - i + F(** + F(rando) (4.3)

= -A - n + T(systematic) + T(random) (4.4)

where p and J are the linear and angular momentum of the rod, respectively. The

drag force exerted by the surrounding fluid is accounted for by -E - i for the trans-

lational part and by -A - f for the rotational part. F(systematic) is a systematic force

due to the external electric field and T(systematic) is a systematic torque again due

to the external electric field. Finally, the effects of the randomly fluctuating forces

exerted on the rod by the surrounding fluid are modeled by a random force F(random)

and a random torque T(random)

Both the translational (E) and rotational (A) drag tensor are orientation dependent

.... ........ .... . .... .... .. .. .. ........



and can be written as:

U= in + (i- u) (4.5)

A =r(I - fi ) (4.6)

where (il and (L are the friction coefficients for motions parallel and normal to the rod

axis and (, denotes the friction coefficient for rotational motion (about a principal

axis with non-negligible moment of inertia). The standard drag models for a slender

rod can be summarized as follows [40]

( 27rqL(47
ln(L/Dh) + -yli(L)

(7rq= (4.8)
ln(L/Dh) + yi(L)

3[ln(L/Dh) + yr(L)]

where q, is the solvent viscosity and -yr(L) = -0.662 + 0.917(Dh/L) - 0.050(Dh/L) 2

introduces a correction for the rotational friction coefficient in order to fit the exper-

imental data of sedimenting short DNA fragments as predicted by Tirado et al. [68].

Here, in the interest of simplicity, we assumed that the parallel and normal direction

to the rod have the same correction factor (-yt(L) = -yi(L) = -y(L)); this leads to a

simple analytical expression for the average friction coefficient (av [53]

(av = 3 - + - =3(11 (4.10)

We found -yt(L) = -1.913 + 12.196(Dh/L) - 27.739(Dh/L) 2 provides the best cor-

rection for the translational friction coefficient for finite rod length such that the rod

model average diffusion coefficient matches the experimental data fit for the diffusion

coefficient of short dsDNA molecules of Lukacs et al. [7].



4.3 Systematic forces and torques

The electrostatic forces and torque on the DNA molecule are calculated by com-

puting forces on the molecule due to its effective charge. The effective charge is

assumed to be uniformly distributed between six equidistant sites along the molecule

length. (We have verified that our results do not change appreciably by increasing

the number of sites.) The electric field in the channel is calculated "offline" using the

MATLAB Partial Differential Equation Toolbox as it was discussed in Section 3.3.1.3.

Despite the fact that the electrostatic torque is included in our model, in the regime

studied here it has a small effect. The effect of this torque and its contribution to

molecule escape is extensively discussed by Laachi et al. [19]. The rotational P6eclet

number comparing the effect of this torque to thermal fluctuations is defined and

given in Equation 2.10. In our case, rotational Peclet number is much smaller than

1, which implies that torque effects are small [19]. This is verified by our simulations

(see Section 4.7.1)

4.4 Integration scheme

Standard BD techniques [38, 26, 40, 39] are used for integrating the equations of

motion. The translational equation of motion is integrated for a time step At using

r(t + At) = r(t) + E- 1(t) -F(t)(sYstematic)At + R (4.11)

where 'E-(t) and F(t) (systematic) are calculated for the given conformation at t as

described in previous Sections 4.2 and 4.3. The random displacements R, are chosen

from a Gaussian distribution with the moments

(R,) = 0 (4.12)

(R, 0 R,) = 2kBT- 1(t)At (4.13)



Similarly, the rotational equations of motions are integrated as follows:

O(t + At) = fi(t) + A-- 1 (t) - [T(t)(systematic) X C6(t)] At + U, (4.14)

where A- 1 (t) and T(t) (systematic) are calculated for a given conformation at time t as

described in the previous Sections 4.2 and 4.3. The random rotations U, is the sum of

two orthogonal gaussian reorientations and perpendicular to Ui(t). We normalize the

new orientation vector fi(t), since the integration step will slightly modify its length.

The normally distributed random rotations U, have the following moments:

KU) = 0 (4.15)

K, , = 2kBTA- 1 (t) (I - Ui6i) At (4.16)

4.5 Boundary condition

Interactions with the walls are steric; in other words, if during a move, part of the

molecule extends beyond one of the system boundaries, the move is rejected. In such

a case, the molecule is assigned its original position, and forces are recalculated to

give a new position which is again checked for boundary crossing. This is the same

treatment we used for the Worm-Like-Chain model and similar to the work of several

researchers [23, 19]. Again, we have considered both including and neglecting the

time increment during rejected moves; the difference to our results is negligible due

to the small timestep used which results in a number of rejected steps that is less

than 1% of the total number of steps.

4.6 Simulation parameters

Similar to the Worm-Like-Chain model, to calculate the force due to the electric field

we use the concept of DNA effective charge. This concept is necessary because due

to a variety of complex electrostatic interactions between the DNA and the surround-



ing solvent [69, 70], a significant part of the DNA's charge is screened, leading to a

mobility that is significantly smaller than the expected value based on the molecule

charge.

One convenient way of capturing the essence of these effects without using ab initio

models which would render the simulation intractable, is to define an effective charge

that can be calculated from the observed experimental behavior. Similarly to the

Worm-Like-Chain model, and as discussed in detail in Section 3.7.1, the molecule

effective charge per unit length varies with L such that the observed (free-draining)

experimental mobility is independent of the molecule length. In other words we let

[ln(Lp/D) + -yt(L,)] ,
q,.d(L) = [ln(L/D) + -yt(L)] 'ref (4.17)

where qf is the effective charge of the DNA molecule of one persistence length

(L, = 54 nm), as defined in section 3.7.1.

