LECTURE 2

Convexity and related notions

1 Handout: PS 1

Last time:
e Introduction
e Review of probability

e Entropy, joint entropy, conditional en-
tropy

e Chain rule of entropy

Lecture outline
e Mutual Information.
e Convexity and concavity
e Jensen’s inequality
e Positivity of mutual information
e Data processing theorem
e Fano’'s inequality

Reading: Scts. 2.3, 2.6-2.8, 2.11.



Quick Review

Entropy

H(X) = —-) Px(z)log Px(x)

H(X) >0
Uniform distribution, let |[X| =n
H(X) =logn
Chain Rule
H(X,Y)=H(X)+ H(Y|X)

X,Y independent:

H(X,Y)
H(X)

H(X)+ H(Y)
H(X|Y)



Question: H(Y|X) = H(X|Y)~

H(X,Y)

H(Y|X) + H(X)
H(X|Y) + H(Y)

or equivalently

H(Y) - H(Y|X)=H(X)— H(X|Y)

Definition: Mutual Information

I(X:Y) H(X) — H(X|Y)
H(Y) — H(Y|X)
H(X)+ H(Y) — H(X,Y)

_ N Px y(z,y)
B :UEXZ,yEy PX’Y( w109 (PX(m)PY(y)>

The average amount of knowledge about
X that one obtains by observing the value
of Y.



Mutual Information and
Communication Channels

Question what is I(X; X)?

Question If X and Y are independent, what
is I(X;Y)?



Chain Rule for Mutual Information

Definition: Conditional Mutual Infor-
mation

I(X;Y|2) = H(X|Z) — HX|Y, Z)

Chain Rule:

I(X1,X2,Y)

H(X1,X5) — H(X1, X5|Y)

H(X1) + H(X2|X1) — H(X1|Y) — H(X2|Y, X1)
I(X1;Y) 4+ 1(X2;Y[X7)

By induction

mn
I(Xq,..., Xn;Y) =) I(X;Y[X1... X-1)
i=1



Relative entropy

Relative entropy is a measure of the dis-
tance between two distributions, also known
as the Kullback Leibler distance between
PMFs Px(xz) and Qx(x).

Definition:

D(Px||Qx) = Xzex Px(z)l0g (gf(((iD

in effect we are considering the log to be a
r.v. of which we take the mean (note that
we assume 0 Iog(%) = 0 and plog(§) = oo



e Mutual information can be written as

I(X:Y) H(X)+ H(Y) - H(X,Y)

= > 2. Pxy(z,y)log Pxy(@,0)

a:EXyEy PX(w)PY(y)
D(Pxvy||Px Py)

e Entropy written as relative entropy:

Let X take values in X with |X| = n.
H(X) = — ) Px(z)logPx(x)

reX
-3 Px(@)log X0

reX /
= H(U) - D(Px||Py)

+ logn

where U is uniformly distributed over X.



Convexity

Definition: a function f(x) is convex over
(a,b) iff Vz1,25 € (a,b) and 0 < A <1

fOz1 4+ (1 —=XN)z2) < Af(x1) + (1 =) f(x2)

and is strictly convex iff equality holds iff
A=0or Xx=1.

f is concave iff —f is convex.
Convenient test: if f has a second deriva-

tive that is non-negative (positive) every-
where , then f is convex (strictly convex)



Jensen’s inequality

if f is a convex function and X is a r.v.,
then

Ex[f(X)] = f(Ex[X])

if f is strictly convex, then Ex[f(X)]
f(Ex[X]) = X = E[X].

Proof:

For two mass point distribution Px(x;) =
p’iai — 17 21
p1f(z1) + pof(z2) > f(p171 + p2ox2)

Induction.

Example:

1 2
—lo —logb O [
3 9a+3 g Jd

a—|—2b]



Information Inequality

T heorem

D(pllg) > 0
, with equality if and only if p(z) = q(x), Vx.

Proof:

DOl = -3 p()log 2T

q(x)

q(x)
p(x)

q(x)
p(x)

= Y p(x)log
< log Zp(a:)

= 0

Equality occurs only when g(x) « p(x), which
means p = q.



