LECTURE 11

Last time:

- Error Exponents
- Strong Coding Theorem

Lecture outline

- Binary source/BSC.
- Typical error events.

Review

• Strong Coding Theorem,

$$\overline{P}_{e,m} \le \exp[-nE_r(R)]$$

where

$$E_r(R) = \max_{\rho \in [0,1]} \max_{P_X} [E_0(\rho, P_X) - \rho R]$$

and

$$E_0(\rho) = -\log\left[\sum_{y} \left(\sum_{x} P_X(x) P_{Y|X}(y|x)^{\frac{1}{1+\rho}}\right)^{1+\rho}\right]$$

- $E_r(R) > 0$ for any R < C.
- For any R, the maximizing ρ is the slope of the $E_r(R) \sim R$ curve at R.
- **Definition** The critical rate

$$R_{crit} = \frac{\partial E_0(\rho)}{\partial \rho} \bigg|_{\rho=1}$$

- The maximizing $\rho \in [0, 1]$ if $R_{crit} \leq R \leq I(X; Y)$.
- For $R < R_{crit}$, the slope of $E_r(R) \sim R$ is -1.

A Complete Picture of the Reliability Function

- To improve the random coding bound, expurgate bad codes
- For a lower bound of the error probability: sphere packing bound.

Conclusion

- For R < C, error probability decays with n exponentially.
- For $R > R_{crit}$, random codes are optimal, the average error probability achieves the highest possible error exponent.
- For $R > R_{crit}$, the union bound is not tight, there is no one dominating pairwise error event.
- For $R < R_{crit}$, the union bound is fine, but random coding is not optimal.

Example: Binary Source/BSC

Choose the input to be equiprobable. Define

$$\tau = \frac{\sqrt{\epsilon}}{\sqrt{\epsilon} + \sqrt{1 - \epsilon}}$$

• For $R \ge \log 2 - H(\tau) = D(\tau || \frac{1}{2})$,

$$R = D\left(\gamma || \frac{1}{2}\right)$$
$$E_r(R) = D(\gamma || \epsilon)$$

for $\gamma \in (\epsilon, \tau)$.

• For
$$R < D(\tau || \frac{1}{2})$$
,

$$E_r(R) = \log 2 - \log(1 + 2\sqrt{\epsilon(1 - \epsilon)}) - R$$

Gallager: The most significant point about this example is that, even for such a simple channel, there is no simple way to express $E_r(R)$ except in parametric form.

A Little Large Deviation Theory

Suppose h(x) is bounded and continuous on [0,1],

 $\lim_{n \to \infty} \frac{1}{n} \log \int_0^1 \exp[-nh(x)] dx = -\min_{x \in [0,1]} h(x)$

Chernoff exponent Let \underline{X}^n be a sequence of Bern(p) r.v.s, and $w(\underline{X}^n)$ be the hamming weight of the vector, for $\tau > p$,

$$P(w(\underline{X}^n) \ge N\tau) \doteq 2^{-nD(\tau||p)}$$

Proof

Denote by E_q the event that a Bern(p) sequence \underline{X}^n is typical w.r.t. another distribution q

Recall

$$P(E_q) \doteq 2^{-nD(q||p)}.$$

For large enough n, the probability $P(\bigcup_{q \ge \tau} E_q)$ is dominated by $P(\bigcup_{q \in [\tau, \tau + \epsilon)} E_q)$ for an arbitrarily small ϵ .

Output Centered Analysis

For random codes on the BSC:

Assume $\underline{X}^n(0)$ is transmitted, and \underline{Y}^n is observed. Let the other codewords be $\underline{X}^n(i), i = 1, \ldots, M-1$.

The joint distribution is

$$P(\underline{X}^{n}(0), \underline{Y}^{n}, \{\underline{X}^{n}(i), i = 1, \dots, M-1\})$$
$$= P(\underline{X}^{n}(0), \underline{Y}^{n}) \prod_{i} P(\underline{X}^{n}(i))$$

Forney: We are only interested in the distances between the codewords and the output \underline{Y}^n .

Consider this as two subsystems.

• Translate the correct codeword to the noise vector

$$\underline{\Delta} = \underline{X}^n(\mathbf{0}) \oplus \underline{Y}^n$$

 $\underline{\Delta}$ has i.i.d. $\{\epsilon, 1 - \epsilon\}$ entries.

• Translate the other codewords to

$$\underline{z}_i = \underline{X}^n(i) \oplus \underline{Y}^n$$

For *i*, \underline{z}_i has equiprobable entries.

Now the error occurs if $w(\underline{\Delta}) > w(\underline{z}_i)$ for some $i = 1, \dots, M - 1$.

We compute the error probability and ask the question: is the error caused by

- large noise vector?
- or some incorrect codeword being too close?