4.7 Simulation results

Figure 4-2 shows a comparison between the rigid-rod and WLC model results for

the ideal geometry. The physical parameters were chosen such that the two models

have equivalent charge per unit length and drag. As, expected, the rigid-rod and

WLC models are in very good agreement for L < 54 nm (~ Lp). The error for

L ~ 108 nm(~ - 2L,) is on the order of 10% and increases as L increases. Similarly,

Figure 4-3 shows a comparison between the rigid-rod and WLC results for the more

realistic geometry. Again, the rigid-rod and WLC models are in very good agreement

for L < 54 nm (~ L,). The error for L ~ 108 nm(~ 2L,) is on the order of 10% and

increases as L increases. Hence the range of applicability of this model depends on the

amount of modeling error that can be tolerated but in general, we can state that this

model, as expected, is applicable for molecules with length on the order of, or smaller

than, the persistence length. This is in agreement with the observation of Fu et al. [4]
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Figure 4-2: Comparison between WLC and rigid-rod model results (ideal geometry).
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and consistent with previous work [71] based on a continuum transport model which

utilizes the statistical theory of Giddings to characterize the entropic barrier; the

latter work also finds that for L < 100 nm agreement with the experimental results

of Fu et al. is good but for L ~ 100 nm some discrepancy is visible. It should thus

be preferable for molecules satisfying this condition since it is faster than the WLC

model since it only requires four versus 3N degrees of freedom (N is the number of

beads) for the Worm-Like-Chain model. For example, for a 54 nm DNA molecule the

rigid-rod model is four times faster than the WLC model. Moreover, the resulting

boundary condition is more simple and easier to implement.

4.7.1 Electrostatic torque effects

Since the rotational P6eclet number is much smaller than unity, and as discussed

in Section 4.3, the torque effects are expected to be small and will not affect the

DNA mobility. Figure 4-4 verifies this by comparing results between simulations

which include and simulations which do not include electrostatic torque effects. These

simulations were performed in the ideal geometry; similar results are obtained in the

realistic geometry.

25
Eav-=63.4 V/cm - Rigid-rod model with torque - ideal geometry

--Rigid-rod model without torque - ideal geometry
20-
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Figure 4-4: Torque effect on DNA mobility (ideal geometry).
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4.8 Summary, advantages and limitations

We have presented a rigid-rod model for short DNA molecules. The model is simpler

and more efficient than the Worm-Like-Chain model of Chapter 3. The improved

efficiency is a result of a number of factors including:

1. significantly simplified equations of motion and much simpler integration algo-

rithm,

2. reduction in degrees of freedom (four versus 3N beads for the Worm-Like-Chain

model),

3. a simplified boundary condition that is more efficient to implement.

These factors result in an implementation that is at least 4 times more efficient than

the corresponding Worm-Like-Chain, which produces essentially indistinguishable re-

sults for short DNA molecules (i.e. L ;< 54 nm (- Lp) ).
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Chapter 5

Simple partition-coefficient-based

model

In this Chapter we continue to exploit various features of short molecules to de-

velop even more efficient simulation methods than the one presented in Chapter 4.

Specifically, we develop a new Brownian Dynamics model for predicting the mobility

of short molecules, by treating them as Brownian point particles and incorporating

the effect of their rotational degrees of freedom into an entropy penalty term which

modifies the free energy landscape to which the particles are subject to. Such an

approach is possible because for the short molecules considered here, the rotational

Peclet number is very small (Per < 0.05 < 1 - see section 2.1.2) suggesting that

equilibration of the rotational degrees of freedom is very fast. In other words, the

number of rotational states available to molecules can be approximated by equilibrium

partition coefficients [41] which are easy to calculate either analytically [72] or off-line.

As we show below, the resulting Brownian Dynamics formulation is significantly more

efficient than the equivalent rigid-rod simulation model with no perceptible deterio-

ration in fidelity, as quantified by comparison with the experimental data of Fu et al.

[4].



5.1 Energy Landscape

The partition-coefficient approach has been recently used within a Fokker-Planck

framework [41] to predict molecular mobilities in periodic devices. As stated above,

it uses equilibrium partition coefficients to calculate an entropic barrier that modifies

the energy landscape experienced by the molecule as it moves in the device. This

landscape is shown in Figure 5-1. The free energy can be decomposed into two parts

[4, 41]:

1. electrostatic contribution due to the electric potential drop across channel, and

2. entropic contribution that we will discuss in detail below.

CTX) IEav (V/cm)

Figure 5-1: Energy landscape of a charged DNA molecule along the nanofilter channel.

5.1.1 Electrostatic Energy

In this model the two-dimensional electric field is approximated by two piecewise

constant one-dimensional effective fields, Ed and E, in the deep and shallow regions,

respectively. We note that this approximation is not necessary nor related to the
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main modeling approximation introduced in the next subsection. It is included here

for the purpose of evaluating its effect.

Applying a resistance in series model we obtain the following expressions for the

electric field in the deep and shallow regions

Ed= (l±V)Eav (5.1)

1+v'
E = Eav (5.2)

where E = ds/dd is the depth ratio (shallow to deep region) and v = is/id is the length

ratio between the shallow and deep region [41]. Based on this, for the first period,

the electrostatic free energy varies as follows:

q'(L)LEdx 0 < X < l(

q'( L)LEdld + q'(L)LE,(x - 1d) ld < X < l+ - l5

5.1.2 Entropic Barrier

As in previous Chapters, molecule interactions with the walls are steric; in other

words, if part of the molecule extends beyond one of the system boundaries, the

configuration is not allowed. Based on our steric boundary conditions, a rigid-rod

like DNA molecule near a wall is not entirely free to rotate since certain angular

configurations are forbidden, because they entail a partial overlap with the wall. We

account for these partial exclusions using ix(r) [72], which is defined as the local

orientation partition function. This function measures the ratio of the number of

occurrences of mass centers at position r relative to the free solution. Following

references [72], [41], we define Kd and K, to be the average partition coefficient

for the deep and shallow region, respectively. Kd and K, measure the probability

of finding a molecule in the deep and shallow regions of the channel, respectively,



relative to that in bulk solution. Mathematically, we can write

=fffv ,(r) d3r
Kd = (5.4)

fffv d3 r

Ks = f(5.5)
fffy d3r

where Vd and V, denote the volume of the deep and shallow regions of the nanofilter,

respectively. These quantities can be evaluated either analytically when possible (e.g.

