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Convexity and related notions
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Quick Review


Entropy • 

H(X) = − 
� 

PX (x) log PX (x) 
x 

• H(X) ≥ 0


•	 Uniform distribution, let |X = n| 

H(X) = log n 

Chain Rule • 

H(X, Y ) = H(X) + H(Y X)|

X, Y independent: • 

H(X, Y ) = H(X) + H(Y ) 

H(X) = H(X Y )|



Question: H(Y X) = H(X Y )?
| |

H(X, Y ) = H(Y X) + H(X)|
= H(X Y ) + H(Y )|

or equivalently 

H(Y )− H(Y X) = H(X)− H(X Y )
| |


Definition: Mutual Information


I(X;Y ) = H(X)− H(X Y )|
= H(Y )− H(Y X)
|

= H(X) + H(Y )− H(X, Y )


= 
� 

PX,Y (x, y) log 

� 
PX,Y (x, y) 

� 

PX (x)PY (y)x∈X ,y∈Y 

The average amount of knowledge about 

X that one obtains by observing the value 

of Y . 



Mutual Information and


Communication Channels


Question what is I(X;X)?


Question If X and Y are independent, what 

is I(X;Y )? 



Chain Rule for Mutual Information


Definition: Conditional Mutual Infor

mation 

I(X;Y Z) = H(X Z)− H(X Y, Z)
| | |


Chain Rule: 

I(X1, X2;Y ) 

= H(X1, X2)− H(X1, X2 Y )
|

= H(X1) + H(X2 X1)− H(X1 Y )− H(X2 Y, X1)| | |
= I(X1;Y ) + I(X2;Y X1)|

By induction 

n

I(X1, . . . , Xn;Y ) = 

� 
I(Xi;Y X1 . . . Xi−1)
|


i=1 



Relative entropy


Relative entropy is a measure of the dis

tance between two distributions, also known 

as the Kullback Leibler distance between 

PMFs PX (x) and QX (x). 

Definition: 

D(PX ||QX ) 
�

x∈X 

� 
PX (x)

� 

= PX (x) log 
QX (x) 

in effect we are considering the log to be a


r.v. of which we take the mean (note that 

we assume 0 log(0) = 0 and p log( p = p 0) ∞ 



Mutual information can be written as
•


I(X;Y ) = H(X) + H(Y )− H(X, Y ) 
PXY (x, y) 

= 
� � 

PXY (x, y) log 
PX (x)PY (y)x∈X y∈Y 

= D(PXY ||PXPY ) 

Entropy written as relative entropy: • 

Let X take values in X with |X = n.| 

H(X) = − 
� 

PX (x) log PX (x) 
x∈X 

PX (x) = − 
� 

PX (x) log + log n 
1/nx∈X 

= H(U )− D(PX ||PU ) 

where U is uniformly distributed over X . 



Convexity


Definition: a function f (x) is convex over 

(a, b) iff ∀x1, x2 ∈ (a, b) and 0 ≤ λ ≤ 1 

f (λx1 + (1 − λ)x2) ≤ λf (x1) + (1 − λ)f (x2) 

and is strictly convex iff equality holds iff 

λ = 0 or λ = 1. 

f is concave iff −f is convex.


Convenient test: if f has a second deriva


tive that is nonnegative (positive) every


where , then f is convex (strictly convex)




Jensen’s inequality


if f is a convex function and X is a r.v.,


then 

EX [f (X)] ≥ f (EX [X]) 

if f is strictly convex, then EX [f (X)] = 

f (EX [X]) ⇒ X = E[X]. 

Proof: 

For two mass point distribution PX (xi) = 

pi, i = 1, 2, 

p1f (x1) + p2f (x2) ≥ f (p1x1 + p2x2) 

Induction. 

Example: 

1 2 
�
a + 2b

�
log a + log b log


3 3 3




Information Inequality 

Theorem 

D(p||q) ≥ 0


, with equality if and only if p(x) = q(x), ∀x.


Proof: 

−D(p||q) = − 
� 

p(x) log 
p(x) 

q(x)x 

= 
� 

x 
p(x) log 

q(x) 

p(x) 

≤ log 
� 

x 
p(x)

q(x) 

p(x) 
= 0 

Equality occurs only when q(x) ∝ p(x), which 

means p = q. 



Tons of Good Stuff


Corollary 1 

Uniform distribution is the most random.


