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Construction and Maintenance of Wireless Mobile
Backbone Networks

Anand Srinivas, Member, IEEE, Gil Zussman, Senior Member, IEEE, and Eytan Modiano, Senior Member, IEEE

Abstract—We study a novel hierarchical wireless networking ap-
proach in which some of the nodes are more capable than others.
In such networks, the more capable nodes can serve as Mobile
Backbone Nodes and provide a backbone over which end-to-end
communication can take place. Our approach consists of control-
ling the mobility of the Backbone Nodes in order to maintain con-
nectivity. We formulate the problem of minimizing the number of
backbone nodes and refer to it as the Connected Disk Cover (CDC)
problem. We show that it can be decomposed into the Geometric
Disk Cover (GDC) problem and the Steiner Tree Problem with
Minimum Number of Steiner Points (STP-MSP). We prove that
if these subproblems are solved separately by - and -approxi-
mation algorithms, the approximation ratio of the joint solution
is � . Then, we focus on the two subproblems and present a
number of distributed approximation algorithms that maintain a
solution to the GDC problem under mobility. A new approach to
the solution of the STP-MSP is also described. We show that this
approach can be extended in order to obtain a joint approximate
solution to the CDC problem. Finally, we evaluate the performance
of the algorithms via simulation and show that the proposed GDC
algorithms perform very well under mobility and that the new ap-
proach for the joint solution can significantly reduce the number
of Mobile Backbone Nodes.

Index Terms—Approximation algorithms, controlled mobility,
distributed algorithms, disk cover, wireless networks.

I. INTRODUCTION

W IRELESS Sensor Networks (WSNs) and Mobile Ad
Hoc Networks (MANETs) can operate without any

physical infrastructure (e.g., base stations). Yet, it has been
shown that it is sometimes desirable to construct a virtual
backbone on which most of the multi-hop traffic will be routed
[4]. If all nodes have similar communication capabilities and
similar limited energy resources, the virtual backbone may
pose several challenges. For example, bottleneck formation
along the backbone may affect the available bandwidth and
the lifetime of the backbone nodes. In addition, the virtual
backbone cannot deal with network partitions resulting from
the spatial distribution and mobility of the nodes.
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Fig. 1. A Mobile Backbone Network in which every Regular Node (RN) can
directly communicate with at least one Mobile Backbone Node (MBN). All
communication is routed through a connected network formed by the MBNs.

Alternatively, if some of the nodes are more capable than
others, these nodes can be dedicated to providing a backbone
over which reliable end-to-end communication can take place.
A novel hierarchical approach for a Mobile Backbone Network
operating in such a way was recently proposed and studied by
Rubin et al. (see [23] and references therein) and by Gerla et al.
(e.g., [10], [30]). In this paper, we develop and analyze novel al-
gorithms for the construction and maintenance (under node mo-
bility) of a Mobile Backbone Network. Our approach is some-
what different from the previous works, since we focus on con-
trolling the mobility of the more capable nodes in order to main-
tain network connectivity and to provide a backbone for reliable
communication.

A Mobile Backbone Network is composed of two types of
nodes. The first type includes static or mobile nodes (e.g., sen-
sors or MANET nodes) with limited capabilities. We refer to
them as Regular Nodes (RNs). The second type includes mo-
bile nodes with superior communication, mobility, and compu-
tation capabilities as well as greater energy resources (e.g., Un-
manned-Aerial-Vehicles). We refer to them as Mobile Backbone
Nodes (MBNs). The main purpose of the MBNs is to provide
a mobile infrastructure facilitating network-wide communica-
tion. We specifically focus on minimizing the number of MBNs
needed for connectivity. Yet, the construction of a Mobile Back-
bone Network can improve other aspects of the network perfor-
mance, including node lifetime and Quality of Service as well
as network reliability and survivability.

Fig. 1 illustrates an example of the architecture of a Mobile
Backbone Network. The set of MBNs has to be placed such that
(i) every RN can directly communicate with at least one MBN,
and (ii) the network formed by the MBNs is connected. We as-
sume a disk connectivity model, whereby two nodes can com-
municate if and only if they are within a certain communica-
tion range. We also assume that the communication range of the
MBNs is significantly larger than the communication range of
the RNs.

We term the problem of placing the minimum number of
MBNs such that both of the above conditions are satisfied
as the Connected Disk Cover (CDC) problem. While related

1063-6692/$25.00 © 2009 IEEE
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problems have been studied in the past [2], [4], [13], [15], [28]
(see Section II for more details), this paper is one of the first
attempts to deal with the CDC problem.

Our first approach is based on a framework that decomposes
the CDC problem into two subproblems. We view the CDC
problem as a two-tiered problem. In the first phase, the min-
imum number of MBNs such that all RNs are covered (i.e., all
RNs can communicate with at least one MBN) is placed. We
refer to these MBNs as Cover MBNs and denote them in Fig. 1
by white squares. In the second phase, the minimum number of
MBNs such that the MBNs’ network is connected is placed. We
refer to them as Relay MBNs and denote them in Fig. 1 by gray
squares. In the first phase, the Geometric Disk Cover (GDC)
problem [15] has to be solved, while in the second phase, a
Steiner Tree Problem with Minimum Number of Steiner Points
(STP-MSP) [19] has to be solved. We show that if these sub-
problems are solved separately by - and -approximation al-
gorithms,1 the approximation ratio of the joint solution is .

We then focus on the Geometric Disk Cover (GDC) problem.
In the context of static points (i.e., RNs), this problem has been
extensively studied in the past (see Section II). However, much
of the previous work is either (i) centralized in nature, (ii) too
impractical to implement (in terms of running time), or (iii) has
poor average or worst-case performance. Recently, a few at-
tempts to deal with related problems under node mobility have
been made [6], [13], [16].

We attempt to develop algorithms that do not fall in any of
the categories above. Thus, we develop a number of practically
implementable distributed algorithms for covering mobile RNs
by MBNs. We assume that all nodes can detect their position via
GPS or a localization mechanism. This assumption allows us to
take advantage of location information in designing distributed
algorithms. We obtain the worst case approximation ratios of the
developed algorithms and the average case approximation ratios
for two of the algorithms. Finally, we evaluate the performance
of the algorithms via simulation, and discuss the tradeoffs be-
tween the complexities and approximation ratios.

Regarding the STP-MSP, [19] and [2] propose 3- and 4-ap-
proximation algorithms based on finding a Minimum Spanning
Tree (MST). However, when applied to the STP-MSP, such
MST-based algorithms may overlook efficient solutions. We
present a Discretization Approach that can potentially provide
improved solutions. In certain practical instances the approach
can yield a 2 approximate solution for the STP-MSP.

We extend the Discretization Approach and show that it can
obtain a solution to the joint CDC problem in a centralized
manner. Even for the CDC problem, using this approach en-
ables a 2-approximation for specific instances. Due to the con-
tinuous nature of the CDC problem, methods such as integer
programming cannot yield an optimal solution. Thus, for spe-
cific instances this approach provides the lowest known approx-
imation ratio. It is shown via simulation that this is also the case
in practical scenarios.

