
LECTURE 20


Last time: 

Waveform Channels • 

Gaussian Channel with Colored Noise • 

Gaussian Channel with Feedback
• 

Lecture outline 

Multiple Access Channel • 

Coding Theorem and Converse • 

Successive Cancellation • 



Review


Parallel Gaussian Channels, waterfilling • 

–	 Homework problem 1.


Gaussian channel with feedback,
• 

1 KYCn,F B = 2n 
max log 

| |
KW| |


Transmit signals that are correlated with 

the noise. 

When do we have to worry about the • 

operational meaning of ”information ca

pacity”? 

– pointtop oint channel 

– multiterminal networks.




� 

Multiple Access Channel


Definition: a multiple access channel is de

scribed by 
�

1,X2,Y, PY X1,X2
X |

a (2nR1,2nR2, n) code is a sequence of en

coding functions 

nW = {1,2, . . . ,2nR1
1 1} → X

nW = {1,2, . . . ,2nR2
2 2} → X

and a decoding rule 

n 
2Y →W1 ×W

Motivation 

lack of coordination: X1 and X2 are in• 

dependent


interference suppression
• 

multiple users share the medium • 



�


The Performance Measures


Claim an error if any of the users data is • 
not correctly received. 

Pe 
(n) = E[P (g(Y ) = (w1, w2) 

|(w1, w2)transmitted)] 

(R1, R2) is achievable if there exist (2nR1,2nR2, n)• 
codes with Pe 

(n) 0. → 

Definition The capacity region is the clo

sure of the set of (R1, R2)’s that are achiev

able. 

why closure?


Theorem The capacity region is the clo

sure of the convex hull of all rate (R1, R2) 

satisfying 

R1 < I(X1;Y X2)|
R2 < I(X2;Y X1)|

R1 + R2 < I(X1, X2;Y ) 

for some distribution PX1 
× PX2

. 



Examples 

Example 1: independent channels 

Example 2: binary multiplier channel


Y = X1X2 

set X1 = 1, we can achieve R2 = 1 • 

Even if X1, X2 cooperate, sum rate is • 

bounded by 1


Time sharing
•




Example 3:


Y = X1 + X2 

Maximum individual rate is Ri = 1. • 

Let X1 transmit at the maximum rate,• 

X2 has a binary erasure channel with era

sure probability 1/2.


Successive cancellation • 

Is this the optimum?
• 

Example 4 Gaussian Multiple Access Chan

nel 

Y = X1 + X2 + W 



Coding Theorem


Encoding, fix an input distribution P (X1, X2) = • 

P (X1)P (X2). 

–	 Generate two random codebooks with


2nR2
i.i.d. entries, of size 2nR1 and 

codewords, each codeword has n sym

bols. 

–	 Each encoder choose independently a


codeword to transmit, according to the


incoming data Wi.


Decoding, • 

–	 if there exists a unique pair of code


words (x1(i), x2(j)) that is joint typical


with y, decode as (i, j).


–	 otherwise claim an error. 

Notation Define event 

Eij	 = {(x1(j), x2(j), y) are jointly typical} 



�
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Probability of Error


By symmetry, w.o.l.g. assume (1, 1) is trans

mitted. 

1,1Pe 
(n) = P (Ec 
 

∪(i,j)=(1,1)Ei,j ) 

1,1) + 
� 

�
P (E1,j )≤ P (Ec 

i=1,j=1 

+	
� 

P (Ei,1) + 
� 

P (Ei,j ) 
i=1,j=1 i=1,j=1 

Three different types of error. 
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Recall joint AEP


the typical set according to the joint dis• 

tribution has size 2nH(X1,X2,Y ). 

if X1, X2, Y are independently drawn from • 

their marginal distributions, a typical out

come has probability 2−n(H(X1)+H(X2)+H(Y )). 

Now for i = 1, j = 1,


P (Ei,j ) = P ((x1(i), x2(j), y) ∈ A(
�
n)) 

≤ |A(n) 2−n(H(X1)+H(X2)+H(Y )−�) 

2n(H(

|
X1,X2,Y )−H(X1)−H(X2)−H(Y )−2� ≤ 

2−n(I(X1,X2;Y )−2�)= 

As long as R1 + R2 < I(X1, X2;Y ), can • 

drive the last type of error probability to 

0. 

Does this meet the upper bound when • 

cooperation is allowed? 



P (Ei,1) = P ((x1(i), x2(1), y) ∈ A(
�
n)) 

What is the probability that when x1 is in

dependently drawn from the marginal, and 

x2, y is drawn from the joint distribution, 

and the three end up typical according to 

the joint distribution? 

|A(n) 2−n(H(X1)−�)2−n(H(X2,Y )−�)P (Ei,1) ≤ � |
|≤ 2n(I(X1;Y X2)−3�) 

To see this 

H(X1, X2, Y )− [H(X1) + H(X2, Y )] 

= H(X1 X2, Y )− H(X1)|

= −I(X1;X2, Y )


= −I(X1;Y X2)
|


To drive this type of error probability to 0, 

need 

R1 < I(X1;Y X2)|



Discussions


Converse of the coding theorem, trivial,• 
read the book. 

–	 Two different upper bounds of achiev

able rate, 1) the sum rate is bounded 

by the pointtop oint channel with prod

uct marginal distribution. 2) individ

ual rate is bounded by pointtop oint 

channel with a genie revealing the other 

user’s data 

–	 These upper bounds can be achieved 

with joint typicality decoding. 

A typical capacity region, dominating rate • 
pairs 

(I(X1;Y X2), I(X2;Y ))|
(I(X1;Y ), I(X2;Y X1))|

Successive cancellation is optimal in in• 
formation theoretical sense. 

Bias in successive cancellation schemes
• 

Time sharing to achieve any point on the • 
dominating face of the capacity region




Gaussian Multiple Access Channel


Y = X1 + X2 + W 

with Gaussian noise W ∼ N(0, σ2 
W ), power 

constraint for individual users P1, P2. 

Let 

1 
C(x) = log(1 + x)

2 

Capacity region 

R1 ≤ C(P1/σ2 
W ) 

R2 ≤ C(P2/σ2 
W )


R1 + R2 ≤ C((P1 + P2)/σ2

W ) 

Upper bound achieved by using X1 ∼ N(0, P1), X2 ∼
N(0, P2). 



Discussions


The achievable sum capacity is exactly • 

the as the single user capacity with P1+ 

P2. Recall the greedy view of the Gaus

sian channel capacity.


Question 1 Is this always true for any chan

nel? 

In Gaussian channel, the optimal input dis


tribution does not depend on the noise level.


Question 2 Recall the jammer problem. 

Difference between coexistence and adver

sary. 

Question 3 If I have infinite number of 

users, each transmit at power constraint 

P , will the interference be so strong that 

nothing can be transmitted? 



Question 4 If the transmitter 1 knows ex

actly the data of user 2, and vice versa, 

what can we do? Shall we try cancel the 

interference? Shall we try avoid the inter

ference? 

Question 5 Comparing to single user with 

total power constraint, do we lose anything 

when divide it into two independent sub

users? 

Question 6 Can we divide the users to be 

transmitting in orthogonal subspaces, say, 

different frequency bands or different time 

slots, to avoid multiple access? 


