
LECTURE 1 : Introduction


Handout 

Lecture outline 

Course outline, goal and mechanics
• 

Review of probability • 

Define Entropy and Mutual Information • 

Questionnaire• 

Reading: Ch. 1, Scts. 2.12.5. 



Goals


Our goals in this class are to establish an 

understanding of the intrinsic properties of 

transmission of information and the rela

tion between coding and the fundamental 

limits of information transmission in the 

context of communications 

Our class is not a comprehensive introduc

tion to the field of information theory and 

will not touch in a significant manner on 

such important topics as data compression 

and complexity, which belong in a source

coding class 



�


Probability Space


(Ω,F , P )


•	 Ω: Sample space, each ω ∈ Ω is the out
come of an random experiment. 

•	 F: set of events, E ∈ F, E ⊂ Ω. 

•	 P : probability measure, P : F → [0,1]


Axioms 

•	 Ω, φ ∈ F, 

•	 if E ∈ F, then Ec ∈ F, 

•	 if E1, E2, . . . ,∈ F, then 
�∞ .i=1 Ei ∈ F

P (Ω) = 1,• 

•	 P (Ec) = 1 − P (E), 

•	 If E1, E2, . . . , are disjoint, i.e., Ei ∩ Ej = 
φ,∀i = j,


⎛ ⎞ 

P ⎝

 

Ei
⎠ = 

� 
P (Ei) 

i	 i
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Example: Flip two coins


Ω = {HH, HT, TH, TT} 

F = All subsets of Ω 

1

P ({ω}) = 

4


Example: Flip coins until see a head


Ω = {H, TH, TTH, . . . , } 

F = All subsets of Ω 

P ({TT...T H}) = 2k+1 

k 

Mapping between spaces and induced prob• 

ability measure 

Sometimes we cannot assign probability •


to each single outcome, e.g., infinite se

quence of coin tosses, P ({ω}) = 0. 



Why we want such probability spaces


Reason 1 :conditional probability 

Conditioning on an event B ∈ F = change 

of sample space: 

Ω B → 

event A ∈ F → A ∩B 

P (A) P (A B)→ |
Bayes rule: 

P (B A)P (A)
P (A|B) = 

P (A ∩B)
= 

|

P (B) P (B)


Total probability theorem
• 

Independent events • 

Reason 2: random variables
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Random Variables


A random variable X is a map from the 

sample space Ω to R. 

The map is deterministic, while the ran

domness comes only from the underlying 

probability space. 

The map gives a change of probability space 

and an induced probability measure. 

Example X = the number of coin tosses 

before the first head is seen. 

P (X = k) = 2k+1, k = 0,1, . . . 

A few things come free: 

Random vectors, X. • 

Function of a random variable, Y = f(X).• 



Distributions


For a discrete random variable (r.v.), 

Probability Mass Function (PMF), • 

PX (x) = P (X = x) 

For a continuous random variable 

Cumulative Distribution Function (CDF• 

), 

FX (x) = P (X ≤ x) 

. 

Probability Density Function (PDF), • 

d 
pX (x) = FX (x)

dx 

expectation, variance, etc. 



Entropy


Entropy is 

a measure of the average uncertainty as•


sociated with a random variable


the randomness of a random variable
• 

the amount of information one obtained • 

by observing the realization of a random 

variable 

Focus on a discrete random variable with n 

possible values: 

P (X = xi) = pi, i = 1, . . . , n 

The partitioning of the sample space doesn’t • 

matter.


The possible values, xi, doesn’t matter.
• 

Entropy is a function H(X) = H(p1, . . . , pn). 



Define Entropy H(X) = H(p1, . . . , pn) 

Requirement 

H	 is continuous in �•	 p. 