[72]) or by direct enumeration (simulation) [41]. Let us also define K = K/IKd, which

describes the ratio of probabilities of occurrence of the DNA molecule in the shallow

region compared to the deep region (at equilibrium). Following these definitions, the

change of free energy from deep to shallow region due to orientational effects is given

by [72, 4, 41]:

AW = -TAS (5.6)

where the entropy term is given by AS = kB ln(K/Kd) = kB ln(K); hence the

entropic contribution to the energy barrier is:

AW = -kBT ln(K) (5.7)

5.2 Brownian Dynamics implementation

Li et al. [41] used this formulation within a Fokker-Planck setting [38, 73] describing

the time evolution of the probability density function P(r, t) for the Brownian particle

appearing at point r in the device at time t. Reducing this description to a quasi-one

dimensional geometry and using macrotransport theory [74], Li et al. [41] derived an

explicit analytical solution for the effective Ogston mobility in the nanofilter array.

In a later publication, [75] Li et al. provided a finite difference numerical solution

of the Fokker-Planck description in the two dimensional channel geometry, aiming to

quantify the error associated with the projection from 2D to ID. Comparing their 1D



analytical to their more accurate 2D solution, Li et al. found that their ID model

overestimates the molecule mobility by 10 - 20%.

Our present formulation builds on the work of Li et al. [41] by incorporating the

entropic barrier formulation of equations 5.4 - 5.6 into a Brownian Dynamics simu-

lation. This avoids the difficulties associated in the one-dimensional projection and

the associated modeling error, while resulting in a formulation that is simple and

more efficient than the numerical solution of the Fokker-Planck system in two spatial

dimensions.

The motion of a Brownian particle is described by the Langevin equation

p = -E- i + F(t)(sYstematic) + F(t)(ando) (5.8)

where p is the linear momentum. The drag force exerted by the surrounding fluid is

accounted for by - i -. F(t)(sstematic) = _VUE(x) is the systematic force due to the

external electric field. The effects of the randomly fluctuating forces exerted on the

molecules by the surrounding fluid are modeled by a random force F (andom) which is

drawn from a Gaussian distribution with the following moments:

(F(t)(random) = 0 (5.9)

(F(t)(random)F(to)(random)) 2kBTE6(t - to) (5.10)

Here 6(t - to) is the Dirac delta function. The translational drag tensor is given by

E = (aI, where I is the identity matrix, and the friction coefficient (av is given by

4.10 chosen such that direct comparison with the models of Chapter 3 and 4 can be

made.

Finally, we account for the entropic energy barrier that occurs at the transition from

deep to shallow region by allowing the Brownian particles to enter from deep to



shallow region with a probability Penter = K (equal to the ratio of probabilities of

occurrence of the DNA molecule in the shallow region compared to the deep region at

equilibrium); this is implemented in the following way: if a Brownian particle tries to

go from the deep to the shallow region we draw from a uniform distribution a random

number rand between 0 an 1. If rand > K the move is rejected (particle is specularly

reflected at the boundary between the deep and shallow region); if rand < K the

move is accepted (the particle enters narrow region as intended).

5.3 Results and Discussion

Figure 5-2 compares the numerical results of the rigid-rod model (discussed in Chapter

4) and the partition-coefficient-based model for the travel velocity of DNA molecules

as a function of their length in the ideal device geometry. Very good agreement

is observed between our rigid rod-model and our partition-coefficient-based model.

This agreement is quite remarkable given that in addition to the partition coefficient

the electric field is also approximated using Equations 5.1 and 5.2 in the partition-

coefficient-based simulation.

25 1 1 1
E =63.4 V/cm -- Partition-coefficient-based model

av -o- Rigid-rod model - ideal geometry

20-

0
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Figure 5-2: Comparison between the rigid-rod like model and the partition-coefficient-
based model.
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Figure 5-3 compares the numerical results of the experimental data of Fu et al. [4]

and the partition-coefficient-based model for the travel velocity of DNA molecules as

a function of their length in the ideal device geometry. We notice good agreement

with the experimental data and that the simple-partition coefficient-based model is

able to capture quantitatively the experimental results despite all the simplification

that this model entails.

25 1 1 1
E =63g V/cm -4- Partition-coefficient-based model

av +Fu et al. experimental data
20-

CO E =43.8 V/cm
.15 - av 0

E

10 - ......-

5 - -
Eav=24.1 V/cm

0n I I I

0 10 20 30 40 50 60 70 80 90 100 110
L (nm)

Figure 5-3: Comparison between the experimental data and the partition-coefficient-
based model.

5.4 Summary, advantages and limitations

We have presented a partition-coefficient-based model for very short DNA molecules.

By capturing the effect of rotational degrees of freedom using an entropic penalty

term, the resulting model is significantly simpler and more efficient than the rigid

rod model of Chapter 4 with no perceptible reduction in fidelity (see Figures 5-2 and

5-3). The improved efficiency is a result of a number of factors including:

1. reduction in degrees of freedom (two versus four for the rigid rod and 3N beads

for the Worm-Like-Chain model),

....... ................................................................ .... ............ .............. .



2. a significantly simplified boundary condition that is significantly more efficient

to implement,

3. a significantly larger time step (At = 5e - 7 s) compared to the rigid-rod model

(At = le - 8 s). This is possible because the rotational degrees of freedom -

the limiting factor in the time step size - have now been eliminated.

These factors result in an implementation that is two orders of magnitude more

efficient than the corresponding rigid-rod model, which produces essentially indistin-

guishable results.

The simplicity of this model makes it ideal for applying variance reduction ideas for

reducing the statistical uncertainty associated with its predictions. This is discussed

further in the following chapter which shows that significant variance reduction can

be achieved for small electric fields. This ameliorates one of the important disadvan-

tages of the Brownian Dynamics approach.

Compared to the Fokker-Planck based work of Li et al., the Brownian Dynamics

model presented here is significantly more efficient than the finite difference solution

of the Fokker-Planck equation in two dimensions, for the electric fields studied here.

