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Review


Differential entropy • 

h(X) = − fX (x) log fX (x)dx 

Differential entropy does not give the ab• 

solute amount of randomness, but rather 

a relative measure. 

Differential entropy of a continuous r.v. • 

depends on how the r.v. is represented. 

Properties of Differential entropy • 

– Chain rule 

– Information Inequality


–	 Conditioning reduces entropy 

For X taking value in [a, b], uniform dis•


tribution maximizes the differential en

tropy. 
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Maximizing Entropy


For any r.v. X taking values in [a, b], let X

be uniformly distributed, 

h(X)− h(X �) = D(X �||X) 

For a zeromean r.v. X with E(X2) = σ2, 

what distribution maximizes the differential 

entropy? 

max 
f 

− f (x) log f (x)dx

subject to the constraint 

f (x)dx = 1 

xf (x)dx = 0 
� 

x 2f (x)dx = σ2 

Can be solved by Lagrange method to con

clude X ∼ N (0, σ2). 
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Gaussian Random Variables


Gaussian distribution maximizes the differ

ential entropy for the same first and second 

order moment. 

Assume X � has the same first and second 

order moment as the Gaussian random vari

able X. Let the density of X be f and 

density of X be g. 

D(X =
�||X) D(g||f )


= 
� 

g(x) log 
g(x)

dx

f (x) 

= g(x) log g(x)dx 
� � 

1 1 
� 

− g(x) log dx√
2πσ2 

− 
2σ2

(x − µ)2

� � 
1 1 

� 

= −h(X �)− f (x) log dx√
2πσ2 

− 
2σ2

(x − µ)2


= h(X)− h(X �)




Jointly Gaussian Random Variables


Let W be a random vector with i.i.d. N (0, 1) 

entries. 

1 
h(W ) = log(2πe)n 

n


Let X be a Gaussian random vector with 

mean µ and covariance matrix 

E[(X − µ)(X − µ)T ] = KX 

•	 KX is symmetric, positive semidefinite 

matrix. 

Eigenvalue decomposition KX = U ΛUT . • 

Let A = U 
√

Λ, then KX = AAT , and • 

d 
X = AW + µ




�

Consider another random vector X � = 
√

ΛW , 

with independent entries N (0, λi) distributed. 

n 1 1 
h(X �) = 

� 
h(Xi

�) = log(2πe)n + 
� 

log λi
2 2i=1 

Now h(X) = h(X ) = h(W ) + log det(A). 

Can replace W by any other distribution • 

Important Changing of coordinate sys• 

tem affects the differential entropy. 
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AEP


Theorem Let X1, . . . , Xn be a sequence of 
i.i.d.	 r.v.’s with density f(x). 

1 −
n 

log f(X1, . . . , Xn) h(X)→ 

in probability. 

Definition typical set A(
�
n): 

A
(n)	

�
Xn 

����
1 

1)− h(X)
���� ≤ �

� 

� = 1 : −
n 

log f(Xn 

Theorem For any � and large enough n 

P (A(n)) ≥ 1 − � • 

Vol(A(
�
n)) ≤ 2n(H(X)+�) for any n. • 

Vol(A(n)) ≥ 2n(H(X)−�) • 

Proof 

n	
� 

n1 = 
� 

f(x1)dxn 

A
(n) f(x1)dxn 

1	 1≥ 
� 

2−n(h(X)+�)
� 

A
(n) 1≥ 
� 

dxn 

= 2−n(h(X)+�)Vol(A(n)) 



Additive White Gaussian Noise

Channel


Consider the channel 

Y = X + W 

with power constraint E[X2] ≤ σ2 
X, and 

W ∼ N(0, σ2 
W ). 

Definition 

C = max I(X;Y ) 
fX:E[X2]≤P 

Consider


I(X;Y ) = h(Y )− h(Y X)
|
= h(Y )− h(Y − X X)|
= h(Y )− h(W ) 

1 
= h(Y )− log 2πeσ2 

2 W 

X + σ2E[Y 2] = E[X2] + E[W 2] = σ2 
W 

1 
X + σ2I(X;Y ) ≤ log 2πe(σ2 

W )− 
1 

log 2πeσ2 

2 2 W 

1 
� 

σ2 � 

= log 1 + X 
2 σ2 

W 



Capacity as an Estimation Problem


Consider


I(X;Y ) = h(X)− h(X Y )
|

= h(X)− h(X − g(Y ) Y )|

for any function g(.). 

