LECTURE 1 : Introduction

Handout

Lecture outline

e Course outline, goal and mechanics
e Review of probability
e Define Entropy and Mutual Information

e Questionnaire

Reading: Ch. 1, Scts. 2.1-2.5.



Goals

Our goals in this class are to establish an
understanding of the intrinsic properties of
transmission of information and the rela-
tion between coding and the fundamental
limits of information transmission in the
context of communications

Our class is not a comprehensive introduc-
tion to the field of information theory and
will not touch in a significant manner on
such important topics as data compression
and complexity, which belong in a source-
coding class



Probability Space

(R, F,P)

e (2: Sample space, each w € 2 is the out-
come of an random experiment.

e F: set of events, £ ¢ F, E C S2.
e P: probability measure, P : F — [0, 1]

Axioms

o O, ¢p€F,

o if e F, then E¢¢e F,

o if Bh,Ep,...,€F, then 72, E; € F.

e P(Q2) =1,

e P(E°) =1-P(E),

o If Fq,FE5,..., are disjoint, i.e., E;NE; =
¢, Vi # j,

P (U Ez) = > P(E;)



Example: Flip two coins

Q = {HH, HT, TH, TT}
F = All subsets of 2
1
P({w}) = —

Example: Flip coins until see a head

Q={H,TH, TTH,...,}
F = All subsets of 2

P{TT.. T H}) = 2k*1
k

e Mapping between spaces and induced prob-
ability measure

e Sometimes we cannot assign probability
to each single outcome, e.qg., infinite se-
quence of coin tosses, P({w}) = 0.



Why we want such probability spaces

Reason 1 :conditional probability
Conditioning on an event B € F = change
of sample space:

Q2 — B
event A¢ F — ANB
P(A) — P(A|B)

Bayes rule:

P(ANB) _ P(BJA)P(A)

PAIB) = =5 5 P(B)

e J[otal probability theorem

e Independent events

Reason 2: random variables



Random Variables

A random variable X is a map from the
sample space 2 to R.

The map is deterministic, while the ran-
domness comes only from the underlying
probability space.

The map gives a change of probability space
and an induced probability measure.

Example X = the number of coin tosses
before the first head is seen.

P(X=k)=2F1Ek=0,1,...

A few things come free:

—

e Random vectors, X.

e Function of a random variable, ¥ = f(X).



Distributions

For a discrete random variable (r.v.),

e Probability Mass Function (PMF),

Px(2) = P(X = )

For a continuous random variable

e Cumulative Distribution Function (CDF
),
Fx(z) = P(X < z)

e Probability Density Function (PDF),

px () = - Fx(2)

expectation, variance, etc.



Entropy

Entropy is

e a Mmeasure of the average uncertainty as-
sociated with a random variable

e the randomness of a random variable

e the amount of information one obtained
by observing the realization of a random
variable

Focus on a discrete random variable with n
possible values:

P(X=z;)=mp;,i=1,...,n

e [ he partitioning of the sample space doesn't
matter.

e T he possible values, x;, doesn’'t matter.

Entropy is a function H(X) = H(p1,...,pn).



Define Entropy H(X) = H(p1,...,pn)

Requirement
e H is continuous in p.

o ifp = % then entropy monotonically in-
creases with n.

e can break into successive choices
111 11 1 21
1(335)=(33)+5 (33
23 6 22 2 3°'3
The only H satisfying these requirements:

n
H=—k ) p;logsp;
i=1



Definition
H(X) = — ) Px(z)logPx(x)

reX
= Ep[—log P(X)]

e Entropy is always non-negative.

Example: binary r.v.

¥ — O with probability p
] 1 with probability 1 —p

H(X)= —plogp—(1—p)log(1l—p)



Joint Entropy

The joint entropy of two discrete r.v.s
XY,

HX,Y)=— Y Pxy(z,ylogz (Pxy(zy))
rxeX yey
Example
X=0 X=1

Il

0| 1/2 1/3
1

Y
Y 0 1/6

Example Independent r.v.'s XY,

- > Pxy(wy)logs (Pxy(z,v))
reX ,ye)

= — Y  Pxy(=z,y) 1092 (Px(z)Py(y))
reX,yey

= — Y  Pxy(z,y)logy (Px(x))
TEX Yyey

— Z PX,y(x, y) |092 (PY(y))
reX,yey
= H(X)+ H(Y)

H(X,Y)



Conditional entropy

Conditional entropy: H(Y|X), a measure
of the average uncertainty in Y when the
realization of X is observed.

e condition on a particular observation X =
z, Py(y) — Pyix(ylz) = P(Y = y|X =
x),

H(Y|X =z) =~ ) Pyx(ylz)log Py x(y|z)
yey

e Average over all possible values of x:

H(Y|X) = - ) Px@H(Y[|X =2)
reX
= —) Pxy(z,y)log Py x(y|z)
T,y

= By(x.y)l-log P(Y] X))



Chain Rule of Entropy

Theorem: Chain Rule
H(X,Y) = H(X)+ H(Y|X)

Proof

H(X,Y)

— — Y Pey(ay)logalPyy (z.y)
rEX,yey

= — Y  Pxy(z,9)1092[Py|x (ylz) Px(z)]
rEX ,ye)

= — ). Pxy(z,y)10gs[Pyx(ylz)]
reX,yey

— Y. Pxy(z,y)loga[Px(x)]
rEX ,Yye)y
= H(Y|X)+ H(X)

or equivalently,
H(X,Y) = Ep(xy)l—logP(X,Y)]

EP(X’Y)[— log P(X) —log P(Y|X)]
H(X) + H(Y|X)



By induction

n
H(X1,...,Xn) =) H(XjX;..

1=1

Corollary

. Xi—1)

X,Y independent = H(X|Y) = H(X)

Back to the example

P |X=0 X=1
Y=0]| 1/2 1/3
Y=1| 0 1/6

111
H(X,Y)=H (—,—,—)
2’3’6
notice O0log 0 = 0.

o = (3}
1

H(Y|X) = CH(1,0)+ H

53)



Question: H(Y|X) = H(X|Y)~

H(X,Y)

H(Y|X) + H(X)
H(X|Y) + H(Y)

or equivalently

H(Y) - H(Y|X)=H(X)— H(X|Y)

Definition: Mutual Information

I(X:Y) H(X) — H(X|Y)
H(Y) — H(Y|X)
H(X)+ H(Y) — H(X,Y)

_ N Px y(z,y)
B :UEXZ,yEy PX’Y( w109 (PX(m)PY(y)>

The average amount of knowledge about
X that one obtains by observing the value
of Y.



Chain Rule for Mutual Information

Definition: Conditional Mutual Infor-
mation

I(X;Y|2) = H(X|Z) — HX|Y, Z)

Chain Rule:

I(X1,X2,Y)

H(X1,X5) — H(X1, X5|Y)

H(X1) + H(X2|X1) — H(X1|Y) — H(X2|Y, X1)
I(X1;Y) 4+ 1(X2;Y[X7)

By induction

n
I(X1,..., Xn;Y) =) I(X;Y[X1...X;-1,Y)
i=1