Clearly, analytical solutions are always desirable and preferable to simulation results;

on the other hand the analytical results of Li et al. [41] suffer from the approximation

associated with the projection of the two dimensional Fokker-Planck description to

one dimension.



Chapter 6

Variance reduced Brownian

Dynamics

6.1 Computational efficiency and variance reduc-

tion methods

Although considerably more efficient than alternative approaches (as discussed in Sec-

tion 2.2), the BD approach of Chapter 5 becomes computationally expensive for low

translational Peclet number Pet, especially when very accurate results are required.

This limitation results from the stochastic nature of the model - necessitated by the

importance of Brownian effects - which exhibits the standard 1/ Nsampies conver-

gence associated with statistical averaging.

Although the 1/ Nsampie, convergence rate is very difficult to alter, especially in

the present case where the stochastic fluctuation is imposed by the physics, a number

of approaches exist for reducing the number of samples associated with obtaining a

certain statistical uncertainty by effectively changing the proportionality constant in

the above relation. Such techniques are typically known as variance reduction meth-

ods.



The objective of variance reduction techniques is to reduce the statistical uncertainty

and thus the computational cost associated with statistical sampling. A number of

such methods exist. The one most suited to our formulation is the control variates

approach originally used by Ottinger et al. [8, 38, 76] where it was referred to as

"parallel process simulation". In this approach, the averaged quantity of interest, say

the DNA velocity, is evaluated as

VvR =V - +Vi + ) (6.1)

where V is the average velocity from an "auxiliary" calculation which (a) uses the

same random numbers as the original calculation (the one used to calculate V), and

(b) is such that the expectation value (VI) is known deterministically.

This technique is successful because the samples used to evaluate V and V1 are highly

correlated (the simulations use the same random numbers) and thus subtracting them

leads to significant noise cancelation. A typical choice for the auxiliary calculation

is equilibrium (whose moments are typically known analytically). An example of the

power of this method is shown in Figure 6-1, adopted from [8], which reports the shear

stress in a startup flow of a FENE dumbbell suspension. Figure 6-1 (a) shows that

although the signal (for the shear stress in this case) is very noisy (with a standard

deviation larger than the available signal), the obvious correlation between the non-

equilibrium calculation can be exploited to yield a considerable amount of variance

reduction. Comparison with a result obtained by sampling 500 times more dumbbells

(Figure 6-1 (b)) suggests that the variance reduction achieved is much larger than a

factor of 500.

6.2 Variance reduction using control variates

The above discussion suggests that variance reduction approaches have enormous

potential. However, implementing a variance reduction technique for our Brownian
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Fig. 1. Start-up of homogeneous shear flow of a FENE dumbbell suspension. (a) The shear stress at AHf =0.01 (solid
curve) and in absence of flow (dashed curve). Simulation with 2000 dumbbells with b = 49. (b) Shear stress after
variance reduction (solid curve) and the results obtained with an ensemble of 106 dumbbells (dashed line). The dotted
line indicates the exact steady state value.

Figure 6-1: Variance reduction example adapted from Ottinger et al. [8].

Dynamics models is significantly more challenging than the work of Ottinger et al.

[8] because of the presence of complex boundary conditions.

Our approach will focus on developing a variance reduction formulation that extends

the work of Ottinger et al. [8] to our Brownian Dynamics particle model which in-



cludes boundaries. In particular, we will present results from the deviational particle

method developed by Baker and Hadjiconstantinou [42, 43] for solving the Boltz-

mann equation for low-speed gas flow. In addition, we will also extend the work of

Al-Mohssen and Hadjiconstantinou ([45, 44]) who used importance weights to formu-

late variance-reduced methods for solving the Boltzmann equation for low speed gas

flow.

In order to describe each method let us consider a simple "canonical" problem, namely

Brownian particles moving in one dimension and subject to a constant body force.

We are interested in evaluating the average position

(x) = JxP(x)dx (6.2)

of these particles that are characterized by the non-equilibrium distribution P(x).

The standard way to evaluate this integral is by sampling from the non-equilibrium

distribution P(x) (importance sampling)

't= x (6.3)
i=1

In its most general form, the method of control variates amounts to writing

(x) = Jx [P(x) - Paux(x) + paux(x)] dx (6.4)

where paux(x) is an "auxiliary" distribution chosen carefully in order to satisfy the

following requirements:

1. Paux(x) captures most of the variation of P(x) (i.e. Paux(x) ~ P(x))

2. f xPaux(x)dx can be evaluated deterministically (analytically or numerically).

The choice of paux(x) is critical in the sense that the amount of variance reduction

achieved depends on how close paux(x) is to P(x). Fortunately, in the world of

molecular simulation methods, this choice is rather simple to make because small



signals requiring variance reduction are typically associated with small perturbations

from a well defined equilibrium, which is ideally suited for the role of the auxiliary

distribution, not only because it is close to the non-equilibrium distribution, but also

because its moments are typically easy to calculate if not obvious. In terms of our

simple example, we will take P"(x) = pe(x) = const. Hence equation 6.4 becomes

(x) = Jx [P(x) - Pe (X) + Peq(x)] dx (6.5)

We now proceed with two different implementations:

1. Simulate the deviation from equilibrium f x[P(x) - peq(x)]dx (see Section 6.2.1).

This is the basic idea behind the deviational method first proposed by Baker

and Hadjiconstantinou [42, 43] for solving the Boltzmann equation.

2. Use two highly correlated parallel simulations, one simulates f xP(x)dx and

the other f xPeq(x)dx. This method will be referred to as importance-weight

method, because it uses importance weights to enable both simulations to use

the same random numbers (see Sections 6.2.2).

6.2.1 Variance reduction using deviational particle methods

The deviational particle method can be motivated by writing

x) = Jx [P(x) - Pe(x)] dx + xPe*(x)dx (6.6)

deviational
analytical =(x)eq

simulate

In other words, in this method we use particles to simulate the deviation from equi-

librium. The desired estimator of the quantity (x) can then be written as

N

= six, + (X),q (6.7)
i=1

where the deviational particle i is located at position xi and it has the sign si (signs

are required since P(x) - peq(x) can be positive or negative). We will discuss the



deviational particle method in more detail in Section 6.4.