To conclude, our first main contribution is a decomposition
result regarding the CDC problem. Other major contributions
are the development and analysis of distributed approximation

1A �-approximation algorithm for a minimization problem always finds a
solution with value at most � times the value of the optimal solution.

algorithms for the GDC problem in a mobile environment, as
well as the design of a novel Discretization Approach for the
solution of the STP-MSP and the CDC problem.

This paper is organized as follows. In Section II we review
related work and in Section III we formulate the problem.
Section IV presents the decomposition framework. Distributed
approximation algorithms for placing the Cover MBNs are
presented in Sections V and Section VI. A new approach to
placing the Relay MBNs is described in Section VII. A joint
solution to the CDC problem is discussed in Section VIII.
In Section IX we evaluate the algorithms via simulation. We
summarize the results in Section X. Due to space constraints,
some of the proofs are omitted and can be found in [25].

II. RELATED WORK

Several problems that are somewhat related to the CDC
problem have been studied in the past. For simplicity, when
describing these problems we will use our terminology (RNs
and MBNs). One such problem is the Connected Dominating
Set problem [4]. Unlike the CDC problem, in this problem there
is no distinction between the communication ranges of RNs and
MBNs. Additionally, MBNs’ locations are restricted to RNs’
locations. Similarly, the Connected Facility Location problem
[28] also restricts potential MBN locations. Furthermore, this
problem implies a cost structure that is not directly adaptable
to that of the CDC problem. Lu et al. [20] study a Connected
Sensor Cover problem [12], where the objective is to cover
discrete targets while maintaining overall network connectivity
and maximizing network lifetime. The set of constraints in this
problem can be mapped to the CDC problem. However, the
objective function and algorithmic approach are different.

We note that Tang et al. [29] have recently independently
formulated and studied the CDC problem (termed in [29] as
the Connected Relay Node Single Cover). A centralized 4.5-ap-
proximation algorithm for this problem is presented in [29]. In
Section IV, we will show that our approach provides a central-
ized 3.5-approximation for the CDC problem.

We propose to solve the CDC problem by decomposing it
into two NP-Complete subproblems: the Geometric Disk Cover
(GDC) problem and the Steiner Tree Problem with Minimum
number of Steiner Points (STP-MSP). Hochbaum and Maass
[15] provided a Polynomial Time Approximation Scheme
(PTAS) for the GDC problem. However, their algorithm is
impractical for our purposes, since it is centralized and has a
high running time for reasonable approximation ratios. Several
other algorithms have been proposed for the GDC problem
(see the review in [5]). For example, Gonzalez [9] presented
an algorithm based on dividing the plane into strips. In [5] it
is indicated that this is an 8-approximation algorithm. We will
show that by a simple modification, the approximation ratio is
reduced to 6.

Problems related to the GDC problem under mobility are ad-
dressed in [6], [13], [16]. In [16], a 4-approximate centralized
algorithm and a 7-approximate distributed algorithm are pre-
sented. Hershberger [13] presents a centralized 9-approxima-
tion algorithm for a slightly different problem: the mobile geo-
metric square cover problem. We build upon his approach in
order to develop a distributed algorithm for the GDC problem.
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Clustering nodes to form a hierarchical architecture has been
extensively studied in the context of wireless networks (e.g.,
[1], [4], [8]). However, the idea of deliberately controlling the
motion of specific nodes in order to maintain some desirable
network property (e.g., lifetime or connectivity) has been intro-
duced only recently (e.g., [17], [21]).

III. PROBLEM FORMULATION

We consider a set of Regular Nodes (RNs) distributed in the
plane and assume that a set of Mobile Backbone Nodes (MBNs)
has to be deployed in the plane. We denote by the collection
of Regular Nodes , by the
collection of MBNs, and by the distance between nodes
and . The locations of the RNs are denoted by the tuples

.
We assume that the RNs and MBNs have both a communi-

cation channel (e.g., for data) and a low-rate control channel.
For the communication channel, we assume the disk connec-
tivity model. Namely, an RN can communicate bi-direction-
ally with another node (i.e., an MBN) if the distance between

and , . We denote by the diameter of the disk
covered by an MBN communicating with RNs. Regarding the
MBNs, we assume that MBN can communicate with MBN
if , where . For the control channel, we assume
that both RNs and MBNs can communicate over a much longer
range than their respective data channels. Since given a fixed
transmission power, the communication range is inversely re-
lated to data rate, this is a valid assumption.

At this stage, we assume that the number of available MBNs
is not bounded (e.g., if required, additional MBNs can be
dispatched). Yet, in our analysis, we will try to minimize
the number of MBNs that are actually deployed. Finally, we
assume that all nodes can detect their position, either via GPS
or by a localization mechanism. We shall refer to the problem
of Mobile Backbone Nodes Placement as the Connected Disk
Cover (CDC) problem and define it as follows.

Problem CDC: Given a set of RNs distributed in the
plane, place the smallest set of MBNs such that:

1) For every RN , there exists at least one MBN
such that .

2) The undirected graph imposed on (i.e.,
, define an edge if ) is

connected.
We will study both the case in which the nodes are static, and

the case in which the RNs are mobile and some of the MBNs
move around in order to maintain a solution the CDC problem.
We assume that there exists some sort of MBN routing algo-
rithm, which routes specific MBNs from their old locations to
their new ones. The actual development of such an algorithm is
beyond the scope of this paper.

We now introduce additional notation required for the presen-
tation and analysis of the proposed solutions (Table I includes
some of the notation used throughout the paper). A few of the
proposed algorithms operate by dividing the plane into strips.
When discussing such algorithms, we assume that the RNs in a
strip are ordered from left to right by their -coordinate and that
ties are broken by the RNs’ identities (e.g., MAC addresses).
Namely, , if or and the ID of is lower
than ID of . We note that in property (1) of the CDC problem

TABLE I
NOMENCLATURE

it is required that every RN is connected to at least one MBN.
We assume that even if an RN can connect to multiple MBNs,
it is actually assigned to exactly one MBN. Thus, we denote by

the set of RNs connected to MBN . We denote by and
the leftmost and rightmost RNs connected to MBN (their

-coordinates will be denoted by and ). Similarly
to the assumption regarding the RNs, we assume that the MBNs
in a strip are ordered left to right by the -coordinate of their
leftmost RN .

In order to evaluate the performance of the distributed algo-
rithms, we define the following standard performance measures.
We define the Time Complexity as the number of communica-
tion rounds required in reaction to an RN movement. We assume
that during each round a node can exchange errorless control
messages with its neighbors. We define the Local Computation
Complexity as the complexity of the computation that may be
performed by a node in reaction to its (or another node’s) move-
ment. We assume that the nodes maintain an ordered list of their
neighbors. Hence, the Local Computation Complexity refers to
the computation required to maintain this list as well as to make
algorithmic decisions.

