LECTURE 20

Last time:

- Waveform Channels
- Gaussian Channel with Colored Noise
- Gaussian Channel with Feedback

Lecture outline

- Multiple Access Channel
- Coding Theorem and Converse
- Successive Cancellation

Review

• Parallel Gaussian Channels, water-filling

• Gaussian channel with feedback,

$$C_{n,FB} = \frac{1}{2n} \max \log \frac{|K_Y|}{|K_W|}$$

Transmit signals that are correlated with the noise.

- When do we have to worry about the operational meaning of "information capacity"?
 - point-to-point channel
 - multi-terminal networks.

Multiple Access Channel

Definition: a multiple access channel is described by

$$\left(\mathcal{X}_1, \mathcal{X}_2, \mathcal{Y}, P_{Y|X_1, X_2}\right)$$

a $(2^{nR_1}, 2^{nR_2}, n)$ code is a sequence of encoding functions

$$\mathcal{W}_1 = \{1, 2, \dots, 2^{nR_1}\} \rightarrow \mathcal{X}_1^n$$
$$\mathcal{W}_2 = \{1, 2, \dots, 2^{nR_2}\} \rightarrow \mathcal{X}_2^n$$

and a decoding rule

$$\mathcal{Y}^n
ightarrow \mathcal{W}_1 imes \mathcal{W}_2$$

Motivation

- lack of coordination: X₁ and X₂ are independent
- interference suppression
- multiple users share the medium

The Performance Measures

• Claim an error if any of the users data is not correctly received.

$$P_e^{(n)} = E[P(g(\underline{Y}) \neq (w_1, w_2) \\ |(w_1, w_2) \text{transmitted})]$$

• (R_1, R_2) is achievable if there exist $(2^{nR_1}, 2^{nR_2}, n)$ codes with $P_e^{(n)} \rightarrow 0$.

Definition The capacity region is the closure of the set of (R_1, R_2) 's that are achievable.

why closure?

Theorem The capacity region is the closure of the convex hull of all rate (R_1, R_2) satisfying

 $R_{1} < I(X_{1}; Y | X_{2})$ $R_{2} < I(X_{2}; Y | X_{1})$ $R_{1} + R_{2} < I(X_{1}, X_{2}; Y)$

for some distribution $P_{X_1} \times P_{X_2}$.

Examples

Example 1: independent channels

Example 2: binary multiplier channel

$$Y = X_1 X_2$$

- set $X_1 = 1$, we can achieve $R_2 = 1$
- Even if X_1, X_2 cooperate, sum rate is bounded by 1
- Time sharing

Example 3:

$$Y = X_1 + X_2$$

- Maximum individual rate is $R_i = 1$.
- Let X_1 transmit at the maximum rate, X_2 has a binary erasure channel with erasure probability 1/2.
- Successive cancellation
- Is this the optimum?

Example 4 Gaussian Multiple Access Channel

$$Y = X_1 + X_2 + W$$

Coding Theorem

- Encoding, fix an input distribution $P(X_1, X_2) = P(X_1)P(X_2)$.
 - Generate two random codebooks with i.i.d. entries, of size 2^{nR_1} and 2^{nR_2} codewords, each codeword has n symbols.
 - Each encoder choose independently a codeword to transmit, according to the incoming data W_i .
- Decoding,
 - if there exists a unique pair of codewords $(\underline{x}_1(i), \underline{x}_2(j))$ that is joint typical with y, decode as (i, j).
 - otherwise claim an error.

Notation Define event

 $E_{ij} = \{(\underline{x}_1(j), \underline{x}_2(j), \underline{y}) \text{ are jointly typical}\}$

Probability of Error

By symmetry, w.o.l.g. assume (1, 1) is transmitted.

$$P_{e}^{(n)} = P(E_{1,1}^{c} \bigcup \cup_{(i,j)\neq(1,1)} E_{i,j})$$

$$\leq P(E_{1,1}^{c}) + \sum_{\substack{i=1,j\neq 1 \\ i\neq 1}} P(E_{1,j})$$

$$+ \sum_{\substack{i\neq 1,j=1 \\ i\neq 1}} P(E_{i,1}) + \sum_{\substack{i\neq 1,j\neq 1 \\ i\neq 1,j\neq 1}} P(E_{i,j})$$

Three different types of error.