6.2.2 Variance reduction using importance weights

In the importance-weight method we rearrange 6.5 as follows

(x) = x Pe*(x)dx - xPeq(x)dx + xPq(x)dx (6.8)
Peq(x) I j

W equilibrium analytical =(x)eq

non-equilibrium

This is then interpreted as follows: two parallel simulations are perfomed; the first

one is simulating equilibrium (f xPeq(x)dx) while the second one evaluates the non-

equilibrium quantity (f x (XPe(x)dx) using equilibrium samples through the weights

Wi defined as

W = Px)(6.9)
Peq(x )

The estimator of the desired quantity can then be written as

XVR t - te + (X)

N N

Wx x(i + x)*q (6.10)
i=1 i=1

( -1)xi + (X)"q

i=1

Importance weights here is the tool that enables us to effectively simulate two sys-

tems (one equilibrium and one non-equilibrium) by simulating only one (in this case

the equilibrium); we use the set of weights W to provide a "correction" for the

number of particles in the non-equilibrium simulation for each particle in the equi-

librium simulation. (Clearly for W = 1, we obtain the equilibrium situation.) We

also note that which system (equilibrium/non-equilibrium) is actually simulated and

which is inferred through the weights is arbitrary and primarily a matter of conve-

nience. Here we have chosen to simulate the equilibrium and use weights to refer to

the non-equilibrium simulation because in equilibrium, reflection of particle positions



at no-flux boundaries is higher-order accurate [77]. The inverse choice (i.e. simulating

explicitly non-equilibrium) was made in [45], where the objective was to perturb the

original simulation as little as possible.

We also note that our task is not complete yet, since the weights W are as of now un-

known. Successful simulation requires the prescription of evolution rules for updating

the weights of particles as those move around the computational domain under the

action of the prescribed dynamics and boundary conditions.

6.3 Fokker-Planck description and one dimensional

forced diffusion

In the most general case of N interacting Brownian particles, those are described by

the Fokker-Planck equation

~ P Z Z aDi Or k I F P (6.11)
i=1 j=1 r

where P(r, t) is the N-particle configuration space distribution. Here, Di3 represents

the configuration dependent diffusion tensor and Fj is the sum of the inter-particle and

external forces on particle j. As stated above, we will look at a simple one-dimensional

U ,

:p>

Figure 6-2: One dimensional forced diffusion on non-interacting Brownian particles.

forced diffusion problem. In this problem, Brownian particles are confined by two

non-absorbing walls at x = 0 and x = p, respectively, and are subject to a uniform

field of magnitude U (see Figure 6-2). This system is described by the following

... .... .. .......... ......



one-dimensional Fokker-Planck equation

OP op 82p
Ot = U - + D a (6.12)

at Ox OX2

The no flux boundary condition, at both walls is given by

OP
J= -D- +UP=O, at x=O, p (6.13)

Ox

For this simple problem we can obtain an analytical solution for the steady state

probability distribution P(x) and the average position (x). We define P6eclet number

to be Pet = Up/D and we write equation 6.12 in dimensionless form as

OP OP O2p
-Pet- + (6.14)

The no flux boundary condition becomes

- + P =0 (6.15)
Pet Ox

where z = x/p and t = tD/p2. The steady-state analytical solution for the probability

distribution is
Pet

P (z);E exp(Pet) - 1 exp(Pet z) (6.16)

while the solution of the expectation value of the particle position is

JO= exp(Pet) 1 6.7(z) =(6.17)
exp(Pet) - 1 Pet

6.4 Simulating 1D forced diffusion using the devi-

ational particle method

In order to simulate the above one-dimensional forced diffusion using the deviational

particle method, we note that using peq(z) = 1 and defining pd(z) = P(z) - Peq(z)



in 6.14 we obtain
apd _ pd Q2pd

-Pet + (6.18)

or in other words, the Fokker-Planck equation governing deviational particles is the

same as the one governing physical particles. From this we conclude that deviational

particles behave as physical particles. (Note that this is not generally true, e.g. it is

not true if U = U(x) where additional terms appear in Equation 6.18)

6.4.1 Boundary condition

The complexity in this approach arises when considering the boundary condition

~d 1 a
~Jd. ~+ P d - -pq = - 1  (6.19)

P et (9,xc

which means that mass conservation requires one negative particle entering the com-

putational domain from the left wall at x = 0 (; = 0) per unit of dimensionless time

per unit of dimensionless area. Similarly we need one negative particle leaving the

computational domain per unit time per unit area of the wall at x = p (z = 1) as

shown in Figure 6-3.

Figure 6-3: No flux boundary condition using deviational particle method.

This boundary condition can be implemented in a variety of ways (e.g. one negative

particle entering the domain is equivalent to one positive particle leaving the domain).

We illustrate the approach used here with an example: suppose that during one unit

of dimensionless time and per one unit of dimensionless area five positive and two

negative particles crossed the right wall. In order to satisfy the no flux boundary

condition, or in other words to satisfy the dimensionless deviational flux Jd = -1,

we need to send back four positive particles into the system as shown in Figure 6-4.

In other words, our approach consisted of sending one net positive particle into the

............. . ............. ............ .. .. ...... ..................... .. ............... ......................................... .... ....................................................................... ....... ........ .. ... .. ............... ....



domain. Thus in the case considered here, the two negative particles cancel the two

positive particles leaving us with three positive particles that need to be reflected

back to the domain (reflective boundary condition). Adding the net positive particle

to those, we have four positive particles entering the computational domain.

Right Wall

Figure 6-4: Implementation of no flux boundary condition using deviational particles.

6.4.2 Validation

The above implementation was used to obtain a solution for the simple forced diffusion

problem 6.12, 6.13. The solution obtained is in excellent agreement with analytical

solution 6.17 as shown in Figure 6-5. In the following section we discuss the compu-

tational gain achieved by this method.

