LECTURE 15

Last time:
Source-Channel Coding Theorem

Feedback Capacity

Lecture outline
Continuous Random Variables
Differential Entropy

AEP for continuous random variables



Continuous random variables

We consider continuous random variables
with probability density functions (pdfs)

X has pdf fx(x)

Cumulative distribution function (CDF)

Fx(z) = P(X <z) = [ fx(t)dt

Function of a random variable

— In general, for Y = g(X)

Get CDF of Y: Fy(y) = P(Y < y) Differ-
entiate to get

dFy

fyy) = i

(y)

— If g is strictly monotonic, assume the
inverse function x h(y) is differen-
tiable,

fy(y) = fx(h(y))

dx




Example
X: uniform on [0, 2],

Yy = X3

To compute the pdf of Y: for y € [0, 8],

e dgeneral approach

Fy(y) = P(Y <y)=P(X><y)
= P(X <yl/3) = 4113
_ diy(y) _ 1 53
fyy) = 6
d
) = Ix(@)|
Yy
_ 11 53
— 237

Key: the pdf of a cts random variable de-
pends on how it's value is represented.



Differential Entropy

Question How much information is con-
tained in a continuous random variable?

Consider a random variable X with a con-
tinuous density f(x), divide the range of X
into bins of length A. For each bin, there
exists a value z;,

faya= [ DR @)de

(AN

Construct a discrete quantization of X as
arv. XA

X2 =g, for X e[in, i+ 1)A)

H(X?) —Y " p;log p;
— > flz)Alog(f(z;)A)

=Y f(=;)log f(xz;)A —log A

The more precisely X is quantized, the more
information X2 contains.



Differential Entropy

Let A — O.

H(X2) 4+ log A — —/f(a:) 09 f(z)dz ‘= h(X)

e h(X) does NOT give the absolute amount
of information contained in X.

e Differential entropy allows us to compare
the randomness of two continuous ran-
dom variables, when they are quantized
to the same precision.

Corollary The entropy of a n-bit quanti-
zation of a cts r.v. X is approximately

h(X) + n.



Examples:

Uniform distribution, X ~ U(a,b),

1
fx (@) { 0, otherwise

b— b—a)?
E[X] = @ var[X] = (b—a)

2 12
h(X) ’
B _/a b—a b—a
= log(b—a)

Gaussian random variable X ~ N(u, 02)

fx(@) = s exp [~ (e — )2

2mo

h(X)

~ [ Ix(@)log fx(2)de
1 1
= —/fX(fL') (Iog 5~ 5. 5% )

2m0o 202

1
= log 27TO'2—|-5

= Zlog2mweo?
> g 2meo



Example

Use differential entropy to compare the ran-
domness of rv.’s

X is uniform on [0, 1]. We quantize X into
one of 8 bins of length 1/8 each. Let the
bin number be Y € {0,...,7}.

h(X) = 0
h(X|Y) = Iogé:—3

By observing Y, we obtain 3 bits informa-
tion about X.

Y can be thought as the first 3 digits of
the binary expansion of X.



Joint and Conditional Differential
Entropy, Mutual Information

e Joint differential entropy

h(X,Y) = _/fX,Y(xay) log fx y(x,y)dzdy
e Conditional differential entropy

h(X]Y) = —/fX,Y(fE,y) l0g fx |y (zly)dzdy
e Relative entropy of two densities f and

g.
. /
D(f|lg) = | flog=
g
e Mutual Information

fX,Y(xa y)
fx (@) fy (y)

1Y) = [ fxy (@) 10g dzdy

EXxercise as A — 0,

(X2 YR & I(X:Y)

H(X®) — H(X2|)Y?)

h(X) —log A — (h(X|Y) — log A)

Q



Properties of Differential Entropy

Chain Rule
h(X,Y) = h(X) +h(Y|X) = h(Y) 4+ h(X[|Y)

h(X,Y) = Exyl-logfxy(z,y)]
= Exyl-log fx(z) —log fyx(y|z)]
= Ex[-log fx(@)] + Ex y[- 09 fy x (y|z)]
= h(X)+ h(Y|X)

Similarly

I(X,)Y;2)=1(X;2)+ I(Y; Z|X)

Information Inequality

D(fllg) > ©
_ (@),
D(flly) = [ f@)og? (mg)
. g\x
= — [ F@)1og Tyl
g(w)
> Iog[/f() @) ]

= 0



Corollary Mutual information is non-negative

I(X,Y)=D(fxvyllfxfy) >0

Corollary Conditioning reduces entropy

(X)) —h(X|Y)=I(X;Y)>0

Corollary Independence bound

mn
h(X1,Xo,...,Xn) <) h(Xy)
i=1

Question
e h(X)>07

e \What is the differential entropy of a dis-
crete random variable?

o h(X +a)=h(X)?
o h(2X) = h(X)?



Scaling and Translation

e [ranslation does not change differential
entropy

MX + a) = h(X)

e Scaling changes differential entropy

h(aX) = h(X) + log|al

Example X ~ N(0,1),
1
h(X) = Eikx32we

h(cX + )

1
5 log(2mea?)

Proof Y = aX, fy(y) = 3fx(y/a),
(Y) = = [ fr(w)1og fy (y)dy

= — [ fx(/a) 1o (ﬁmy/a)) dy
~ [ £x(@)10g fx(2)dz + log |a



Generalize
o IfY = g(X),
dx

fr(w) = fx(g () y
Y

e W(Y)=h(X)-E [log \g—g }

Example X is i.i.d. Gaussian random vec-
tor N(O0,I), Y = AX, for a fixed invertible
matrix A. Y ~ N(0, Ky = AA").

hX) = %Iog(Qwe)n

h(Y) = h(X) —log |A_1| = %Iog(Qwe)” + log | A]

1
= 5 log(27e)"| Ky |

Shannon "In the discrete case the entropy
measures in an absolute way the random-
ness of the chance variable; in the contin-
uous case the measurement is relative to
the coordinate system”



Concavity and Convexity

Differential Entropy h(X) is a concave
function of the density fx(x).

Mutual information I(X;Y) is concave in
fx for any fixed fyx; and is convex in fyx
for any fixed fx.



Example: Maximize the Differential
Entropy

Question 1 if X takes value in [a,b], what
distribution maximizes the differential en-
tropy?

Uniform distribution on [a, b] maximizes the
differential entropy.



Question 2 if X has mean E[X] = u and
variance var[X] = ¢2, what distribution of
X maximizes the differential entropy?

max [—/f(ac) 10 f(:c)dx]
subject to the contraint
/ f(z)dz = 1
/:I:f(a:)da: —_
[ @ =2/ (@)ds = o2

Can be solved by Lagrange method to con-
clude X ~ N(u,o2).

Gaussian distribution maximizes the differ-
ential entropy for the same first and second
order moment.



Assume X'’ has the same first and second
order moment as the Gaussian random vari-
able X. Let the density of X be f and
density of X’ be g.

D(X'||X) = D(gl|f)

. g(x )
= [g@)10g 2 oy

= [9(@)logg(2)de

1 1
_/g(m) log \/ﬁ — 20_2(g3 — M)Ql dx
= —h(X) = [ f(=) |log m — Q(a:—u)?]

= h(X) — h(X)



