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Continuous random variables


We consider continuous random variables 
with probability density functions (pdfs) 

X has pdf fX (x) 

Cumulative distribution function (CDF) 

FX (x) = P (X ≤ x) = 
� x fX (t)dt∞ 

Function of a random variable


–	 In general, for Y = g(X)


Get CDF of Y : FY (y) = P(Y ≤ y) Differ
entiate to get 

dFYfY (y) = (y)
dy 

–	 If g is strictly monotonic, assume the 
inverse function x = h(y) is differen
tiable, 

�����
dx 

�����fY (y) = fX (h(y)) (y)
dy 



Example


X: uniform on [0, 2], 

Y = X3 

To compute the pdf of Y : for y ∈ [0, 8], 

general approach •


FY (y) = P (Y < y) = P (X3 < y) 

1/3= P (X < y 1/3) =
1 

y
2

fY (y) = 
dFY (y) =

1 
y−2/3 

dy 6

• 
�����
dx

�����fY (y) = fX (x) 
dy 

11 
= y−2/3 

23

Key: the pdf of a cts random variable de

pends on how it’s value is represented. 



Differential Entropy


Question How much information is con
tained in a continuous random variable? 

Consider a random variable X with a con
tinuous density f (x), divide the range of X 
into bins of length Δ. For each bin, there 
exists a value xi, 

� (i+1)Δ 
f (xi)Δ = f (x)dx 

iΔ 

Construct a discrete quantization of X as 
a r.v. XΔ 

XΔ = xi, for X ∈ [iΔ, (i + 1)Δ) 

H(XΔ) = − 
� 

pi log pi 

= − 
� 

f (xi)Δ log(f (xi)Δ) 

= − 
� 

f (xi) log f (xi)Δ − log Δ 

The more precisely X is quantized, the more 
information XΔ contains. 



Differential Entropy


Let Δ 0.
→ 

H(XΔ) + log Δ → − 
� 

f (x) log f (x)dx := h(X) 

h(X) does NOT give the absolute amount • 

of information contained in X. 

Differential entropy allows us to compare • 

the randomness of two continuous ran


dom variables, when they are quantized


to the same precision.


Corollary The entropy of a nbit quanti

zation of a cts r.v. X is approximately 

h(X) + n. 



� 

Examples:


• Uniform distribution, X ∼ U (a, b),


1

fX (x) = 

� 

b−a a ≤ x ≤ b

0, otherwise 

(b − a)2 
E[X] = 

b − a
, var[X] = 

2 12 

� b 1 1 
h(X) = − log dx


a b − a b − a 
= log(b − a) 

Gaussian random variable X ∼ N (µ, σ2)• 

1 
� 

1 
fX (x) = √

2πσ2 
exp
 −

2σ2
(x − µ)2

�


h(X) = − fX (x) log fX (x)dx 
� � 

1 1 
� 

= − fX (x) log dx√
2πσ2 

− 
2σ2

(x − µ)2

1 
= log 

�
2πσ2 + 

2

1


= log 2πeσ2 

2 



Example


Use differential entropy to compare the ran

domness of rv.’s 

X is uniform on [0,1]. We quantize X into 

one of 8 bins of length 1/8 each. Let the 

bin number be Y ∈ {0, . . . ,7}. 

h(X) = 0 
1 

h(X Y ) = log = −3
|
8 

By observing Y , we obtain 3 bits informa

tion about X. 

Y can be thought as the first 3 digits of 

the binary expansion of X. 



� 

� 

� 

Joint and Conditional Differential

Entropy, Mutual Information


Joint differential entropy • 

h(X, Y ) = − fX,Y (x, y) log fX,Y (x, y)dxdy 

Conditional differential entropy • 

h(X Y ) = − fX,Y (x, y) log fX Y (x y)dxdy| | |

Relative entropy of two densities f and • 
g: 

� 
f 

= f logD(f ||g) 
g 

Mutual Information • 

fX,Y (x, y)
I(X;Y ) = fX,Y (x, y) log dxdy

fX (x)fY (y)

