
LECTURE 1 : Introduction


Handout 

Lecture outline 

Course outline, goal and mechanics
• 

Review of probability • 

Define Entropy and Mutual Information • 

Questionnaire• 

Reading: Ch. 1, Scts. 2.1­2.5. 



Goals


Our goals in this class are to establish an 

understanding of the intrinsic properties of 

transmission of information and the rela­

tion between coding and the fundamental 

limits of information transmission in the 

context of communications 

Our class is not a comprehensive introduc­

tion to the field of information theory and 

will not touch in a significant manner on 

such important topics as data compression 

and complexity, which belong in a source­

coding class 



�


Probability Space


(Ω,F , P )


•	 Ω: Sample space, each ω ∈ Ω is the out­
come of an random experiment. 

•	 F: set of events, E ∈ F, E ⊂ Ω. 

•	 P : probability measure, P : F → [0,1]


Axioms 

•	 Ω, φ ∈ F, 

•	 if E ∈ F, then Ec ∈ F, 

•	 if E1, E2, . . . ,∈ F, then 
�∞ .i=1 Ei ∈ F

P (Ω) = 1,• 

•	 P (Ec) = 1 − P (E), 

•	 If E1, E2, . . . , are disjoint, i.e., Ei ∩ Ej = 
φ,∀i = j,


⎛ ⎞ 

P ⎝


 

Ei
⎠ = 

� 
P (Ei) 

i	 i
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Example: Flip two coins


Ω = {HH, HT, TH, TT} 

F = All subsets of Ω 

1

P ({ω}) = 

4


Example: Flip coins until see a head


Ω = {H, TH, TTH, . . . , } 

F = All subsets of Ω 

P ({TT...T H}) = 2k+1 

k 

Mapping between spaces and induced prob­• 

ability measure 

Sometimes we cannot assign probability •


to each single outcome, e.g., infinite se­

quence of coin tosses, P ({ω}) = 0. 



Why we want such probability spaces


Reason 1 :conditional probability 

Conditioning on an event B ∈ F = change 

of sample space: 

Ω B → 

event A ∈ F → A ∩B 

P (A) P (A B)→ |
Bayes rule: 

P (B A)P (A)
P (A|B) = 

P (A ∩B)
= 

|

P (B) P (B)


Total probability theorem
• 

Independent events • 

Reason 2: random variables
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Random Variables


A random variable X is a map from the 

sample space Ω to R. 

The map is deterministic, while the ran­

domness comes only from the underlying 

probability space. 

The map gives a change of probability space 

and an induced probability measure. 

Example X = the number of coin tosses 

before the first head is seen. 

P (X = k) = 2k+1, k = 0,1, . . . 

A few things come free: 

Random vectors, X. • 

Function of a random variable, Y = f(X).• 



Distributions


For a discrete random variable (r.v.), 

Probability Mass Function (PMF), • 

PX (x) = P (X = x) 

For a continuous random variable 

Cumulative Distribution Function (CDF• 

), 

FX (x) = P (X ≤ x) 

. 

Probability Density Function (PDF), • 

d 
pX (x) = FX (x)

dx 

expectation, variance, etc. 



Entropy


Entropy is 

a measure of the average uncertainty as­•


sociated with a random variable


the randomness of a random variable
• 

the amount of information one obtained • 

by observing the realization of a random 

variable 

Focus on a discrete random variable with n 

possible values: 

P (X = xi) = pi, i = 1, . . . , n 

The partitioning of the sample space doesn’t • 

matter.


The possible values, xi, doesn’t matter.
• 

Entropy is a function H(X) = H(p1, . . . , pn). 



Define Entropy H(X) = H(p1, . . . , pn) 

Requirement 

H	 is continuous in �•	 p. 

