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Review


Multiple Access channels • 

– Time Sharing 

–	 Successive Cancellation


Capacity Region
• 

R1 ≤ I(X1;Y |X2) 

R2 ≤ I(X2;Y |X1) 

R1 + R2 ≤ I(X1, X2;Y ) 



Gaussian Multiple Access Channel


Y = X1 + X2 + W 

with Gaussian noise W ∼ N (0, σ2 
W ), power 

constraint for individual users P1, P2. 

Let 

1 
C(x) = log(1 + x)

2 

Capacity region 

R1 ≤ C(P1/σ2 
W ) 

R2 ≤ C(P2/σ2 
W )


R1 + R2 ≤ C((P1 + P2)/σ2

W ) 

Upper bound achieved by using X1 ∼ N (0, P1), X2 ∼
N (0, P2). 



Discussions


The achievable sum capacity is exactly • 

the as the single user capacity with P1+ 

P2. Recall the greedy view of the Gaus­

sian channel capacity.


Question 1 Is this always true for any chan­

nel? 

In Gaussian channel, the optimal input dis­


tribution does not depend on the noise level.


Question 2 Recall the jammer problem. 

Difference between coexistence and adver­

sary. 

Question 3 If I have infinite number of 

users, each transmit at power constraint 

P , will the interference be so strong that 

nothing can be transmitted? 



Interference


From an individual user point of view, • 
other users signal is independent, and is 

equivalent as the noise. 

–	 the interference is independent


–	 the interference is white over the signal 

space 

Question 4 If the transmitter 1 knows ex­

actly the data of user 2, and vice versa, can 

we do better? 

– Shall we try cancel the interference?


– Shall we try avoid the interference? 

Coherence combining: the difference be­• 
tween one user with power P and two 

users each has power P /2. 

Question 5 Comparing to single user with 

total power constraint, do we lose anything 

when divide it into two independent sub­

users? 



• 

• 

• 

• 
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X­DMA: multiple access in high

dimensional space


Consider


Y = h1X1 + h2X2 + W 

where all the vectors are 2­dimensional. 

The dimensionality can be thought as

multiple samples over time 

Use a bandwidth larger than 1/Ts to ac­
commodate multiple users. 

TDMA 
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Goal Design h1, h2, X1, X2 to maximize the 
overall and individual throughput, with sim­
ple encoding and decoding, and fairness. 



To avoid interference


Consider a slightly different channel


Y = X1 + h2X2 + W 

where h2 is fixed and known, X2 ∼ N(0, P2), 

how should user 1 design X1 to maximize 

his own throughput? (assuming successive 

cancellation) 

Depends on the order of decoding.
• 

If user 1 is decoded first, water­filling • 

Conclusion For certain power constraints, 

restricting X1 to be in the direction orthog­

onal to h2 is optimal. 

Practical reasons for orthogonal signal­• 

ing


Number of degrees of freedom
•




Orthogonal Multiple Access


Question 6 Can we always divide the users 

to be transmitting in orthogonal sub­spaces, 

say, different frequency bands or different 

time slots, to avoid multiple access? 

Consider user 1 and 2 with power constraint 

P1 and P2, divide them into two disjoint fre­

quency bands of bandwidth W1 and W2, let 

the background noise to be white Gaussian 

noise with psd. N . 

R1 = 
W1 

2 
log 

� 

1 + 
P1 

W1N 

� 

R2 = 
W2 

2 
log 

� 

1 + 
P2 

W2N 

� 



If instead we can joint allocate P1+P2 over 

the entire bandwidth W1 + W2, 

W1 + W2 
� 

P1 + P2 
� 

R1 + R2 = log 1 + 
2 N (W1 + W2) 

The frequency allocation is optimal only •


if Wi is proportional to Pi. 

How about TDMA? CDMA? 



Non­Orthogonal Signatures


Consider


Y = h1X1 + h2X2 + W 

where �hi� 2 = 1, E[X2 
2] = 1] = P1, E[X2 

P 2, E[W 2] = σ2. 

h1	 and h2 are not orthogonal. • 

R2 ≤	 I(X2;Y |X1) 

=	 I(X2;h2X2 + W X1)|
=	 h(h2X2 + W )− h(W )


1

= log 

|KW �| (KW � = P2h2h
†
2 +	σ2I)

2 KW
| | 
P2
1 

�	
2
� 

= log 1 + 
σ2 
�h2�

2 

Be careful when writing differential en­•


tropies.


In white Gaussian noise, projecting to h2
• 

is optimal. 



Now decode user 1 first, h2X2+W as noise.


R1 + R2 ≤ I
1
(X1, X2;Y ) 

KY = log 
| |

2 KW| | 

Should be achieve • 
1 

R1 = I(X1;Y ) = log( KY / KW )
2 

| | | �|
given that the second user transmit at 
the maximum power and rate. 

Idea: All the information about X1 is on 
the direction of h1, so project Y onto h1. 

After projection, the SNR is P1/(P2 h1, h2
2+ • 

σ2). 
� �

Another Idea Reduce back to the white 
noise problem: whitening 

2 + σ2I 
Δ 

KW � = P2h2h
†

= BB† 



� 

Multiply Y by B−1 does not lose any­• 

thing: 

I(X1;Y ) = I(X1;B−1Y ) 

Now a new channel • 

X1 Y � = B−1Y = B−1h1X1 + Z → 

where Z is white with unit variance en­

tries. 

Now project Y into B−1h1. 

X1 h
†

1K−1Y1(B
−1)†Y � = h†

W �→ 

Achievable rate 

1K−1KY K
−1h1W �R1 = 

1
log 

h
†

W � 
2

1K−1h1h
†

W �
1 

= log( KY / KW )
2 

| | | �|



Summary


Multiple access channels with high di­• 

mensional signal space allow different tech­

niques to avoid and suppress interference. 

Restricting individual users in single di­• 

mensional subspace, even orthogonal, is 

not optimal in general, but simple in prac­

tice. 

Sufficient statistics and MMSE are use­• 

ful. 


