
LECTURE 18


Last time: 

Gaussian Channel Capacity as Sphere Pack­• 

ing


Parallel Gaussian Channels
• 

Lecture outline 

Waveform Channels • 

Wide­band limit • 

Colored Gaussian Noise
• 



Review


Gaussian Channel: • 

Y = X + W 

E[X2] ≤ P, E[W2] = N 

1 P 
C = log(1 + )


2 N

Parallel Gaussian Channels • 

Yi = Xi + Wi 
� 

E[X2 
i ] = P , E[W2 

i ] = Ni, i = 1, . . . , k. 

water­filling. 



Waveform Channel: White Gaussian


Noise


Y (t) = X(t) + W (t)


W (t) is a Gaussian random process. Any
• 

set of samples are i.i.d. Gaussian dis­

tributed with zero mean and variance E[W (t)2] = 
N0 
2 . 

•	 Autocorrelation function R(τ ) = E[W (t)W (t−
τ )] = N2

0δ(τ ). 

Power Spectral Density is flat N2
0 over all • 

frequency


Do we really have white Gaussian noise?
•




Front end of the receiver


Goal: provide sufficient statistics for ban­

dlimited transmitted signals. 

Assume the X(t) has non­zero frequency


components only in [−W, W ], can sample 
1at Ts = 2W . 

can be thought as a bank of matched • 

filter matched to 
� 

n 
�

sinc t − 
2W


where


sin(2πW t)

sinc(t) =


2πW t 

The front end provide sufficient statistics • 

since 

–	 the out­of­band noise is independent of 

the transmitted signals 

–	 the out­of­band noise is independent of 

the in­band noise 



Discrete­Time Channel Model


2W samples per second. • 

The noise power in each sample is N
2
0. • 

• Average per symbol signal power P /2W .


We get back to 

Yi = Xi + Wi 

The overall capacity in (bits/sec) 

1 
� 

P /2W 
� 

C = 2W log 1 + 
2 N0/2 

P 
�

C = W log 
�
1 + N0W 

P has unit (watt), and N0 (watt/hz).




Admiring Shannon’s Formula


P	
�

C	= W log 
�
1 + N0W 

Question 1 Do we always want more • 
bandwidth? 

Question 2 What can we do with infi­• 
nite bandwidth? 

P 
C log2 e(bits/sec)→ 

N0 

Capacity grows linearly with the power 
(very power efficient). 

•	 The energy required to send 1 bit is Eb 
= P /C watts ×1 sec, 

Eb 1 

N0 
= 

log2 e 
= −1.59(dB) 

Question 3 What can we do with infi­• 
nite power? 

C	 P 
lim log 

N0W →∞ W 
→ 

capacity linearly increases with W (spec­
tral efficient)




Discussions


Waveform channels are simply 2WT par­• 

allel channels.


White Gaussian noise allows us to look at
•


the signal space with any chosen basis.


Differential entropy depends on the co­
•


ordinate system, but mutual information 

does not. 

I(X;Y ) = h(Y )− h(Y X)|
Key: look at Y and Y X from the same
|
coordinate system. 



Gaussian Channel with Colored Noise


Yi = Xi + Wi, i = 1, . . . , m 

where Wi’s are not i.i.d., but have a covari­
ance matrix 

E[WW †] = KW 

Channel with memory, can only treat a • 
block as a super­symbol 

Y = X + W 

Now we do not have the liberty to choose •

any coordinate system, since otherwise 
the noise components are correlated. 

Eigen value decomposition • 

KW = UΛU† 

W can be viewed as white Gaussian noise • 
passed through a generating matrix


W = U
√

Λ ˜
W 

˜where W ∼ N(0, I) 



Choosing the Right Angle


Left multiply Y by U , does not lose any • 

information 

Y � = UY = UX + 
√

ΛW̃ 

= X � + 
√

ΛW̃ 

Now the elements of the noise vector be­

come independent, and we get back to the 

parallel Gaussian channel case. 

Water­filling among all the eigen modes. • 

•	 h(Y ) and h(Y |X) are computed in the 

rotated coordinate systems. 



� 

� � 

K­L Expansion


Theorem K­L expansion: 
For a random process with autocorrelation 
function RX (t, s) = E[X(t)X(s)]. Assume 
that RX (t, s) is symmetric, i.e., 

RX (t, s) = RX (s, t) 

and � � 

RX (t, s)dtds < ∞ 

then there exists a complete ortho­normal 
basis {φi(t)} which are the eigen functions 
of RX (t, s), i.e., 

RX (t, s)φi(s)ds = λiφi(t) 

Let 

Xi = X(t), φi(t)

then 

X(t) = 
� 

Xiφi(t) 

in L2 norm sense. Furthermore, Xi’s are 
uncorrelated. 



�� � � 

� � 

� 

E[XiXj ] = E X(t)φi(t)dt X(s)φj (s)ds
� � 

= E[X(t)X(s)]φi(t)φj (s)dtds 

= φi(t) RX (t, s)φj (s)dsdt 

= λj φi(t)φj (t)dt 

= λjδij 

Key we can find a new basis of the signal 

space {φi(t)} such that the components of 

X(t) along different base vectors are uncor­

related. For the Gaussian random process, 

the components can be independent. 

compare to the vector case. • 



Gaussian WSS Random Process


Now consider the special case that the ran­

dom process is WSS, 

RX (t, s) RX (τ )→


Question what are the eigen functions? 

Any WSS Gaussian random process can •

be obtained by passing white Gaussian

noise through linear time­invariant filters.


Sinesoid is the eigen function of LTI sys­• 
tems, so it is also the eigen function of 

WSS random processes. 

infinite time horizon vs. finite time hori­• 
zon.


Different frequency components of a Gaus­
•

sian WSS process are independent, but 

may have different variance, given by the 

power spectral density. 

Water­filling over different frequency com­• 
ponents. 


