
LECTURE 23


Last time:


Broadcast channel • 

Capacity region for degraded broadcast • 

channel


Distributed Source Coding,
• 

Slepian­Wolf Theorem and Random bin­• 

ning 

Lecture outline


Using random binning in broadcast chan­• 

nels


Marton’s region
• 

Fading Channels • 



Review


Degraded broadcast channel • 

R2 ≤ I(U ;Y2) 

R1 ≤ I(X;Y1 U )|

Distributed source coding • 

–	 Use large enough number of bins to dis­

tinguish the typical sequences. 

R1 > H(U V )|
R2 > H(V U )|

R1	+ R2 > H(U, V ) 



Using Random Binning in Channels


Consider a deterministic point­to­p oint chan­

nel Y = f (X) where f (.) is deterministic 

and one­to­one. We try to transmit R bits 

per symbol. 

Assign all the possible Y sequences into • 

2nR bins. The receiver will always de­


code as the bin number upon receiving


Y . 

We want to send M = i, need to control • 

Y to be in the ith bin. As long as there 

is a typical y in the ith bin, we transmit 

the corresponding x.


To guarantee there is at least one typical • 

sequence in each bin, the number of bins 

should be much smaller than |A�(Y ) , 2n(H(Y )−�)|
suffice.




What about a random channel PY X ?|
Introduce an auxiliary random variable U • 

as the desired output.


Observing Y , we can determine 2nI(U ;Y )
•


different U sequences.


Notice we can talk about both the dis­
•


crete and the continuous cases


Point­to­point case: X = U , trivial
•




Capacity Region for Deterministic

Broadcast Channel


Theorem Fix an input distribution, any 

rate pair (R1, R2) that satisfies 

R1 < H(Y1) 

R2 < H(Y2) 

R1 + R2 < H(Y1, Y2) 

can be achieved. 

n n •	 Divide the output space Y1 × Y2 into 

2nR1 × 2nR2 bins, 

For an input message M1×M2 ∈ {1, . . . , 2nR1•	
{1, . . . , 2nR2}, find a typical sequence y1× 

}× 

y2 in the corresponding bin. This is the 

desired output 

•	 Transmit x to produce y1, y2. 

•	 R1 < H(Y1) ensures that exists typical y1 

per bin 

R1	+ R2 < H(Y1, Y2) ensures that exists • 
a typical y1, y2 per product bin 



General Broadcast Channel


Now if channel has randomness PY1,Y2 X .|
Introduce auxiliary random variables U, V . • 

For fixed distribution of U, V , from the • 

channel output, the number of distin­


guishable sequences u and v are 2nI(U ;Y1) 

and 2nI(V ;Y2). 

Theorem(Marton 75’) The broadcast chan­

nel capacity region is given by 

R1 ≤ I(U ;Y1) 

R2 ≤ I(V ;Y2) 

R1 + R2 I(U ;Y1) + I(V ;Y2)− I(U ;V )≤ 

for a fixed distribution PU,V,X . 



Outline of Proof


–	 generate 2nI(U ;Y1) typical sequence u’s 

and throw into 2nR1 bins, generate 2n(I(V ;Y2) 

typical v’s throw into 2nR2 bins. 

–	 upon receiving Y 1, u can be uniquely


determined. similar to v.


–	 There are 2n(I(U ;Y1)+I(V ;Y2)) possible


(u, v) pairs. Each pair being jointly typ­


ical with probability 2−nI(U ;V ).


–	 If R1+R2 ≤ I(U ;Y1)+I(V ;Y2)−I(U ;V ),


then there exists a jointly typical pair


(u, v) in each product bin. This is the


desired received sequences.


–	 To transmit that bin number, simply


transmit x that is jointly typical with


(u, v).




Wireless Channels


Key difference from AWGN channel Multi­

path Fading 

Flat fading model


Yi = HiXi + Wi 

where Wi is the AWGN with variance σ2 
W . 

•	 {Hi} is a random process, for which the 

marginal distribution is modelled as unit 

variance Rayleigh or Ricean 

•	 The rate at which {Hi} changes over 

time depends on 

–	 the speed that receiver moves,


–	 the environment 

–	 the carrier frequency 

–	 the symbol period 



The wireless challenge


How do we define a capacity for this ran­• 

dom channel 

–	 the assumptions on the availability of 

CSI 

–	 the assumptions on the channel time­

variation 

How well the different assumptions apply • 

to practical channels 

How do the optimal signaling change with •


the channel assumptions 

How do these apply when we have a net­• 

work 

Example TCP




First simple example


Assume H remains constant • 

Assume H is perfectly known at the re­• 
ceiver 

Assume the transmitter does not know •

H, so the input distribution can not de­
pend on H. 

The capacity


C(H) = max I(X;Y ) 
PX 

where


PY X = N(HX, σ2 | W ) 

I(X;Y ) = h(Y )− h(Y X)|
= h(Y )− h(W ) 

To maximize h(Y ), let X be Gaussian
• 

Resulting Y ∼ N (0, H 2σ2 + σ2 
X•	 | | W ) 

1 XC(H) = log 

� 

1 + 
|H|2σ2 � 

2	 σ2 
W


The capacity is a function of H




Outage Capacity and Ergodic Capacity


From the transmitter point of view (H • 

unknown), what is the maximum rate 

that can be transmitted with 0 proba­

bility? 

Shannon capacity for fixed fading chan­• 

nel is 0.


Considering the distribution of H, C(H)
• 

is a random variable. 

Definition a% outage capacity is the data


rate that can be supported with a%, i.e.,


P (C(H) < R) ≤ a%


Definition The ergodic capacity 

C = E[C(H)] 



Ergodic Capacity


�
1 

�
2P 

��
C = E log 1 + H

2 
| | 

N

To achieve the ergodic capacity, we need
•

to code long enough that the statistics

of H start to kick in.

Do we want channel to be time­varying
•

or static ?

Interleaving, delay, rate, burstiness trade­
•

off.

Diversity issues.
• 
Evaluating the capacity is hard. • 
Two asymptotic results • 

– as P/N → 0, low SNR 

C E[|H 2]
1P → | 
2N


the same limit as the AWGN channel

– as P/N →∞, high SNR 

1 P 
C E[log |H 2] +

1 
log→

2 
| 

2 N 

Different from the AWGN channel by a con­
stant. 