Exercise as Δ 0,→ 

I(XΔ;Y Δ) I(X;Y )→ 

= H(XΔ)− H(XΔ Y Δ)|
h(X)− log Δ − (h(X Y )− log Δ) ≈ |



Properties of Differential Entropy


Chain Rule 

h(X, Y ) = h(X) + h(Y X) = h(Y ) + h(X Y )
| |

h(X, Y ) = EX,Y [− log fX,Y (x, y)] 

= EX,Y [− log fX (x)− log fY X (y x)] 

= EX [− log fX (x)] + EX,Y [−
|
log

|
fY X (y x)]| |

= h(X) + h(Y X)|


Similarly 

I(X, Y ;Z) = I(X;Z) + I(Y ;Z X)|

Information Inequality 

D(f ||g) ≥ 0 

� 
f (x)

D(f ||g) = f (x) log dx 
g(x) 

= − 
� 

f (x) log 
g(x)

dx 
f (x)�� 

f (x)
g(x) 

� 

≥ log dx

f (x) 

= 0 



Corollary Mutual information is nonnegative


I(X;Y ) = D(fX,Y ||fXfY ) ≥ 0 

Corollary Conditioning reduces entropy


h(X)− h(X Y ) = I(X;Y ) ≥ 0|

Corollary Independence bound


n

h(X1, X2, . . . , Xn) ≤ 
� 

h(Xi) 
i=1 

Question


•	 h(X) ≥ 0? 

What is the differential entropy of a dis•


crete random variable?


h(X + a) = h(X)?
• 

h(2X) = h(X)?• 



� 

Scaling and Translation


Translation does not change differential • 

entropy 

h(X + a) = h(X)


Scaling changes differential entropy • 

h(aX) = h(X) + log a
| | 

Example X ∼ N (0, 1), 

1 
h(X) = log 2πe


2

1


h(σX + µ) = log(2πeσ2)
2 

Proof Y = aX, fY (y) =
1 fX (y/a),
a| | 

h(Y ) = − fY (y) log fY (y)dy 
� 1 

� 
1 

� 

= − 
� 
|a| fX (y/a) log fX (y/a) dy 

a
| | 
= − fX (x) log fX (x)dx + log a| | 



Generalize


• If Y = g(X), 
�����
dx

�����fY (y) = fX (g
−1(y)) 

dy 

h(Y ) = h(X)− E 
�
log 

���dx
���
� 

dy•


Example X is i.i.d. Gaussian random vec

tor N (0, I), Y = AX, for a fixed invertible 

matrix A. Y ∼ N (0, KY = AA�). 
1


h(X) = log(2πe)n 

2


h(Y ) = h(X)− log A−1 = 
1 

log(2πe)n + log A| | 
2 

| | 
1


= log(2πe)n KY2 
| | 

Shannon ”In the discrete case the entropy 

measures in an absolute way the random

ness of the chance variable; in the contin

uous case the measurement is relative to 

the coordinate system” 



Concavity and Convexity


Differential Entropy h(X) is a concave 

function of the density fX (x). 

Mutual information I(X;Y ) is concave in 

fX for any fixed fY X ; and is convex in fY |X|
for any fixed fX . 



Example: Maximize the Differential


Entropy


Question 1 if X takes value in [a, b], what 

distribution maximizes the differential en

tropy? 

Uniform distribution on [a, b] maximizes the 

differential entropy. 



� � � 

� 

� 

Question 2 if X has mean E[X] = µ and 

variance var[X] = σ2, what distribution of 

X maximizes the differential entropy? 

max 
f 

− f (x) log f (x)dx

subject to the contraint 

f (x)dx = 1 

xf (x)dx = µ 
� 

(x − µ)2f (x)dx = σ2 

Can be solved by Lagrange method to con

clude X ∼ N (µ, σ2). 

Gaussian distribution maximizes the differ

ential entropy for the same first and second 

order moment. 



� 

� 

Assume X � has the same first and second 

order moment as the Gaussian random vari

able X. Let the density of X be f and 

density of X be g. 

D(X =
�||X) D(g||f )


= 
� 

g(x) log 
g(x)

dx

f (x) 

= g(x) log g(x)dx 
� � 

1 1 
� 

− g(x) log dx√
2πσ2 

− 
2σ2

(x − µ)2

� � 
1 1 

� 

= −h(X �)− f (x) log dx√
2πσ2 

− 
2σ2

(x − µ)2


= h(X)− h(X �)