IV. DECOMPOSITION FRAMEWORK

In this section we obtain an upper bound on the performance
of an approach that solves the CDC problem by decomposing
it and solving each of the two subproblems separately. The first
subproblem is the problem of placing the minimum number of
Cover MBNs such that all the RNs are connected to at least one
MBN. In other words, all the RNs have to satisfy only property
(1) in the CDC problem definition. This problem is the Geo-
metric Disk Cover (GDC) problem [15] which is formulated as
follows:

Problem GDC: Given a set of RNs (points) distributed in
the plane, place the smallest set of Cover MBNs (disks) such
that for every RN , there exists at least one MBN
such that .

The second subproblem deals with a situation in which a set
of Cover MBNs is given and there is a need to place the min-
imum number of Relay MBNs such that the formed network is
connected (i.e., satisfies only property (2) in the CDC problem
definition). This subproblem is equivalent to the Steiner Tree
Problem with Minimum Number of Steiner Points (STP-MSP)
[19] and can be formulated as follows:

Problem STP-MSP: Given a set of Cover MBNs
distributed in the plane, place the smallest set of Relay MBNs
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such that the undirected graph imposed
on (i.e., , define an edge

if ) is connected.
We now define a Decomposition Based CDC Algorithm and

bound the worst case performance of such an algorithm.
Definition 1: A Decomposition Based CDC Algorithm solves

the CDC problem by using a -approximation algorithm for
solving the GDC problem, followed by using a -approxima-
tion algorithm for solving the STP-MSP.

Theorem 1: For , the Decomposition Based CDC
Algorithm yields a -approximation for the CDC problem.

Proof: Define ALGO as the solution obtained by the De-
composition Based CDC Algorithm. Also, define
and as the set of Cover and Relay MBNs in ALGO.
Specifically, an MBN is a Cover MBN if it covers at least 1
RN (i.e., ). Otherwise, is a Relay MBN. Next, de-
fine as the overall optimal solution similarly broken
up into and . Thus we have that

where represents the optimal GDC of the RNs, and
represents the optimal STP-MSP solution

connecting the Cover MBNs placed by the approximate GDC
algorithm, .

Next, we make use of the fact that given as the
input Cover MBNs, a candidate STP-MSP solution can be
constructed by placing MBNs in the positions defined by the
nodes in . This is a valid STP-MSP solution, since

is a valid GDC for the RNs, and therefore, every
MBN in is at most a distance away from some
RN. Since is also a valid GDC, it follows that every
MBN in is at most a distance from some MBN
in . Therefore, as long as , the MBNs in

form a connected network. Finally,
since represents an STP-MSP solution that
must have a lower cost than this candidate solution, we have
that

where the second line follows from the fact that the optimal
GDC for the RNs is of lower cost than .

According to Theorem 1, even if the two subproblems are
solved optimally (i.e., with ), this yields a 2-ap-
proximation to the CDC problem. A tight example of this fact
is illustrated in Fig. 2. Fig. 2(a) shows an node instance of the
CDC problem, where refers to a sufficiently small con-
stant. Also shown is the optimal solution with cost MBNs.
Fig. 2(b) shows a potential solution obtained by using the de-
composition framework (with ), composed of an
optimal disk cover and an optimal STP-MSP solution. The cost
is MBNs. This example highlights the fact
that under the Decomposition Framework, the cover MBNs are
placed without considering the related problem of placing the
relay MBNs.

Fig. 2. Tight example of the approximation ratio of the decomposition algo-
rithm: (a) optimal solution and (b) decomposition algorithm solution.

Although in Sections V–VI we mainly focus on distributed
algorithms, we note that if a centralized solution can be toler-
ated, the approximation ratio of the GDC problem can be very
close to 1 (e.g., using a PTAS [15]). Similarly, the lowest known
approximation ratio of the STP-MSP solution (obtained by a
centralized algorithm) is 2.5 [3]. Therefore, by Theorem 1, the
framework immediately yields a centralized 3.5-approximation
algorithm for the solution of the CDC problem.2 This improves
upon the centralized 4.5-approximation algorithm, recently pre-
sented in [29]. Since both algorithms use a PTAS, their respec-
tive complexities are quite high. The key point with respect to
our Decomposition Framework is that any future improvement
to the approximation ratio of the STP-MSP will directly reduce
the CDC approximation ratio.

V. PLACING THE COVER MBNS—STRIP COVER

Hochbaum and Maass [15] introduced a method for ap-
proaching the GDC problem by (i) dividing the plane into
equal width strips, (ii) solving the problem locally on the
points within each strip, and (iii) taking the overall solution as
the union of all local solutions. Below we present algorithms
that are based on this method. These algorithms are actually
two different versions of a single generic algorithm. The first
version locally covers the strip with rectangles encapsulated in
disks while the second version locally covers the strip directly
with disks. We then generalize (to arbitrary strip widths) the
effects of solving the problem locally in strips and use this
extension to provide approximation guarantees. Finally, we
discuss distributed implementations of these algorithms.

A. Centralized Algorithms

For simplicity of the presentation, we start by describing the
centralized algorithms. The two versions of the Strip Cover al-
gorithm (Strip Cover with Rectangles—SCR and Strip Cover
with Disks—SCD) appear below. In line 6, the first version
(SCR) calls the Rectangles procedure and the second one (SCD)
calls the Disks procedure. The input is a set of points (RNs)

and their coordinates, . The
output includes a set of disks (MBNs)
and their locations such that all points are covered. The first step
of the algorithm is to divide the plane into strips of width

(recall that ). The values of that guar-
antee certain approximation ratios will be derived below. We
denote the strips by and the set of MBNs in strip by .

2When we use our distributed algorithms (presented in Sections V–VI) within
the framework, the overall approximation ratio is higher.
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Fig. 3. An example illustrating step 9 of the SCR algorithm.

An example of the SCR algorithm and in particular of step
9 in which disks are placed such that they compactly cover all
points in the rectangular area with -coordinate range to

is shown in Fig. 3.
As mentioned above, Gonzalez [9] presented an algorithm for

covering points with unit-squares. It is based on dividing the
plane into equal width strips and covering the points in each of
the strips separately. In [5] it was indicated that when the same
algorithm is applied to covering points with unit disks, the ap-
proximation ratio is 8. The SCR algorithm is actually a slight
modification to the algorithm of [9]. Unlike in [9], in our algo-
rithm we allow the selection of the strip width. This will enable
us to prove that the approximation ratio for covering points with
unit disks is actually 6.

The SCD algorithm requires to answer the following question
(in Step 12): can a set of points be covered by a single
disk of radius ? This is actually the decision version of the
1-center problem.3 Many algorithms for solving this problem
exist, an example being an algorithm due to [14].
We will show that solving the 1-center problem instead of com-
pactly covering rectangles (as done in the SCR algorithm) pro-
vides a lower approximation ratio.

