
LECTURE 10


Last time: 

Joint AEP • 

Coding Theorem • 

Lecture outline 

Error Exponents • 

Strong Coding Theorem
• 

Reading: Gallager, Chapter 5.




Review


Joint AEP • 

A
(
�
n)(X) ×A

(
�
n)(Y ) vs. A

(
�
n)(X, Y ) 

2nH(X) ×2nH(Y ) >> 2nH(X,Y ) 

–	 Passing xn through the channel to ob­

tain yn, (xn, yn) are jointly typical with 

high probability. 

n–	 For another independently chosen ˜ ,
x

(x̃n, yn) are jointly typical with proba­

bility 2nI(X;Y ). 

Coding Theorem • 

–	 Random coding 

–	 Joint typicality decoding


–	 Converse proved by using Fano’s in­

equality. 

A Possible Confusion: i.i.d. input dis­• 

tribution vs. transmitting independent 

symbols. 



Remaining Topics


Can we get rid of the random coding? • 

Instead, we will get a closer look of ran­

dom coding. 

Joint typicality decoding vs. Maximum • 

Likelihood decoding. 

Example: Binary source sequence passing 

through BSC. 

Finite codeword length n. • 

Our plan for the next two lectures 

Maximum likelihood decoding. • 

Upper bound of the error probability.
• 

Random coding error exponent. • 

Binary symmetric channel as an example. • 



Maximum Likelihood Decoding


Notations


•	 Message W uniformly distributed in {1, 2, . . . , M}. 
M = 2nR . 

Encoder transmit codeword xn(m) if the • 

incoming message is W = m. 

•	 Receiver receives yn, and find the most 

likely transmitted codeword. 

Ŵ	 = arg max PY n Xn(yn xn(m))
m | |

•	 Define Ym as the set of yn’s that decodes 

to m. 

The probability of error conditioned on • 

W	 = m is transmitted: 

Pe,m = 
� 

PY n Xn(yn |xn(m)) 
yn

m∈Y c 
|



Pairwise Error Probability


Consider the case M = 2. 

= 
� 

P (yn |xn(1))Pe,1

c
yn
1∈Y 

c •	 We really hate the Y1, since we have to 

figure out the decision region. Can we 

sum over the entire set Y n without deal­

ing with the discontinuity? 

c •	 Consider any yn ∈ Y1, by definition 

nP (y xn(2)) ≥ P (yn xn(1)),| |
so we can bound 

≤	
yn

� 

c

P (yn |xn(1)) 

�
P (yn|xn(2))

�s 

Pe,1	
P (yn|xn(1)) 

1∈Y 

= 
� 

P (yn |xn(1))1−sP (yn x(2))s 

yn c 
|

1∈Y
� 

P (yn |xn(1))1−sP (yn x(2))s ≤ 
yn 

|

for any s ∈ (0, 1).




Random Codewords


Choose the codeword xn(1) and xn(2) i.i.d. 

from the distribution PX (or equivalently 

PXn) 

= 
� 

PXn(xn(1)) 
� 

P (yn |xn(1))Pe,1

yn
xn(1) 

×P (error W = 1, xn(1), yn)|
and


P (error W = 1, xn(1), yn) 

� 

|

PXn(xn(2)) 

�
P (yn|xn(2))

�s 

P (yn xn(1))
≤ 

xn(2) 
|

In general, this is a good bound for both • 

the fixed and the random codewords.


Random coding allows for generalization • 

to many codewords. The upper bound 

allows us to compute the error probabil­

ity without dealing with specific decision 

regions. 



�
�
 �


�


Example: Binary source/BSC


Let xn(1) and xn(2) be the all 0 and the 

all 1 words. 

Use DMC, we have for m = 1, 2, and any • 

s ∈ (0, 1), 

. . .

n�


y1 y2 yn i=1

Pe,m ≤ P (yi|x1,i)

1−sP (yi x2,i)
s |

n�

P (yi|x1,i)

1−sP (yi x2,i)
s |= 

i=1 yi 



Example: Binary source/BSC


Plug in the specific choices of code­

words: 
� 

P (yi|x1,i)
1−sP (yi|x2,i)

s = 
yi 

�1−s(1 − �)s + �s(1 − �)1−s 

Optimize to get s∗ = 1/2, and 

Pe,m ≤ [2
�

�(1 − �)]N 

Alternative Approach 

Condition on the all 0 word is transmitted, 

error occurs when there are more than n/2 

1’s, 

2n[log 2+1 
2 log(1−�)]2 log �+1 

=Pe,1 ≈ 2−nD(1 
2||�) 

The upper bound is quite tight! • 

Similar development can be done with • 
random codewords. 

We are now one step away from the case • 
with many codewords. 