1 •	 if pi = n, then entropy monotonically in

creases with n. 

can break into successive choices • 
�
1 1 1

� �
1 1

� 
1 

�
2 1

�
H , , = H , + H ,

2	 3 6 2 2 2 3 3 

The only H satisfying these requirements: 

n

H = −k 
� 

pi log2 pi 
i=1 



Definition


H(X) = − 
� 

PX (x) log PX (x) 
x∈X 

= EP [− log P (X)] 

Entropy is always nonnegative. • 

Example: binary r.v. 
� 

0 with probability p
X = 

1 with probability 1 − p 

H(X) = −p log p − (1 − p) log(1 − p) 



Joint Entropy


The joint entropy of two discrete r.v.s

X, Y , 

H(X, Y ) = − 
� 

PX,Y (x, y)log2 

�
PX,Y (x, y)

� 

x∈X ,y∈Y 

Example 

P X = 0 X = 1 
Y = 0 1/2 1/3 
Y = 1 0 1/6 

Example Independent r.v.’s X, Y , 

H(X, Y ) = − 
� 

PX,Y (x, y) log2 

�
PX,Y (x, y)

� 

x∈X ,y∈Y 

= − 
� 

PX,Y (x, y) log2 (PX (x)PY (y)) 
x∈X ,y∈Y 

= − 
� 

PX,Y (x, y) log2 (PX (x)) 
x∈X ,y∈Y 

− 
� 

PX,Y (x, y) log2 (PY (y)) 
x∈X ,y∈Y


= H(X) + H(Y )




Conditional entropy


Conditional entropy: H(Y X), a measure
|
of the average uncertainty in Y when the 

realization of X is observed. 

condition on a particular observation X = • 

x, PY (y) PY X (y x) = P (Y = y X = → | | |
x), 

H(Y X = x) = − 
� 

PY X (y x) log PY X (y x)| | | | |
y∈Y 

Average over all possible values of x:
• 

H(Y X) = − 
� 

PX (x)H(Y X = x)| |
x∈X 

= − 
� 

PXY (x, y) log PY X (y x) 
x,y 

| |

= Ep(X,Y )[− log P (Y X)]|



Chain Rule of Entropy


Theorem: Chain Rule 

H(X, Y ) = H(X) + H(Y X)|
Proof 

H(X, Y ) 

= − 
� 

PX,Y (x, y) log2[PX,Y (x, y)] 
x∈X ,y∈Y 

= − 
� 

PX,Y (x, y) log2[PY X (y|x)PX (x)]|
x∈X ,y∈Y


= − 
� 

PX,Y (x, y) log2[PY X (y|x)]
|

x∈X ,y∈Y


− 
� 

PX,Y (x, y) log2[PX (x)]

x∈X ,y∈Y


= H(Y X) + H(X)
|

or equivalently, 

H(X, Y ) = EP (X,Y )[− log P (X, Y )] 

= EP (X,Y )[− log P (X)− log P (Y X)]|
= H(X) + H(Y X)
|



By induction


n

H(X1, . . . , Xn) = 
� 

i=1 

H(Xi|X1 . . . Xi−1) 

. 

Corollary 

X, Y independent ⇒ H(X|Y ) = H(X) 

Back to the example 

P X = 0 X = 1 
Y = 0 1/2 1/3 
Y = 1 0 1/6 

�
1 1 1

�
H(X, Y ) = H , ,

2 3 6 

notice 0 log 0 = 0. 
�
1 1

�
H(X) = H ,

2 2 
1 1 

�
2 1

�
H(Y X) = H(1,0) + H ,
|

2 2 3 3 



Question: H(Y X) = H(X Y )?
| |

H(X, Y ) = H(Y X) + H(X)|
= H(X Y ) + H(Y )|

or equivalently 

H(Y )− H(Y X) = H(X)− H(X Y )
| |


Definition: Mutual Information


I(X;Y ) = H(X)− H(X Y )|
= H(Y )− H(Y X)
|

= H(X) + H(Y )− H(X, Y )


= 
� 

PX,Y (x, y) log 

� 
PX,Y (x, y) 

� 

PX (x)PY (y)x∈X ,y∈Y 

The average amount of knowledge about 

X that one obtains by observing the value 

of Y . 



Chain Rule for Mutual Information


Definition: Conditional Mutual Infor

mation 

I(X;Y Z) = H(X Z)− H(X Y, Z)
| | |


Chain Rule: 

I(X1, X2;Y ) 

= H(X1, X2)− H(X1, X2 Y )
|

= H(X1) + H(X2 X1)− H(X1 Y )− H(X2 Y, X1)| | |
= I(X1;Y ) + I(X2;Y X1)|

By induction 

n

I(X1, . . . , Xn;Y ) = 
� 

I(Xi;Y X1 . . . Xi−1, Y )|
i=1 