The computational complexity of the SCR algorithm is
, resulting from sorting the points by ascending

-coordinate. In the SCD algorithm the 1-center subroutine
may potentially need to be executed as many as times
for each of the disks placed. Therefore, the computation

3The 1-center problem for a set of points� is to find the location of the center
from which the maximum distance to any point in � is minimized.

complexity is , where is the running time of
the 1-center subroutine used in steps 12 and 17. By using a
binary search technique to find the maximal , we can lower
the complexity to .

B. Worst Case Performance Analysis

Let algorithm denote the local algorithm within a strip, and
let denote the cardinality of the GDC solution found by
algorithm covering only the points in strip . Let algorithm

represent the overall algorithm, which works by running al-
gorithm locally within each strip and taking the union of the
local solutions as the overall solution. In our case algorithm is
either the SCR or SCD algorithm and algorithm is composed
of steps 4–7 within the for loop.

Let represent the cardinality of an optimal solution
of the GDC problem in the plane and the cardinality
of an optimal solution for points exclusively within strip .
Note that , since can utilize disks
covering points across multiple strips. Finally, let denote
the worst case approximation ratio of algorithm . Namely,
is the maximum of over all possible point-set
configurations in a strip . Similarly, let denote the worst
case approximation ratio of algorithm .

We characterize as a function of . Namely, if ,
the cardinality of the solution found by algorithm is at most

times that of the optimal solution, . The
proof can be found in [25].

Observation 1: If the strip width is , a single disk can
cover points from at most strips.

Lemma 1: If the strip width is , .
We now show that in the SCR algorithm, . This ap-

proximation ratio is tight, as illustrated in Fig. 4(a). We pro-
vide an inductive proof, since a similar proof methodology will
be used in order to obtain the approximation ratios of the other
GDC algorithms.

Lemma 2: If the strip width , steps 4–7 of the
SCR algorithm provide a 2-approximation algorithm for the
GDC problem within a strip.

Proof: Consider some strip . Let
and

denote an optimal in-strip solution and SCR in-strip subroutine
(steps 4–7) solution, respectively. Recall that we assume that
the MBNs of both and are ordered from left to
right by -coordinate of the leftmost covered point (i.e.,
if ). Finally, define as the th algorithm
disk (from the left) corresponding to the disk that covers the
rightmost point covered by the th disk .

Let , . We now prove by induction that if
, the in-strip subroutine has approximation ratio of 2,

i.e., .
Base Case: The area covered by (the leftmost optimal

disk) is bounded by a rectangle with -coordinate range
(the -coordinate of the leftmost point) to . The min-
imum area covered by two SCR algorithm disks whose leftmost
point is is a rectangle with -coordinate range to

. Thus, if , . This
condition is met if .
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Fig. 4. Tight examples of the 2 and 1.5 approximation ratios obtained by the
in-strip subroutines of the (a) SCR and (b) SCD algorithms.

Inductive Step: Assume that the in-strip algorithm uses
no more than disks to cover all the points covered by

(i.e., ). Consider the number of additional
disks it takes for the algorithm to cover the points covered by

. Since all of the points up to the rightmost
point of are already covered, by the same argument as the
base case, the algorithm will use at most 2 extra disks to cover
the points covered by . It thus follows that if ,

.
By combining the results of lemmas 1 and 2, we obtain the

approximation ratio of the SCR algorithm.
Theorem 2: If , the SCR algorithm is a

6-approximation algorithm for the GDC problem.
Proof: Define algorithm A as the in-strip subroutine of the

SCR algorithm (steps 4–7) and algorithm B as the SCR algo-
rithm. From Lemma 2, for , . From Lemma
1, , the minimum value of which (for

) is . This is attained when .
In the lemma below we show that for the SCD algorithm

. The proof (omitted for brevity and can be found in
[25]) follows from an inductive argument very similar to that of
Lemma 2. The key difference is that given a leftmost RN cov-
ered by an OPT disk , if either (i) is the rightmost OPT disk
or (ii) , then the SCD algorithm will only use
1 disk to cover the RNs covered by . In contrast, in such a case
the SCR algorithm may still use 2 disks.

Lemma 3: If , steps 4–7 of the SCD algorithm
provide a 1.5-approximation algorithm for the GDC problem
within a strip.

Combining this result with Lemma 1 (similarly to the deriva-
tion of Theorem 2), we obtain the approximation ratio of the
SCD algorithm. The approximation ratio for the in-strip sub-
routine of the SCD algorithm is tight, as shown in Fig. 4(b). For
the problem instance presented in the figure, the optimal solu-
tion requires 2 disks, whereas the SCD algorithm always places
3 disks.

Theorem 3: If , the SCD algorithm is a
4.5-approximation algorithm for the GDC problem.

C. Average Case Performance Analysis

Up to now we discussed the worst case performance. We now
wish to bound the approximation ratios in the average case. We
assume that the RNs are randomly distributed according to a two
dimensional Poisson process of density . A key
property of such a distribution is that when the number of RNs
is given, their positions are independent and each is uniformly
distributed in the plane. Due to the random locations of the RNs,

the number of MBNs placed by an optimal algorithm, is
a random variable. Similarly, we define and as
random variables corresponding to the number of disks placed
by the SCR and the SCD algorithms. We define the average
approximation ratios and as

It should be noted that differs from the expected value of
the approximation ratio (e.g., ). Yet, it pro-
vides a good measure of the average performance.

The following theorem and corollary bound the average ap-
proximation ratios of both the SCR and SCD algorithms (since
SCD always outperforms SCR). The proof of the theorem is by
combining the results of the following lemmas. The proofs of
the lemmas and the corollary can be found in the Appendix.

Theorem 4: Given RNs distributed in the plane according to
a two dimensional Poisson process with density

(1)

Corollary 1: If , then .
The consequence of the above is that although the worst case

approximation ratios of the SCR/SCD algorithms are 6 and 4.5
(respectively), selecting a specific strip width results in an av-
erage approximation ratio which is bounded by 3. It is inter-
esting to note that this strip-width lies in the range required for
the worst case analysis of theorems 2 and 3.

Lemma 4: Given a strip width , and an
planar area

Lemma 5: Given an planar area

Finally, note that for a large number of RNs, the assumption
that they are uniformly distributed is perhaps not realistic. In
general, the RNs may tend to cluster together, resulting in nodes
concentrated within single strips (rather than spread across a
large number of strips). This will result in a better average case
performance, since the strip-based algorithms are most effective
when covering RNs within a single strip. Thus, and
derived in this section are actually upper bounds on realistic
average approximation ratios.

D. Distributed Implementation

The SCR and SCD algorithms can be easily implemented in
a distributed manner. The algorithms are executed at the RNs
and operate within the strips. The SCR algorithm executed at an
RN is described below. Recall that we denote the RNs within a
strip according to their order from the left (i.e., if ).
Ties are broken by node ID.