6.4.3 Computational gain for deviational particle method

As discussed in Section 6.1, regular Brownian dynamics methods exhibit the stan-

dard 1/ Nampies convergence associated with statistical sampling. This means the

variance associated with Brownian Dynamics simulations scales as 1/Nampes. The

cost of the method is proportional to Nampie, 1 yielding the relation

1 1

Nsamples computational cost

Given the above, in order to calculate the computational gain in our proposed method

it is sufficient to take the ratio of the variances of the two methods. In particular, we

lassuming the steady state sampling phase dominates the simulation time

................ ....... ...............................
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Figure 6-5: Comparing deviational particle results with analytical solution 6.17.

define the computational gain as

Computational gain VarRegularBD (6.21)
VarDeviational Particle Method

This definition clearly assumes that the cost per timestep is similar for the two meth-

ods. This is a reasonably valid assumption since both methods presented in this

chapter are particularly simple, albeit not as simple as the regular Brownian Dynam-

ics. Figure 6-6 shows the computational gain provided by the deviational particle

method. The figure clearly shows that the computational gain provided by the devi-

ational particle method is proportional to Pet2 with a proportionality constant such

that computational gain is obtained for Pet < 1.

6.4.4 Limitations of deviational particle method for 2D/3D

problems

The proposed deviational particle method provides substantial variance reduction for

small translational P6clet number Pet < 1. It is easy to use and implement for one

dimensional problems. This technique becomes cumbersome and computationally ex-

. ... ....... - - .. . ........... - ................................................................. .. ... .....
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Figure 6-6: Comparing variances of deviational particle method and regular Brownian
Dynamics as a function of translational Peclet number.

pensive for 2D and 3D problems because the boundary cancelation process described

in Section 6.4.1 needs to be applied locally along the boundary, which requires mesh-

ing of the latter. Moreover, if U = U(x), deviational particles need to be created

volumetrically proportionally to ± which makes the simulation even more cumber-

some for arbitrary U(x) (e.g. results from a finite element solution as in Chapter

3).

6.5 Variance reduction using the importance-weight

method

Our numerical experiments have shown that an importance-weight formulation is

more appropriate for Brownian Dynamics simulations because it leads to a less cum-

bersome algorithm in higher dimensions. Below we discuss the development of a

variance-reduced formulation for the simple one-dimensional forced diffusion problem

described in Section 6.3 and the multi-dimensional problem that is the topic of this

Thesis.

...... .. .. .. .-
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6.5.1 Weight update rules

In order to simulate 1D forced diffusion using importance weights, we follow the

formulation suggested by equations 6.8, 6.9 and 6.10, and simulate an equilibrium

simulation (N particles) while at the same time update weights W(t) = 1, ... , N

which keep track of the correlated non-equilibrium simulation.

The equilibrium simulation simulates the motion of N Brownian particles moving

in one spatial dimension between two non-absorbing walls at x = 0 and x = p as

shown in Figure 6-2. Reflecting boundary conditions are imposed, whereby a particle

is returned to the domain by taking the mirror image of the "offending" move.

For the non-equilibrium simulation, weights are updated using

P(xa, t + Atjx0 ,t)
SWpeq(xn, t + Atlxo, (.2

where:

W,: is the new weight of a Brownian particle;

WO: is the old weight of a Brownian particle;

xO: is the old position of a Brownian particle;

xn: is the new position of a Brownian particle;

P(Xz, t + AtIxo, t): is the non-equilibrium transition probability for a Brownian parti-

cle to move to the new position Xn at time t + At given that the particle old position

is xO at time t;

peq (xn, t + At Ixo, t): is the equilibrium transition probability for a Brownian particle

to move to the new position xz at time t + At given that the particle old position is

xO at time t.

Equation 6.22 has been first derived in [45] by starting from the definition of the

weights, namely
P(x )

WO = pe(X) (6.23)



and

P(X ) (6.24)*n Peq (xn)

Using the transitional probabilities for one particle we have

Pee(xn)Peq (Xn, t + At~xo, t) q = X (6.25)

and

P(Xz, t + Atixo, t) = P(X) (6.26)
P(xo)

Using the above we obtain

_P(Xn)

" ~ Peq (xn)

P(xo) P(xn, t + AtIxo, t)
Peq(xo) Peq(xn, t + AtIxo, t)

W P(xn, t + txoit) (6.27)"Pe e(xn t + Atlxo, t)

which is Equation 6.22.

6.5.2 Initial conditions

Initialization of weights is relatively straight-forward since knowledge of initial con-

ditions of the equilibrium and non-equilibrium calculations is typically part of the

problem specification. The initial conditions for the weights follow directly from the

definition

Wi(t = 0) = P(zi, t = 0),foi=1,---,N(.8Peq(x,t = 0) (6.28)

In most cases (as in the simple problem considered here) we are interested in the

steady state solution, which should be independent of initial conditions. In this case

it is most convenient to start from P(xi, t = 0) - Peq(x, t = 0) giving

Wi(t = 0) = 1, for i =1, -. , N (6.29)



6.5.3 Wall bounded simulations

As shown above, dynamic update of weights requires knowledge of the transition

probabilities between the old and new states. It is in fact the use of this informa-

tion that yields a reduced uncertainty (variance reduction). Of course, knowledge of

general transition probabilities is equivalent to knowing the solution of the problem

of interest, and is thus not useful. Instead, the key to making this approach work is

to use transition probabilities that describe the main ingredients of the problem of

interest separately and synthesize them in a way that the resulting approximation is

reasonable. More specifically, the main ingredients of the problems considered here

are the external field and the presence of walls. Transition probabilities for Brownian

particles in the presence of one wall under the action of a field normal to the wall can

be obtained from the famous solution by von Smoluchowski [78, 791.