1 •	 if pi = n, then entropy monotonically in­

creases with n. 

can break into successive choices • 
�
1 1 1

� �
1 1

� 
1 

�
2 1

�
H , , = H , + H ,

2	 3 6 2 2 2 3 3 

The only H satisfying these requirements: 

n

H = −k 
� 

pi log2 pi 
i=1 



Definition


H(X) = − 
� 

PX (x) log PX (x) 
x∈X 

= EP [− log P (X)] 

Entropy is always non­negative. • 

Example: binary r.v. 
� 

0 with probability p
X = 

1 with probability 1 − p 

H(X) = −p log p − (1 − p) log(1 − p) 



Joint Entropy


The joint entropy of two discrete r.v.s

X, Y , 

H(X, Y ) = − 
� 

PX,Y (x, y)log2 

�
PX,Y (x, y)

� 

x∈X ,y∈Y 

Example 

P X = 0 X = 1 
Y = 0 1/2 1/3 
Y = 1 0 1/6 

Example Independent r.v.’s X, Y , 

H(X, Y ) = − 
� 

PX,Y (x, y) log2 

�
PX,Y (x, y)

� 

x∈X ,y∈Y 

= − 
� 

PX,Y (x, y) log2 (PX (x)PY (y)) 
x∈X ,y∈Y 

= − 
� 

PX,Y (x, y) log2 (PX (x)) 
x∈X ,y∈Y 

− 
� 

PX,Y (x, y) log2 (PY (y)) 
x∈X ,y∈Y


= H(X) + H(Y )




Conditional entropy


Conditional entropy: H(Y X), a measure
|
of the average uncertainty in Y when the 

realization of X is observed. 

condition on a particular observation X = • 

x, PY (y) PY X (y x) = P (Y = y X = → | | |
x), 

H(Y X = x) = − 
� 

PY X (y x) log PY X (y x)| | | | |
y∈Y 

Average over all possible values of x:
• 

H(Y X) = − 
� 

PX (x)H(Y X = x)| |
x∈X 

= − 
� 

PXY (x, y) log PY X (y x) 
x,y 

| |

= Ep(X,Y )[− log P (Y X)]|



Chain Rule of Entropy


Theorem: Chain Rule 

H(X, Y ) = H(X) + H(Y X)|
Proof 

H(X, Y ) 

= − 
� 

PX,Y (x, y) log2[PX,Y (x, y)] 
x∈X ,y∈Y 

= − 
� 

PX,Y (x, y) log2[PY X (y|x)PX (x)]|
x∈X ,y∈Y


= − 
� 

PX,Y (x, y) log2[PY X (y|x)]
|

x∈X ,y∈Y


− 
� 

PX,Y (x, y) log2[PX (x)]

x∈X ,y∈Y


= H(Y X) + H(X)
|

or equivalently, 

H(X, Y ) = EP (X,Y )[− log P (X, Y )] 

= EP (X,Y )[− log P (X)− log P (Y X)]|
= H(X) + H(Y X)
|



By induction


n

H(X1, . . . , Xn) = 
� 

i=1 

H(Xi|X1 . . . Xi−1) 

. 

Corollary 

X, Y independent ⇒ H(X|Y ) = H(X) 

Back to the example 

P X = 0 X = 1 
Y = 0 1/2 1/3 
Y = 1 0 1/6 

�
1 1 1

�
H(X, Y ) = H , ,

2 3 6 

notice 0 log 0 = 0. 
�
1 1

�
H(X) = H ,

2 2 
1 1 

�
2 1

�
H(Y X) = H(1,0) + H ,
|

2 2 3 3 



Question: H(Y X) = H(X Y )?
| |

H(X, Y ) = H(Y X) + H(X)|
= H(X Y ) + H(Y )|

or equivalently 

H(Y )− H(Y X) = H(X)− H(X Y )
| |


Definition: Mutual Information


I(X;Y ) = H(X)− H(X Y )|
= H(Y )− H(Y X)
|

= H(X) + H(Y )− H(X, Y )


= 
� 

PX,Y (x, y) log 

� 
PX,Y (x, y) 

� 

PX (x)PY (y)x∈X ,y∈Y 

The average amount of knowledge about 

X that one obtains by observing the value 

of Y . 



Chain Rule for Mutual Information


Definition: Conditional Mutual Infor­

mation 

I(X;Y Z) = H(X Z)− H(X Y, Z)
| | |


Chain Rule: 

I(X1, X2;Y ) 

= H(X1, X2)− H(X1, X2 Y )
|

= H(X1) + H(X2 X1)− H(X1 Y )− H(X2 Y, X1)| | |
= I(X1;Y ) + I(X2;Y X1)|

By induction 

n

I(X1, . . . , Xn;Y ) = 
� 

I(Xi;Y X1 . . . Xi−1, Y )|
i=1 