Every RN that has no left neighbors within distance ini-
tiates the disk placement procedure that propagates along the
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strip. The propagation stops once there is a gap between nodes
of at least . If an RN arrives from a neighboring strip or leaves
its MBN’s coverage area, it initiates the disk placement proce-
dure that may trigger an update of the MBN’s locations within
the strip. Notice that MBNs only move when a recalculation is
required. Although the responsibility to place and move MBNs
is with the RNs, simple enhancements would allow the MBNs
to reposition themselves during the maintenance phase. If after a
recalculation, an MBN is not repositioned, then it is not required
and can be used elsewhere. The time complexity (i.e., number
of rounds) is . The computation complexity is .
Control information has to be transmitted between RNs over a
distance .

The distributed SCD algorithm is similar to the distributed
SCR algorithm. The main difference is that in Step 10 of Place
MBN, is defined as the rightmost coverable point (by a single
disk of radius ), given that is the leftmost point. Finding this
point requires solving 1-center problems. Then, in Step V-D a
disk that covers all the points between and should be placed.
The time complexity of the distributed SCD algorithm is again

. The local computation complexity is to
calculate the value of , where is the running time of the
1-center subroutine used.

VI. PLACING THE COVER MBNS—MOBILE COVER

A. MObile Area Cover (MOAC) Algorithm

In the SCR and SCD algorithms, an RN movement may
change the allocation of RNs to MBNs along the whole strip.
Thus, although they may operate well in a relatively static en-
vironment, it is desirable to develop algorithms that are more
tailored to frequent node movements. In particular, it is desirable
to develop algorithms that are adaptive, i.e., require only local
updates in response to local node movements. In this section we
present such an algorithm which builds upon ideas presented in
[13]. Hershberger [13] studied the problem of covering moving
points (e.g., RNs) with mobile unit-squares (e.g., MBNs). Since
the -dimensional smooth maintenance scheme proposed in
[13] does not easily lend itself to distributed implementation,
we focus on the simple 1-D algorithm proposed there.

Applied to our context, the Simple 1-D algorithm covers mo-
bile RNs along the strip with length rectangles (MBNs). The

key feature is that point transfers between MBNs are localized.
Namely, changes do not propagate along the strip. According
to [13], the algorithm has a worst case performance ratio of
3.4 Extending the Simple 1-D algorithm of [13] to diameter

disks is not straightforward. We will first show that an at-
tempt to simply use rectangles encapsulated in disks without
any additional modifications results in a 4-approximation to the
GDC problem within a strip. Then, we will present the MObile
Area Cover (MOAC) algorithm which reduces the approxima-
tion ratio to 3.

We define the strip width as . We reduce disks
to the rectangles encapsulated in them and use these rectan-
gles to cover points within the strip, as was depicted in Fig. 3.
The rectangles cover the strip width and their length is at
most . We set and (resulting in

). These are arbitrary values selected for the
ease of presentation. Yet, the algorithm and the analysis are ap-
plicable to any . In Algorithm 3, we restate
the set of rules from [13] using our terminology and assuming
(unlike [13]) that the rectangles’ lengths are at most 2/3.

The following lemma provides the performance guarantee of
this algorithm. The proof follows a similar inductive method-
ology as that of Lemma 2, with the key observation that at most
5 algorithm MBNs can cover RNs covered by a single optimal
MBN. Notice that since the changes are kept local, the approxi-
mation ratio holds at all time (i.e., there is no need to wait until
the changes propagate).

Lemma 6: The Simple 1-D algorithm [13] with
is at all times a 4-approximation algorithm for the GDC

problem within a strip.
Recall that the overall solution to the GDC problem in the

plane involves combining the solutions obtained in every strip.
Due to lemmas 1 and 6, if implemented simultaneously in every
strip, the algorithm provides a 12-approximation for the GDC
problem in the plane, which is relatively high. We now focus on
enhancements that reduce the approximation ratio while main-
taining the desired locality property.

Fig. 5 presents an example which shows that the approxi-
mation ratio described in Lemma 6 is tight. It is shown that
optimal MBN can cover RNs that are covered by 4 algo-
rithm MBNs. Two of these algorithm MBNs cover RNs that
are within 2/3-length rectangles, while the two other cover a

4We note that using the same inductive proof methodology, used for Lemma
2, one can show that the simple 1-D algorithm actually maintains a 2-approxi-
mation at all times.
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Fig. 5. Worst case example for the performance of the Simple 1-D algorithm:
(a) algorithmic solution and (b) optimal solution. The number of optimal MBNs
is denoted by �.

single RN. Similarly, covers RNs from 4 additional algo-
rithm MBNs, and so on. Optimal MBN covers RNs from
exactly 3 algorithm MBNs that have not been covered by op-
timal MBNs . The resulting approximation ratio
is . One of the sources of inefficiency is
the potential presence of -length MBNs (e.g., covering a single
RN) that cannot merge with their 2/3-length neighbor MBNs.
Thus, up to 5 MBNs deployed by the Simple 1-D algorithm may
cover points which are covered by a single optimal MBN (e.g.,

in Fig. 5). As long as such narrow MBNs can be avoided,
a better approximation can be achieved. We now modify the
Simple 1-D algorithm to yield the MOAC algorithm in which
-length MBNs cannot exist.

Before describing the algorithm, we make the following def-
initions. For MBN , in addition to its leftmost and rightmost
RNs, defined earlier, as and , we also define and as
the -coordinates of its left and right domain boundaries. The in-
terpretation of MBN ’s domain is that any point in the -range
of will automatically become a member point of MBN

. Recall that by definition MBN is to the left of MBN if
.

The MOAC algorithm operates within strips and maintains
the following invariants in each strip (in order of priority) at all
times, for every MBN :

1) Domain definition: .
2) Domain length5: .
3) Domain disjointness: , .
4) Domain influence: , .
The MOAC algorithm is described below. It consists of rules

regarding construction and maintenance of the MBNs’ domains.
In particular, the Initialization phase that places the MBNs and
constructs their domains is described in lines 1–4. In order to
initially cover all the RNs, the MBNs are placed according to
the SCR algorithm. Then, for each MBN, the left and right do-
main boundaries ( and ) are set as the -coordinates of the
leftmost RN covered by the MBN and the rightmost edge of the
rectangle generated by SCR (recall the example in Fig. 3). In
line 4 all the RNs within the boundaries are associated with the
MBN. Since for , SCR generates 2/3-length rectangles,
at the end of the phase all the invariants hold.

5The upper bound is the coverage length of a MOAC MBN (here arbitrarily
chosen as

�
�� � � � ���). To maintain the algorithm’s properties, the

lower bound should be half of the upper bound and their sum should be at least
one. In addition, due to Lemma 1, � � ��� has to hold.

