
LECTURE 20


Last time: 

Waveform Channels • 

Gaussian Channel with Colored Noise • 

Gaussian Channel with Feedback
• 

Lecture outline 

Multiple Access Channel • 

Coding Theorem and Converse • 

Successive Cancellation • 



Review


Parallel Gaussian Channels, water­filling • 

–	 Homework problem 1.


Gaussian channel with feedback,
• 

1 KYCn,F B = 2n 
max log 

| |
KW| |


Transmit signals that are correlated with 

the noise. 

When do we have to worry about the • 

operational meaning of ”information ca­

pacity”? 

– point­to­p oint channel 

– multi­terminal networks.




� 

Multiple Access Channel


Definition: a multiple access channel is de­

scribed by 
�

1,X2,Y, PY X1,X2
X |

a (2nR1,2nR2, n) code is a sequence of en­

coding functions 

nW = {1,2, . . . ,2nR1
1 1} → X

nW = {1,2, . . . ,2nR2
2 2} → X

and a decoding rule 

n 
2Y →W1 ×W

Motivation 

lack of coordination: X1 and X2 are in­• 

dependent


interference suppression
• 

multiple users share the medium • 



�


The Performance Measures


Claim an error if any of the users data is • 
not correctly received. 

Pe 
(n) = E[P (g(Y ) = (w1, w2) 

|(w1, w2)transmitted)] 

(R1, R2) is achievable if there exist (2nR1,2nR2, n)• 
codes with Pe 

(n) 0. → 

Definition The capacity region is the clo­

sure of the set of (R1, R2)’s that are achiev­

able. 

why closure?


Theorem The capacity region is the clo­

sure of the convex hull of all rate (R1, R2) 

satisfying 

R1 < I(X1;Y X2)|
R2 < I(X2;Y X1)|

R1 + R2 < I(X1, X2;Y ) 

for some distribution PX1 
× PX2

. 



Examples 

Example 1: independent channels 

Example 2: binary multiplier channel


Y = X1X2 

set X1 = 1, we can achieve R2 = 1 • 

Even if X1, X2 cooperate, sum rate is • 

bounded by 1


Time sharing
•




Example 3:


Y = X1 + X2 

Maximum individual rate is Ri = 1. • 

Let X1 transmit at the maximum rate,• 

X2 has a binary erasure channel with era­

sure probability 1/2.


Successive cancellation • 

Is this the optimum?
• 

Example 4 Gaussian Multiple Access Chan­

nel 

Y = X1 + X2 + W 



Coding Theorem


Encoding, fix an input distribution P (X1, X2) = • 

P (X1)P (X2). 

–	 Generate two random codebooks with


2nR2
i.i.d. entries, of size 2nR1 and 

codewords, each codeword has n sym­

bols. 

–	 Each encoder choose independently a


codeword to transmit, according to the


incoming data Wi.


Decoding, • 

–	 if there exists a unique pair of code­


words (x1(i), x2(j)) that is joint typical


with y, decode as (i, j).


–	 otherwise claim an error. 

Notation Define event 

Eij	 = {(x1(j), x2(j), y) are jointly typical} 



�

�	 � �

Probability of Error


By symmetry, w.o.l.g. assume (1, 1) is trans­

mitted. 

1,1Pe 
(n) = P (Ec 

 

∪(i,j)=(1,1)Ei,j ) 

1,1) + 
� 

�
P (E1,j )≤ P (Ec 

i=1,j=1 

+	
� 

P (Ei,1) + 
� 

P (Ei,j ) 
i=1,j=1 i=1,j=1 

Three different types of error. 
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Recall joint AEP


the typical set according to the joint dis­• 

tribution has size 2nH(X1,X2,Y ). 

if X1, X2, Y are independently drawn from • 

their marginal distributions, a typical out­

come has probability 2−n(H(X1)+H(X2)+H(Y )). 

Now for i = 1, j = 1,


P (Ei,j ) = P ((x1(i), x2(j), y) ∈ A(
�
n)) 

≤ |A(n) 2−n(H(X1)+H(X2)+H(Y )−�) 

2n(H(

|
X1,X2,Y )−H(X1)−H(X2)−H(Y )−2� ≤ 

2−n(I(X1,X2;Y )−2�)= 

As long as R1 + R2 < I(X1, X2;Y ), can • 

drive the last type of error probability to 

0. 

Does this meet the upper bound when • 

cooperation is allowed? 



P (Ei,1) = P ((x1(i), x2(1), y) ∈ A(
�
n)) 

What is the probability that when x1 is in­

dependently drawn from the marginal, and 

x2, y is drawn from the joint distribution, 

and the three end up typical according to 

the joint distribution? 

|A(n) 2−n(H(X1)−�)2−n(H(X2,Y )−�)P (Ei,1) ≤ � |
|≤ 2n(I(X1;Y X2)−3�) 

To see this 

H(X1, X2, Y )− [H(X1) + H(X2, Y )] 

= H(X1 X2, Y )− H(X1)|

= −I(X1;X2, Y )


= −I(X1;Y X2)
|


To drive this type of error probability to 0, 

need 

R1 < I(X1;Y X2)|



Discussions


Converse of the coding theorem, trivial,• 
read the book. 

–	 Two different upper bounds of achiev­

able rate, 1) the sum rate is bounded 

by the point­to­p oint channel with prod­

uct marginal distribution. 2) individ­

ual rate is bounded by point­to­p oint 

channel with a genie revealing the other 

user’s data 

–	 These upper bounds can be achieved 

with joint typicality decoding. 

A typical capacity region, dominating rate • 
pairs 

(I(X1;Y X2), I(X2;Y ))|
(I(X1;Y ), I(X2;Y X1))|

Successive cancellation is optimal in in­• 
formation theoretical sense. 

Bias in successive cancellation schemes
• 

Time sharing to achieve any point on the • 
dominating face of the capacity region




Gaussian Multiple Access Channel


Y = X1 + X2 + W 

with Gaussian noise W ∼ N(0, σ2 
W ), power 

constraint for individual users P1, P2. 

Let 

1 
C(x) = log(1 + x)

2 

Capacity region 

R1 ≤ C(P1/σ2 
W ) 

R2 ≤ C(P2/σ2 
W )


R1 + R2 ≤ C((P1 + P2)/σ2

W ) 

Upper bound achieved by using X1 ∼ N(0, P1), X2 ∼
N(0, P2). 



Discussions


The achievable sum capacity is exactly • 

the as the single user capacity with P1+ 

P2. Recall the greedy view of the Gaus­

sian channel capacity.


Question 1 Is this always true for any chan­

nel? 

In Gaussian channel, the optimal input dis­


tribution does not depend on the noise level.


Question 2 Recall the jammer problem. 

Difference between coexistence and adver­

sary. 

Question 3 If I have infinite number of 

users, each transmit at power constraint 

P , will the interference be so strong that 

nothing can be transmitted? 



Question 4 If the transmitter 1 knows ex­

actly the data of user 2, and vice versa, 

what can we do? Shall we try cancel the 

interference? Shall we try avoid the inter­

ference? 

Question 5 Comparing to single user with 

total power constraint, do we lose anything 

when divide it into two independent sub­

users? 

Question 6 Can we divide the users to be 

transmitting in orthogonal sub­spaces, say, 

different frequency bands or different time 

slots, to avoid multiple access? 