Recall joint AEP

- the typical set according to the joint distribution has size $2^{nH(X_1,X_2,Y)}$.
- if X_1, X_2, Y are independently drawn from their marginal distributions, a typical outcome has probability $2^{-n(H(X_1)+H(X_2)+H(Y))}$.

Now for $i \neq 1, j \neq 1$,

$$P(E_{i,j}) = P((\underline{x}_{1}(i), \underline{x}_{2}(j), \underline{y}) \in A_{\epsilon}^{(n)})$$

$$\leq |A_{\epsilon}^{(n)}| 2^{-n(H(X_{1}) + H(X_{2}) + H(Y) - \epsilon)}$$

$$\leq 2^{n(H(X_{1}, X_{2}, Y) - H(X_{1}) - H(X_{2}) - H(Y) - 2\epsilon}$$

$$= 2^{-n(I(X_{1}, X_{2}; Y) - 2\epsilon)}$$

- As long as R₁ + R₂ < I(X₁, X₂; Y), can drive the last type of error probability to 0.
- Does this meet the upper bound when cooperation is allowed?

$$P(E_{i,1}) = P((\underline{x}_1(i), \underline{x}_2(1), \underline{y}) \in A_{\epsilon}^{(n)})$$

What is the probability that when \underline{x}_1 is independently drawn from the marginal, and $\underline{x}_2, \underline{y}$ is drawn from the joint distribution, and the three end up typical according to the joint distribution?

$$P(E_{i,1}) \leq |A_{\epsilon}^{(n)}| 2^{-n(H(X_1)-\epsilon)} 2^{-n(H(X_2,Y)-\epsilon)} \\ \leq 2^{n(I(X_1;Y|X_2)-3\epsilon)}$$

To see this

$$H(X_1, X_2, Y) - [H(X_1) + H(X_2, Y)]$$

= $H(X_1 | X_2, Y) - H(X_1)$
= $-I(X_1; X_2, Y)$
= $-I(X_1; Y | X_2)$

To drive this type of error probability to 0, need

$$R_1 < I(X_1; Y|X_2)$$

Discussions

- Converse of the coding theorem, trivial, read the book.
 - Two different upper bounds of achievable rate, 1) the sum rate is bounded by the point-to-point channel with product marginal distribution. 2) individual rate is bounded by point-to-point channel with a genie revealing the other user's data
 - These upper bounds can be achieved with joint typicality decoding.
- A typical capacity region, dominating rate pairs

 $(I(X_1; Y|X_2), I(X_2; Y))$ $(I(X_1; Y), I(X_2; Y|X_1))$

- Successive cancellation is optimal in information theoretical sense.
- Bias in successive cancellation schemes
- Time sharing to achieve any point on the dominating face of the capacity region

Gaussian Multiple Access Channel

$$Y = X_1 + X_2 + W$$

with Gaussian noise $W \sim N(0, \sigma_W^2)$, power constraint for individual users P_1 , P_2 .

Let

$$C(x) = \frac{1}{2}\log(1+x)$$

Capacity region

$$R_1 \leq C(P_1/\sigma_W^2)$$

$$R_2 \leq C(P_2/\sigma_W^2)$$

$$R_1 + R_2 \leq C((P_1 + P_2)/\sigma_W^2)$$

Upper bound achieved by using $X_1 \sim N(0, P_1), X_2 \sim N(0, P_2)$.

Discussions

• The achievable sum capacity is exactly the as the single user capacity with P_1 + P_2 . Recall the greedy view of the Gaussian channel capacity.

Question 1 Is this always true for any channel?

In Gaussian channel, the optimal input distribution does not depend on the noise level.

Question 2 Recall the jammer problem. Difference between coexistence and adversary.

Question 3 If I have infinite number of users, each transmit at power constraint *P*, will the interference be so strong that nothing can be transmitted?

Question 4 If the transmitter 1 knows exactly the data of user 2, and vice versa, what can we do? Shall we try cancel the interference? Shall we try avoid the interference?

Question 5 Comparing to single user with total power constraint, do we lose anything when divide it into two independent sub-users?

Question 6 Can we divide the users to be transmitting in orthogonal sub-spaces, say, different frequency bands or different time slots, to avoid multiple access?