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Review

e Differential entropy
h(X) = - [ fx()10g fx(2)de

e Differential entropy does not give the ab-
solute amount of randomness, but rather
a relative measure.

e Differential entropy of a continuous r.v.
depends on how the r.v. is represented.

e Properties of Differential entropy
— Chain rule

— Information Inequality

— Conditioning reduces entropy

e For X taking value in [a,b], uniform dis-
tribution maximizes the differential en-
tropy.



Maximizing Entropy

For any r.v. X’ taking values in [a,b], let X
be uniformly distributed,

h(X) — h(X") = D(X'||X)

For a zero-mean r.v. X with E(X?2) = ¢2,
what distribution maximizes the differential
entropy?

max [—/f(m) log f(z)da
subject to the constraint
/ f(z)de = 1
/a:f(:c)d:c — 0
/a;Qf(a;)da; — 52

Can be solved by Lagrange method to con-
clude X ~ N(0O, o2).



Gaussian Random Variables

Gaussian distribution maximizes the differ-
ential entropy for the same first and second
order moment.

Assume X'’ has the same first and second
order moment as the Gaussian random vari-
able X. Let the density of X be f and
density of X’ be g.

D(X'||X) = D(gl|f)
g(x)

= /g(w) log mda}

= [ g(@)log g(2)da

1 1
[ |j08- 755 — 5ot =)
= n(X) ~ [ 1@) |log s~ T (a— w>|d
= — — X g 27TO_2—202$—/L x

= h(X) — h(X)



Jointly Gaussian Random Variables

Let W be a random vector withi.i.d. N(0,1)
entries.

h(W) = %Iog(%e)”

Let X be a Gaussian random vector with
mean p and covariance matrix

El(X - (X -l =Ky

e Ky is symmetric, positive semi-definite
matrix.

e Eigenvalue decomposition Ky = UAUY.

e Let A=UVA, then Ky = AAT, and

XL AW + p



Consider another random vector X/ = VAW,
with independent entries N (0O, \;) distributed.

n 1 1
MXD) => hX)) = S log(2me)” + 5> log A;
i=1
Now h(X) = h(X") = h(W) 4+ logdet(A).
e Can replace W by any other distribution

e Important Changing of coordinate sys-
tem affects the differential entropy.



AEP

Theorem Let Xq,...,X, be a sequence of
i.i.d. r.v.’s with density f(x).

—% 100 F(X1, ., Xn) — h(X)

in probability.

Definition typical set Aé"):

AM = {X7 1|~ t0g F(x7) — h(X)| < ]

Theorem For any € and large enough n
o P(AYy>1_¢

o Vol(Al™M)Y) < 2n(H(X)+e) for any n.

o Vol(Al™M)Y) > on(H(X)—e)

Proof
1 = /f(&?)diqf > no f(i?)di?

> 2—n(h(X)—|—e)/ d”
— Agn) <1

= 2 (X +yoialm)



Additive White Gaussian Noise
Channel

Consider the channel

Y=X+W
2

with power constraint E[X?] < o%, and
W ~ N(0,08,).

Definition
C = max I(X;Y)
fx E[X?2]<P
Consider
I(X;Y) = h(Y)—h(Y|X)

h(Y) — h(Y — X|X)
h(Y) — h(W)

1
= h(Y) — ~ log 2rect;

E[Y?] = E[X?] + E[W?] = 0% + o)

1 1
I(X;Y) < 5 log 27T€(O‘§( + 0%/) ~5 log 27‘(‘60‘%/

1 2
= Zlog (1 +UTX>
2 oy



Capacity as an Estimation Problem

Consider

I(X;Y) = h(X)-—h(X]|Y)
= h(X) —h(X —g(Y)|Y)
for any function g(.).

e Choose X to be N(0,0%) distributed.

e Choose g(.) to be the linear least square
estimate of X. In the Gaussian case

P
Y) = Y
g(Y) 2+ o2,
0'2 0'2
var[X —g(Y)] = 2W X2
ox oy
and X — g(Y) is independent of Y. Now

1 1 02,02
5 |Og(27rea§() ~5 log 27e 2W X2

0% T Oy
1 0%
— Elog (1 +T>

Ow

I(X:Y)




Discussions

Denote X = ¢g(Y), we call X a sufficient
statistics if

X—-Y—->XX—-X-—>Y

In Gaussian estimation problems (high
dimension), the LLSE X satisfies this.

I(X;Y)=1I(X;X). Processing Y to ob-
tain a sufficient statistics does not re-
duce information.

For general distributions of W with the
same power, the LLSE X, var(X — X) is
the same as the Gaussian case,

h(X—X\Y) < h(X—X')
0202,
(7% -+ U%V

1
< —log2rwe
S 5 Jd

Equalities hold only for the Gaussian noise:
AWGN is the worst noise.



A Mutual Information Game

e The transmitter tries to maximize the
mutual information by choosing fx, sub-

ject to a power constraint E[X?] = 0%.

e The channel (Jammer) tries to minimize
the mutual information by choosing a

noise fy, subject to a power constraint
E[W?] = O"%V.

Saddle point :
e the optimal input is Gaussian

e the worst noise is also Gaussian



More Realistic

Consider the channel
Yi = X + W;

where W; is i.i.d. N(0,08,), and the input
has power constraint

1 &K o >
ngi <ox
i=1

2
Theorem C = % log (1 + ZTX) is the maxi-
%74
mum achievable rate.

Proof outline:

e Generate random code book with 278
codewords, each of length n, with i.i.d.
N(0,0% — &) entries.

e Joint typicality decoding.
To compute the error probability, w.o.l.g.

assume the first codeword x(1) is trans-
mitted.



e If the generated codeword violates the
power constraint, claim an error.

Eg = {i i z7(1) > a%}

1=1

e Define
E;, ={(X(i),Y) is jointly typical}

P(E{) — 1

P(E) ~ 2 MXY)  forj£1

P

P(Eq UE% UEQ...UEQnR)
€_|_€_|_2TLR2—7?,(I(X;Y)—6)

VAN



converse

nRk

HOV) = I(V:Y) 4+ HV[Y™
I(V;Y) + 1+ nRP™
I(X:Y)+ 1+ nRPM

S I(XiY;) + 1+ nRES™
1=1

IA A

IA

To drive Pe(") — 0, need

1 mn
R< =) I(X;Y;)
ni=1

Key individual power constraint vs. aver-
age power constraint



Let 1y, P < 0%

1 mn
R < =) I(X;Y)
ni=1

1 1 P;
< 1y jo (14 4]
n 2 o
1 1 P;
< —'09(1+—Z 5)
2 n o
1 2
— Z“log <1+0—2X>
2 o

Corollary The concavity of the power-rate
curve implies that we always want to spread
the power evenly