H(X) ≤ log |X .|

since


H(X) = log |X | − D(PX ||PU ) 

Corollary 2 

Mutual Information is nonnegative, I(X;Y ) ≥


0. 

since 

I(X;Y ) = D(PXY ||PXPY ) 



Corollary 2.1


Conditioning reduces entropy, H(X) ≥ H(X Y ),|

since


I(X;Y ) = H(X)− H(X Y ) ≥ 0|

Question H(Y ) ≥ H(Y X = x)??
|

Corollary 2.2 

Independence bound 

n

H(X1, . . . , Xn) ≤ 
� 

H(Xi) 
i=1 

since

n


H(X1, . . . , Xn) = 
� 

H(Xi X1, . . . , Xi−1)
|

i=1 



Concavity of entropy


Theorem:


Entropy H(X) is concave in PX. If X1, X2


are r.v.s defined on X , with distribution


P1(x), P2(x), respectively. For any θ ∈ [0, 1],


consider a r.v. X with


PX(x) = θP1(x) + (1 − θ)P2(x), ∀x 

then 

H(X) ≥ θH(X1) + (1 − θ)H(X2) 

Proof: 

Let Z be binary r.v., with P (Z = 0) = θ. 

Let X = X1 if Z = 0, and X = X2 if Z = 1. 

All independent. Then 

H(X) ≥ H(X Z)|
= θH(X Z = 0) + (1 − θ)H(X Z = 1)| |
= θH(X1) + (1 − θ)H(X2) 

Example The entropy of a binary r.v. is 

maximized by uniform distribution. 



Mutual information and input


distribution


Theorem For a fixed transition probabili

ties PY X, I(X;Y ) is a concave function of |
PX. 

Proof Construct X1, X2, X, Z as in the pre

vious proof. Consider 

I(X, Z;Y ) = I(X;Y ) + I(Z;Y X)
|
= I(X;Y Z) + I(Z;Y )|

Condition on X, Y and Z are independent, 

I(Y ;Z X) = 0. Thus |


I(X;Y ) ≥ I(X;Y Z)|
= θI(X;Y Z = 0) + (1 − θ)I(X;Y Z = 1)| |
= θI(X1;Y ) + (1 − θ)I(X2;Y ) 



Mutual information and transition


probability


Theorem For a fixed input distribution PX, 

I(X;Y ) is convex in PY X.|

Proof Consider a random variable X, and 

two channels with P1(y x) and P2(y x). When | |

feed with X, the outputs of the two chan

nels are denoted as Y1, Y2. 

Now let one channel be chosen randomly


according to a binary r.v. Z that is inde


pendent of X, and denote the output as


Y . 

I(X;Y, Z) = I(X;Y Z) + I(X;Z)|
= I(X;Y ) + I(X;Z Y )|

where I(X;Z) = 0. Thus 

I(X;Y ) ≤ I(X;Y Z)
|

= θI(X;Y1) + (1 − θ)I(X;Y2) 



Summary


•	 Entropy H(p) is a concave function of


p. 

Mutual information I(X;Y ) is a concave • 

function of PX for fixed PY X .|

•	 I(X;Y ) is a convex function of PY |X for 

fixed PX . 



Markov chain


Markov chain:


random variables X, Y, Z form a Markov chain 

in that order X Y Z if the joint PMF → →


can be written as 

PX,Y,Z(x, y, z) = PX (x)PY X (y x)PZ Y (z y).| | | |



Markov chain


Consequences: 

X Y Z iff X and Z are conditionally • → →
independent given Y 

PX,Z|Y (x, z|y) 
PX,Y,Z (x, y, z) 

= 
PY (y) 

PX,Y (x, y) 
= PZ Y (z y)

PY (y) 
| |

= PX Y (x y)PZ Y (z y)| | | |
so Markov implies conditional indepen

dence and vice versa 

X Y Z Z Y X (see above • → → ⇔ → →
LHS and last RHS) 



0 

Data Processing Theorem


If X Y → Z then I(X;Y ) ≥ I(X;Z)→ 

I(X;Y, Z) = I(X;Z) + I(X;Y Z)
|

I(X;Y, Z) = I(X;Y ) + I(X;Z Y )
|

X and Z are conditionally independent given 

Y , so I(X;Z Y ) = 0|

hence I(X;Z) + I(X;Y Z) = I(X;Y ) so
|
I(X;Y ) ≥ I(X;Z) with equality iff I(X;Y Z) =|

note: X Z Y I(X;Y Z) = 0 Y
→ → ⇔ |

depends on X only through Z 

Consequence: you cannot ”undo” degra

dation 



�

�

Fano’s lemma


Suppose we have r.v.s X and Y , Fano’s 

lemma bounds the error we expect when 

estimating X from Y 

We generate an estimator of X that is � =X 

g(Y ). 

XProbability of error Pe = P r(� = X) 

Indicator function for error E which is 1 

when X = X and 0 otherwise. Thus, Pe = 

P (E = 0)


Fano’s lemma:


H(E) + Pe log(|X − 1) ≥ H(X Y )
| |




Proof of Fano’s lemma


H(E, X Y )|
= H(X Y ) + H(E X, Y )| |
= H(X Y )|

H(E, X Y )|
= H(E Y ) + H(X E, Y )| |

H(E Y ) ≤ H(E)|

H(X E, Y )|
= PeH(X E = O, Y ) + (1 − Pe)H(X E = 1, Y )| |

= PeH(X E = O, Y )|
≤ PeH(X E = O)|

Pe log(|X − 1)≤ | 


