LECTURE 23

Last time:

- Broadcast channel
- Capacity region for degraded broadcast channel
- Distributed Source Coding,
- Slepian-Wolf Theorem and Random binning

Lecture outline

- Using random binning in broadcast channels
- Marton's region
- Fading Channels

Review

Degraded broadcast channel

 $R_2 \leq I(U; Y_2)$ $R_1 \leq I(X; Y_1|U)$

- Distributed source coding
 - Use large enough number of bins to distinguish the typical sequences.

$$R_1 > H(U|V)$$

$$R_2 > H(V|U)$$

$$R_1 + R_2 > H(U,V)$$

Using Random Binning in Channels

Consider a deterministic point-to-point channel Y = f(X) where f(.) is deterministic and one-to-one. We try to transmit R bits per symbol.

- Assign all the possible \underline{Y} sequences into 2^{nR} bins. The receiver will always decode as the bin number upon receiving \underline{Y} .
- We want to send M = i, need to control <u>Y</u> to be in the ith bin. As long as there is a typical <u>y</u> in the ith bin, we transmit the corresponding <u>x</u>.
- To guarantee there is at least one typical sequence in each bin, the number of bins should be much smaller than |A_ϵ(Y)|, 2^{n(H(Y)-ϵ)} suffice.

What about a random channel $P_{Y|X}$?

- Introduce an auxiliary random variable U as the desired output.
- Observing Y, we can determine $2^{nI(U;Y)}$ different <u>U</u> sequences.
- Notice we can talk about both the discrete and the continuous cases
- Point-to-point case: X = U, trivial

Capacity Region for Deterministic Broadcast Channel

Theorem Fix an input distribution, any rate pair (R_1, R_2) that satisfies

$$R_1 < H(Y_1)$$

$$R_2 < H(Y_2)$$

$$R_1 + R_2 < H(Y_1, Y_2)$$

can be achieved.

- Divide the output space $\mathcal{Y}_1^n \times \mathcal{Y}_2^n$ into $2^{nR_1} \times 2^{nR_2}$ bins,
- For an input message $M_1 \times M_2 \in \{1, \ldots, 2^{nR_1}\} \times \{1, \ldots, 2^{nR_2}\}$, find a typical sequence $\underline{y}_1 \times \underline{y}_2$ in the corresponding bin. This is the desired output
- Transmit \underline{x} to produce y_1, y_2 .
- $R_1 < H(Y_1)$ ensures that exists typical \underline{y}_1 per bin
- $R_1 + R_2 < H(Y_1, Y_2)$ ensures that exists a typical $\underline{y}_1, \underline{y}_2$ per product bin

General Broadcast Channel

Now if channel has randomness $P_{Y_1,Y_2|X}$.

- Introduce auxiliary random variables U, V.
- For fixed distribution of U, V, from the channel output, the number of distinguishable sequences \underline{u} and \underline{v} are $2^{nI(U;Y_1)}$ and $2^{nI(V;Y_2)}$.

Theorem(Marton 75') The broadcast channel capacity region is given by

 $R_{1} \leq I(U; Y_{1})$ $R_{2} \leq I(V; Y_{2})$ $R_{1} + R_{2} \leq I(U; Y_{1}) + I(V; Y_{2}) - I(U; V)$ For a fixed distribution *D*

for a fixed distribution $P_{U,V,X}$.

Outline of Proof

- generate $2^{nI(U;Y_1)}$ typical sequence \underline{u} 's and throw into 2^{nR_1} bins, generate $2^{n(I(V;Y_2))}$ typical \underline{v} 's throw into 2^{nR_2} bins.
- upon receiving \underline{Y}_1 , \underline{u} can be uniquely determined. similar to \underline{v} .
- There are $2^{n(I(U;Y_1)+I(V;Y_2))}$ possible ($\underline{u}, \underline{v}$) pairs. Each pair being jointly typical with probability $2^{-nI(U;V)}$.
- If $R_1 + R_2 \leq I(U; Y_1) + I(V; Y_2) I(U; V)$, then there exists a jointly typical pair $(\underline{u}, \underline{v})$ in each product bin. This is the desired received sequences.
- To transmit that bin number, simply transmit \underline{x} that is jointly typical with $(\underline{u}, \underline{v})$.

Wireless Channels

Key difference from AWGN channel Multipath Fading

Flat fading model

 $Y_i = H_i X_i + W_i$

where W_i is the AWGN with variance σ_W^2 .

- {*H_i*} is a random process, for which the marginal distribution is modelled as unit variance Rayleigh or Ricean
- The rate at which $\{H_i\}$ changes over time depends on
 - the speed that receiver moves,
 - the environment
 - the carrier frequency
 - the symbol period

The wireless challenge

- How do we define a capacity for this random channel
 - the assumptions on the availability of CSI
 - the assumptions on the channel timevariation
- How well the different assumptions apply to practical channels
- How do the optimal signaling change with the channel assumptions
- How do these apply when we have a network

Example TCP

First simple example

- Assume *H* remains constant
- Assume *H* is perfectly known at the receiver
- Assume the transmitter does not know *H*, so the input distribution can not depend on *H*.

The capacity

$$C(H) = \max_{P_X} I(X;Y)$$

where

$$P_{Y|X} = N(HX, \sigma_W^2)$$
$$I(X; Y) = h(Y) - h(Y|X)$$

$$= n(Y) - n(W)$$

- To maximize h(Y), let X be Gaussian
- Resulting $Y \sim N(0, |H|^2 \sigma_X^2 + \sigma_W^2)$

$$C(H) = \frac{1}{2} \log \left(1 + \frac{|H|^2 \sigma_X^2}{\sigma_W^2} \right)$$

The capacity is a function of ${\cal H}$

Outage Capacity and Ergodic Capacity

- From the transmitter point of view (*H* unknown), what is the maximum rate that can be transmitted with 0 probability?
- Shannon capacity for fixed fading channel is 0.
- Considering the distribution of H, C(H) is a random variable.

Definition a% outage capacity is the data rate that can be supported with a%, i.e.,

 $P(C(H) < R) \le a\%$

Definition The ergodic capacity

C = E[C(H)]

Ergodic Capacity

$$C = E\left[\frac{1}{2}\log\left(1 + |H|^2\frac{P}{N}\right)\right]$$

- To achieve the ergodic capacity, we need to code long enough that the statistics of *H* start to kick in.
- Do we want channel to be time-varying or static ?
- Interleaving, delay, rate, burstiness tradeoff.
- Diversity issues.
- Evaluating the capacity is hard.
- Two asymptotic results
 - as $P/N \rightarrow 0$, low SNR

$$C \to E[|H|^2] \frac{1}{2} \frac{P}{N}$$

the same limit as the AWGN channel

- as $P/N \rightarrow \infty$, high SNR

$$C \rightarrow \frac{1}{2}E[\log|H|^2] + \frac{1}{2}\log\frac{P}{N}$$

Different from the AWGN channel by a constant.