LECTURE 17

Last time:
Differential Entropy
AEP for continuous random variables
Coding Theorem

Gaussian Channels

Lecture outline

Gaussian Channel Capacity as Sphere Pack-
ing

Parallel Gaussian Channels
Waveform Channels

Wide-band limit.
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Review

Y=X+W

1 2
C = max I(X:;Y) = Zlog <1+UTX>
fx E[X?]<0% 2 oy

Yi = X; + W;

. . 1 n 2 2
with power constraint ﬁzizl xs < oy

Maximum achievable rate is C.

o Key: treat average power constraint in
proving the coding theorem.



Discussions on Gaussian Channel

Capacity

e Consider an arbitrary random vector Y
with power constraint E[Y?] < o2. By

WLLN, Y lies in a sphere of radius \/no%
with high probability.
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e Consider an i.i.d. Gaussian random vec-
tor W with variance a%/. What is the

typical set Aé") look like?
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The typical set is a shell of the sphere

S (\/nod,).



A few easy conclusions

e For the Gaussian vector, since every w
inside the sphere has higher pdf, the vol-
ume of the sphere is concentrated on the
shell.

e [ he typical set of a Gaussian r.v. Cov-
ers almost all the volume that a power
limited r.v. can cover.



Sphere Packing in Gaussian channel
for a transmitted codeword z, the set of
y that are joint typical with z is a sphere
centered at z with radius \/no3;.

the maximum data rate is

1. Ap(no2)2 1 2
R = Z10g 2 = Liog (%)

n An(na%v)% Oy

Need Y to be i.i.d. Gaussian.

For x and y independently chosen ac-
cording to the marginal distribution, the
probability that they are jointly typical is

An(na%v)f ~ Q—RI(X;Y)

For a code book of z;,i = 1,...,2"%, and
an independently chosen y, the probabil-
ity that there exists ¢, such that (z;,y)
are jointly Gaussian
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Extensions of the Sphere Packing
Argument

e Can use the sphere packing argument in
the X space. For any fixed y, the set
of z that are jointly typical with y is a
sphere of radius
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centered at X.
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Summary for Sphere Packing

e Useful geometric approach to the chan-
nel capacity, and the optimal input dis-
tribution

e Not limited to the AWGN channels.

e \Very hard to prove rigorously.

Example: In the AWGN channel, if the
average power constraint is replaced by

:UZQ < 0124/, \Z

optimal input should be "uniform” in the
cube.

Example: In the AWGN channel, assume
the signal-to-noise ratio is very high. Sup-
pose now the receiver can only receive Y / ||Y ||,
i.e., the norm of Y is completely lost.

optimal input should have " uniform” distri-
bution on the direction of X.



A Greedy way to Spend Power

Consider the AWGN channel, with power
constraint

1

The transmitter

e Divide the power in to P = P; 4+ P>, and
the data stream into R = R1 4+ R»>, and
assign to two virtual users

e Each user has a random code book, gen-
erate codewords X1 and X»>. The super-
position X = X1 + X5 is transmitted.

T he receiver receives
Y=X1+Xo0+W

e First treat X>+ W as the noise, can sup-
port

n P
nRy <I(X1,Y) =§|09 <1+P2—|iN>



e Upon decoding Xy, subtract X7 from Y,
then decode X». Can support rate

P
nRo < 1(X5Y|X1) = 2 log (1 + WQ)

e The over all data rate is Rq{ + Ro, the
channel capacity is achieved.

Discussions

e [0 generalize, we can have many virtual
users. Useful in multiple access channels.

e Highly depends on the fact that the sum
of independent Gaussian r.v.'s is Gaus-
sian

e Can be used when the capacity is the
only concern.

Example Consider a Gaussian channel with
nR = 10bits, random coding need 27 —=
1024 code words. If divided into two virtual
users of nR; = bbits each, need only two
codebooks of 32 codewords each. Does
this mean the complexity is greatly decreased?



Parallel Gaussian Channels

Assume we have a set of Gaussian channels
in parallel,

Y;ZXZ—FWZ, izl,...,]{i

where the noise W; are independent of X's

and are independent of each other, with
power o?.

The power constraint is

k
2
E|Y X;f| <P
i=1
Capacity
C = max I(Xla---Xk;Yla---aYk)
fxq,., Xk'ZEX2<P



I(Xla---7Xk;Y17---7Yk)
h(Y1,...,Yg) —h(Yy,..., Y| Xq, ..., Xg)

k
= h(Y1,...,Y) — Z h(W;)
1=1

> [h(Y3) — h(W))]
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Equality achieved if X;'s are independent
and with power E[X?] = P;, subject to
power constraint > P; < P.

Now we need the optimal power allocation
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Water Filling

Define

J:Z%Iog <1+%> +x(>p)

1

Need Vi
1
+A=0
P + N;
or
P, =v — N,

However, since P; > 0, so we have
P=w-N)Tt

and v can be solved by

Z(u ~N)T=rP

e Use the greedy approach to get the same
result.



Waveform Channel: White Gaussian
Noise

Y(t) =X +W(Q)

W (t) is a Gaussian random process. Any

set of samples are i.i.d. Gaussian dis-
tributed with zero mean and variance E[W (t)2] =
N,

=2

Autocorrelation function R(7) = E[W (&)W (t—

7] = 205(7).

Power Spectral Density is flat % over all
frequency

Do we really have white Gaussian noise?



Front end of the receiver

Goal: provide sufficient statistics for ban-
dlimited transmitted signals.

Assume the X(t) has non-zero frequency
components only in [-W, W], can sample

at Tsz

1

2w

can be thought as a bank of matched
filter matched to

. n
sinc (1— )
2W
where
sin(2xWt
sinc(t) = n(2rWt)
2mW't

The front end provide sufficient statistics
since

— the out-of-band noise is independent of

the transmitted signals

— the out-of-band noise is independent of

the in-band noise



Discrete-Time Channel Model

e 2W samples per second.

No
2.

e Average per symbol signal power P/2W .

e [ he noise power in each sample is

We get back to

Yi = X + W,

The overall capacity in (bits/sec)

B 1 P/2W
C = 2W7log <1+ No/2>

C:W|og(1+NOLW)

P has unit (watt), and Ng (watt/hz).



Admiring Shannon’s Formula

C=W|og(1+NOLW)

Question 1 Do we always want more
bandwidth?

Question 2 What can we do with infi-
nite bandwidth??

P
C — —logs e(bits/sec)
No

Capacity grows linearly with the power
(very power efficient).

The energy required to send 1 bit is E
= P/C watts x1 sec,

E, 1
No - logo e

= —1.59(dB)

Question 3 What can we do with infi-
nite power?

. C P
im — — log—
W—oo W No
capacity linearly increases with W (spec-

tral efficient)





