LECTURE 18

Last time:

Gaussian Channel Capacity as Sphere Pack-
ing

Parallel Gaussian Channels

Lecture outline
Waveform Channels
Wide-band limit

Colored Gaussian Noise



Review
e Gaussian Channel:
Y=X4+W

E[X?] < P,E[W?] =N

1 P
C = 5'09(1+N)

e Parallel Gaussian Channels

Yi =X+ Wi

S E[X?] =P, E[W?] = N;,i=1,...

water-filling.



Waveform Channel: White Gaussian
Noise

Y(t) =X +W(Q)

W (t) is a Gaussian random process. Any

set of samples are i.i.d. Gaussian dis-
tributed with zero mean and variance E[W (t)4] =
N,

=2

Autocorrelation function R(7) = E[W (&)W (t—

7] = 205(7).

Power Spectral Density is flat % over all
frequency

Do we really have white Gaussian noise?



Front end of the receiver

Goal: provide sufficient statistics for ban-
dlimited transmitted signals.

Assume the X(t) has non-zero frequency
components only in [-W, W], can sample

at Tsz

1

2W:

can be thought as a bank of matched
filter matched to

. n
sinc (1- )
2W
where
sin(2xWt
sinc(t) = n(2rWt)
2mW't

The front end provide sufficient statistics
since

— the out-of-band noise is independent of

the transmitted signals

— the out-of-band noise is independent of

the in-band noise



Discrete-Time Channel Model

e 2W samples per second.

No
2.

e Average per symbol signal power P/2W .

e [ he noise power in each sample is

We get back to

Yi = X + W

The overall capacity in (bits/sec)

. 1 P/2W
C = 2W§Iog <1—|— No/2>

G:W|og(1+NOLW)

P has unit (watt), and Ny (watt/hz).



Admiring Shannon’s Formula

C=W|og(1+NOLW)

Question 1 Do we always want more
bandwidth?

Question 2 What can we do with infi-
nite bandwidth?

P
C — —logs e(bits/sec)
No

Capacity grows linearly with the power
(very power efficient).

The energy required to send 1 bit is E
= P/C watts x1 sec,

E, 1
No - logo e

= —1.59(dB)

Question 3 What can we do with infi-
nite power?

: C P
im — — log—
W—oo W No
capacity linearly increases with W (spec-

tral efficient)



Discussions

e \Waveform channels are simply 2W'T" par-
allel channels.

e \White Gaussian noise allows us to look at
the signal space with any chosen basis.

e Differential entropy depends on the co-
ordinate system, but mutual information
does not.

I(X:Y) = h(Y) — h(Y|X)

Key: look at Y and Y|X from the same
coordinate system.



Gaussian Channel with Colored Noise

YV, =X;4+W,i=1,....,m

where W;'s are not i.i.d., but have a covari-
ance matrix

E[WWT = Ky

e Channel with memory, can only treat a
block as a super-symbol

Y=X+W

e Now we do not have the liberty to choose
any coordinate system, since otherwise
the noise components are correlated.

e Eigen value decomposition
Ky = UAUT

e IV can be viewed as white Gaussian noise
passed through a generating matrix

W = UVAW
where W ~ N(O,I)



Choosing the Right Angle

e Left multiply Y by U, does not lose any
information

UY =UX + VAW
X'+ VAW

Y/

Now the elements of the noise vector be-
come independent, and we get back to the
parallel Gaussian channel case.

e \Water-filling among all the eigen modes.

e h(Y) and h(Y|X) are computed in the
rotated coordinate systems.



K-L EXpansion

Theorem K-L expansion:

For a random process with autocorrelation
function Rx(t,s) = E[X(t)X(s)]. Assume
that Rx (¢, s) is symmetric, i.e.,

Rx(t,s) = Rx(s,t)
and

//RX(t, s)dtds < oo

then there exists a complete ortho-normal
basis {¢;(t)} which are the eigen functions
of Rx(t, 8), I.e.,

[ Bx(t9)6i(s)ds = N (1)

Let

X; = (X(1), ¢:(1))
then
X () =) X;pi(t)

in L2 norm sense. Furthermore, X;'s are
uncorrelated.



EXX)) = B[ X(Oai(0)dt [ X(5)85(s)ds|
| [ EIX(OX (9)19i(t)e;(s)dtds
[ &) [ Bx(t,9);(s)dsd

A [ 6ie;(de

Key we can find a new basis of the signal
space {¢;(t)} such that the components of
X (t) along different base vectors are uncor-
related. For the Gaussian random process,
the components can be independent.

e compare to the vector case.



Gaussian WSS Random Process

Now consider the special case that the ran-
dom process is WSS,

Rx(t,s) — Rx(7)

Question what are the eigen functions?

Any WSS Gaussian random process can
be obtained by passing white Gaussian
noise through linear time-invariant filters.

Sinesoid is the eigen function of LTI sys-
tems, so it is also the eigen function of
WSS random processes.

infinite time horizon vs. finite time hori-
zon.

Different frequency components of a Gaus-
sian WSS process are independent, but
may have different variance, given by the
power spectral density.

Water-filling over different frequency com-
ponents.