�

BSC with Many Codewords


Can we generalize this to many code­• 

word by using the union bound? Assume 

there are 2nR codewords, 

union bound of Pe,m = 
� 

P (m m�)→ 
m�=m 

2||�)≥ 2nR2−nD(1 

The error probability goes to 0 if 
�
1 

� 

< 0R − D 
2
||�


This says the probability of error decays • 

exponentially with n. 



�


The Error Exponent


Rewrite 

Pe,m,union = 2−n(D(1/2||�)−R) 

The error exponent is Eu(R) = D 
�
1 • 2||�

� 
−

R. 

As long as R is small enough such that • 

Eu(R) > 0, the error probability decays 

with n exponentially. 

Question Does this give the capacity?
• 

Too bad!, the maximum data rate is not • 

the capacity. 
�
1 

�
1 − H(�)− D 

2
||�

= log 2 + � log � + (1 − �) log(1 − �) 
1 1 −[log 2 + log � + log(1 − �)]

2 2 �

1 
=

2 
− �

� 

log
1 − � 

> 0




A Better Way than the Union Bound


Lemma For any ρ ∈ (0, 1], 
� � �� 

�ρ 

P	


 

Am 
m 

≤ 
m

P (Am) 

Proof 
� � � �

m P (Am)
P	



 
Am 1 m 

≤ 

Idea: use ρ to compensate serious overlap 

with a cost. 

Now define event 

nA = {m m�|W = m, xn(m), y
m� → }


and we have just computed 

P (yn xn(m ))s 
P (Am�) ≤ 

� 

�
PXn(xn(m�)) 

P (yn

|
|xn(m

�

))s 
xn(m ) 



�

�


� |
| �

�
 �


�


�

Upper Bound for the Error Probability


P (error W = m, xn(m), yn)|

P 

⎛
⎜⎝ 

⎞
⎟⎠



 
A�m =


m�=m ⎡
⎢⎣ 

ρ 
P (yn xn(m ))s 

(M − 1)ρ
 ))PXn(xn(m�≤ 
P (yn

xn(m ) 
xn(m))s 

nAverage over xn(m), y , 

Pe,m 

yn xn(m)


nPXn(xn(m))P (y |xn(m))1−sρ ≤ 

⎡
⎢⎣ 

ρ


xn(m ) 

(M − 1)ρ PXn(xn(m�))P (yn |xn(m�))s 

for any s, ρ ∈ (0, 1].


take s = 1/(1 + ρ).


⎤
⎥⎦ 

⎤
⎥⎦ 



� 

� 

Upper Bound


Theorem


Pe,m ≤ (M −1)ρ � 

yn 

⎡
⎣


1

1+ρ


⎤
⎦


(1+ρ) � 
PXn(xn)P (yn xn)|

xn 

Corollary Apply DMC 

Pe,m 

(M − 1)ρ 

⎛
⎝

⎡
⎢⎣

n� 

≤ 
1+ρ

⎤
⎥⎦ 

⎞
⎠ 

1� 
PX (xi)PY X (yi xi)1+ρ | |

xii=1 yi 
⎡
⎣


⎤
⎦


�1+ρ1 
1+ρ 

�� 
PX (x)PY X (y x) 

n 

(M − 1)ρ= ||
y x




Random Coding Error Exponent


For a fixed input distribution PX , define 
⎡ 

1 
�1+ρ

⎤ 

E0(ρ) = − log ⎣
� 

�� 
PX (x)PY |X (y|x)1+ρ ⎦ 

y x 

Then the average probability of error 

n(E0(ρ)−ρR)Pe,m ≤ 2−

As long as the random coding error ex­

ponent 

Er(R) = max [E0(ρ)− ρR]

ρ∈[0,1]


is positive, the error probability can be driven 

to 0 as n →∞. 



The Behavior of the Error Exponent


Facts: 

•	 E0(ρ) ≥ 0 with equality only at ρ = 0. 

∂E0(ρ)

∂ρ ≥ 0.
• 

∂E0(ρ) •	 ∂ρ ≤ I(X;Y ), with equality at ρ = 0. 

E0(ρ) is concave in ρ. •


Consider 

Er(R) = max [E0(ρ)− ρ(R)] 
ρ∈[0,1] 

Ignore the constraint, the maximum oc­• 

curs at R = ∂E0(ρ)/∂ρ ρ∗.|
The maximizing ρ∗ lies in [0, 1] if • 

∂E0(ρ)
�	����

∂E0(ρ)
����� =	I(X;Y )≤	R ≤

∂ρ ρ=1 ∂ρ ρ=0 

For any R < I(X;Y ), we get positive •


error exponent, and the error probability 

can be driven to 0 as n →∞. 



Summary


We have proved the coding theorem in • 

another way.


For R < C, the error probability decays
• 

exponentially with n. 

Remaining Questions 

Is this a good bound? • 

We have chosen the random codes and • 

computed the average performance. Is 

there any specific code that can do bet­

ter than this? 

The two pieces of the error exponent • 

curve is mysterious. 