P(x", t + Atjxo, t) = (4rT)-112 exp [- (xn - xO + bT)2/4T]

pure forced diffusion with no boundary

+ (4lrT)-1/ 2 exp [b(xo - x,) - (xn + xo - 2x, + br)2 /4]

boundary effect

+ b exp [- b(xn - x,)] erfc [(xn + xo - 2x, - br)/v43]

boundary effect

(6.30)

where x,, is the position of the wall in the direction of the electric field, b = -U/D,

r = DAt, and erfc(z) denotes the complementary error function. When xo - x n, xn -

x- -oc the boundary effect part goes to zero and Equation 6.30 simplifies to

P(xn, t + AtIx, t) = (4irr)-1/ 2 exp [- (xn - xo + bT)2 /4T] (6.31)

pure forced diffusion with no boundary



We get the transitional probabilities for the equilibrium case from equation 6.30 by

setting b = 0 (i.e. no external field)

P*q(zX, t + At x, t) = (41rr)- 1/ 2 exp , (Xn - Xo) 2 4r]

pure diffusion with no boundary

+ (47rr)-1/ 2 exp - (xn + Xo - 2x, + br)2/4r]
boundary effect

Similarly, when xo - x,, xn - X - -oo the boundary effect part goes

Equation 6.32 simplifies to

pe(x,, t + AtIxo, t) = (47rT)~1/ 2 exp [- (x, - XO) 2 /4T]

pure diffusion with no boundary

(6.32)

to zero and

(6.33)

By applying these solutions to a particle between two walls, clearly an approxima-

U ,
old

9
new Wo
Wn1

w n o

I,= P(x'Z, t + AtIx 0 , t)
V~WPeq(x t + Atix0 , t)

Figure 6-7: Boundary effects and updating weights.

tion is committed. This approximation however, is reasonable if the two walls are

sufficiently far apart (p > VDAt7, |U t, since the particle will only be close to one

wall at a time. Knowledge of this solution and judicious use allows us to obtain sub-

stantial variance reduction (see. Figure 6-11) while the error from this approximation

appears to be small (see Figure 6-8 as well as the next section where this method is

applied to the separation process that is the main topic of this Thesis).
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6.5.4 Validation

Figure 6-8 compares results for the one-dimensional diffusion problem discussed in

Section 6.3 to the exact analytical solution given by equation 6.17. Excellent agree-

ment is observed.
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p 2

100

10I

10-2

0

10

10-1"-
10 10- 10-2 10-1

Pe,
100

Figure 6-8: Comparing importance-weight method results with analytical solution.

In Section 6.6.2 we discuss the computational gain of the variance-reduced method.

6.6 Application of variance reduction methods to

the separation of short biological molecules

The above formulation can be readily extended to the partition-coefficient-based

model of Chapter 5. As stated above this is one of the reasons this methodology

is preferred. Specifically, to simulate the motion of short DNA molecules using the

model of Chapter 5, we run an equilibrium simulation of N non-interacting Brow-

nian particles subject to non-absorbing boundary conditions (reflection). The non-

equilibrium calculation is evaluated by using the weight update rules as described in

Section 6.5.1. The more complex geometry of this problem (see Figure 6-9) requires

............ .. ..... ....... ...... . ...... .... . ...... . .... ...... .



us to divide the computational domain into various regions, in order to still use the

simple transition probabilities associated with one wall in the direction of electric

field.

xW1 xw2

Figure 6-9: Device regions.

We divide the device into four regions, with the following parameters:

o Region 1:

Use Equations 6.30 and 6.32 where x, = x,1, Xo = xo, xn = xn and U = Ud =

Edg'LD
kBT

* Region 2:

Use Equations

U = -Ud

* Region 3:

Use Equations

* Region 4:

Use Equations

6.30 and 6.32 where xw = -Xw2, Xo = -Xo, xn = -x, and

6.31 and 6.33 where xo = x0, xn = x, and U = Ud

6.31 and 6.33 where x = x0, xn = x,, U = U, = Esq'LD
/CBT

where Ud and U, are the uniform fields due to the electric field in the deep and shallow

regions respectively. We always use x0 to determine the region where the particle is

located and the parameters to use in the weight update (Equation 6.22).

One special case arises when a molecule steps from the deep to the narrow region. In

other words, this special case arises when x, is in Region 4 and x0 is in Region 1,

. .... . ............................... .............................................. ..... .. ............ ---. . - - -



2, or 3. In this special case, as explained in Chapter 5, we account for the entropic

energy barrier that occurs at the transition from deep (i.e. the union of Region 1,

2 and 3) to shallow (i.e. Region 4) region by allowing the Brownian particles to

enter from deep to shallow region with a probability Pene, = K (equal to the ratio

of probabilities of occurrence of the DNA molecule in the shallow region compared

to the deep region at equilibrium); this is implemented in the following way: if a

Brownian particle attempts to move from the deep to the shallow region we draw

from a uniform distribution a random number rrand between 0 an 1. Then we have

the following two cases:

rrand > K :

The move is rejected and X is now the reflected position (particle is specularly

reflected at the boundary between the deep and shallow region). If the particle

move was rejected on the right side shallow region entrance, the particle weight

is calculated using Equations 6.30 and 6.32 where x = -X,2, Xo = -zo,

zn = -Xz and U = -U. Otherwise, if the particle move was rejected on

the left side shallow region entrance, the particle weight is calculated using

Equations 6.30 and 6.32 where x,, = x,1, Xo = Xo, X = Xz and U = Ud.

rrand < K :

The move is accepted (the particle enters narrow region as intended). The

particle weight is calculated using Equations 6.31 and 6.33 where x0 =Xz1

xn=xn and U =Ud

6.6.1 Comparison of importance-weight method and regular

Brownian Dynamics simulation results

Figure 6-10 compares the simulation results of the importance-weight method to the

regular Brownian Dynamics method for the ideal experimental device geometry for a

small translational Peclet number. Very good agreement is observed. It is important

to note that at the translational Peclet numbers of these simulations (Pet ~ 0.1),

we need over 200 times more samples for the regular method to converge to the



same level of statistical uncertainty compared to the importance-weight method. The

computational gain provided is discussed in the following section.

0.2

0.2

0.15

0.05r

10 20 30 40 50 60 70 80 90 100 110
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Figure 6-10: Comparing importance-weight results and regular Brownian Dynamics
model for small translational Peclet number in the ideal experimental device.

