LECTURE 10

Last time:
e Joint AEP

e Coding Theorem

Lecture outline
e Error Exponents

e Strong Coding Theorem

Reading: Gallager, Chapter 5.



Review

e Joint AEP

A xy xal vy vs. Al (x,v)
onH(X) onH(Y) s  pnH(X)Y)

— Passing z™ through the channel to ob-
tain y™, (2™, y™) are jointly typical with
high probability.

— For another independently chosen z",

(z™,y™) are jointly typical with proba-
bility 27 (X7Y),

e Coding Theorem

— Random coding

— Joint typicality decoding

— Converse proved by using Fano's in-

equality.

e A Possible Confusion: i.i.d. input dis-
tribution vs. transmitting independent
symbols.



Remaining Topics

e Can we get rid of the random coding?
Instead, we will get a closer look of ran-
dom coding.

e Joint typicality decoding vs. Maximum
Likelihood decoding.

Example: Binary source sequence passing
through BSC.

e Finite codeword length n.

Our plan for the next two lectures
e Maximum likelihood decoding.

e Upper bound of the error probability.
e Random coding error exponent.

e Binary symmetric channel as an example.



Maximum Likelihood Decoding

Notations

e Message W uniformly distributed in {1,2,..., M}.
M = 2"k,

e Encoder transmit codeword z"(m) if the

incoming message is W = m.

e Receiver receives g”, and find the most
likely transmitted codeword.

~

W = arg max Py xn(y"|z"(m))
e Define YV,,, as the set of gn's that decodes
to m.

e [ he probability of error conditioned on
W = m is transmitted:

Pem = Z PX”|X”(Qn|§n(m))
yreVa



Pairwise Error Probability

Consider the case M = 2.

P.1= ), P(y"z"(1))
yreVy

e We really hate the Y7, since we have to
figure out the decision region. Can we
sum over the entire set Y" without deal-
ing with the discontinuity?

e Consider any y" € Y1, by definition

P(y"|z"(2)) = P(y"|z"(1)),

SO we can bound

e P(g"w(z))r
Per < y% fP(g z"(1)) [p@w(l))

= > P(ynli’”(l))1_3P(y”|£(2))8
yreyy

< Y P"z"(1) S P(y"z(2))*
yn

for any s € (0,1).



Random Codewords

Choose the codeword z"(1) and z"(2) i.i.d.
from the distribution Py (or equivalently

Pxn)

Pe1 = ) Pxa(z"(1))) P(y"z"(1))
z"(1) y"
xP(error[W =1,2"(1),y")

and
P(error|lW =1,2"(1),y")

oy [ @)
s 2 o) By

e In general, this is a good bound for both
the fixed and the random codewords.

e Random coding allows for generalization
to many codewords. The upper bound
allows us to compute the error probabil-
ity without dealing with specific decision
regions.



Example: Binary source/BSC

Let 2(1) and z"(2) be the all 0 and the
all 1 words.

e Use DMC, we have form = 1,2, and any
se (0,1),

Pen < SN 3 T Plilzr)t 5P (yilan)®

Y1 Y2 Yn =1

mn
= JI 3 PQyilz1 ) 5P (yi|za,)®

=1 Y



Example: Binary source/BSC

Plug in the specific choices of code-
words:.

S P(yilz1 ) TSP (yile0,)® =
vi

E1—8(1 . E)S ‘|‘€S(1 . 6)1—8
Optimize to get s* =1/2, and

Pem < [2\/6(1 — 6)]N

Alternative Approach

Condition on the all O word is transmitted,
error occurs when there are more than n/2
1’s,

Py ~ »>—nD(5|le) — on[log 243 loge+3log(1—e)]

e [ he upper bound is quite tight!

e Similar development can be done with
random codewords.

e Ve are now one step away from the case
with many codewords.



BSC with Many Codewords

e Can we generalize this to many code-
word by using the union bound? Assume
there are 2" codewords,

union bound of Pesn = Y P(m—m')
m/#Em

>~ onRo—nD(5|le)

The error probability goes to O if
R—D (1|| ) <0
— —||€
2

e [ his says the probability of error decays
exponentially with n.



The Error Exponent

Rewrite

—n(D(1/2[|le)—R)

Pe,m,union =2

e The error exponent is Ey,(R) = D (%He) —
R.

e As long as R is small enough such that
Ew(R) > 0, the error probability decays
with n exponentially.

e Question Does this give the capacity?

e T0O0O bad!, the maximum data rate is not
the capacity.

1
1— H(e) - D (EHG)
= log2+e€loge+ (1 —¢)log(l —¢)
—[log2 + % log e + % log(1l — ¢)]

(1 )IO 1 —¢€
= — — €
2 J €

> 0




A Better Way than the Union Bound

Lemma For any p € (0, 1],

p (U Am> < [Z P(Am)r
Proof : "

P () < { EnEE

Idea: use p to compensate serious overlap
with a cost.

Now define event

m/ — {m — m/|W = m,gn(m),gn}

and we have just computed
P(y"™|z™(m'))*
P(y"|z™(m))*

P(A,) < ) Pxn(z"(m'))

z™(m/)



Upper Bound for the Error Probability

P(error|W = m,z"(m),y")

- [y

m/#Em

< (M -1)°

> Pxa(z"(m))

2" (m/)

Average over z"(m),y",

Pe,m

IA

y" zn(m)

(M —1)P

> Pxn(z"(m'))P(y"|z" (m'))*

2" (m/)

for any s,p € (0, 1].

take s=1/(1+ p).

P(y"|z"(m))*

P(y"|zm(m))?

Z Z Pin(gn(m))P(gn@n(m))1—3,0




Upper Bound

Theorem

. 1140

> Pxn(z™)P(y"|z")1Fe

gn

Pem < (M-1)PY
y"

Corollary Apply DMC
?e,m
< (M —-1)~

n 1 L
H Z (Z PX(wi)Pyx(yixi)H—P>

1 1+p
— (M — 1)'0 {Z <Z PX(x)Py|X(y|x)l—|—p>

Y

n




Random Coding Error Exponent

For a fixed input distribution Py, define

1\ 1tr
Eo(p) = —log {Z (Z PX(fE)PY|X(y|$)1+P>

(7

Then the average probability of error

Pem < >—n(Eo(p)—pR)

As long as the random coding error ex-
ponent
Er(R) = max [Eq(p) — pR]
p€[0,1]
IS positive, the error probability can be driven
to O as n — oc.



The Behavior of the Error Exponent

Facts:

e Fy(p) > 0 with equality only at p = 0.
° —0Egp(p) > 0.

° 8%#) < I(X;Y), with equality at p = 0.

e Fy(p) is concave in p.

Consider

Er(R) = pgﬁ[gﬁ][Eo(p) — p(R)]

e Ignore the constraint, the maximum oc-
curs at R = 9Eg(p)/0p |-

e The maximizing p* lies in [0, 1] if

0FEq(p) < R< OEq(p)

= I(X:Y)

e For any R < I(X;Y), we get positive
error exponent, and the error probability
can be driven to 0 as n — oo.



Summary

e \We have proved the coding theorem in
another way.

e For R < C, the error probability decays
exponentially with n.

Remaining Questions
e Is this a good bound?

e \We have chosen the random codes and
computed the average performance. 1Is
there any specific code that can do bet-
ter than this?

e [he two pieces of the error exponent
curve is mysterious.