The Maintenance phase (lines 5–11) accounts for the situa-
tion in which an RN leaves its MBN’s domain boundary.6 If the
RN moves into a domain of another MBN, it is removed from
the set of RNs covered by the MBN. The Disconnection phase
will immediately take care of assigning it to the new MBN. Oth-
erwise, the algorithm tries to move the right boundary such that
the RN will be covered and the MBN’s domain will be at most
2/3 (we refer to such an operation as stretching ). Finally, if
the RN cannot be covered by stretching , it is removed from
the set of points covered by the MBN. The Disconnection phase
will immediately create a new MBN for it.

The Disconnection phase takes care of cases in which an RN
is disconnected from its MBN (as described above) and cases
in which an RN enters from a neighboring strip. In the simplest
cases, such an RN joins an existing MBN whose boundaries may
have to be stretched in order to cover it. In other cases, a new
MBN is created in order to cover the RN. It has to be carefully
created such that its domain length is at least 1/3. Note that the
operations in lines 22–26 can always be accomplished without
violating invariant (2). This is due to the fact that an MBN is
created for point only if (otherwise MBN

6For brevity, we only state the operations when an RN moves to the right of
the boundary (there are analogous operations for a leftward movement).
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would have been stretched to cover ), which implies there
is enough space for two MBNs of size greater or equal to 1/3 to
coexist.

Finally, in the Merge phase, two neighboring MBNs have to
be merged since all their RNs are within a 2/3-long interval. It
can be initiated by movements of some of the RNs or imme-
diately following the previous phases. Following the merge in
line 28, the MBN should update its and such that the do-
main will include all RNs and will satisfy invariant (2). This
is always possible, since the two merged MBNs satisfy the in-
variants prior to their merger. We note that the algorithm can
be implemented in distributed manner by applying some of the
rules at the MBNs and some of them at disconnected (i.e., un-
covered) RNs (it should be clear from the context where each
rule should be applied).

The following lemma provides the performance guarantee of
the MOAC algorithm within the strip. Its proof is almost iden-
tical to that of Lemma 6. The main difference is that due to
the enforced Domain invariants, at most 4 algorithm MBNs can
cover RNs covered by a single optimal MBN. From Lemma 1
it follows that if MOAC is simultaneously executed in all strips,
it is a 9-approximation algorithm.

Lemma 7: The MOAC algorithm is a 3-approximation algo-
rithm at all times for the GDC problem within a strip.

The time complexity of the MOAC algorithm is , since
all node exchanges are local. The local computation complexity
is potentially , due to the operation in line 23. The only
assumption required is that MBNs and disconnected RNs have
access to information regarding , , and of their im-
mediate neighbors to the right and left (as long as they are less
than away). Thus, in terms of complexity, MOAC is the best
of the distributed algorithms.

B. Merge-and-Separate (MAS) Algorithm

The relatively high approximation ratio of the MOAC algo-
rithm results from the fact that it reduces disks into rectangles,
thereby losing about 35% of disk coverage area. The difficulty
in dealing with disks is that there are no clear borders and that
even confined to a single strip, many disks can overlap although
they cover disjoint nodes.

On average any algorithm with a merge rule should per-
form well. However, just having a merge rule is not sufficient
in the rare but possible case where many mutually pairwise
non-mergeable MBNs move into the same area. Based on this
premise, we present the Merge-And-Separate (MAS) algorithm
as an algorithm which merges pairwise disks where possible
(similar to the MOAC algorithm), and separates disks if too
many mutually non-mergeable disks concentrate in a small
area. As will be shown, the MAS algorithm retains some of the
localized features of the MOAC and obtains a better perfor-
mance ratio. However, this comes at a cost of increased local
computation complexity.

We define the strip-widths as and set ,
, . These are arbitrary values selected

for the ease of presentation, the algorithm and the analysis are
applicable to any . Let and
be the -coordinates of the rightmost and leftmost points of

. The algorithm is initialized by covering the

Fig. 6. The Separation rule of the MAS algorithm.

nodes within a strip with MBNs by using the distributed SCR
algorithm. The algorithm that then operates at an MBN is de-
scribed above. We note that as in the previous algorithms, most
of the operations are performed in reaction to an RN movement.
However, in order to maintain the locality of the algorithm, the
Separation operation is performed periodically at each MBN.
Fig. 6 demonstrates the Separation done at lines 8–11. For cor-
rectness of the algorithm, we assume that both the merge and
separate operations can be executed atomically (i.e., without any
interrupting operation).

Define steady state as any point in time in which there are no
merge or separate actions currently possible. Below we describe
the performance of the MAS algorithm.

Lemma 8: In steady state, the MAS algorithm is a 2-approx-
imation algorithm for the GDC problem within a strip.

Since point transfers are local (i.e., only take place between
adjacent MBNs), the time complexity is . The computation
complexity is to evaluate the merge and the create
rules, where is the running time of the 1-center subroutine
used. In order to make the required decisions, we assume that
an MBN has access to all nearby (i.e., within a distance of )
MBNs’ point-sets and locations.

VII. PLACING THE RELAY MBNS

Recall that in Section IV we showed that the CDC problem
can be decomposed into two subproblems. In this section, we
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Fig. 7. STP-MSP solutions: (a) Optimal (4 Relay MBNs) and (b) MST-based
(6 Relay MBNs).

Fig. 8. An example of the sets � , � , and � in the Discretization Approach.

focus on the second subproblem that deals with a situation in
which a set of nodes (Cover MBNs) is given and there is a need to
place the minimum number of nodes (Relay MBNs) such that the
resulting network is connected. Recall that the distance between
connected MBNs cannot exceed . This problem is equivalent
to the Steiner Tree Problem with Minimum number of Steiner
Points (STP-MSP) [19].

In [19] a 4-approximation algorithm that places nodes along
edges of the Minimum Spanning Tree (MST) which connects
the Cover MBNs was proposed. In [2] an improved MST-based
algorithm with an approximation ratio of 3 was proposed. These
algorithms are simple and perform reasonably well in practice.
However, their main limitation is that they only find MST-based
solutions. Namely, since the Relay MBNs are in general placed
along the edges of the MST, these algorithms cannot find so-
lutions in which a Relay MBN is used as a central junction
that connects multiple other Relay MBNs. An example demon-
strating this inefficiency appears in Fig. 7.

We now present and analyze a Discretization Approach
which provides a theoretical footing towards applying the vast
family of discrete and combinatorial approaches that can poten-
tially rectify the above inefficiency. The approach transforms
the STP-MSP from an Euclidean problem to a discrete problem
on a graph. Although the transformed problem does not admit
a constant factor approximation, in many practical cases it can
be solved optimally. We will show that if such a solution is
obtained, it is a 2-approximation for the STP-MSP.

