LECTURE 11

Last time:
Error Exponents

Strong Coding Theorem

Lecture outline
Binary source/BSC.

Typical error events.



Review
Strong Coding Theorem,

where

Er(R) = max max|Eg(p, Px) — pR
r(R) »e[01] PX[ o(p, Px) — pR]

and

1\ 1tr
Eo(p) = —log {Z (Z PX(UU)PY\X(?J|$)1+P>

Yy

Er(R) >0 for any R< C.

For any R, the maximizing p is the slope
of the E,.(R) ~ R curve at R.

Definition The critical rate

OEo(p)
Reriy = ((;)p

p=1

The maximizing p € [0,1] if Rerjt < R <
I(X:;Y).

For R < R_..;;, the slope of E.(R) ~ R is
—1.




A Complete Picture of the Reliability
Function

e [o improve the random coding bound,
expurgate bad codes

e For a lower bound of the error probabil-
ity: sphere packing bound.

Conclusion

e For R < C, error probability decays with
n exponentially.

e For R> R..;;, random codes are optimal,
the average error probability achieves the
highest possible error exponent.

e For R > R,.;, the union bound is not
tight, there is no one dominating pair-
wise error event.

e For R < R., the union bound is fine,
but random coding is not optimal.



Example: Binary Source/BSC

Choose the input to be equiprobable. De-
fine

e
N =

e For R>log2— H(r) = D(|3),

o(o1})

D(vlle)

T

R
Er(R)

for v € (e, 7).
e For R< D(’TH%),

Er(R) = 1092 —l0og(1 + 2\/e(1 —€)) — R

Gallager: The most significant point about
this example is that, even for such a simple
channel, there is no simple way to express
Er(R) except in parametric form.



A Little Large Deviation Theory

Suppose h(z) is bounded and continuous
on [0, 1],

lim —Iog/ exp[—nh(x)]dr = — min h(x)
n—oo n x€[0,1]

Chernoff exponent Let X" be a sequence
of Bern(p) r.v.s, and w(X"™) be the ham-
ming weight of the vector, for = > p,

P(w(X™) > Nr) = 27 "D(llp)

Proof

Denote by E, the event that a Bern(p) se-
quence X" is typical w.r.t. another distri-
bution q

Recall
P(Ey) = >—nD(ql|p)

For large enough n, the probability P(UQZTEQ)
is dominated by P(U,c[; r4¢)Eq) for an ar-
bitrarily small e.



Output Centered Analysis
For random codes on the BSC:

Assume X"(0) is transmitted, and Y" is ob-
served. Let the other codewords be X"(i),i =
1,..., M —1.

The joint distribution is

P(X™(0),Y" {X"(i),i=1,...M —1})
= P(X"(0),Y") [] P(X"(9))

Forney: We are only interested in the dis-
tances between the codewords and the out-
put Y.

Consider this as two subsystems.

e Iranslate the correct codeword to the
noise vector

A=X"(0)pY"



A has i.i.d. {¢,1 — ¢} entries.
e J[ranslate the other codewords to
zi=X"(G)eY"

For i, z; has equiprobable entries.

Now the error occurs if w(4Q) > w(z;) for
some:i:=1,...,M — 1.

We compute the error probability and ask
the question: is the error caused by

— large noise vector?

— Or some incorrect codeword being too
close?



The Exponents
e For the noise vector,

P(w(A) > ny) = 27"
where

_ ) D(lle) v>e
EI_{ 0 v <€

e For the incorrect codewords,
1
P(w(z;) < ny) = 2"P0I3)

Now

P(miin w(z;) <ny) = P (U{’w(zz') < TW})

=~ o—nhbyy
where
o { DGIIB) - . DGR > R
0 D(|l5) <R

For a given R, let v% satisfy D(v%||3) = R



e For any v > ~p, Or equivalently R >
D(*y||%), there are exponentially many code-
words with w(z;) < ny.

e For any v < ~p, or equivalently R <
D(~]|3), the probability that there exist a
z; With w(z;) < n7, is exponentially small.

e 7% is the typical min distance at rate R,
also called Gilbert-VVarshamov distance.



Channel Capacity

o If R < D(eH%), or equivalently, v5 > ¢,
then we can find v > e such that D(v||3) >
R.

— Decoder decodes if d! codeword that is
within nvy distance from y", and claim
error otherwise.

— The probability of both {w(A) > n~v}
and {min, w(z;) < nvy} are exponentially
small, so the decoding error probability
is exponentially small.

o If R > D(¢||3), then for 4 such that R >
D(|13) > D(el[3), both {w(A) > ny}
and {min; w(z;) < nvy} occurs with prob-
ability = 1, so the rate is not supported.

o Notice C = logy —H(e) = D(e||3).



Error Exponent

Suppose that R < D(e||3), we now find
the error exponent for P. = P(w(4A) >
min; w(z;)).

Define type « error as the event

&y ={w(d) 2 nypNiminw(z) < nv}

and P(&,) =2 "k,

Now

By = Er+ Ejg
{ D(v|le) + D(y||3) — R D(WH%) > R,y > e
D(vlle) D(y[I1$) <R
The error exponent is

Er(R) = mvin E,



Error Exponent

e The condition D(yH%) > R,~v > eis equiv-
alent to e < v < ~vp.

e The optimum must occur at v < v5.
: 1
Er(R) = miny € (e,7g] | DOlle) + DOIIS) — B

e [irstignore the constraint, minimum oc-
curs at v = 7, where D(v||€) + D(v||3) is
minimized. Can solve to have

_ Ve
vVe+ V1 —e€

Define R jt = D(7-||%). The minimum is

—

Fo = D(rll)) + D(rll3)

log2 — log(1 + 2\/6(1 —€))




If 7 < v%, or equivalently R < R, the
minimum is achieved at v =,

If 7 > ~%, or equivalently R > R, the
minimum occurs at v = v5,

R
Er(R)

DGR
D(vglle)



Discussions

Main Conclusion The error mechanisms
are different in the high rate regime R,,.;; <
R < C, and the low rate regime R < R,

e In the high rate regime, error occurs when
the noise is so large it reaches ~5.

— Confusion occurs among exponentially
many codewords.

— Union bound is not tight.

— Draw a sphere of radius 7}‘% around each
codeword, as long as the y” lies in the
sphere, error does not occur — sphere
packing argument.

— Cannot improve by expurgating bad code-
words, since there are too many of them.



e In the low rate regime, error occurs when
the noise is within the sphere of radius
7}"%, but some atypically bad codeword
X" (i) is too close to y™.

— Error occurs at one particular bad code-
word.

— Union bound is fine: P. = Mento.

— FError is caused by atypically bad codes
from the ensemble. Can improve by
expurgating the bad codeword.