Tons of Good Stuff

Corollary 1

Uniform distribution is the most random.
H(X) <log|X].

since

H(X) = log |X| — D(Px]|Fyy)

Corollary 2
Mutual Information is non-negative, I(X;Y) >
0.

since

I(X,Y) = D(Pxy||PxPy)



Corollary 2.1
Conditioning reduces entropy, H(X) > H(X|Y),

since

I(X;Y)=H(X)-H(X|Y)>0

Question H(Y) > H(Y| X = x)77

Corollary 2.2
Independence bound

H(X1,...,X,) < i H(X;)
1 =1

since

n
H(X1,...,Xn) =) H(Xj|X1,...,Xi—1)
i=1



Concavity of entropy

Theorem:

Entropy H(X) is concave in Pyx. If X1, X5
are r.v.s defined on X, with distribution
Pi(x), P>(x), respectively. For any 6 € [0, 1],
consider a r.v. X with

Px(z) = 0P1(x) + (1 — 0)Px(x),Vx
then

H(X) > 60H(X1) + (1 - 0)H(X?)

Proof:

Let Z be binary r.v., with P(Z = 0) = 6.
Let X =X ifZ=0,and X = X5 if Z = 1.
All independent. Then

H(X) > H(X|Z)

— GH(X|Z=0)+ (1 —0)H(X|Z=1)
OH(X1)+ (1 —-0)H(X>2)

Example The entropy of a binary r.v. is
maximized by uniform distribution.



Mutual information and input
distribution

Theorem For a fixed transition probabili-
ties Py|X, I(X;Y) is a concave function of
Py.

Proof Construct X1, X5, X, Z as in the pre-
vious proof. Consider

I(X,Z:Y)

I(X:Y)4+1(Z:Y|X)
= I(X;Y|2)+I(Z;Y)

Condition on X, Y and Z are independent,
I(Y;Z|X)=0. Thus

I(X;Y) > I(X,;Y]|Z)
OI(X:Y|Z=0)4+(1-0)I(X;Y|Z=1)
01(X1;,Y)+ (1 -0)I(X2,Y)



Mutual information and transition
probability

Theorem For a fixed input distribution Py,
I(X;Y) is convex in Py x.

Proof Consider a random variable X, and
two channels with Py (y|z) and P>(y|z). When
feed with X, the outputs of the two chan-
nels are denoted as Y7, Y>.

Now let one channel be chosen randomly
according to a binary r.v. Z that is inde-
pendent of X, and denote the output as
Y.

I(X:Y,Z2) = I(X;Y|Z)+ I(X; Z)
= I(X;Y)+I(X;Z]Y)
where I(X;Z) = 0. Thus

I(X;Y) < I(X;Y|Z2)

= 0I(X; Y1)+ (1 -0)I(X;Y>)



Summary

e Entropy H(p) is a concave function of
p.

e Mutual information I(X;Y) is a concave
function of Px for fixed Py x.

e I(X;Y) is a convex function of Py, x for
fixed Px.



Markov chain

Markov chain:
random variables X, Y, Z form a Markov chain

in that order X — Y — Z if the joint PMF
can be written as

Pxy,z(z,y,2) = PX(ZC)PY|X(?J|$)PZ|Y(Z|ZJ)-



Markov chain

Consequences:

o X —Y — Ziff X and Z are conditionally
independent given Y

PX,Z|Y(%Z|9)
Pxy z(z,y,2)

Py (y)

Px y(z,y)
Py (y)

= Pxy(zly)Pzy(2]y)

so Markov implies conditional indepen-
dence and vice versa

Pzy (zly)

e X Y 77 —-Y — X (see above
LHS and last RHS)



Data Processing Theorem
If X Y — Z then I(X;Y) > I(X; 2)
I(X,Y,Z2)=1(X,;Z)+ I(X,Y|Z)
I(X:;Y,2)=1(X;Y)+ I(X; Z|]Y)

X and Z are conditionally independent given
Y,so I(X;Z]Y)=0

hence I(X;Z) + I(X;Y|Z) = I(X;Y) so
I(X;Y) > I(X; Z) with equality iff I(X;Y]|Z) =
0

note: X — Z —-Y & I(X,;Y|Z) =0Y
depends on X only through Z

Consequence: you cannot "undo” degra-
dation



Fano’s lemma

Suppose we have r.v.s X and Y, Fano’s
lemma bounds the error we expect when
estimating X from Y

We generate an estimator of X that is X =
g(Y).

Probability of error P. = Pr(X # X)

Indicator function for error E which is 1
when X = X and 0 otherwise. Thus, P, =
P(E = 0)

Fano's lemma:

H(E) + Pelog(|X| — 1) > H(X|Y)



IA A |

Proof of Fano’s lemmma

H(E, X|Y)
H(X|Y) + HE|X,Y)
H(X|Y)

H(E, X|Y)
H(E|Y) 4+ H(X|E,Y)

H(E|Y) < H(E)

H(X|E,Y)

P.H(XIE=0,Y)+ (1 - P)H(X|E=1,Y)
P.H(X|E=0,Y)

P.H(X|E = O)

Pelog(|X] —1)