Our approach is based on an idea used by Provan [22] for
dealing with the continuous analog of the STP-MSP problem,
the Euclidean Steiner Minimal Tree (ESMT) problem [7]. In
[22] it was proposed to discretize the plane and to solve a Net-
work Steiner Tree problem [7] on the induced graph, yielding
an efficient approximate solution for the ESMT. We present a
somewhat similar approach for solving the STP-MSP problem.
Our approach is quite different from the approach of [22], since
the STP-MSP problem is more sensitive to discretizing the plane
than the ESMT problem.

Define as the lattice of points in the plane generated by
gridding the plane with horizontal/vertical spacing , the exact
value of which will be derived later. Next, define as the set
of pairwise intersection points of radius circles drawn around
each of the Cover MBNs. For the intersection region of any two
circles, add three equally spaced points along the line between
the two intersection points. Let denote the set of these points.
The sets , and are illustrated in Fig. 8. Finally, define

as the convex hull of the of Cover MBNs. We can
now define

where we define a special intersection operator to ensure
that we pick enough points to be in such that

.
For all , if , we define an edge . We

denote the set of edges by and the induced graph by
. Let the node weights be denoted by . We now state the

Node-Weighted Steiner Tree (NWST) problem [11], [18], [24],
which has to be solved as part of our Discretization algorithm,
presented above.

Problem NWST: Given a node-weighted undirected graph
with zero-cost edges and a terminal set

, find a minimum weight tree spanning .
The set of nodes selected in step 5 correspond to the Relay

MBNs in the STP-MSP solution. We assume that step 5 is per-
formed by a -approximation algorithm. The following
theorem provides the performance guarantee of the Discretiza-
tion algorithm.

Theorem 5: If , the Discretization algorithm is a
-approximation algorithm for the STP-MSP.

Our methodology in proving the theorem is as follows. We
start by assuming the optimal STP-MSP tree is known, and
describe a method to construct a candidate Steiner tree in

from this optimal tree. We then use the definition of in
order to bound the ratio between an approximate solution to the
Node-Weighted Steiner Tree (NWST) problem in to the op-
timal solution of the STP-MSP in the plane.

Recall that the set of terminals/Cover MBNs is given
as input to the problem. Define as the op-
timal solution to the STP-MSP. The node set is composed
of the Cover MBNs and the optimal set of Relay MBNs
denoted by . Below, we present an algorithm for the
construction of a candidate tree in the graph

. is constructed such that it is a feasible STP-MSP
solution. An example of steps 4–5, 7, and 12–14 of the algorithm
is illustrated in Fig. 9.

In the following lemma we show that is also a feasible
solution to the NWST problem in .
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Fig. 9. An example of the construction of the candidate tree� from the optimal
STP-MSP tree � .

Lemma 9: If , then , constructed by the CFS algo-
rithm, is a Steiner tree in .

Proof Outline: We have to show that connects all the
nodes from by a tree whose nodes are in and that the
edges added to are valid edges in . The nodes of (i.e.,

) are by definition in , since they are selected from . A
node in satisfying the condition in step 4 always exists, since

includes the intersections of radius circles drawn around
each of the Cover MBNs.

Regarding the edges of (i.e., ), note that those added
in steps 2 and 5 must be valid in , since by definition they
represent edges between nodes in that are less than apart.
The final part involves showing that edges added between new
Relay MBNs (i.e., in steps 10 and 14) are of length at most .
This is done by using the triangle inequality and the definition
of the set . A detailed proof appears in [25].

The next lemma shows that the number of Relay MBNs in
, i.e., , is less than twice the

number of Relay MBNs in the optimal solution of the STP-MSP
( ). The proof of the Lemma and that of Theorem 5 can be
found in the Appendix.

Lemma 10: In , constructed by the CFS algorithm,
.

It was shown in [18] that the NWST problem does not admit
a constant factor approximation algorithm and that the best the-
oretically achievable approximation ratio is , where is the
number of terminals (in our formulation ). In-
deed, for the case in which all node weights are equal, [11] pre-
sented a -approximation algorithm. Thus, in general, the
Discretization algorithm yields a worst case approximation ratio
of . However, in some cases the NWST problem
can be solved optimally by discrete methods such as integer
programming [24]. Since in such cases , the ap-
proximation ratio will be 2. Notice that it is likely that the Dis-
cretization algorithm will have better average performance than
the MST-type algorithms, due to the use of Relay MBNs as cen-
tral junctions.

Since the Discretization algorithm takes care of placing only
the Relay MBNs, it might be feasible to implement it in a cen-
tralized manner, as described above. Yet, if there is a need for
a distributed solution, one of the MST-based algorithms [2],
[19] should be used. Since these algorithms do not deal very
well with the mobility of Cover MBNs, the development of dis-
tributed algorithms for the STP-MSP that take into account mo-
bility remains an open problem.

VIII. JOINT SOLUTION

Using the decomposition framework presented in Section IV,
the overall approximation ratio of the CDC problem is the sum
of the approximation ratios of the algorithms used to solve the
subproblems. Hence, this framework yields a centralized 3.5-
approximation algorithm. We note that the Discretized algo-
rithm developed in the previous section can be applied towards
solving the CDC problem. Accordingly, in specific instances
when the NWST problem can be solved optimally (e.g., using
integer programming), a centralized 2-approximate solution for
the CDC problem can be obtained.

The key insight is that the CDC problem can be viewed as
an extended variant of the STP-MSP. Namely, given a set of
RNs (terminals) distributed in the plane, place the smallest set
of MBNs (Steiner points) such that the RNs and MBNs form
a connected network. Additionally, RNs must be leaves in the
tree, and edges connecting them to the tree must be of length at
most . The other edges in the tree must be of at most .

For the Discretization algorithm to apply, we need to make the
following modifications. First, in the definition of the vertex set

, should be replaced with the set of RNs, . Second,
and should now be defined with respect to the pairwise

intersections of radius circles drawn around each of the RNs.
Finally, in the definition of the edge set , RNs should only
have edges to vertices in within distance , and no two RNs
should have an edge between them. With these modifications, it
can be shown that if and , the Discretization
algorithm is a -approximation algorithm for the overall
CDC problem.

IX. PERFORMANCE EVALUATION

We now briefly discuss the tradeoffs between the complexi-
ties and approximation ratios of the GDC algorithms, and eval-
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Fig. 10. The average number of Cover MBNs used by GDC algorithms over a
time period of 500 s.

Fig. 11. An example comparing solutions obtained by (a) an optimal Disk
Cover and the STP-MSP algorithm from [2], and (b) the Discretization algo-
rithm using an NWST algorithm [18].

TABLE II
TIME COMPLEXITY (# OF ROUNDS), LOCAL COMPUTATION COMPLEXITY, AND

APPROXIMATION RATIO OF THE DISTRIBUTED GDC ALGORITHMS (���� IS

THE COMPLEXITY OF A DECISION 1-CENTER ALGORITHM)

uate via simulation the GDC algorithms in a mobile environ-
ment. We also focus on the CDC problem and compare results
obtained by the Discretization Approach to those obtained by
decomposing the problem. Additional results can be found in
[25].

