
LECTURE 18


Last time: 

Gaussian Channel Capacity as Sphere Pack• 

ing


Parallel Gaussian Channels
• 

Lecture outline 

Waveform Channels • 

Wideband limit • 

Colored Gaussian Noise
• 



Review


Gaussian Channel: • 

Y = X + W 

E[X2] ≤ P, E[W2] = N 

1 P 
C = log(1 + )


2 N

Parallel Gaussian Channels • 

Yi = Xi + Wi 
� 

E[X2 
i ] = P , E[W2 

i ] = Ni, i = 1, . . . , k. 

waterfilling. 



Waveform Channel: White Gaussian


Noise


Y (t) = X(t) + W (t)


W (t) is a Gaussian random process. Any
• 

set of samples are i.i.d. Gaussian dis

tributed with zero mean and variance E[W (t)2] = 
N0 
2 . 

•	 Autocorrelation function R(τ ) = E[W (t)W (t−
τ )] = N2

0δ(τ ). 

Power Spectral Density is flat N2
0 over all • 

frequency


Do we really have white Gaussian noise?
•




Front end of the receiver


Goal: provide sufficient statistics for ban

dlimited transmitted signals. 

Assume the X(t) has nonzero frequency


components only in [−W, W ], can sample 
1at Ts = 2W . 

can be thought as a bank of matched • 

filter matched to 
� 

n 
�

sinc t − 
2W


where


sin(2πW t)

sinc(t) =


2πW t 

The front end provide sufficient statistics • 

since 

–	 the outofband noise is independent of 

the transmitted signals 

–	 the outofband noise is independent of 

the inband noise 



DiscreteTime Channel Model


2W samples per second. • 

The noise power in each sample is N
2
0. • 

• Average per symbol signal power P /2W .


We get back to 

Yi = Xi + Wi 

The overall capacity in (bits/sec) 

1 
� 

P /2W 
� 

C = 2W log 1 + 
2 N0/2 

P 
�

C = W log 
�
1 + N0W 

P has unit (watt), and N0 (watt/hz).




Admiring Shannon’s Formula


P	
�

C	= W log 
�
1 + N0W 

Question 1 Do we always want more • 
bandwidth? 

Question 2 What can we do with infi• 
nite bandwidth? 

P 
C log2 e(bits/sec)→ 

N0 

Capacity grows linearly with the power 
(very power efficient). 

•	 The energy required to send 1 bit is Eb 
= P /C watts ×1 sec, 

Eb 1 

N0 
= 

log2 e 
= −1.59(dB) 

Question 3 What can we do with infi• 
nite power? 

C	 P 
lim log 

N0W →∞ W 
→ 

capacity linearly increases with W (spec
tral efficient)




Discussions


Waveform channels are simply 2WT par• 

allel channels.


White Gaussian noise allows us to look at
•


the signal space with any chosen basis.


Differential entropy depends on the co
•


ordinate system, but mutual information 

does not. 

I(X;Y ) = h(Y )− h(Y X)|
Key: look at Y and Y X from the same
|
coordinate system. 



Gaussian Channel with Colored Noise


Yi = Xi + Wi, i = 1, . . . , m 

where Wi’s are not i.i.d., but have a covari
ance matrix 

E[WW †] = KW 

Channel with memory, can only treat a • 
block as a supersymbol 

Y = X + W 

Now we do not have the liberty to choose •

any coordinate system, since otherwise 
the noise components are correlated. 

Eigen value decomposition • 

KW = UΛU† 

W can be viewed as white Gaussian noise • 
passed through a generating matrix


W = U
√

Λ ˜
W 

˜where W ∼ N(0, I) 



Choosing the Right Angle


Left multiply Y by U , does not lose any • 

information 

Y � = UY = UX + 
√

ΛW̃ 

= X � + 
√

ΛW̃ 

Now the elements of the noise vector be

come independent, and we get back to the 

parallel Gaussian channel case. 

Waterfilling among all the eigen modes. • 

•	 h(Y ) and h(Y |X) are computed in the 

rotated coordinate systems. 



� 

� � 

KL Expansion


Theorem KL expansion: 
For a random process with autocorrelation 
function RX (t, s) = E[X(t)X(s)]. Assume 
that RX (t, s) is symmetric, i.e., 

RX (t, s) = RX (s, t) 

and � � 

RX (t, s)dtds < ∞ 

then there exists a complete orthonormal 
basis {φi(t)} which are the eigen functions 
of RX (t, s), i.e., 

RX (t, s)φi(s)ds = λiφi(t) 

Let 

Xi = X(t), φi(t)

then 

X(t) = 
� 

Xiφi(t) 

in L2 norm sense. Furthermore, Xi’s are 
uncorrelated. 



�� � � 

� � 

� 

E[XiXj ] = E X(t)φi(t)dt X(s)φj (s)ds
� � 

= E[X(t)X(s)]φi(t)φj (s)dtds 

= φi(t) RX (t, s)φj (s)dsdt 

= λj φi(t)φj (t)dt 

= λjδij 

Key we can find a new basis of the signal 

space {φi(t)} such that the components of 

X(t) along different base vectors are uncor

related. For the Gaussian random process, 

the components can be independent. 

compare to the vector case. • 



Gaussian WSS Random Process


Now consider the special case that the ran

dom process is WSS, 

RX (t, s) RX (τ )→


Question what are the eigen functions? 

Any WSS Gaussian random process can •

be obtained by passing white Gaussian

noise through linear timeinvariant filters.


Sinesoid is the eigen function of LTI sys• 
tems, so it is also the eigen function of 

WSS random processes. 

infinite time horizon vs. finite time hori• 
zon.


Different frequency components of a Gaus
•

sian WSS process are independent, but 

may have different variance, given by the 

power spectral density. 

Waterfilling over different frequency com• 
ponents. 


