LECTURE 24

Last time:

- Using random binning in broadcast channels
- Marton's region

Lecture outline

- Fading Channels
 - Model and Problems
 - Outage vs Ergodic capacity
 - CSI

Review

• Marton's region

 $R_{1} \leq I(U; Y_{1})$ $R_{2} \leq I(V; Y_{2})$ $R_{1} + R_{2} \leq I(U; Y_{1}) + I(V; Y_{2}) - I(U; V)$

- A few important points
- Random binning, even useful in deterministic channels
- Controlling the output, range of channel function vs. typical set.
- Deterministic channel and random channel. By choosing $2^{nI(U;Y_1)} < 2^{nI(X;Y_1)}$ \underline{U} sequences, I ensure that for each \underline{X} , there is at most one typical \underline{U} that is jointly typical.

Wireless Channels

Key difference from AWGN channel Multipath Fading

Flat fading model

 $Y_i = H_i X_i + W_i$

where W_i is the AWGN with variance σ_W^2 .

- {*H_i*} is a random process, for which the marginal distribution is modelled as unit variance Rayleigh or Ricean
- The rate at which $\{H_i\}$ changes over time depends on
 - the speed that receiver moves,
 - the environment
 - the carrier frequency
 - the symbol period

The wireless challenge

- How do we define a capacity for this random channel
 - the assumptions on the availability of CSI
 - the assumptions on the channel timevariation
- How well the different assumptions apply to practical channels
- How do the optimal signaling change with the channel assumptions
- How do these apply when we have a network

Example TCP

First Simple Example

Assume H is fixed

$$C(H) = \max_{P_X} I(X;Y)$$
$$= \frac{1}{2} \log \left(1 + |H|^2 \frac{\sigma_X^2}{\sigma_W^2} \right)$$

Optimal input $X \sim N(0, \sigma_X^2)$.

Outage Capacity and Ergodic Capacity

- Let's assume the input to be $X \sim N(0, \sigma_X^2)$.
- What if *H* is randomly chosen fixed value?
 - Rayleigh
 - Ricean
- The Shannon capacity is 0.
- Outage capacity with a small exception, say 1%, what is the rate that can be supported?

 $\max\{R : P(I(H) < R) \le 1\%\}$

- Assume now {H_i} is an ergodic random process. Coherence time measures the speed {H_i} changes over time.
- Ergodic capacity

 $C = E_H[I(H)]$

 To achieve the ergodic capacity, we need to code over a time range that is much larger then the coherence time.

Closer Look at the Ergodic Capacity

- Interleaving, delay, and burstiness.
- w.o.l.g. assume H_i 's are i.i.d.
- Evaluating the ergodic capacity is hard.
- as SNR \rightarrow 0,

$$C = E_{H}[\frac{1}{2}\log(1+|H|^{2}SNR)]$$

$$\approx \frac{1}{2}E[|H|^{2}] + \frac{1}{2}SNR$$

Same as the AWGN channel

• as SNR
$$\rightarrow \infty$$
,

$$C = E_H[\frac{1}{2}\log(1+|H|^2SNR)]$$

= $\frac{1}{2}\log SNR + \frac{1}{2}E[\log|H|^2]$

Differ from AWGN channel by a constant factor.

Wait a Minute

Why should we fix the input to be i.i.d. Gaussian ?

- If we allow the input distribution to depend on H_i , then water-filling is the optimal input.
- Extreme case, we have very litter power, then we only transmit when *H* is extremely high.
- Requires transmitter side channel state information, CSI
- Power efficiency, feedback, burstiness again.

Without Tx CSI

Assume the transmitter does not have CSI, but the receiver does.

$$C = \max_{P_X} I(X;Y)$$

where

- the input P_X must not depend on H, distinguish from the notation I(X;Y|H).
- the channel can be written as $P_{Y|X} \sim N(hX, \sigma_W^2)$.
- the optimal input must be Gaussian, so that Y is Gaussian
- the input must be i.i.d. by concavity argument.
- Can generalize to any stationary random process {*H_i*}.

How do We obtain CSI at the Receiver

 send training sequences to help the transmitter estimate the channel

 $\underline{y}_t = H\underline{x}_t + \underline{w}_t$

- Tradeoff: more time and energy to estimate the channel, less time to communicate.
- Modelling the time variation of the channel states
 - block fading model
 - Markov process

Example block fading with block length l > 1.

$$y = \hat{H}\underline{x} + \tilde{H}\underline{x} + \underline{w}$$

- the error in channel measurement becomes the extra noise
- lose 3dB (double the noise power) at high SNR

resulting channel capacity per block is

$$\frac{l-l_t}{l}\log SNR - c$$

- Use one symbol time to train.
- very inefficient when SNR is low.

Non-coherent Communication

• Can we communicate without the receiver knowing the channel?

Example Communication with the direction of vectors.

• Do we really know the channel or not?

Communication is feasible when the corresponding randomness is resolved

Example Low SNR peaky signaling.