Table II shows the complexities and approximation ratios of
the distributed GDC algorithms. It can be seen that there are
clear tradeoffs between decentralization and approximation.
These tradeoffs are further demonstrated by simulation. Fig. 10
presents simulation results for a network with mobile RNs.
The Random Waypoint mobility model is used, wherein RNs
continually pick a random destination in the plane and move

7The approximation ratio of the MAS algorithm holds when the algorithm is
in steady state.

Fig. 12. Number of MBNs as a function of the number of RNs computed
by: (i) the decomposition approach using the SCD with the MST-based [19]
algorithms, (ii) the decomposition approach using the SCD with the modified
MST-based [2] algorithm, and (iii) the Discretization algorithm.

there at a random speed in the range , where
and . We used a plane of

dimensions 600 m 600 m and set . The figure
shows the average number of MBNs used over a 500 s time
period as a function of the number of RNs. Each data point is
an average of 10 instances (each instance was simulated over
1000 s from which the first 500 s were discarded).

Next we compare solutions of the CDC problem obtained
by the decomposition framework to joint solutions obtained by
the Discretization algorithm. Fig. 11 depicts a random example
of 10 RNs distributed in a 1000 m 1000 m area8The com-
munication ranges of the RNs and the MBNs are
and , respectively. In the decomposition frame-
work, we used an optimal disk cover (obtained by integer pro-
gramming) and the 3-approximation STP-MSP algorithm from
[2]. The Discretization algorithm uses the NWST approxima-
tion algorithm from [18]. In this example, the joint solution
requires 12 MBNs while the decomposition based solution re-
quires 15 MBNs..

Fig. 12 presents similar results for a general case with the
same parameters (area, , and ). The Decomposition frame-
work used the SCD algorithm along with the MST algorithm
[19] and along with the Modified MST-based algorithm [2].
Each data point is averaged over 10 random instances. It can be
seen that the joint solution provides a significant performance
improvement (about 25% for a large number of RNs). Yet, while
the decomposition framework uses distributed algorithms, the
joint solution is centralized. Thus, a reasonable compromise
could be to place the Cover MBNs in a distributed manner
and to place the Relay MBNs by a centralized Discretization
Approach.

X. CONCLUSIONS

The architecture of a hierarchical Mobile Backbone Net-
work has been presented only recently. Such a design can

8We deliberately selected a small number of RNs in order to demonstrate a
partitioned network that requires Relay MBNs.



SRINIVAS et al.: CONSTRUCTION AND MAINTENANCE OF WIRELESS MOBILE BACKBONE NETWORKS 251

Fig. 13. Probabilistic analysis of the SCR algorithm within a strip.

significantly improve the performance, lifetime, and reliability
of MANETs and WSNs. In this paper, we concentrate on
placing and mobilizing backbone nodes, dedicated to main-
taining connectivity of the regular nodes. We formulated the
Backbone Node Placement problem as the Connected Disk
Cover problem and showed it can be decomposed into two
subproblems. We proposed several distributed algorithms for
the first subproblem (Geometric Disk Cover), bounded their
worst case performance, and studied their performance under
mobility via simulation. As a byproduct, it has been shown that
the approximation ratios of algorithms presented in [9] and
[13] are 6 and 2. A new approach for the solution of the second
subproblem (STP-MSP) and of the joint problem (CDC) has
also been proposed. We showed via simulation that when it is
used to solve the CDC problem in a centralized manner, the
number of the required MBNs is significantly reduced.

This work is the first approach towards the design of dis-
tributed algorithms for construction and maintenance of a Mo-
bile Backbone Network. Hence, there are still many open prob-
lems to deal with. For example, moving away from the strip ap-
proach may be beneficial. There is also a need for distributed
algorithms for the STP-MSP, capable of dealing with Cover
MBNs mobility. A major future research direction is to gener-
alize the model to other connectivity constraints and other ob-
jective functions. Finally, it is important to address the problem
when the number of available MBNs is fixed.

APPENDIX

Proof of Lemma 4: Consider a single strip , of width
. Since the RNs are distributed in the plane according to a

two dimensional Poisson process, the horizontal ( -coordinate)
distance between RNs is exponentially distributed with mean

. Thus, the expected distance to the location of the first
disk is (see Fig. 13). Once a disk is placed, the
expected distance between the end of its coverage and the start
of the next disk is denoted by . Due to the memoryless
property of the exponential random variable, .
Therefore, the expected number of disks used within a strip
(denoted by ) is the total length of the strip (less
the initial space) divided by the expected distance between the
start of one disk and the start of another. Namely, assuming that

The expected number of disks used in the plane is
multiplied by the number of strips.

Proof of Lemma 5: To lower bound the expected number
of disks required by the optimal solution, we divide the plane

into horizontal strips of width separated by vertical distances
. We first lower bound the expected number of optimal

disks required to cover RNs in a -width strip (denoted by
). Within such a strip, the area covered by each

disk is at most a rectangle of size . Using a similar
argument to that of Lemma 4, once a disk is placed the expected
distance between the end of its coverage area and the start of
the next disk is . Assuming that ,
is at least the strip length divided by the expected distance
between the start of one disk and the start of another. Namely,

.
Since the distance between -width strips is , it is impos-

sible for an OPT disk to cover RNs from multiple strips. More-
over, since there may be RNs between the strips, there will be a
need for more OPT disks than the ones used to cover the -width
strips. Therefore, the expected number of OPT disks required in
order to cover only RNs in the -width strips is a lower bound
on the expected number of OPT disks required for the whole
plane. Such a bound can be found by multiplying
by the number of -width strips, i.e.,

(2)

For the tightest possible lower bound, we select to maximize
; achieves this, and yields the result.

Proof of Corollary 1: We derive the maximum value of (1)
by differentiating with respect to , obtaining

(3)

For , (3) is minimized when , at which
point it attains a value of 3.

Proof of Lemma 10: In the CFS algorithm, each Relay
MBN in is replaced by a Relay MBN in (steps
4 and 7). For each edge connecting a pair of Relay MBNs in

, at most one additional MBN is added in ( in step
13). Since is a tree, there can be at most
such edges. Therefore, the total number of Relay MBNs in is,

.
Proof of Theorem 5: Let the number of Relay MBNs in

and be and , re-
spectively. Recall that in the Discretization algorithm, the Cover
MBNs in were assigned a weight of 0 and the other nodes
were assigned a weight of 1. Let be the optimal (min-
imum weight) Node-Weighted Steiner Tree (NWST) in and
denote its weight by . Due to Lemma 9 when

, is a feasible solution to the NWST problem in . There-
fore, and due to Lemma 10

(4)

In Step 5 of the Discretization algorithm, the NWST problem
in is solved by a approximation algorithm. We de-
note the obtained solution by and denote the number of
Relay MBNs in this solution by . From (4) we get that

.
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