Choose X to be N(0, σ2 
X) distributed. • 

• Choose g(.) to be the linear least square


estimate of X. In the Gaussian case


σX g(Y ) = Y

σ2 + σ2 

X W 
σ2 σ2 

var[X − g(Y )] = W X 
σ2 + σ2 

X W 

and X − g(Y ) is independent of Y . Now 

1 σ2 σ2 

X)− W XI(X;Y ) = log(2πeσ2 1
log 2πe

σ2 + σ22 2 X W 

1 
� 

σ2 � 

= log 1 + X 
2 σ2 

W 



Discussions


ˆ X a sufficient Denote X = g(Y ), we call ˆ• 

statistics if


ˆ ˆ
X Y X, X X Y
→ → → →


In Gaussian estimation problems (high• 
ˆdimension), the LLSE X satisfies this. 

I(X;Y ) = I(X; X̂). Processing Y to ob• 

tain a sufficient statistics does not re

duce information. 

For general distributions of W with the • 

X, var(X − ˆsame power, the LLSE ˆ X) is 

the same as the Gaussian case, 

X X)
h(X − ˆ Y ) ≤ h(X − ˆ

σ2 σ2
|

1 ≤ 
2 

log 2πe X W 
σ2 + σ2 

X W 

Equalities hold only for the Gaussian noise: • 

AWGN is the worst noise. 



A Mutual Information Game


The transmitter tries to maximize the • 

mutual information by choosing fX , sub

ject to a power constraint E[X2] = σ2 
X . 

The channel (jammer) tries to minimize • 

the mutual information by choosing a 

noise fW , subject to a power constraint 

E[W 2] = σ2 
W . 

Saddle point : 

the optimal input is Gaussian
• 

the worst noise is also Gaussian • 



More Realistic


Consider the channel 

Yi = Xi + Wi 

where Wi is i.i.d. N (0, σ2 
W ), and the input 

has power constraint 

1 n
2� 

xi ≤ σ2 
X n i=1 

σ2
1 

�
X 

�
Theorem C = 2 log 1 + 

σ2 is the maxi
W 

mum achievable rate. 

Proof outline: 

2nRGenerate random code book with • 
codewords, each of length n, with i.i.d. 

N (0, σ2 entries.X − δ)


Joint typicality decoding.
•


To compute the error probability, w.o.l.g. 

assume the first codeword x(1) is trans

mitted. 



�

If the generated codeword violates the
• 

power constraint, claim an error. 

E0 = 

⎧
⎨ 

⎩


1
 n�

x 

n i=1 

2 
i (1) ≥ σ2 

X 

⎫
⎬ 

⎭


Define
• 

Ei = {(X(i), Y ) is jointly typical} 

P (E1) 1 → 

2−nI(X;Y ) for i = 1P (Ei) ≈ 

Pe 
(n) = P (E0 ∪ Ec 

1 ∪ E2 . . . ∪ E2nR) 

≤ � + � + 2nR2−n(I(X;Y )−�) 



Converse


nR = H(V ) = I(V ;Y ) + H(V Y n)|
I(V ;Y ) + 1 + nRPe 

(n)≤ 

I(X;Y ) + 1 + nRPe 
(n)≤


n�

I(Xi;Yi) + 1 + nRPe 

(n)≤ 
i=1 

To drive Pe 
(n) 0, need → 

1 n�

R ≤ 

n 
I(Xi;Yi) 

i=1 

Key individual power constraint vs. aver

age power constraint 



Let 1 �
i Pi ≤ σ2 

n X . 

1 n

R 
� 

I(Xi;Yi)≤ 
n i=1 

Pi 
�

1 � 1 
log 

� 

1 + ≤ 
n 2 σ2 

W 
1 1 Pi 

� 

≤ 
2 

log 

� 

1 + 
� 

n σ2 
W 

1 
� 

σ2 � 

= log 1 + X 
2 σ2 

W 

Corollary The concavity of the powerrate 

curve implies that we always want to spread 

the power evenly 