6.6.2 Computational gain for importance-weight method

As discussed in Section 6.4.3, to calculate the computational gain, it is sufficient to

take the ratio of the variances between regular Brownian Dynamics method and the

importance-weight method, namely

Computational gainjw = - VarRegularBD
VarImportance-weight Method

Figure 6-11 shows the computational gain provided by the importance-weight method.

We find that the computational gain is very similar to the deviational particle method

and scales as Pet-2 . As before, the importance-weight method is only superior to the

regular Brownian Dynamics method for Pet < 1.

Eav=0.634 V/cm Variance Reduced

-Pet 0.021 -- Reg~ular

E =0.438 V/cm

-Pet= 0.015

Pe, 0.054

-

... .................. ............................. .................................... ...... ................. . ...........
...........

(6-34)
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Figure 6-11: Comparing variances of importance-weight method and regular Brown-
ian Dynamics.

6.6.3 Advantages and limitations of importance-weight method

The proposed importance-weight method provides great variance reduction for small

translational Peclet number Pet < 1. It is easy to use and implement for 1, 2 and

3D problems. The computational overhead is minimal and it only requires the calcu-

lation of one weight for every particle at every time step.

The method relies on analytical solution for the transition probabilities. (This is,

in fact, one of the limitations of the method). In addition, for larger simulations

(e.g. larger devices) one might need to include a stabilization scheme, since weights

eventually grow resulting in loss of variance reduction (this can be explained as loss

of correlation between the two simulations [38, 45]); stabilization schemes for this

have been developed [45], but they are rather cumbersome in the case of Brownian

Dynamics simulations and detract from the simplicity (and efficiency) of the method,

making it less attractive. In our simulation a stabilization scheme is not required

since the simulation time is relatively short.

....... .... . .. .... .... ... .... ............ . .... .
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Chapter 7

Conclusions and outlook

In this Thesis, we have developed a number of computational models for simulating

the low-field electrokinetic separation of biological molecules using nanoscale sieving

devices. Our modeling efforts focused on the Ogston regime where molecule charac-

teristic lengths are on the order of, or smaller than, the device pore size. Considerable

effort has been expended in producing accurate numerical models that are in quan-

titative agreement with experimental data; specifically our simulations are validated

using the experimental data of Fu et al. [4]. Three Brownian Dynamics (BD) simu-

lation models have been developed.

The first, most general, formulation is based on the Worm-Like-Chain (WLC) model

which includes the effects of bending and stretching stiffness and provides the most

accurate description for the DNA molecule. Our implementation of the Worm-Like-

Chain model is in line with the work of Allison et al., Hagerman et al., Lewis et al,

Klenin et al. [34, 35, 36, 37] with a new discretization that treats all beads equally

and is different from Bead-Spring models typically used for long molecules [38, 39].

The resulting Brownian Dynamics formulation includes hydrodynamic interactions

between beads, and closely models the experimental setup of Fu et al. [4] whose

data we used for validation. The model captures the transition in drag behavior

between rigid rod and long chains (Zimm model) and describes moderate-size DNA

electrophoresis (up to 340 nm (950 bp)).
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The second model exploits the fact that short molecules can be treated as rigid,

enabling the more efficient rigid-rod Brownian Dynamics algorithm to be used. The

resulting simulation method method is more efficient (by a factor of four or more)

than the WLC implementation described above. Comparison with the WLC simula-

tion results and experimental data shows that it is accurate for molecule lengths on

the order of, or smaller than, one persistence length, as expected.

The third model is even more computationally efficient. This is achieved by exploit-

ing the fact that for sufficiently short molecules under the experimental conditions

of interest, the rotational degrees of freedom of molecules can be treated by equilib-

rium partition coefficients. Under this treatment, first proposed by Li et al. within a

Fokker-Planck framework [41], the partition coefficients can be used to quantify the

number of configurations that are not accessible to the molecule and thus describe

the entropic barrier associated with molecular motion in sieving devices. This al-

lows the treatment of molecules as Brownian particles subject to an entropic barrier,

which is significantly more efficient than the previous two formulations. Comparison

with experimental results and rigid-rod Brownian Dynamics simulations shows that,

provided the molecules are sufficiently short for the rigid-rod assumption to be valid,

no significant error is introduced by these additional approximations.

Due to the advances in manufacturing, one will be able to precisely control the di-

mensions of the nanofluidic devices. The different BD models presented in this work

are very useful for gaining fundamental understanding of the separation process, op-

timization, and parameter exploration. The models presented here are sufficiently

accurate for use in the design of new separation devices with more elaborate ge-

ometries, such as the device featuring a two-dimensional geometry for continuous

separation [3]. In Chapter 3, we used our WLC model to verify the analytical pre-

dictions of Li et al. [41] for an asymmetric device in the presence of an electric field

of alternating polarity. It is of great interest to further pursue this research direction
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by using our numerical models to explore different sieving patterns and electric field

regimes in order to improve biomolecule separation. In order to have a more accurate

comparison with experimental data, it is essential to have more a precise character-

ization of the actual system geometry, as well as more accurate characterization of

other system parameters (e.g. electroosmotic flow magnitude).

The numerical models presented here were applied to dsDNA molecules; extending

these models to other biological molecules is essential. Furthermore, our numerical

effort focused on modeling the separation process in the Ogston-sieving regime; ex-

tending our numerical effort to model the transition region between Ogston-Entropic

sieving and even further to quantitatively model the entropic sieving process is essen-

tial in the development of fast and accurate micro-nanofluidic sieving devices.

Finally, the variance reduction methods presented here (Chapter 6) are the first at-

tempts to decrease the variance of Brownian Dynamics simulations in the presence

of solid boundaries. We showed that the importance-weight method provides great

variance reduction for low translational Pelet numbers and is easy to implement

requiring little additional computational cost. Our implementation was limited to

non-interacting point particles; further work is necessary to extend this method to

rigid-rod and Worm-Like-Chain models. One approach toward this goal would be a

direct extension of the present work which would require an analytical or inexpensive

numerical solution for the transitional probabilities of a rigid-rod and Worm-Like-

Chain model near one wall.
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