The Exponents

• For the noise vector,

$$P(w(\underline{\Delta}) \ge n\gamma) \doteq 2^{-nE_I}$$

where

$$E_I = \begin{cases} D(\gamma || \epsilon) & \gamma > \epsilon \\ 0 & \gamma \le \epsilon \end{cases}$$

• For the incorrect codewords,

$$P(w(\underline{z}_i) \le n\gamma) \doteq 2^{nD(\gamma||\frac{1}{2})}$$

Now

$$P(\min_{i} w(\underline{z}_{i}) \le n\gamma) = P\left(\bigcup_{i} \{w(\underline{z}_{i}) \le n\gamma\}\right)$$
$$\doteq 2^{-nE_{II}}$$

where

$$E_{II} = \begin{cases} D(\gamma || \frac{1}{2}) - R, & D(\gamma || \frac{1}{2}) \ge R \\ 0 & D(\gamma || \frac{1}{2}) \le R \end{cases}$$

For a given R, let γ_R^* satisfy $D(\gamma_R^*||\frac{1}{2})=R$

- For any $\gamma > \gamma_R^*$, or equivalently $R \ge D(\gamma || \frac{1}{2})$, there are exponentially many codewords with $w(\underline{z}_i) < n\gamma$.
- For any $\gamma < \gamma_R^*$, or equivalently $R \leq D(\gamma || \frac{1}{2})$, the probability that there exist a \underline{z}_i with $w(\underline{z}_i) < n\gamma$, is exponentially small.
- γ_R^* is the typical min distance at rate R, also called Gilbert-Varshamov distance.

Channel Capacity

- If $R < D(\epsilon || \frac{1}{2})$, or equivalently, $\gamma_R^* > \epsilon$, then we can find $\gamma > \epsilon$ such that $D(\gamma || \frac{1}{2}) \ge R$.
 - Decoder decodes if $\exists !$ codeword that is within $n\gamma$ distance from \underline{y}^n , and claim error otherwise.
 - The probability of both $\{w(\underline{\Delta}) > n\gamma\}$ and $\{\min_i w(\underline{z}_i) < n\gamma\}$ are exponentially small, so the decoding error probability is exponentially small.
- If $R > D(\epsilon || \frac{1}{2})$, then for γ such that $R > D(\gamma || \frac{1}{2}) \ge D(\epsilon || \frac{1}{2})$, both $\{w(\underline{\Delta}) > n\gamma\}$ and $\{\min_i w(\underline{z}_i) < n\gamma\}$ occurs with probability $\doteq 1$, so the rate is not supported.
- Notice $C = \log_2 H(\epsilon) = D(\epsilon || \frac{1}{2}).$

Error Exponent

Suppose that $R < D(\epsilon || \frac{1}{2})$, we now find the error exponent for $P_e = P(w(\Delta) \ge \min_i w(\underline{z}_i))$.

Define type γ error as the event

$$\mathcal{E}_{\gamma} = \{w(\underline{\Delta}) \ge n\gamma\} \cap \{\min_{i} w(\underline{z}_{i}) \le n\gamma\}$$

and $P(\mathcal{E}_{\gamma}) \doteq 2^{-nE_{\gamma}}$.

Now

$$E_{\gamma} = E_I + E_{II}$$

=
$$\begin{cases} D(\gamma || \epsilon) + D(\gamma || \frac{1}{2}) - R & D(\gamma || \frac{1}{2}) \ge R, \gamma > \epsilon \\ D(\gamma || \epsilon) & D(\gamma || \frac{1}{2}) \le R \end{cases}$$

The error exponent is

$$E_r(R) = \min_{\gamma} E_{\gamma}$$

Error Exponent

- The condition $D(\gamma || \frac{1}{2}) \ge R, \gamma > \epsilon$ is equivalent to $\epsilon < \gamma \le \gamma_R^*$.
- The optimum must occur at $\gamma \leq \gamma_R^*$.

$$E_r(R) = \min \gamma \in (\epsilon, \gamma_R^*] \left[D(\gamma || \epsilon) + D(\gamma || \frac{1}{2}) - R \right]$$

• First ignore the constraint, minimum occurs at $\gamma = \tau$, where $D(\gamma || \epsilon) + D(\gamma || \frac{1}{2})$ is minimized. Can solve to have

$$\tau = \frac{\sqrt{\epsilon}}{\sqrt{\epsilon} + \sqrt{1 - \epsilon}}$$

Define $R_{crit} = D(\tau || \frac{1}{2})$. The minimum is

$$E_0 = D(\tau ||\epsilon) + D(\tau || \frac{1}{2})$$

= $\log 2 - \log(1 + 2\sqrt{\epsilon(1 - \epsilon)})$

• If $\tau < \gamma_R^*$, or equivalently $R < R_{crit}$, the minimum is achieved at $\gamma = \tau$,

$$E_r(R) = E_0 - R$$

• If $\tau > \gamma_R^*$, or equivalently $R > R_{crit}$, the minimum occurs at $\gamma = \gamma_R^*$,

$$R = D(\gamma_R^* || \frac{1}{2})$$
$$E_r(R) = D(\gamma_R^* || \epsilon)$$

Discussions

Main Conclusion The error mechanisms are different in the high rate regime $R_{crit} \leq R < C$, and the low rate regime $R < R_{crit}$.

- In the high rate regime, error occurs when the noise is so large it reaches γ_R^* .
 - Confusion occurs among exponentially many codewords.
 - Union bound is not tight.
 - Draw a sphere of radius γ_R^* around each codeword, as long as the \underline{y}^n lies in the sphere, error does not occur sphere packing argument.
 - Cannot improve by expurgating bad codewords, since there are too many of them.

- In the low rate regime, error occurs when the noise is within the sphere of radius γ_R^* , but some atypically bad codeword $\underline{X}^n(i)$ is too close to \underline{y}^n .
 - Error occurs at one particular bad codeword.
 - Union bound is fine: $P_e \doteq M e^{nE_0}$.
 - Error is caused by atypically bad codes from the ensemble. Can improve by expurgating the bad codeword.